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Abstract. In 2018 and 2019, central Europe was stricken
:::::::
affected by two consecutive extreme dry and hot summers (DH2018

and DH2019
:::::
DH18

::::
and

:::::
DH19). The DH2018

:::::
DH18 had severe impacts on ecosystems and likely affected vegetation activity

in the subsequent year, for example though
::::::
through

:
depletion of carbon reserves or damage from drought. Such legacies from

drought and heat stress can further increase vegetation susceptibility to additional hazards. Temporally compound extremes

such as DH2018 and DH2019
:::::
DH18

::::
and

:::::
DH19

:
can, therefore, result in an amplification of impacts by preconditioning effects5

of past disturbance legacies.

Here, we evaluate how these two consecutive extreme summers impacted ecosystems in central Europe and how the vegeta-

tion responses to the first compound event (DH2018
:::::
DH18) modulated the impacts of the second (DH2019

:::::
DH19). To quantify

the modulating role of vegetation responses to the impacts of
:::::::
changes

::
in

:::::::::
vegetation

:::::::::::
vulnerability

::
to

:
each compound event,

we first train a set of statistical models for the period 2001-2017
:
,
:::::
which

:::
are

::::
then

::::
used

:
to predict the impacts of DH2018 and10

DH2019
:::::
DH18

::::
and

:::::
DH19

:
on Enhanced Vegetation Index (EVI) anomalies from MODIS. These estimates can be seen as the

:::::::::
correspond

::
to

:
expected EVI anomalies , had the impacts of DH2018 and DH2019 been consistent with

:
in

::::::
DH18

:::
and

::::::
DH19

:::::
based

::
on

:
past sensitivity to climate. These can then be

::::
Large

:::::::::
departures

:::::
from

:::
the

::::::::
predicted

::::::
values

:::
can

:::::::
indicate

:::::::
changes

:::
in

::::::::::
vulnerability

::
to

:::
dry

::::
and

:::
hot

:::::::::
conditions,

:::
and

:
used to identify modulating effects by vegetation activity and composition or other

environmental factors such as elevated CO2 or warming trends
::
on

::::::::
observed

::::::
impacts.15

We find two regions in which the impacts of the two DH events were significantly stronger than those expected based

on previous climate–vegetation relationships. One region, largely dominated by grasslands and crops, showed much stronger
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impacts than expected in both DH events due to an amplification of their sensitivity to heat and drought, possibly linked

to changing background CO2 and temperature conditions. A second region, dominated by forests
:::
and

:::::::::
grasslands, showed

browning from DH2018 to DH2019
:::::
DH18

::
to

::::::
DH19, even though dry and hot conditions were partly alleviated in 2019. This20

browning trajectory was mainly explained by the preconditioning role of DH2018
:::::
DH18

:
to the observed response to DH2019

:::::
DH19 through legacy effects, and possibly by increased susceptibility to biotic disturbances, which are also promoted by warm

conditions.

Dry and hot summers are expected to become more frequent in the coming decades posing a major threat to the stability of

European forests. We show that state-of-the-art process based models miss these legacy effects. These gaps may result in an25

overestimation of the resilience and stability of temperate ecosystems in future model projections.

Copyright statement. No copyrights

1 Introduction

Extreme dry and hot summers in western and central Europe have become more frequent over the past decades (Coumou and

Rahmstorf, 2012; Seneviratne et al., 2014), a trend that is expected to continue as global mean temperatures rise (Barriopedro30

et al., 2011). Hot extremes in Europe are promoted by changes in atmospheric circulation (Coumou et al., 2015; Drouard et al.,

2019) and amplified by strong feedbacks between the land-surface and the atmosphere, being therefore also associated with

severe droughts (Miralles et al., 2014; Samaniego et al., 2018), i.e. compound hot and dry
:::
dry

:::
and

:::
hot

:
events (DH).

In Europe, DH events have usually strong negative impacts on ecosystems, such as reduced ecosystem productivity (Ciais

et al., 2005; Bastos et al., 2020b). After severe drought and heat stress,
::::
plant

:
recovery can be lagged, for example due to35

leaf shedding
::::::
reduced

:::::::
growth, or non-reversible losses in hydraulic conductance

:
or

:::::::
carbon

::::::
reserve

::::::::
depletion

:
(Ruehr et al.,

2019). This, in turn may increase vulnerability if another DH
:
to

:::::::
another

::::
DH,

::
if

:
it
:
occurs before complete recovery. A second

DH event
::::::::
Repeated

::::::::
droughts

::::
have

::::
been

::::::
linked

::
to

::::::::
increased

::::::
forest

::::::::::
vulnerability

:::
in

:::
the

:::::::
northern

::::::::::::
mid-latitudes,

::::::::
although

::::
with

::::::
variable

:::::::::
responses

:::::::::::::::::::
(Anderegg et al., 2020).

::::::::
Impaired

::::::::::
functioning

:::::
during

:::
the

::::::::
recovery

:::::
period

:
can additionally increase the haz-

ard of other disturbancessuch as fires or insect outbreaks (Rouault et al., 2006; ?; ?). More frequent extremes may, therefore,40

threaten ecosystem stability by compounding multiple hazards and concurrent and lagged effects from highly impactful DH

events
:::::::::
subsequent

:::::::::::
disturbances,

:::
e.g.

::::::
insect

::::::::
outbreaks

:::::::::::::::::
(Rouault et al., 2006)

:
.
::::::::
However,

:::::::::
reductions

::
in

::::
leaf

::::
area,

::::::::
increases

::
in

::::
root

::::::::
allocation

::::::::::::::::::::
(McDowell et al., 2008)

::
or

::::::
reduced

:::::::
growth,

::
by

::::::::
reducing

:::::::::
evaporative

:::::
tissue

:::
and

::::::::
enhancig

:::::
water

:::::
uptake

::::::::
capacity,

:::::
could

:::
also

::::::
confer

::
an

:::::::::
advantage

::
to

:::::::::
subsequent

::::::::
droughts

:::::::::::::::::
(Gessler et al., 2020)

:
.
::
It

::::::
remains

:::::::
unclear

:::::::
whether

:::
the

::::::::
increased

:::::::::::
vulnerability

::
to

:
a
::::::::::
subsequent

:::::::
drought

:::
can

:::
be

::::::::
explained

:::
by

::::::::::::
compounding

::::::
hazards

:::::
(e.g.

:::::::::::
accumulated

:::::::::::
water-deficits

::
or
::::::::::

compound
::::
heat)

:::
or45

:::::::::
modulating

::::::
effects

:::
due

::
to

:::::::::
vegetation

::::::::
responses

::
to
:::
the

::::
first

:::::
event.

At European scale

2



::
In

::::::
Europe, the summer in

:
of

:
2018 was the hottest since 1500 (Sousa et al., 2020) while at the same time leading to

:::
and

::::::::
associated

:::::
with an unprecedented area affected by drought (Albergel et al., 2019; Bastos et al., 2020a). In 2019, central

Europe was stricken by
::::
This

::::
DH

:::::
event

:::::::
resulted

::
in
:::::::::

decreases
::
in

:::::::::
ecosystem

:::::::::::
productivity

:::
by

:::
up

::
to

::::
50%

:::
in

::::::
central

:::::::
Europe50

:::::::::::::::::::::::::::::::::
(Bastos et al., 2020a; Buras et al., 2019)

::
and

::::
crop

:::::
yield

:::::
losses

::::::::::::::::::
(Beillouin et al., 2020)

:
.
::::
Part

::
of

::
the

::::::
central

::::::::
European

::::::
region

::::::
affected

::
by

:::::
DH18

:::::::::
registered another extremely hot and dry summer (Boergens et al., 2020; Sousa et al., 2020).

::
in

::::
2019

::::::::::::::::::::::::::::::::::
(Boergens et al., 2020; Sousa et al., 2020)

:
.

From a hydrometeorological perspective, the dry and hot summers in 2018 and 2019 (DH2018 and DH2019
:::::
DH18

::::
and

:::::
DH19, respectively) could be considered

:::::::::
individually

:::
as

:::
two

::::::::::
compound

:::::
events

:::
in

:::
that

:::::
both

::::
high

:::::::::::
temperatures

::::
and

::::::
strong55

::::::
drought

:::::::::
conditions

:::::
were

::::::::
observed

:::::::::::::::::::::::::::
(Zscheischler and Fischer, 2020).

::::::
Taken

:::::::
together,

::::
they

:::::::::
constitute a temporally compound

event (Zscheischler et al., 2020). For example,
:
:
:
Boergens et al. (2020) have shown that while soil-moisture deficits in summer

2019 were not as pronounced as in 2018, total water storage was lower in 2019 due to the water storage deficit resulting from

the 2018 event.

From an ecological perspective, these events are more complex as they constitute a combination of temporally (two consecutive60

extreme summers) and preconditioning (changes in ecosystem functioning) compound events. The DH2018 was one of the

strongest in the past decades, leading to decreases in ecosystem productivity by up to 50% in central Europe (Bastos et al., 2020a; Buras et al., 2019)

. Compared to previous extreme summers, DH2018 was associated with increased sensitivity to temperature (Bastos et al., 2020b)

. This can be a sign of increased plant vulnerability to “hotter” droughts (Allen et al., 2015), or of detrimental effects from

increased growth in response to the previous sunny and warm spring (Bastos et al., 2020a). Given the unprecedented magni-65

tude of DH2018 and its severe impacts, it likely imposed such legacies throughout the subsequent year, for example through

reduced growth or carbon reserve depletion that may have increased vulnerability to yet another dry and hot summer
:::::
DH18,

::
it

:
is
:::::
likely

::::
that

::
at

::::
least

:::::
some

:::::::::
ecosystems

::::
had

:::
not

:::
yet

::::
fully

::::::::
recovered

:
in 2019.

Repeated droughts have been linked to increased forest vulnerability in the northern mid-latitudes, although with variable

responses (Anderegg et al., 2020). It remains unclear whether the increased vulnerability to a subsequent drought can be70

explained by physical drivers (e.g. accumulated water-deficits or compound heat) or by modulating effects by vegetation

responses during and following the first drought. Moreover, responses to drought are expected to
::::::::
Therefore,

:::::
from

::
an

:::::::::
ecological

::::::::::
perspective,

::::
these

::::
two

:::::
events

:::
are

:::::
more

::::::::
complex,

::
as

::::
their

:::::::
impacts

:::
can

:::
be

::::::::::::
preconditioned

:::
by

:::::::
seasonal

::::::::::::::::::
(Bastos et al., 2020a)

:::
and

::::::::::
inter-annual

:::::
legacy

:::::::
effects.

::::::
Finally,

:::::::::::
vulnerability

::
to

:::
DH

::::::
events

:::
can

::::::
further be modulated by long-term increase in CO2, but the

direction of this effect is not clear
::::::::::::
environmental

:::::::
changes: water-savings from reduced stomatal conductance should attenuate75

drought stress (Peters et al., 2018), but concurrent decrease in evapotranspiration cooling
::::::::::::::
evapotranspirative

:::::::
cooling

:::::
along

::::
with

::::::
“hotter

::::::::
droughts” may amplify heat stress (Obermeier et al., 2018)

::::::::::::::::::::::::::::::::::
(Allen et al., 2015; Obermeier et al., 2018)

::::
(Fig.

:::
1).

Separating the modulating effects controlled by vegetation responses to global change or by legacies from past disturbances

(Kannenberg et al., 2020) and seasonal legacy effects (Buermann et al., 2018) in observations is problematic as it requires

considering the compounding effects of multiple drivers (e.g., compound heatwave and drought) and separating the role of80

seasonal and inter-annual legacies both in physical variables (e.g., soil-moisture depletion) and in vegetation vulnerability

to those drivers. Such effects have been separated for seasonal legacies using model experiments and
:::
This

::::
can

::
be

:::::
done

:::
by
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Figure 1.
::::::::
Conceptual

:::::::::
description

::
of

:::
the

::::::::
compound

:::::
DH18

:::
and

:::::
DH19

::::::
events.

::::
Dry

:::
and

:::
hot

::::::::
conditions

::
in

::::
both

:::::::
summers

::::
were

::
a
:::::
result

::
of

:::::::::
compouding

:::::::::
atmospheric

::::::
drivers

:::::::
(synoptic

:::::::
patterns,

:::::::
preceding

::::::
climate

:::::::::
anomalies,

::::::::::::
land-atmosphere

::::::::::
interactions).

::::
The

:::::
DH18

::::::
impacts

::::
were

::::::::
modulated

::
by

::::::
seasonal

:::::
legacy

::::::
effects

::
in

:::::::
ecosystem

:::::::::
functioning

::::
from

:
a
:::::
sunny

:::
and

:::::
warm

:::::
spring.

:::
We

:::::::::
hypothesise

:::
that

::::::
legacies

::::
from

:::
the

:::::
DH18

::::
event

:::
also

:::::::::
contributed

::
to
::::::::

modulate
:::
the

:::::::
response

::
to

:::::
DH19.

:::::
These

::::::
impacts

::::
can

::
be

:::::
further

:::::::::
modulated

::
by

::::::::
long-term

::::::
changes

:::
in

::::::::
ecosystem

:::::::::
vulnerability

::
to

::::::
drought

:::
and

::::
heat

::::
stress

:::
due

::
to

:::::::::::
anthropogenic

:::::
climate

::::::
change

:::
and

::::::
elevated

::::
CO2.

:

::::::::
designing counter-factual scenarios ((Lian et al., 2020; Bastos et al., 2020a)).

::
to

:::::
force

:::::::::::
process-based

:::::::
models,

::
as

:::::::
recently

:::::
done

::
to

:::::::
evaluate

:::::::
seasonal

::::::
legacy

:::::
effects

:::
of

:::
hot

:::
and

:::
dry

:::::::
springs

:::::::::::::::::::::::::::::::
(Lian et al., 2020; Bastos et al., 2020a)

:
.
::::::::
However,

:
it
::::
has

::::
been

::::::
argued

:::
that

:
Earth System models have been reported to fail at modelling woody biomass trajectories following droughts (Anderegg85

et al., 2015), but
::
so

:::
that

::::
they

:::::
might

::::
miss

::::::::::
inter-annual

::::::
legacy

::::::
effects

::::
from

:::
DH

::::::
events,

::::::::
although no simulations designed to isolate

the individual impact of drought over subsequent years have been conducted. The simulations by land-surface models (LSMs)

in Bastos et al. (2020a) separated the individual impact of DH2018 on carbon and water fluxes by using an additional factorial

simulation. When extended to 2019, these simulations allow evaluating how models simulate inter-annual legacy effects of

DH2018 and vulnerability to consecutive droughts (DH2018 and DH2019)
:::::::::
performed.

::::::::::::
Alternatively,

::::::::
statistical

::::::
models

:::
can

:::
be90

::::
used

::
to

:::::::
separate

::::
such

::::::
effects

:::::
based

::
on

:::::::::::
observational

::::
data

::::::::::::::::
(Chan et al., 2021).

The occurrence of two consecutive hot and dry summers is uncommon in central Europe but may become more likely in the

coming decades Barriopedro et al. (2011); Boergens et al. (2020). Therefore, the DH2018 and DH2019 can provide insights

on how resilient might European ecosystems be

::::
Here,

:::
we

:::::
focus

:::
on

:::::
DH18

:::
and

::::::
DH19

::
to

::::
gain

:::::::
insights

::
on

:::
the

::::::::
resilience

::
of

:::::::::
European

:::::::::
ecosystems

:
to repeated hot and dry sum-95

mersin the coming decades. Here, we attempt to answer this question by using both observations and models to:(i) evaluate the

vulnerability of ecosystems to DH2018 and DH2019;(ii) detect fingerprints of global change and disturbance legacy effectsin

ecosystem vulnerability to DH2018 and DH2019;(iii) assess the ability of state-of-the-art LSMsto simulate the impacts on

ecosystem of these two events.

Our results show an increasingly important contribution of vegetation condition, evaluated here by greenness and productivity,100

in preconditioning the response to both DH2018 and DH2019, suggesting that feedbacks between climate extremes and

ecosystem functioning may increased vulnerability to climate change.
:::::
Using

::::
both

:::::::::::::
remote-sensing

::::
data

::::
and

::
an

::::::
update

:::
of

:::
the

:::::::::
simulations

:::
by

:::::::::::::::::
Bastos et al. (2020a),

:::
we

::::
first

:::::::
evaluate

:::::::
whether

::::
there

:::
are

:::::
signs

::
of

::::::::
increased

:::::::::
vegetation

::::::::::
vulnerability

::
to
::::::::
repeated

:::
dry

:::
and

:::
hot

::::::::
summers

::
of

:::::
2018

:::
and

:::::
2019,

::::
and

:::
try

::
to

:::::::
identify

:::::::
possible

::::::::::
modulating

::::::
effects.

:::
We

::::
then

::::::::
compare

:::::::::::::::
observation-based
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:::::
results

::
to
:::::::

updated
::::::::::

simulations
:::
by

::::::::::::
state-of-the-art

:::::::::::
land-surface

::::::
models

::::
and

:::::::
dynamic

::::::
global

:::::::::
vegetation

::::::
models

::::
(for

:::::::::
simplicity105

::::::
referred

::
to
:::
as

::::::
LSMs)

:::::::
designed

::
to

::::::
isolate

:::
the

:::::::
impacts

::
of

:::::
DH18

::::
and

:::::
legacy

::::::
effects

:::::::::::::::::
(Bastos et al., 2020a)

:
.

2 Data

2.1 Climate variables

For
::
In

:
ecological studies, drought is better characterized by soil-moisture anomalies i.e. agricultural drought (Sherriff et al.,

2011; Seneviratne et al., 2012; Samaniego et al., 2018) than atmospheric drought indices. We therefore base our drought110

assessment on two complementary soil-moisture datasets. The first is the observation-based soil moisture data obtained from

SoMo.ml (?)
:::::::::::::::::::::
(Sungmin and Orth, 2021), used as reference in this study, and the second, for comparison with SoMo.ml, is give

::::
given

:
by ERA5 volumetric soil-water content (Hersbach et al., 2020).

The SoMo.ml data are generated using a Long Short-Term Memory neural network model trained with meteorological

forcing from ERA5 and land surface characteristics as inputs and global in-situ soil moisture measurements (Dorigo et al.,115

2011; Zeri, 2020) as target variables. The data cover the period 2000-2019
:::::::::::
soil-moisture

::
in

:::
the

:::
first

:::::
50cm

:::
of

:::
the

:::
soil

:
and are

available at 0.25°lat/lon resolution and daily time-steps
::
for

:::
the

::::::
period

:::::::::
2000–2019. We remapped the fields to the finer resolution

of the MODIS grid and aggregated the data to monthly means. We then subtracted the mean seasonal cycle and long-term linear

trend
:
, and divided by the corresponding standard deviation to obtain standardized soil-moisture anomalies (SManom).

We use monthly
:::::::
Monthly

:
temperature and volumetric soil-water content (layers 1 and 2, top 28cm) from the ECMWF120

ERA5 Reanalysis . ERA5 uses an improved land-surface data-assimilation system that makes use of remotety-sensed and

in-situ observations, and shows improved skill compared to previous reanalyses (Hersbach et al., 2020) and good temporal

agreement with a range of global soil-moisture networks (?). Data were obtained from the Copernicus Climate Change Ser-

vice at 0.25°lat/lon resolution (Hersbach et al., 2020) at monthly time-steps and selected for the period 2000-2019 (common

with SoMo.ml) and remapped to the finer resolution of the MODIS grid using conservative regridding
:::::::::
remapping. Standard-125

ized anomalies were calculated by removing the mean seasonal cycle and long-term linear trend and then dividing by the

corresponding standard deviation of
:
as

:::::::::
described

::
for

::::::::
SManom:::

for
:::::
ERA5

:
temperature and soil-moisture fields (Tanom,SMERA5

anom ).

Soil-moisture anomalies from ERA5
::
in

:::::
layers

::::
1–2

:::
(top

::::::
28cm)

:
are used for comparison of drought conditions with those esti-

mated by SoMo.ml(SManom for simplicity), although it is worth noting that ,
::::::::
although the two datasets are not fully indepen-

dent.130

2.2 Vegetation and soil data

We used the 16-day Enhanced vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS)

sensor from the MOD13C1 CMG product. The MOD13C1 CMG follows a strict quality control and uses a gap-filling scheme to

provide continuous cloud-free spatial composites from 1km data (Didan et al., 2015) projected on a 0.05°lat/lon grid . covering

::::::::::::::::
(Didan et al., 2015),

::::
and

::::
were

::::::::
selected

:::
for the period 2001–2019. MOD13C1 CMG is, therefore, a higher-quality product135
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especially suitable for spatiotemporal analysis and for comparison with LSMs as intended here.
::::::::::
Standardized

:
EVI anomalies

(EV Ianom) were calculated by removing the mean seasonal cycle and long-term linear trend, and were then scaled by the

corresponding pixel-level temporal standard deviation
:::::::
following

:::
the

:::::
same

::::::::
approach

::
as

::
for

:::::::
climate

:::::::
variables. The standardization

allows comparing the relative magnitude of anomalies for pixels with distinct temporal variability patterns and with vegetation

productivity simulated by LSMs, which have different physical units.140

For
:::
We

::::
used land-cover distribution we used

:
in

:::::
2018

::::
from the ESA Climate Change Initiative land-cover map (Kirches et al.,

2014) (CCI-LC)for the year 2018. .
:
The data are originally provided in land-cover classes at 300m spatial resolution and were

converted to fractional cover at 0.05°lat/lon resolution for forest, grassland, crop classes using the LC-CCI user–tool.

Isohydricity
:::
We

::::
used

::::::::::
isohydricity

:
fields from global satellite measurements from Konings et al. (Konings et al., 2017) are

available at 1°lat/lon resolutionfrom . Anisohydric plants (low isohydricity) show weak regulation of stomatal opening, and145

prioritize carbon assimilation over water savings during droughts. High isohydric plants show strong stomatal regulation of

productivity and thereby preserve water at the cost of carbon assimilation during drought.

We use soil Available Water Capacity (AWC) from Ballabio et al. (2016) and Panagos et al. (2012), which used the Land

Use and Cover Area frame Statistical survey (LUCAS) topsoil database to map soil properties at continental scale.

The data are provided by the European Soil Data Centre (ESDAC) (esdac.jrc.ec.europa.eu).150

2.3 Land-surface
:::::::
Outputs

:::::
from

:::::::::::
land-surface

::::
and

::::::
global

::::::::
dynamic

:::::::::
vegetation models

Standardized anomalies of gross primary productivity (GPPanom) and soil-moisture (SManom) were estimated by the mean

of seven land-surface models (
:::
and

::::::::
dynamic

:::::
global

:::::::::
vegetation

::::::
models

::::
(for

::::::::
simplicity

:::::::
referred

::
to

::
as

:
LSMs) between 1979–2019

from an extension of Bastos et al. (2020a) simulations: a baseline simulation for comparison with observations and a factorial

simulation to quantify the individual impact of summer 2018 and its legacy effects, when compared to the reference simulation.155

For the reference simulation, the models were forced with observed CO2 concentration from NOAA/ESRL and changing

climate between 1979
::
A

:::::::
detailed

:::::::::
description

:::
of

:::
the

::::::
models

::::
used

:
and 2019 from ERA5 and fixed land-cover map from 2010

from LUH2v2 (Hurtt et al., 2011). An additional simulation was ran where the models were forced with changing climate,

except June–August 2018, where climatological summer climate conditions were used to force the models as described

in Bastos et al. (2020a). This simulation allows evaluating the direct impact of DH2018 and its legacy effects. The model160

simulations were run for most models at 0.25 °spatial resolution for the European domain (32–75°N and -11–65°E), following

a spin-up to equilibrate carbon-pools. For more details on the simulation protocol , we refer to (Bastos et al., 2020a). These

simulations were extended here to 2019, using climate fields from ERA5. Here we analyse gross primary productivity (GPP)

and simulated soil-moisture
:::
the

:::::::::
simulation

:::::::
protocol

::
is

:::::::
provided

::
in

:::
the

:::::::::
Appendix

::
A.

The seven LSMs followed the protocol and extended the simulations in Bastos et al. (2020a) up to 2019. These models are:165

ISBA-CTRIP (Joetzjer et al., 2015), JSBACH (Mauritsen et al., 2018), LPJ-GUESS (Smith et al., 2014), LPX-Bern (Lienert and Joos, 2018)

, OCN (Zaehle et al., 2010), ORCHIDEE (Krinner et al., 2005) and SDGVM (Walker et al., 2017).
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First, all models
:::::
model

:::::::
outputs were remapped to a common 0.25 degree grid, and the multi-model ensemble mean was cal-

culated for the common period with MODIS (2001–2019). The variables were then deseasonalized, detrended and standardized

as done for the other variables in the study.170

3 Methods

3.1 Drought characterization

We use the observation-based SoMo.ml as a reference dataset to define agricultural drought conditions. Regions with average

SManom below −1σ (Seneviratne et al., 2012) , during summer (JJA) are considered drought-affected areas during the DH

events. Then, a regional domain affected by both DH2018 and DH2019
:::::
DH18

::::
and

:::::
DH19

:
events is selected to evaluate the175

impacts of two consecutive DH events. Within this region most pixels had negative SManom and the majority registered

SManom <−1.5σ, but they differ in the magnitude of agricultural drought in 2019.
::::::
DH19. This allows comparing responses

across pixels for different combinations of stress between DH2018 and DH2019.
:::::
DH18

:::
and

::::::
DH19.

:::::
Since

:::
we

:::
are

:::::::::
interested

::
in

::::::::
evaluating

::::
how

::::::::
recovery

::::
from

::::::
DH18

:::::::
affected

::::::
impacts

:::
of

::::::
DH19,

::
we

:::::
limit

:::
our

:::::::
analysis

::
to

:::::
pixels

:::::
with

:::::::
negative

:::::::::
EV Ianom ::

in

:::::
DH18.

:
180

3.2 Compound DH2018
:::::
DH18

:
and DH2019

:::::
DH19 events

3.2.1 DH2018
:::::
DH18 and DH2019

:::::
DH19

:
impact characterization

To characterize different response “types ” to DH2018 and DH2019
::::
types

::
to

::::::
DH18

:::
and

:::::
DH19, we group pixels in an unsupervised

way (K-means clustering ) based on the EVI impacts
:::::
using

:::::::::::
unsupervised

::::::::
clustering

::
of

::::
EVI

:
during the two extreme summers.

Using an unsupervised method allows avoiding making assumptions about the magnitude of impacts or the trajectory between185

DH2018 and DH2019 (DH2018
:::::
DH18

::::
and

:::::
DH19

::::::
(DH18→DH2019

:::::
DH19) when grouping pixels. For this, we applied a K-

means cluster analysis (Hamerly and Elkan, 2003) using two features, corresponding to the EV Ianom fields in DH2018 and

DH2019, for pixels with negative EV Ianom in DH2018
::::
DH18

::::
and

::::::
DH19. Four clusters captured the most significant dif-

ferences in the impacts of DH2018 and corresponding DH2018
:::::
DH18

::::
and

::::::::::::
corresponding

:::::
DH18→DH2019

:::::
DH19 responses:

moderate/strong DH2018
:::::
DH18

:
impacts and moderate/strong impacts by DH2019

:::::
DH19. These clusters were then used to190

evaluate how LSMs simulate the summer GPPanom and SManom.

3.2.2 Detecting increased vulnerability to drought and heat stress

We propose that the two events can be considered
:::
To

:::::
better

:::::::::
understand

::::
the

::::::
impacts

:::
of

:::
the

::::
two

::::::
events,

:::
we

::::::
frame

::::
them

:::
as

a combination of temporally and preconditioning compound events (Fig. 1): a sequence of two DH events, whose impacts

may be preconditioned by ecosystem vulnerability to DH, especially in the case of DH2019. The DH impacts and ecosystem195

vulnerability, i.e. the propensity to be negatively impacted by a given event, are
:::::
DH19.

:::::::::::
Vulnerability

:::
to

:::
DH

::
is

::::::
defined

:::
as

:::
the

7



:::::
impact

:::
of

:::
the

:::::::
physical

::::::
hazard

:::
(hot

::::
and

:::
dry

:::::::::
conditions)

:::
on

:::::::::
vegetation

:::
and assessed by remotely-sensed EVI and modelled GPP

anomalies.

Conceptual description of the compound DH2018 and DH2019 events. Dry and hot conditions in both summers were a

result of compouding atmospheric drivers (synoptic patterns, preceding climate anomalies, land-atmosphere interactions). The200

DH2018 impacts were modulated by seasonal legacy effects in ecosystem functioning from a sunny and warm spring. We

hypothesise that legacies from the DH2018 event also contributed to modulate the response to DH2019. These impacts can be

further modulated by long-term changes in ecosystem vulnerability to drought and heat stress due to anthropogenic climate

change and increasing CO2.

The difference between the reference and factorial simulations by LSMs allow separating the modulating effects of DH2018205

:::::
DH18 legacies to the DH2019

:::::
DH19

:
impacts (dashed arrow in Fig. 1). Separating the legacies in observations is more chal-

lenging, because the EVI signal at any time-step includes both signals . We
::::::
signals

::::
from

::::
both

::::::::::
concurrent

::::::
climate

::::
and

::::
past

:::::::
legacies,

:::
and

:::::::
possibly

::::
also

::::::::
long-term

::::::
global

::::::
change.

:::
To

::
do

::::
this,

:::
we hypothesise that preconditioning effects from legacies from

past disturbance (modulating DH2019) but also from
:::
due

::
to
::::
past

::::::::::
disturbance

:::::::
legacies

::::::::::
(modulating

::::::
DH19)

::::
and global change

(modulating DH2018 and DH2019
:::::
DH18

:::
and

::::::
DH19) should be detectable by changes in ecosystem sensitivity to similar haz-210

ards. Increased vulnerability can thus be detected if
::::::::::
corresponds

::::
thus

::
to

:
EV Ianom values are lower (more negative or less

positive) than those expected for a given drought or temperature anomaly based on past sensitivities. Inversely, acclimation to

drought could
:::::::
increased

:::::::::
resistance

::::::
would result in EV Ianom being less negative or more positive than expected for a given

SManom.

We test whether increased
:::::
assess

:::::::
whether

:::::::
changes

::
in
::::

the sensitivity to climate anomalies is detected for DH2018 and215

DH2019 in
:
in
::::::

DH18
::::
and

:::::
DH19

:::::
using

::
a
::::::::
statistical

:::::::::
modelling

::::::::
approach

::
to
:::::::

predict
:::::::::
EV Ianom ::

in
::::::
DH18

:::
and

::::::
DH19

:::::
based

:::
on

:::::::::
2001–2017

::::::::::::::::
climate–vegetation

:::::::::::
relationships.

::::
We

:::
do

:::
this

:::
in two steps: a linear case, and another including non-linear and

:::
first

:::
by

:::::
fitting

::
a
:::::
linear

:::::::::
regression

:::::
model

:::
for

:::::
mean

:::::::::
EV Ianom:::

in
::::
each

::::::
cluster,

::::
and

::::
then,

:::
for

:::::
more

:::::::
detailed

::::::::
insights,

::
by

::::::
fitting

:
a
:::::::
random

:::::
forest

::::::
model

::
at

::::
pixel

::::::
scale,

::
in

:::::
which

:::
we

:::::::
include

::::::::
potential seasonal legacy effects. In both steps, we characterize

EVI-climate relationships for the period 2001–2017 and predict the EVI anomaliesin DH2018 and DH2019. In the
:::::
cases,220

::
the

:::::::
training

::::::
period

:::::::
includes

:::::
other

:::
DH

:::::
events

::::::::::::::::::::::::::::::
(Ciais et al., 2005; Orth et al., 2016),

::::
with

:::::::
similar

::::::
climate

:::::::::
anomalies,

::::::::::
particularly

:::::
2003,

::::::
thereby

:::::::
reducing

:::
the

::::
risk

::
of

:::::::::
attempting

::
to

::::::
predict

:::::::::
EV Ianom:::::

based
:::
on

:::::::
“unseen”

:::::::
climatic

::::::::::
conditions.

::
On

::
a first step, we estimate the EVI-climate relationships for each cluster by univariate linear regression modelsof using

:::
for

::
the

::::::::::::::::
spatially-averaged

:::::::
variables

::::::
within

::::
each

::::::
cluster,

:::
we

::
fit

:::
the

::::::::
following

:::::::
models:

:

EV I
Ci

anom = b0 + b1×V AR
Ci

anom
:::::::::::::::::::::::::::

(1)225

:::::
Where

:::::::::
EV I

Ci

anom::::
and

:::::::::
V AR

Ci

anom:::::::::::
corresponds

::
to

:::
the

::::::
cluster

:::
(Ci)::::::

spatial
:::::::
average

::::::
values

::
of

:::::::::
EV Ianom :::

and
:::::::
climate

:::::::
variable

:
(growing-season SManom or Tanomas predictors. Because impacts on EVI could

:
),
:::::::::::
respectively.

:::
b0,

::
b1:::

are
:::
the

::::::::::
coefficients

::
of

::::
each

:::::
linear

::::::::
regression

::::::
trained

:::
on

:::::::::
2001–2017

::::::
values.

:::::
Each

:::::
model

::
is

::::
then

::::
used

::
to

:::::::
estimate

:::::
DH18

::::
and

:::::
DH19

:::::::::
EV Ianom.

::::::::
Negative
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:::::
model

::::::::
residuals

:::::::::::
(observations

:::::
minus

::::::::::
predictions)

::::
can

::::::
indicate

::::::::
increased

:::::::::::
vulnerability,

:::::
while

:::::::
positive

::::::::
residuals

:::
can

::
be

::
a
::::
sign

::
of

::::::::
increased

::::::::
resistance.

:
230

::::::::
However,

:::::::::
departures

::::
from

:
a
::::::

linear
:::::
model

:::::
could

::::
also

:
result from non-linear interactions between soil-moisture and temper-

ature or from legacy effects from spring (Bastos et al., 2020a; Lian et al., 2020), we extend this analysis by .
:::
To

:::::::
account

:::
for

::::
such

:::::
effects

::::
and

:::::::
evaluate

::::::::
potential

:::::
spatial

:::::::::::
asymmetries

::
in

:::
the

:::::::::
departures

::::
from

:::::::::
long-term

::::::::::::::::
climate–vegetation

:::::::::::
relationships,

:::
we

::
fit

:
a
:
random-forest (RF) regression using

:::::
model

:::::
using

:::
as

:::::
target

:::::::
variable

::::::::
EV Ianom:::

in
::::
each

::::
pixel

:::
(i)

::::
from

::::::::::
2001–2017,

::::
and

:::
the

:::::::::::
corresponding

:
SManom and Tanom in spring (MAM) and summer SManom or Tanom. We

::
in

:::::::
summer

:::::
(JJA)

::
as

:::::::::
predictors:235

EV I
::::anom−i =RF (T spr

anom−i,SM
spr
anom−i,T

sm
anom−i,SM

sm
anom−i)

::::::::::::::::::::::::::::::::::::::::::::::::
(2)

::
To

::::::
reduce

:::
the

::::
risk

::
of

::::::::::
over-fitting

::::
due

::
to

:::
the

:::::
small

:::::::
sample

:::
size

::::
(17

:::::
years)

::::
and

:::::
large

::::::
number

:::
of

:::::::::
predictors

:::
(4),

:::
we

:
fit the

RF model on a per-pixel basis but on 3x3 moving windows , in order to increase the sample size
:::::::
centered

::::::
around

::::
each

:::::
pixel

(i.e. 17× 9 ) for each regression and reduce over-fitting. To further control for possible over-fitting and poor predictive skill

::::::::
samples).

:::
We

:::::
assess

::::
the

:::::
model

:::::::::::
performance

:
outside of the training samples , we calculate the RF model

::
by

::::::::::
calculating

:::
the240

out of bag scores
::
in

:::::::
addition

::
to

:::
the

:::::::
training

::::::
sample

:::::
scores. The importance of each predictor is then estimated by the Shapley

additive explanation values (Lundberg and Lee, 2017).
:::
We

::::
then

::::::
predict

:::::::::
EV Ianom::

in
::::::
DH18

:::
and

::::::
DH19

:::::
using

:::
the

:::::::::
respective

::::::::
anomalies

::
in

::::::
T spr
anom,

:::::::::
SMspr

anom,
::::::
T sm
anom,

:::::::::
SMsm

anom.

TheEV Ianom predicted by the RF model for DH2018 and DH2019
:::::
DH18

:::
and

:::::
DH19

:
correspond to the expected DH impacts

if no changes ecosystem vulnerability to drought and heat were present, i.e. considering only links between atmospheric drivers,245

::::
from

::::
past

:::::::::::
relationships

:::::::
between

:::
the

:
hazards and impacts in Fig. 1. It should be noted that the training period includes other

DH events, particularly 2003 and 2015 (Ciais et al., 2005; Orth et al., 2016) thereby reducing the risk of attempting to predict

anomalies out of the training sample. The
::
As

:::
for

:::
the

::::::
linear

::::
case,

:::
the

:
difference between the RF model predictions and the

actual EV Ianom (model residuals) provides thus an estimate of the contribution of
::
an

:::::::::
indication

::
of

:
changes in ecosystem

vulnerability to the DH2018 and DH2019
:::::
DH18

:::
and

::::::
DH19 impacts.250

For comparison with LSM simulations, the EV Ianom clusters were remapped to 0.25 degree by largest area fraction calcu-

lation, and subsequently GPPanom and SManom model ensemble means for each cluster were compared with corresponding

EV Ianom and ERA5 SManom. We first evaluate the linear relationships between the averaged GPPanom for each cluster and

the corresponding climate anomalies,
:::
for

::::::::::
comparison

::::
with

:::::::::
EV Ianom. Then, we estimate the legacy effects from DH2018 to

2019
::::

DH18
:::
on GPPanom::::::

during
::::
2019

:
based on the difference between the reference and factorial LSM simulations.255

3.2.3 Modulating effects

To understand how land-cover can contribute to modulate the impacts of DH2018 and DH2019
:::::
DH18

::::
and

:::::
DH19

:
we analyse

the land-cover composition of each cluster. Given that central Europe is characterized mostly by mixed pixels, we do this by

calculating the
:
a
::::
very

::::::::::::
heterogeneous

:::::::::
landscape,

::
we

::::::::
calculate land-cover selectivity in each cluster for forests, natural grasslands

and croplands. Selectivity is defined as the difference between the probability a given land-cover class being present within260
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a cluster compared to its overall presence in the whole region. The probabilities are calculated by fitting a kernel-distribution

function to the fractional cover fields for the whole region and for separate clusters. Positive (negative) selectivity means that a

given land-cover type is more (less) common
::::
likely

::
to
:::
be

:::::
found

:
in a given cluster than

::::::::
compared

::
to its overall presence in the

region.

Finally, we try to explain the changes in ecosystem vulnerability, which are given by departures of EV Ianom residuals265

(EV Ianom observed minus predicted) from the range of residuals in the training period. To do this, we
::
For

:::::
other

::::::::::
modulating

:::::
effects

:::
we

:
evaluate how the spatial distribution of EV Ianom residuals for DH2018 and DH2019

:::::
DH18

:::
and

::::::
DH19

:
relates

to climatic and ecological variables: SManom and Tanom in spring and summer, number of dry months in the year of the

DH event and the preceding year (i.e. 2017–2018 for DH2018
:::::
DH18, and 2018–2019 for DH2019

:::::
DH19), EV Ianom in the

preceding summer (EV Iyr−1
anom::

),
:::
the

::::::
number

:::
of

:::
dry

::::::
months

::
in
::

a
:::::
given

::::
year

:::
and

:::
its

::::::::
preceding

::::
year

::::::
(DM), forest, cropland and270

grassland cover fractions from CCI-LC, isohydricity (IsoH) and AWC.
:::::::
available

:::::
water

:::::::
capacity

::::::
(AWC,

::::::
related

::
to

:::
the

:::::::::
maximum

::::::
amount

:::
of

:::::
water

::::::::
available

:::
for

::::::
plants).

We include some of the drivers used to train the temporal climate-driven RF model to diagnose possible changes in the

vulnerability to climate, i.e. the impact is still driven by climate conditions, but vegetation responds more strongly
::::::::
explained

::
by

:::::::
stronger

:::::::::
vegetation

:::::::::
sensitivity to climate anomalies than in the training period. EV Iyr−1

anom is used to evaluate the precondi-275

tioning role of legacy effects from past extreme summers or disturbances (summer is the peak of the growing season in this

region). The number of dry months and AWC (related to the maximum amount of water available for plants) are also included

as they may explain non-linear relationships between SManom and vegetation stress. Isohydricity provides a measure of the

degree of stomatal regulation by plants. Since many of these variables have strong spatial covariability
::::::::::
co-variation (e.g. Tanom

and SManom, or to some extent tree/grassland cover and IsoH), we evaluate their relationships with EV Ianom residuals by280

calculating the partial rank correlation (Spearman’s ρ ) between each variable, controlling for the others .
:::::::::
separately.

:::::
Since

::::
these

::::::
effects

:::::
might

::::::
depend

:::
on

:::::::::
land-cover

::::
type,

:::
we

:::::::
analyse

::::::::
separately

:::::
pixels

:::::
with

::::
high

:::
and

:::
low

:::::
forest

::::::
cover.

To further evaluate long-term importance of
::::
how inter-annual legacy effects in vegetation activity

:::::
affect

::::::::
long-term

:::::::::
vegetation

::::::::
dynamics, we apply a second temporal RF model to

:::::::::
pixel-level EV Ianom (Section 3.2.2) where we additionally include

::::
with

EV Iyr−1
anom as a predictorof the regression

::
an

:::::::::
additional

:::::::
predictor. The model is trained for the period 2002–2017 also on 3×3285

moving windows and spring and is then used to predict EV Ianom in DH2018 and DH2019
:::::
DH18

:::
and

::::::
DH19. The resulting

model residuals were then compared to those of the climate–driven RF model.

4 Results

4.1 DH2018
:::::
DH18

:
and DH2019

:::::
DH19 impacts

Following the extreme summer in central Europe in 2018, mild temperatures and strong soil-moisture deficits remained until290

January 2019, when SManom returned to normal conditions (Fig. B1, Fig. B2). In central Europe, June 2019 was extremely hot,

but July and August 2019 were milder (Fig. B1, (Sousa et al., 2020)), and soil-moisture deficits were
::::::
became very pronounced

in July (Fig. B2). In this region, excepting
:::::
except April 2019, the months preceding summer were not particularly dry and
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were even slightly wetter than average in February, March and May, the latter also colder than average. Therefore, the DH2018

and DH2019
:::::
DH18

::::
and

:::::
DH19

:
constitute more a sequence of two compound events than a long

:::::
single drought. The areas295

experiencing severe dry and hot conditions in both summers correspond to a region covering central and eastern Europe and

southern Sweden. This region is our study domain and indicated by the rectangle in Fig.2).

Spatial patterns of temperature (Tanom ), soil-moisture (SManom ) and EVI (EV Ianom ) anomalies during summer 2018

(top panel) and summer 2019 (bottom panel) for the study region. The study region corresponds to a domain with dry and hot

conditions in both 2018 and 2019 summers (DH2018 and DH2019).300

Both DH events led to vegetation browning, though negativeEV Ianom were more widespread in DH2018 than DH2019
:::::
DH18

:::
than

::::::
DH19. Within the study region, 79% of the area showing negativeEV Ianom in DH2018 (EV IDH2018

anom :::::
DH18

::::::::::
(EV IDH18

anom )

also registered negativeEV Ianom in DH2019 (EV IDH2019
anom ), although greening can be found in some areas.

:::::
DH19

:::::::::::
(EV IDH19

anom ).

In this study, we limit our analysis to pixels negatively impacted by DH2018 and evaluate subsequent responses to DH2019305

by grouping pixels based on (EV IDH2018
anom , EV IDH2019

anom ) values using unsupervised clustering.

The spatial distribution of the resulting clusters is shown in Fig. 3 (left panel) and the corresponding (EV IDH2018
anom ,EV IDH2019

anom )

pairs
::::::
clusters

::::::::
resulting

::::
from

:::
the

:::::::::::
unsupervised

:::::::::::
classification

:::::
based

::
on

::::::::::
(EV IDH18

anom ,
::::::::::
EV IDH19

anom )
::::
pairs

:::
and

::::::::::::
corresponding

::::::::
centroids

are shown in the top right panel. For comparison, (SMDH2018
anom , SMDH2019

anom :::
Fig.

::
3
::::
(left

:::
and

::::
top

::::
right

:::::::
panels),

::
as

::::
well

:::
as

:::
the

:::::::::::
corresponding

::::::::::
(SMDH18

anom ,
:::::::::
SMDH19

anom ) and (TDH2018
anom , TDH2019

anom ) pairs are also shown.310

Classification of impact groups within the study region in central Europe. The left panel shows the spatial distribution of the

four clusters from unsupervised classification of (EV IDH2018
anom ,EV IDH2019

anom ) values. The corresponding (EV IDH2018
anom ,EV IDH2019

anom )

distribution in each cluster are indicated in the top right panel (circles indicate the spatial mean and the lines spatial standard

deviation within each cluster). The corresponding distribution of SManom and Tanom pairs are shown in the centre right and

bottom right panels respectively. The grey line, indicates similar anomalies in the two DH events.315

The
::::::
TDH18
anom ,

:::::::
TDH19
anom )

:::::::
(center

:::
and

:::::::
bottom

::::
right

:::::::
panels).

::::
The

::::
four

:
clusters aggregate pixels according to different impacts

in DH2018 and DH2019. Cluster C1 covers
:::::
DH18

::::
and

::::::
DH19.

::::
One

::::::
cluster,

::::::::
covering

:
20% of the areaand

:
,
:
includes pixels

with moderate impacts in DH2018
:::::
DH18 and further browning in DH2019 (EV IDH2019

anom ::::::
DH19,

:::::
being

::::::::
therefore

:::::::
referred

::
to

::
as

:::::::
(CDecline)

:::::
(dark

::::::
brown,

::::::::::
EV IDH19

anom below the 1:1 line in Fig.3, top right panel). This cluster is associated with mixed cover

of forests (10-40%, dominated by needle-leaved) and grasslands (15-60%), (Fig.B3). Cluster C2 (
::::::
CHighV :::::

(high
:::::::::::
vulnerability,320

:::::::
covering 15% of the area) corresponds to pixels experiencing strong impacts in both events and is associated with high grass-

land and cropland fractions and low forest cover. Pixels with strong impacts in DH2018 and
:::::
DH18

::::
and

::::::
weakly

::::::::
negative

:::::::::
EV IDH19

anom ,
:::
i.e.

:
partial recovery in DH2019 (C3

:::::
DH19

:::::::
(CPRecov, 21% of the area)

:
, are mainly dominated by croplands.

:::::::
Finally,

:
a
:::::
group

::
of
::::::

pixels
:::::
shows

:::::::::
moderate

:::::::::
EV IDH18

anom :::
and

:::::::
positive

::::::::::
EV IDH19

anom ::::::::
(CGreening, while pixels showing positive EV IDH2019

anom

(C4, 44%)correspond ,
::::::::::::
corresponding

::::::
mostly to mixed forest-grassland pixels (30-65% of forest, dominated by needle-leaved).325

All clusters have
::::
align

::::
along

:::::::::::
proportional

::::::::::
DH18:DH19

::::::
values

::
of

::::::::
SManom :::

and
::::::
Tanom,

::::
with

::::::::::::
predominantly negative SManom

and positive Tanom in both DH events , but show
::
but

:
alleviation of soil-moisture deficits and heat stress in DH2019 compared

to DH2018
:::::
DH19

:::::::::
compared

::
to

:::::
DH18

:
(Fig. 3). Clusters align along proportional SManom and Tanom in DH2018 vs DH2019

11



Figure 2.
:::::

Spatial
::::::
patterns

::
of

:::::::::
temperature

::::::
(Tanom::

),
::::::::::
soil-moisture

::::::::
(SManom:

)
:::
and

::::
EVI

::::::::
(EV Ianom::

)
::::::::
anomalies

:::::
during

::::::
summer

::::
2018

::::
(top

::::
panel)

::::
and

::::::
summer

::::
2019

::::::
(bottom

:::::
panel)

:::
for

::
the

:::::
study

:::::
region.

:::
The

:::::
study

:::::
region

:::::::::
corresponds

::
to

:
a
::::::
domain

::::
with

::
dry

:::
and

:::
hot

::::::::
conditions

::
in

::::
both

::::
2018

:::
and

::::
2019

:::::::
summers

:::::
(DH18

:::
and

::::::
DH19).

with overlapping distributions. The two recovery clusters (C3 and C4
::::::
CPRecov :::

and
::::::::
CGreening) correspond to pixels with less se-

vere drought conditions and milder temperatures in DH2019, and C4 (greening)
::::::
DH19,

:::
and

::::::::
CGreening corresponds to pixels330

where dry and hot conditions in DH2018
:::::
DH18

:
were also more moderate. C2

:::::
CHighV:

corresponds to pixels experiencing drier

and hotter anomalies in both summers and shows accordingly stronger impacts. Cluster C1
:::::
CDecline, however, shows increasing

browning in DH2019
:::::
DH19

:
in spite of drought and heat stress alleviation (Fig.3), which suggests .

::::
The

::::::::::
distributions

::
of

:::::::
climate

::::::::
anomalies

:::
for

::::
each

::::::
cluster

::::::
overlap

::::
each

:::::
other

::::
and,

::
in

::::
some

:::::
cases,

:::
the

:::
1:1

::::
line,

:::::::::
indicating that the intensity of the hazard

::::::
hazards

(temperature, drought) alone cannot account for the resulting impacts .
:::::
alone.335

4.2 Ecosystem vulnerability to DH2018
:::::
DH18

:
and DH2019

:::::
DH19

12



Figure 3.
::::::::::
Classification

::
of

::::::
impact

:::::
groups

:::::
within

:::
the

::::
study

:::::
region

::
in

:::::
central

:::::::
Europe.

:::
The

:::
left

::::
panel

:::::
shows

:::
the

:::::
spatial

:::::::::
distribution

::
of

::
the

::::
four

:::::
clusters

::::
from

::::::::::
unsupervised

::::::::::
classification

::
of

::::::::::::::::::
(EV IDH18

anom ,EV IDH19
anom )

::::::
values.

:::
The

::::::::::
corresponding

:::::::::::::::::::
(EV IDH18

anom ,EV IDH19
anom )

::::::::
distribution

::
in

::::
each

:::::
cluster

::
are

:::::::
indicated

::
in
:::
the

:::
top

::::
right

::::
panel

::::::
(circles

::::::
indicate

:::
the

:::::
spatial

::::
mean

:::
and

:::
the

::::
lines

:::::
spatial

::::::
standard

:::::::
deviation

:::::
within

::::
each

::::::
cluster).

::::
The

::::::::::
corresponding

:::::::::
distribution

::
of

::::::::
SManom :::

and
:::::
Tanom::::

pairs
:::
are

:::::
shown

::
in

:::
the

:::::
center

::::
right

:::
and

:::::
bottom

::::
right

::::::
panels

:::::::::
respectively.

:::
The

::::
grey

::::
line,

::::::
indicates

::::::
similar

::::::::
anomalies

:
in
:::
the

:::
two

:::
DH

::::::
events.

::::
Only

::::
pixels

::::
with

:::::::
negative

::::::::
EV IDH18

anom :::
are

::::::::
considered.

:

We evaluate ecosystem vulnerability to the two compound events by comparing EV Ianom in DH2018 and DH2019 with past

EV Ianom–SManom and EV Ianom–Tanom relationships (Fig. 4) for each cluster separately.

All clusters show significant positive linear relationships between summer EV Ianom and SManom and negative linear

relationships with Tanom in 2001–2017 , consistent with a general summer water-limited regime.
:::
(Fig.

:::
4).

:
The relationships340

include the two extreme summers of 2003 and 2015 which had comparable Tanom and SManom to DH2018 and DH2019
:::::
DH18

:::
and

:::::
DH19

:
in most clusters. The long-term sensitivities estimated are, though, robust even if these summers are excluded.

All three clusters with strong impacts in one event (C1 DH2019, C3 DH2018) or both (C2)show
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:::
The

::::::
results

:::::::::
correspond

::
to
::
a
::::::
general

:::::::
summer

::::::::::::
water-limited

::::::
regime,

:::::::::
especially

::
in

::::::
clusters

:::::::
CDecline,

::::::
CHighV:::

and
:::::::

CPRecov,
::::::
which

::::
show

::::::::
stronger

::::::::::
sensitivities

::
to

::::::
Tanom::::

and
::::::::
SManom:::::::

(slopes
::
in

::::
Fig.

::
4)

::::
and

::::::
higher

::::::::
variance

::::::::
explained

:::
by

::::
both

:::::::
models

::::
(R2345

::::::::
0.58–0.68

:::
for

::::::::
SManom:::

and
:::::::::
0.49–0.55

:::
for

:::::::
Tanom).

:::
For

:::::
these

:::::::
clusters,

:
EV Ianom :

is below the 95% confidence interval of the

long-term linear relationship with both
::::::::::
relationships

:::
for

:::::
DH18

:::::::
(CPRecov:::

and
:::::::
CHighV)

:::
and

::::::
DH19

::::::
(CDecline::::

and
:::::::
CHighV). SManom

and Tanom for that event. These departures are not likely explained simply by compounding heat and drought impacts, as

SManom and Tanom in 2003 are similar, or even stronger, than in DH2018 and DH2019.
:::::
DH18

::::
and

:::::
DH19

::::
are

::::::::
generally

::::::
similar

::
to

::::
those

::
of
:::::
2003,

::::
but

:::::
DH18

:::
was

:::::
drier

::::
than

::::
2003

::
in

:::::::
CPRecov :::

and
::::::
CHighV.

:
350

These departures may be related with seasonal legacy effects from the warm spring in DH2018 and could also be linked

to
:::::
DH18

::::
and

::
or

:::
the

:::::
onset

:::
of non-linear responses to heat and droughtunder long-term changing environmental conditions.

To account for these modulating effects, we model long-term (2001–2017) EV Ianom–climate relationships using spring and

summer SManom and Tanom as predictors using random forest regression (see Section 3.2.2). For most pixels, the
::::
The model is

able to explain
::::::
predict 48 –90% (median and maximum out of bag score

:::::
across

:::::
pixels) of the

::::::::
pixel-level

:
temporal variability of355

summerEV Ianom in 2001–2017 (Fig.B4)and consistently .
::::::::
Analysis

::
of

:::
the

:::::::
variable

:::::::::
importance

:::::
shows

::::
that

::
the

::::::
model estimates

summer water limitation and negative legacy effects from spring warming
::::
(Fig.

::::
B5),

:::::::::
consistent

::::
with

:
a
:::::::
summer

::::::::::::
water-limited

::::::
regime

:::
and

::::::::::::
process-based

::::::::
modeling

::::::
studies (Bastos et al., 2020a; Lian et al., 2020).

In DH2018
::
As

::
in

:::
the

:::::
linear

:::::
case,

:::
the

:::
RF

:::::
model

::::::::
estimates

::::
less

:::::::
negative

::
or

:::::
more

:::::::
positive

:::::::::
EV Ianom ::

in
:::::
DH18

:
and DH2019,

the model has predominantly negative residuals, i.e. observed EV Ianom is more negative or less positive than predicted from360

past vegetation–climate relationships, as found in the linear case
:::::
DH19

::::
than

:::::::::::
observations (Fig. 5). Consistent with the results

by the linear models, the
:::
The residuals are below the range of the training period for the high impact clusters: C1 and C3 in

DH2019 and DH2018
::::::
CDecline :::

and
::::::
CPRecov:::

in
:::::
DH19

::::
and

:::::
DH18, respectively, and C2

:::::
CHighV:in both (Fig. 5, bottom panel). In

the DH2019 “greening cluster" (C4)
:::::::
CGreening, residuals are predominantly positive (i.e. observed EV Ianom more positive than

predicted), but still partly overlap with the range of residuals in the training period (Fig. 5).365

We evaluate the role of diverse environmental variables in explaining the spatial distribution of residuals:

(i) the same climatic variables as used to train the RF model, indicating increased ecosystem sensitivity to climate;

(ii)EV Ianom in the previous summer to account for inter-annual legacy effects;

(iii) isohydricity and land-cover composition to evaluate the modulating role of vegetation functioning differences;

(iv) soil available-water capacity and number of dry months, which can impose thresholds in water limitation.370

To do this, we calculate the
:::::
Pixels

::::
with

:::::
high

:::
tree

:::::
cover

::::
tend

:::
to

::::
show

::::
less

:::::::
negative

:::
or

:::::
more

::::::
positive

::::::::
residuals

::::
than

::::::
pixels

::::
with

:::
low

::::
tree

:::::
cover

::
in

::::
both

:::
DH

::::::
events

::::
(Fig.

:::
6),

:::
but

::
in

::::::
DH19

:::
the

:::::
range

::
of

:::::::
residuals

::
is
::::::
larger

:::
and

:::::::
includes

:::::
pixels

:::::
with

:::::::
strongly

:::::::
negative

::::::
values.

:::
The

:
partial rank correlation of the spatial distribution of EV Ianom residuals with respect to the explanatory

variables selected (
:::::::
different

::::::::::
explanatory

::::::::
variables

:
is
::::::
shown

:::
for

:::::
pixels

::::
with

::::
high

:::
and

::::
low

:::::
forest

:::::
cover

::
in Fig. 6). Given the large

number of pixels, all correlations are significantexcept those for croplands. In DH2018, vegetation condition in the previous375

year’s growing season (i.e. summer 2017, +, positive effect), tree cover (+), .
:

::
In

:::::
DH18,

:
Tanom in spring (T spr

anom, +
:::
for

::::
high

:::
and

:::
low

::::
tree

:::::
cover) and summer SManom (SMsm

anom, - ) show stronger
:::
for

::::
high

:::
tree

:::::
cover

:::
and

::
+
:::
for

::::
low

:::
tree

::::::
cover)

:::::
show

:::
the

::::::::
strongest relationships with EV Ianom residuals. In DH2019

:::::
DH19, EV Iyr−1

anom
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Figure 4. Departure of EV Ianom in DH2018
:::::
DH18 and DH2019

:::::
DH19 from long-term climate-driven variability. Relationship between

EV Ianom and SManom (top panel) and betweenEV Ianom and SManom:::::
Tanom:

(bottom panel) for each individual summer between 2001

and 2019 over the study region. The results are shown separately for the four clusters defined in Fig. 3. The black line and shaded areas show

the relationship and respective 95% confidence intervals obtained by ordinary least-squares linear regression between EV Ianom and the

respective climate variable for all years between 2001–2017. Values of (EV Ianom, SManom) that deviate from the long-term relationships

show increased sensitivity to climate anomalies, which can be a sign of increased vulnerability or degradation trajectories
:::::
decline. The colours

::::
colors

:
indicate individual years, ranging from 2001 (red) to 2019 (purple) .

::
and

::::::
square

::::::
markers

::::::
indicate

::::
2018

:::
and

:::::
2019.

and
:::
(+),

:
T spr
anom are also the most relevant variables, but EV Iyr−1

anom shows stronger correlation with EV Ianom residuals than

in DH2018, and T spr
anom has an opposite sign

:::
and

::::::
T sm
anom (-)

:::::
show

::::::
strong

::::::::::
correlations,

::::
with

:::::::::
consistent

::::
sign

:::
for

::::
both

::::
high

::::
and380

:::
low

:::
tree

:::::
cover

::::::
pixels.

:::::
DH19

::::::::
residuals

::
of

:::::
pixels

::::
with

::::
high

::::
tree

:::::
cover

::::
show

::::::
strong

:::::::::
correlation

::::
with

::::::::
SManom::::

with
:::::::
opposite

:::::
signs
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Figure 5. Spatial distribution of EV Ianom residuals in DH2018
::::

DH18
:
(top panel) and DH2019

:::::
DH19 (central panel) estimated by the

temporal RF model trained for 2001–2017 with spring and summer SManom and Tanom as predictors. The corresponding distribution per

cluster for each DH event is shown by the boxplots in the bottom panel. The shaded grey envelope indicates the range of residuals in the

training period.
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Spatial partial correlation (spearman) of EV Ianom residuals with environmental variables in DH2018 and DH2019. The variables

considered are: spring and summer Tanom and SManom (indicated by superscripts spr and sm, respectively), EV Ianom in the previous

growing season (EV Iyr−1), tree, crop and grassland cover, number of dry months, soil available water capacity (AWC) and plant

isohydricity (IsoH). Because of the large number of pixels considered, all correlations are significant (p− val << 0.01), except for

cropland cover.

Figure 6.
:::::
Spatial

::::::
partial

::::::::
correlation

::::::::
(spearman)

:::::::
between

::::::::
EV Ianom:::::::

residuals
:::
and

:::::::::::
environmental

:::::::
variables

::
in

:::::
DH18

:::
(top

::::::
panels)

:::
and

:::::
DH19

::::::
(bottom

::::::
panels),

::
for

:::::
pixels

:::
with

::::
high

::::
(dark

:::::
green,

::
top

:::
5%

:::::
cover

::::::
fraction)

:::
and

:::
low

::::
(light

:::::
green,

::::
lower

:::
5%

::::
cover

:::::::
fraction)

:::
tree

::::
cover

::::
(left

::::::
panels).

:::
The

:::::::
variables

::::::::
considered

:::
are:

:::::
spring

:::
and

::::::
summer

:::::
Tanom:::

and
::::::::
SManom :::::::

(indicated
:::
by

:::::::::
superscripts

::
spr

::
and

:::
sm,

::::::::::
respectively),

::::::::
EV Ianom::

in
:::
the

::::::
previous

:::::::
growing

:::::
season

:::::::::
(EV Iyr−1),

::::
plant

:::::::::
isohydricity

::::::
(IsoH)

:::
and

::
the

::::::
number

::
of

:::
dry

::::::
months

:::::
(DM).

::::::
Because

::
of
:::
the

::::
large

::::::
number

::
of

:::::
pixels

::::::::
considered,

:::
all

:::::::::
correlations

::
are

::::::::
significant

:::::::::::::::
(p− val << 0.01).

::::
The

:::
right

::::::
panels

::::
show

:::
the

:::::::::
distribution

::
of

:::::::
residuals

::
for

:::::
pixels

::::
with

::::
high

:::
and

:::
low

:::
tree

:::::
cover.
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::
in

:::::
spring

:::
(+)

::::
and

::::::
summer

::
(-) In DH2019, T sm

anom and SMsm
anom show stronger relationships with

::
and

:::::
with

:::::
AWC

:::
(-).

::
In

::::::
DH19,

:::::
pixels

::::
with

::::
low

:::
tree

:::::
cover

:::::
show

::::::::
negative

:::::::::
correlation

::::::::
between

::::
IsoH

::::
and EV Ianom residuals as do the variables relating to

water-availability (AWC , dry months and IsoH), all except T sm
anom with opposite sign as in DH2018

:::::::
residuals.

To test whether the importance of EV Iyr−1
anom is particular to the two DH events

:::::
DH19, or if it may reflect long-term inter-385

annual legacy effects of anomalies in vegetation activity, we fit a second temporal RF model where EV Iyr−1
anom is used as an

additional predictor (Figs. B4 and B6). Including vegetation condition in the previous summer improves the predictive power

of the long-term RF model (72–97% out of bag score, compared to 48–90% for the model trained with climate drivers only).

However,
::::
Even

::::::
though

:
the residuals for DH2018 and DH2019 are comparable to those of

:::
the

::::::
training

::::::
period

:::
are

:::::::::::
considerably

::::::
reduced

:::::::
relative

::
to

:
the climate–driven model, while the residuals for the training period are considerably reduced

:::::
DH18

::::
and390

:::::
DH19

:::
are

::::::::::
comparable.

4.3 DH2018
:::::
DH18

:
and DH2019

:::::
DH19 impacts simulated by LSMs

The GPP from the LSM multi-model ensemble mean matches well the relative differences in the impact of DH18 between

clusters compared to EV Ianom :::::::::
differences

::
in

::::::
impacts

::::::::
between

::::::
clusters

::
in

::::::
DH18 (Fig. 7, top and middle panels) . The

:::
and

:::
the

temporal evolution of monthly GPP anomalies during the 2018 growing season (April to September, Table 1)also agrees with395

that of EV Ianom, with correlations between
::::
with

::::::::
EV Ianom:::

of 0.74–0.90. However, 2019 trajectories from GPP simulated

by LSMs indicate above-average spring and early summer productivity for all clusters, and strong positive
::::
Even

:::::::
though

:::
the

:::
root

:::::
mean

:::::::
squared

:::::
error

:::::::
(RMSE)

::
is

::::::::::
comparable

::
in

:::
the

::::
two

:::::::
growing

:::::::
seasons,

:::
the

:::::::::::
correlations

::
of GPPanom for both C3 and

C4 during DH2019. However, correlations between
::::
with

:::::::::::::
growing-season

:
EV Ianom and GPPanom are much lower in 2019

:::::
DH19(-0.09 –0.43).400

The disagreement in
::::::::
GPPanom:::

by
:::::
LSMs

::
is
::::::::::::
above-average

::
in
::::::
spring

:::
and

:::::
early

:::::::
summer 2019 cannot be solely explained by

errors in simulated soil-moisture anomalies , since simulated SManom shows very good agreement with both observation-based

SManom from SoMo.ml and SMERA5
anom (correlations of 0.94–0.98, Table 1).

:::
for

::
all

:::::::
clusters,

::::
and

::::::::
anomalies

::
in
::::::
DH19

:::
are

:::::
either

::::
more

:::::::
positive

::
or

::::
less

:::::::
negative,

:::::::::
compared

::
to

:::::::::
EV Ianom.

LSMs simulate a stronger attenuation of drought compared to the observation-based SManom, though with consistent405

::::::
relative

:
differences in SManom between clusters (compare Fig. B7 and Fig. 3). The recovery simulated by LSMs in 2019

can be partly explained by too strong recovery of modelled soil-moisture (Fig. B7), but may also result from limited ability of

LSMs in simulating changes in ecosystem vulnerability during the two DH events.
:::::
LSMs

:::::::
simulate

::::
well

:::
the

::::::::
temporal

::::::::
evolution

::
of

::::::::
SManom ::

in
:::
the

:::
two

:::::::
growing

::::::::
seasons,

::::
with

::::
high

:::::::::
correlation

::::
with

::::
both

::::::::
SoMo.ml

::::
and

::::::::
SMERA5

anom :::::::::::
(correlations

::
of

::::::::::
0.81–0.98).

:::
The

::::::
RMSE

:::
for

::::::::
simulated

::::::::
SManom::

is
::::::::
generally

:::::
lower

::::
than

:::
that

:::
of

:::::::::
GPPanom.

:
410

The sensitivity of GPPanom from LSMs to summer (JJA) soil-moisture anomalies (
:
to
:::::::::

simulated
::::::::
SManom::::

and
::
to

::::::
Tanom

:
(Fig. B8) is consistent with that of EV Ianom in all clusters (Fig. 4). The sensitivity of GPPanom to temperature is also

consistent with that of EV Ianom for clusters C1 and C2, while for C3 and C4
:
,
::::::::
although

:::
for

::::::
CPRecov::::

and
:::::::
CGreening:LSMs

estimate non-significant negative relationships between GPPanom and Tanom. Simulated GPP agrees well with EV Ianom

during the 2018 growing season (r=0.74–0.90, Table 1, Fig. 7) and the deviation
:::
The

:::::::::
deviations of GPPanom from the linear415
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Figure 7. Observed and process-based model simulations of 2018/19 impacts. Seasonal evolution of EV Ianom (top panel) and standardized

GPP anomalies (GPPanom, central panel) over the two year period for each cluster (defined in Fig. 3 and shown for LSM grid in Fig.

B7).The bottom panel shows the difference between the reference and factorial simulations, and indicates the impacts of DH2018
::::
DH18

:
on

GPPanom simulated by models during the event and in the subsequent months until December 2019.
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Table 1. Correlation of
::::::
between growing season (April–September) SManom simulated by LSMs with SManom from SoMo.ml and ERA5,

and of EV Ianom with GPP simulated by LSMs.

height C1 CDecline C2 CHighV C3 CPRecov C4 CGreening

:
r

:::::
RMSE

:
r

:::::
RMSE

:
r
: :::::

RMSE
:

r
: :::::

RMSE
:

SManom ::
gs. 2018 0.98

:::
0.33

:
0.98

:::
0.66

:
0.97

:::
0.43

:
0.97

:::
0.21

:

SManom ::
gs. 2019 0.94

:::
0.63

:
0.97

:::
0.47

:
0.98

::
1.2 0.95

:::
0.77

:

heightSMERA5
anom ::

gs. 2018 0.98
:::
0.87 0.97

:::
0.56 0.95

:::
0.92 0.98

:::
0.85

:::
0.87

: :::
0.64

: :::
0.81

: :::
0.39

:

SMERA5
anom ::

gs.
:
2019 0.93

:::
0.71 0.95

:::
0.72 0.94

:::
0.90 0.67

:::
0.52

:::
0.91

: ::
1.2

:::
0.70

: :::
0.82

:

heightEV Ianom ::
gs. 2018 0.80

:::
1.0 0.90

:::
1.2 0.74

::
1.2 0.79

:::
0.86

:

EV Ianom::
gs.

:
2019 0.34

:::
1.1 0.43

:::
1.1 0.26

::
1.1 -0.09

::
1.1

response for C2 and C3 in DH2018
::::::
CHighV :::

and
::::::
CPRecov::

in
::::::
DH18 are correctly captured by LSMs. In 2019, though, simulated

growing season GPPanom shows low or even negative correlations with EV Ianom in all clusters (r=-0.09–0.43). This cannot

be explained by poor simulation of SManom, which shows high correlation to both observation-based soil-moisture datasets.
:
,

:::
but

:::
not

:::
that

::
of

::::::
DH19

::
in

::::::
CDecline.

:

5 Discussion420

5.1 Early signs of increased vulnerability

Our results indicate that the extremely negative

:::
For

::::
three

:::::::
clusters

::::::::
covering

::::
56%

::
of

:::
the

::::::
pixels

:::::::::
negatively

::::::::
impacted

::
by

::::::
DH18,

::::
the

::::::::
extremely

::::
low EV Ianom in response to

DH2018
::::
DH18

:
and DH19 cannot

:::::
could

:::
not

:
be predicted from past EV I–climate relationships , even when non-linear and

seasonal legacy effects are considered
::
in

:::::::::
2001–2017

:
(Figs. 4, 5). This suggests an important role of increased ecosystem425

vulnerability to climate (e.g., “hotter droughts”) and of environmental factors (e.g. vegetation preconditioning effects), in

explaining DH impacts.

The climatic variables used to train the temporal RF model still appear as relevant contributors to the spatial distribution

of EV Ianom residuals (Fig. 6) which supports a contribution of climate–driven increased vulnerability under the two extreme

summers. The sign of the correlation between T spr
anom and SMspr

anom with EV Ianom residuals indicates a positive effect of430

spring warming in partly offsetting vegetation growth (observed EV Ianom more positive or less negative than modelled), but

with associated water depletion in spring amplifying the impacts of DH2018 in summer (Bastos et al., 2020a). This negative

seasonal legacy effect through soil-moisture is also found in DH2019, but spring warming (or cooling, see Fig. B1) resulting

in much stronger (weaker) impacts than those predicted by past vegetation–climate relationships (strong negative correlation).

The positive correlation of EV Ianom residuals in DH2018 with SMspr
anom and T spr

anom are also in line with increased sensitivity435

to water availability and temperature stress reported by Bastos et al. (2020b), i.e. stronger browning than predicted associated
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with warmer and drier conditions. In DH2019, the negative impact of summer T sm
anom was amplified, indicating increased

vulnerability to heat stress, but the correlation of residuals with SMsm
anom is the opposite as in DH2018. This is consistent with

the results for clusters C1 and C4, where browning in DH2019 happened in spite of drought alleviation, in the case of C1, or

greeninghappened in spite of persisting soil-moisture deficits, in C4. However, these results indicate that other environmental440

effects may have an important role in modulating DH impacts, especially in DH2019.

The values of EV Ianom in the previous summer show the strongest correlations with the residuals in both years
:::::
These

::::::::
departures

::::::
reveal

::::::::
increased

::::::::
sensitivity

::
to

:::
dry

::::
and

:::
hot

:::::::::
conditions,

:::
and

::::
can

::
be

:
a
::::
sign

::
of

::::::::
increased

:::::::::
ecosystem

:::::::::::
vulnerability

::
to

::::
such

::::::
events.

:
It
::::::
should

::
be

::::::
noted,

::::::
though,

::::
that

:::
we

::::::
focused

:::
on

:::::
pixels

::::::
which

::::
were

:::::::::
negatively

:::::::
impacted

:::
by

::::::
DH18,

:::
but

:::::
some

:::::
pixels

::
in

:::
the

:::::::
regional

::::::
domain

:::::::
selected

:::::::
showed

::::::::
greening,

::::
even

:::
in

:::::
DH18

:
(Fig. 6). The higher correlation between EV Ianom residuals and445

EV Iyr−1
anom in DH2019 than DH2018 points to a stronger contribution of legacy effects preconditioning the impacts of DH2019,

resulting from the heat/drought stress imposed by DH2018. Even though considering inter-annual legacy effects mediated by

vegetation condition improves the predictive skill of the RF model, this does not reduce the residuals in DH2018 and DH2019.

The strong spatial relationship betweenEV Iyr−1
anom withEV Ianom residuals suggests that the preconditioning role of vegetation

condition in DH2018 and DH2019 was amplified due a predominance of pixels with poorer vegetation condition before the450

DH events. This supports the important role of legacy effects from past stress conditions in impairing vegetation resistance to

subsequent stressors, e.g. from to defoliation or damage from embolism (Ruehr et al., 2019) or higher susceptibility to diseases

and pests due to reduced health (McDowell et al., 2020). The fact that EV IDH2018
anom is the most relevant predictor for residuals

in DH2019 further supports the importance of damage from past heat/drought stress in amplifying the impacts of a subsequent

DH event (Anderegg et al., 2020).
::
2).

:::::
These

:::::::
regional

::::::::::
asymmetries

:::::
result

::
in

::::::
partial

:::::::
regional

:::::::::::
compensation

::
of

:::
the

::::::
DH18

:::::::
impacts,455

::
as

:::::
shown

::
in
:::::::::::::::::
Bastos et al. (2020b)

:
.

In both DH2018 and DH2019
:::::
DH18

:::
and

::::::
DH19, higher tree cover fraction is associated with more positive or less negative

residuals
:::
(Fig.

:::
6), indicating that trees buffered the impacts of DH conditions on ecosystem activity. This is consistent with the

::::
were

:::::
more

:::::::
resistant

::
to

:::
DH

::::
than

::::::
grasses

::::
and

:::::
crops.

::::
The predominance of crops and grasslands in C2 and C3

:::::
CHighV, which had

strong negative residuals in DH2018
::::
both

::::::
events, and of high tree cover in C4, where residuals are mostly within the range of460

residuals in the training period and even slightly positive (Figs. 4 and 5). Forests
:::::::
CGreening ::::

also
::::::
support

::::
this

:::::
effect.

:::::
Trees

:
can

better cope with drought with their deeper rooting depth (Fan et al., 2017) and through the use of carbon reserves to support

activity under stress conditions (Wiley, 2020). Moreover, some trees and grasses with stronger stomatal regulation can buffer

the drought progression and its impacts by avoiding hydraulic failure (McDowell et al., 2020; Teuling et al., 2010). Even

though isohydricity is strongly species-dependent (Konings et al., 2017), this effect is
:::
This

::
is reflected in the small but positive465

effect of isohydricity in explaining DH2018 residuals .

The negative residuals in DH2019 for C2 are consistent with C2 showing the driest and hottest anomalies and predominantly

cropland cover, but in C1 the strongly negative EV IDH2019
anom are associated with mixed pixels (up to 40% forest

::::::::::
relationship

:::::::
between

::::::::::
isohydricity and 20–60% grassland cover) and higher isohydricity. This points to increased vulnerability and degradation

occurring mainly in natural ecosystems with stronger stomatal regulation, which is consistent with the negative relationship470
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of isohydricity with EV IDH2019
anom residuals. The large negative EV IDH2019

anom residuals and browning in response to DH2019

::::::::
EV Ianom::::::::

residuals in C1 may be linked to impaired growth due to
:::::
pixels

::::
with

::::
high

:::::
forest

:::::
cover.

:

::::::::
Increased

:::::::::::
vulnerability

::::
may

:::
be

::::::::
explained

:::
by

::::::::::
modulating

::::::
effects

::
of

::::::
global

::::::
change

:::
on

:::::::::
vegetation

:::::::::
condition

::::
(e.g.,

:::::::
“hotter

::::::::
droughts”

::::::::::::::::
(Allen et al., 2015),

::::
Fig.

:::
1)

::::
and,

::
in

:::
the

::::
case

:::
of

::::::
DH19,

::
it

::::
may

::
be

:::::::
further

:::::
linked

::
to
:::::::::::

inter-annual
:::::::
legacies

:::::
from

:::
the

:::::
impact

:::
of

::::::
DH18.

::::
The

::::
first

::::::
should

:::
be

::::::::
expressed

:::
by

:::::::::::
relationships

::::::::
between

:::::::::
EV Ianom :::::::

residuals
::::

and
:::::::
climatic

:::::::::
variables.

::::
The475

::::
latter

:::
are

:::::
more

:::::::
difficult

::
to

::::::
assess

::::::
without

:::::::::::::
comprehensive

::::
data

:::::
about

::::::::
different

:::::::::
competing

::::::
factors,

::::
.e.g.

::::::::::
defoliation

::
or

:
damage

from embolism , defoliation, or depletion of carbon reserves (Ruehr et al., 2019) under longer drought conditions (negative

effect of dry months). However, increased
:::::::::::::::
(Ruehr et al., 2019)

:
,
::::::
higher

:::::::::::
susceptibility

:::
to

:::::::
diseases

::::
and

:::::
pests

:::
due

:::
to

:::::::
reduced

:::::
health

::::::::::::::::::::
(McDowell et al., 2020)

::
or

::::::::
increased

::::::
hazard

::
of

::::::
insect

::::::::::
disturbances

::::
due

::
to

:::::
warm

:::::::::
conditions

::::::::::::::::::
(Rouault et al., 2006).

::::
The

::::::::::
relationships

:::::::
between

:::::::::
EV Ianom::::::::

residuals
:::
and

:::::::::
EV Iyr−1

anom ::::::
provide

::
an

:::::::::::::
approximation,

:::
but

::
do

:::
not

:::::
allow

::
to

:::::::
identify

:::
the

:::::::::
underlying480

::::::
drivers.

::
In

::::::
DH18,

:::
we

:::
find

::
a
:::::::
positive

:::::
effect

::
of

::::::
spring

::::::::
warming

::
in

:::::::::
vegetation

:::::::
growth,

::::::
leading

::
to

:::::::
weaker

:::::::::
departures

::::
from

:::::::::
long-term

:::::::::::::::
vegetation–climate

:::::::::::
relationships

:::::::::
(observed

:::::::::
EV Ianom:::::

more
:::::::
positive

:::
or

::::
less

:::::::
negative

::::
than

::::::::::
modelled),

:::
but

:::::
with

:::::::::
associated

::::
water

:::::::::
depletion

:::::::::
amplifying

:::
the

:::::::
impacts

:::
of

::::::
DH18

::
in

:::::::
summer

::
in
::::::

pixels
::::
with

::::
low

::::
tree

:::::
cover.

::::::
These

::::::
results

:::
are

:::
in

:::
line

:::::
with

:::::::::::::::::
Bastos et al. (2020a)

:::
that

::::::
showed

::::::::::
contrasting

:::::::
seasonal

::::::
legacy

:::::
effects

:::
of

:::::
warm

::::::
springs

::
in

::::
crop

:::::
versus

::::::
forest

::::::::
dominated

:::::::
regions.

:
485

::
On

:::
the

::::::::
contrary,

:::::
spring

:::
and

:::::::
summer

::::::
T sm
anom::

in
:::::
2019

::
(or

:::::::
cooling,

:::
see

::::
Fig.

:::
B1)

:::
are

:::::::
negative

:::::::::
correlated

::::
with

::::::::
EV Ianom::::::::

residuals

::
in

::::
both

::::
high

:::
and

::::
low

::::
tree

:::::
cover

::::::
pixels.

::::
This

::::::::
indicates

::::::::
increasing

:
damage from heat stress,

:::
for

::::::::
example due to reductions in

evapotranspirative cooling (Obermeier et al., 2018) or cascading effects
:::::::
impacts

::
of

:::::::::
compound

::::
heat

::::
and

::::::
drought, such as the

increased susceptibility of stressed trees to insect attacks and diseases cannot be excluded.
:::::
insect

::::::
attacks

::::::::::::::::::
(Rouault et al., 2006)

:
.490

The
:::::::
Including

:::::::::
EV Iyr−1

anom::
in
:::

the
:::::::::

long-term
:::
RF

:::::::::
regression

:::::
model

::::::::
improves

::::
the

::::::::
predictive

::::
skill

:::
for

::::::::::
2001–2017,

:::
but

:::::
does

:::
not

:::::
reduce

:::
the

::::::::
residuals

::
in

:::::
DH18

:::
and

:::::::::
DH19.The

::::
high

:::::::::
correlation

:::::::
between

:::::::::
EV Ianom::::::::

residuals
:::
and

:::::::::
EV Iyr−1

anom :
in
::::::
DH19

:::
can

:::::::
indicate

:::::
either

:::
that

::::::
pixels

:::::::
strongly

::::::::
impacted

::
by

::::::
DH18

:::::
were

::::::::
associated

:::::
with

::::::::
amplified

:::::::
impacts

::
by

::::::
DH19

::::::::
(negative

:::::::::
residuals),

::
or

::::
that

:::::
pixels

:::::::
affected

:::::::::
moderately

:::
by

:::::
DH18

::::
(less

::::::::
negative

::::::::::
EV IDH18

anom )
::::
were

:::::::::
associated

::::
with

:::::::
positive

::::::::
residuals,

:::
i.e.

:::::::
stronger

::::::::
recovery.

:::::::
Damage

::
to

::::
roots

::::
and

:::::
tissues

:::
or

:::::::
depletion

:::
of

::::::
carbon

:::::::
reserves

::::
from

:::::
DH18

:::::::
leading

::
to

:::::
higher

:::::::::::
vulnerability

::
to

:::::
DH19

:::::
could

:::::::
explain495

::
the

:::::::
positive

::::::::::
correlation

::
in

::::
high

::::
tree

:::::
cover

:::::
pixels

:::
in

:::::::
CDecline.

::::::::::
Conversely,

:::
the

::::::::
moderate

::::::
DH18

:::::::
impacts

::
in

:::::::
CGreening::::

may
:::::

have

::::::
resulted

:::
in

::::::::
increased

:::::::::
resistance

::
to

::::::
DH19.

::::
The

::::::
strong

:::::::::
correlation

::::::
found

::
in

::::
low

::::
tree

:::::
cover

:::::
pixels

:::
is,

:::::::
though,

:::::::::
surprising,

:::
as

::::::::
European

::::
crop

::::::
species

::::
tend

::
to

::
be

::::::
annual

::::::
plants,

:::
and

::::::
annual

::::::
species

:::
can

::::
also

::
be

::::::
found

::
in

:::::
many

:::::::::
grasslands.

:::
For

:::::
these

:::::
pixels,

::
it
::
is

::::
more

:::::
likely

::::
that

:::
the

::::::
positive

::::::::::
correlation

:
is
:::::::::

explained
::
by

:::::::::::
management

::::::::
practices,

::::
e.g.

::::::
through

::::::
earlier

::::::
harvest

::
or

::::::
active

::::::::
reduction

::
of

::::
stand

:::::::
density

::
in

:::::
DH19

:::::::::::::::::
(Bodner et al., 2015)

:
.500

::::::
CDecline :::::

stands
::::

out
::::
from

:::
the

:::::
other

:::::::
clusters,

:::
in

:::
that

:::::::::
browning

::
is

:::::
found

::
in

:::::
spite

::
of

:::::::
drought

:::::::::
alleviation

::
in

::::::
DH19.

::::
The

::::::
strong

:::::::
negative

:::::::::
correlation

::
of

:::::::
residuals

::::
with

::::::::
SMsm

anom::::
and

:::::
AWC

::
in

:::::
forest

:::::::::
dominated

:::::
pixels

:
is
::::::::::::::
counter-intuitive

:::
and

::::::::
suggests

:::
that

:::::
other

:::::::::::
environmental

::::::
effects

:::
not

:::::::::
considered

::
in

:::
our

:::::::
analysis

::::
may

::::::::
modulate

:::::
DH19

::::::::
impacts.

:::::
Insect

::::::::
outbreaks

:::
are

:
a
::::::::
potential

::::::::
candidate

::
to

::::::
explain

::::
such

::::::
effects:

:::
the stronger correlation of residuals withEV Iyr−1

anom in DH2019
::::
DH19

:::::
could

::::::
reflect

::::::::
increased

:::::::::::
susceptibility

::
of

:::::::
impaired

:::::
trees, combined with favourable climatic conditions for insect growth(,

::::::::
reflected

::
in

:
stronger negative effects of505
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T sm
anom in DH2019, (Rouault et al., 2006)), indicates that such cascading effects could also have contributed to amplify the

impacts of DH2019.
:::::
DH19

::
in

::::
high

:::
tree

:::::
cover

::::::
pixels.

Results from field inventories and forest plots support this hypothesis. An increase in
:::::::
Increased

:
tree mortality and insect

outbreaks in central Europe during 2018 has
::::
have been reported (Schuldt et al., 2020). A recent assessment by the German

Federal Minister for Food and Agriculture (BMEL, 2020) reported crown damage in 36% of all tree types in summer 2019, a510

7% increase compared to 2018 and predominating in trees over 60 years of age. According to this report, the mortality rate in

both needle-leaved and broad-leaved trees almost tripled from 2018 to 2019. Although no large scale data on insect outbreaks

is currently available, local authorities in regions where C1
::::::
CDecline is prevalent report increase in tree mortality from bark-

beetle infestations: the Environment Ministry of North Rhine Westphalia in western Germany reported soaring rates of spruce

affected by severe bark-beetle infestations, from about 1% in 2018 to over 12% in 2019 (MULNV-NRW, 2019). In the Czech515

Republic, rates of spruce damaged by bark-beetles more than tripled, leading to increased mortality (Hlásny et al., 2021). In

Belgium, a “bark bettle task force" was created in September 2018 by the economic office of Wallonia (OEW, 2018). Increased

tree mortality and bark-beetle infestations have also been reported in eastern France (ONF, 2020).

5.2 Implications for earth system modelling

Temperate ecosystems are an important global sink of CO2 (Pan et al., 2011) and are not usually considered hot-spots of520

drought risk and environmental degradation under climate change (Vicente-Serrano et al., 2020). Our results show that the

past two extreme summers in central Europe reveal first signs of large-scale enhanced vulnerability in response to DH events

(C2, C3
:::::
CHighV,

:::::::
CPRecov), and of potential degradation trajectories induced by consecutive events (C1

:::::
CDecline). Even though

limited to 20% of the study area, the patterns in C1
::::::
CDecline highlight the risks associated with more frequent and intense

droughts and heatwaves expected in the coming decades (Barriopedro et al., 2011; Boergens et al., 2020; Hari et al., 2020). At525

the same time progressive warming conditions are likely to promote
:::
can

:::::::
increase

:::
the

:::::::::
likelihood

::
of

:
compound occurrence of

multiple disturbances, such as droughts and insect outbreaks, both promoted by warm and dry conditions. Interactions between

compounding disturbances can further contribute to forest C losses (Seidl et al., 2017; Kleinman et al., 2019). To anticipate

such impacts, process-based modelling of ecosystem response to such events is needed.

The LSMs perform well in simulating
::
the

:::::::::
magnitude

::::
and

::::::::
evolution

::
of productivity anomalies in 2018, but not in 2019. The530

:::::::
recovery

::::::::
simulated

:::
by

:::::
LSMs

:::
in

:::::
DH19

:::
can

:::
be

:::::
partly

::::::::
explained

:::
by

::
a

:::::
strong

::::::::
recovery

::
of

::::::::
modelled

:::::::::::
soil-moisture

:::::
(Fig.

::::
B7),

:::
but

:::
may

::::
also

::::::
result

::::
from

:::::::
limited

:::::
ability

:::
of

:::::
LSMs

:::
in

:::::::::
simulating

:::::::
changes

::
in

:::::::::
ecosystem

:::::::::::
vulnerability

::::::
during

:::
the

::::
two

:::
DH

:::::::
events.

:::
The

:::::
latter

::
is

::::::::
supported

:::
by

:::
the

:::
fact

::::
that

::::::::
simulated

::::::::
SManom::::::

shows
::::
good

:::::::::
agreement

:::
in

:::
the

:::::::
temporal

::::::::
evolution

:::
of

:::::::::::
soil-moisture

::::::::
anomalies

::::
with

::::
both

:::::::::::::::
observation-based

:::::::
datasets

:::
but

:::
not

::
of

:::::::::
GPPanom::::::

(Table
:::
1).

:::
The

:
comparison of the reference and factorial simulations allows showing that the poor performance in 2019 may

::
be related535

with interannual legacy effects. LSMs estimate legacies from DH2018
:::::
DH18 only in the early growing season (March to May

2019), but do not estimate any legacy effects in summer (Fig. 7 bottom panel). The poor relationships between EV Ianom and

simulated GPPanom in response to DH2019
:::::
DH19

:
indicate that processes controlling legacy effects such as damage from

23



embolism, carbon-starvation and resulting tree-mortality or disturbances induced by drought and heat such as insect outbreaks,

currently missing in LSMs, likely explain the amplified impacts of DH2019
::::
DH19.540

LSMs are known to have limited ability to simulate drought-induced stress and tree mortality (Wang et al., 2012), and

lack impacts of biotic disturbances, although rudimentary approaches have been attempted (Kautz et al., 2018). These model

shortcomings add to limitations in simulating soil-moisture variability and transitions between energy-limited and water-limited

regimes. Attributing the LSM errors to specific climatic or non-climatic processes here is challenging since up-to-date datasets

on tree mortality, tree carbon reserves or spatially-explicit information on biotic disturbances are very limited. Nevertheless,545

our results show that LSMs can simulate well the impacts of one strong drought (DH2018
:::::
DH18) on ecosystem dynamics but

have limited skill in simulating the impacts of a subsequent compound extreme event (DH2019
:::::
DH19) by missing important

inter-annual legacy effects.

6 Conclusions

The two consecutive extreme dry and hot summers in central Europe (DH2018 and DH2019
:::::
DH18

::::
and

:::::
DH19) had stronger550

impacts on vegetation activity than those expected by previous vegetation–climate sensitivity. This hints at large-scale increase

in the vulnerability of ecosystems to compound heat and drought events,
:
possibly modulated by vegetation responses to the

long-term warming and increasing CO2 trends
::::::::::::
environmental

:::::::
changes. We find signs of degradation trajectories in 20% of the

study area, whereEV I decreased even with drought alleviation in the following year. We attribute these trajectories to legacies

from DH2018
:::::
DH18

:
amplifying the impacts of DH2019 which indicate

::::::
DH19,

:::::
which

::::::::
indicates

:
that more frequent extreme555

summers may pose a major threat to the stability of temperate forests.

State-of-the-art land-surface models were able to simulate the exceptional impacts of DH2018
:::::
DH18, but they underestimated

the impacts of DH2019
:::::
DH19. This is explained by LSMs missing the preconditioning effect of DH2018 in DH2019

:::::
DH18

::
in

:::::
DH19 impacts as they cannot simulate inter-annual legacy effects from DH events on ecosystem activity. In addition, LSMs

also lack representation of biotic disturbances, which are triggered by DH conditions and further promoted by plant stress in560

response to DH. Because DH events may become more common in the coming decades, overlooking these effects may result

in an overestimation of the resilience of the CO2 sink to climate change in temperate regions.

Data availability. The MOD13C1 data are available through NASA’s data catalog at https://lpdaac.usgs.gov/products/mod13c1v006/. SoMo.ml

v1.0 is publicly available via https://doi.org/10.17871/bgi_somo.ml_v1_2020. Isohydricity fields are available at https://github.com/agkonings/

isohydricity. AWC data are provided by the European Soil Data Centre (ESDAC) through esdac.jrc.ec.europa.eu. The multimodel mean fields565

from the LSMs are provided as supplementary material. The individual LSM model outputs are available upon request to abastos@bgc-jena.

mpg.de.
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Appendix A: Supplementary Figures
:::::::
Methods750

:::::
Land

::::::
surface

::::
and

::::::
global

::::::::
dynamic

:::::::::
vegetation

::::::
model

::::::::::
simulations

:::
We

::::
have

::::
used

::::::
output

::
of

:::::
gross

:::::::
primary

::::::::::
productivity

::::::
(GPP)

::::
and

::::::::
simulated

:::::::::::
soil-moisture

:::::
from

:::::
seven

::::::
models

::::
that

::::::::
followed

:::
the

:::::::
protocol

:::
and

::::::::
extended

::
the

::::::::::
simulations

::
in

:::::::::::::::::
Bastos et al. (2020a)

::
up

::
to

:::::
2019.

:::::
These

::::::
models

::::
are:

:::::::::::
ISBA-CTRIP

:::::::::::::::::
(Joetzjer et al., 2015)

:
,
:::::::
JSBACH

:::::::::::::::::::
(Mauritsen et al., 2018)

:
,
::::::::::
LPJ-GUESS

::::::::::::::::
(Smith et al., 2014)

:
,
::::::::
LPX-Bern

::::::::::::::::::::
(Lienert and Joos, 2018)

:
,
:::::
OCN

::::::::::::::::
(Zaehle et al., 2010)

:
,
::::::::::
ORCHIDEE

::::::::::::::::::
(Krinner et al., 2005)

:::
and

::::::::
SDGVM

:::::::::::::::::
(Walker et al., 2017).

:
755

:::
The

::::::
model

::::::::::
simulations

:::::
were

:::
run

::::
for

::::
most

:::::::
models

::
at

:::::
0.25

::::::
°spatial

:::::::::
resolution

::::
for

:::
the

::::::::
European

:::::::
domain

:::::::::
(32–75°N

::::
and

:::::::::
-11–65°E),

::::::::
following

:
a
:::::::
spin-up

::
to

:::::::::
equilibrate

:::::::::::
carbon-pools.

:::
For

:::
the

::::::::
reference

:::::::::
simulation,

:::
the

::::::
models

:::::
were

:::::
forced

::::
with

::::::::
observed

::::
CO2 :::::::::::

concentration
:::::
from

:::::::::::
NOAA/ESRL

::::
and

::::::::
changing

::::::
climate

::::::::
between

::::
1979

::::
and

::::
2019

:::::
from

:::::
ERA5

::::
and

:::::
fixed

:::::::::
land-cover

::::
map

::::
from

::::
2010

:::::
from

::::::::
LUH2v2

:::::::::::::::
(Hurtt et al., 2011)

:
.
:::
An

::::::::
additional

:::::::::
simulation

::::
was

:::
ran

:::::
where

:::
the

:::::::
models

::::
were

::::::
forced

::::
with

::::::::
changing

::::::
climate,

::::::
except

:::::::::::
June–August

:::::
2018,

:::::
where

::::::::::::
climatological

:::::::
summer

::::::
climate

:::::::::
conditions

::::
were

::::
used

::
to

:::::
force

::
the

:::::::
models

::
as

::::::::
described760

::
in

:::::::::::::::::
Bastos et al. (2020a).

::::
This

::::::::::
simulation,

:::::::
extended

:::
up

::
to

:::::::::
December

::::
2019

::::::
allows

:::::::::
evaluating

:::
the

:::::
direct

::::::
impact

::
of

::::::
DH18

:::
and

:::
its

::::::::::
inter-annual

:::::
legacy

:::::::
effects.

:::
For

::::
more

::::::
details

:::
on

:::
the

::::::::
simulation

::::::::
protocol,

:::
we

::::
refer

::
to

::::::::::::::::::
(Bastos et al., 2020a).

:
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Appendix B:
:::::::::::::
Supplementary

:::::::
Figures
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Figure B1. Monthly temperature anomalies during 2018 and 2019. The rectangle indicates the study region.

33



Figure B2. Monthly soil-moisture anomalies during 2018 and 2019. The rectangle indicates the study region, i.e. the areas experiencing

drought conditions (SManom <−1σ) during both DH2018
::::
DH18

:
and DH2019

::::
DH19. .
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Figure B3. Selectivity of different land-cover composition for each cluster (Fig. 3). Selectivity is evaluated as the difference between the

probability distribution of a given land-cover type (forest, left; grassland, middle; cropland, right) and the probability distribution of that

land-cover type in the selected region. If selectivity is positive, the cluster is preferentially composed by the given land-cover type and the

opposite for negative values. The 2018 land-cover classification maps from from ESA CCI-LC are used.
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Figure B4. Performance of the temporal RF model in predicting EV Ianom, given by the out of bag scores. The top panel shows the scores

for the climate-driven RF model and the bottom panel the corresponding results for the same model, but includingEV Iyr−1
anom as an additional

predictor.

36



Figure B5. Importance of the four predictors used in the RF model to predict EV Ianom, spring (left) and summer (right), SManom (top)

and Tanom (bottom), calculated from the Shapley additive explanation values (Methods).

37



Figure B6. As in Fig. 5 bottom panel, but for the RF model trained using spring and summer SManom and Tanom as predictors, as well as

EV Iyr−1
anom.
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Figure B7. The left panel shows the spatial distribution of the four clusters from unsupervised classification of

(EV IDH2018
anom ::::::::

EV IDH18
anom ,EV IDH2019

anom ::::::::
EV IDH19

anom ) values remapped to the coarser grid of LSMs. The corresponding

(GPPDH2018
anom :::::::::

GPPDH18
anom ,GPPDH2019

anom :::::::::
GPPDH19

anom ) values simulated by the multi-model mean in each cluster are indicated in the

top right panel (circles indicate the spatial mean and the lines spatial standard deviation within each cluster). The corresponding distribution

of simulated SManom pairs in each cluster are shown in the bottom right panel. The grey line, indicates similar anomalies in the two DH

events.
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Figure B8. Same as Fig. 4 but for GPP and soil-moisture anomalies simulated by a subset of land-surface models from (Bastos et al., 2020a)

extended up to
:::::::
December

:
2019.
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