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Abstract. Identification of terrestrial carbon (C) sources and sinks is critical for understanding the earth system and to miti-

gate and adapt to climate change resulting from greenhouse gas emissions. Predicting whether a given location will act as a

C source or sink using terrestrial ecosystem models (TEMs) is challenging due to net flux being the difference between far

larger, spatially and temporally variable fluxes with large uncertainties. Uncertainty in projections of future dynamics, critical

for policy evaluation, has been determined using multi-TEM intercomparisons, for various emissions scenarios. This approach5

quantifies structural and forcing errors. However, the role of parameter error within models has not been determined. TEMs

typically have defined parameters for specific plant functional types generated from the literature. To ascertain the importance

of parameter error in forecasts we present a Bayesian analysis that uses data on historical and current C cycling for Brazil to

parameterise five TEMs of varied complexity with a retrieval of model error covariance at 1 degree spatial resolution. After

evaluation against data from 2001-2017, the parameterised models are simulated to 2100 under four climate change scenarios10

spanning the likely range of climate projections. Using multiple models, each with per pixel parameter ensembles, we partition

forecast uncertainties. Parameter uncertainty dominates across most of Brazil when simulating future stock changes in biomass

C and dead organic matter (DOM). Uncertainty of simulated biomass change is most strongly correlated with net primary pro-

ductivity allocation to wood (NPPwood) and mean residence time of wood (MRTwood). Uncertainty of simulated DOM change

is most strongly correlated with MRTsoil and NPPwood. Due to the coupling between these variables and C stock dynamics15

being bi-directional we argue that using repeat estimates of woody biomass will provide a valuable constraint needed to re-

fine predictions of the future carbon cycle. Finally, evaluation of our multi-model analysis shows that wood litter contributes

substantially to fire emissions necessitating a greater understanding of wood litter C-cycling than is typically considered in

large-scale TEMs.

1 Introduction20

Globally terrestrial ecosystems are estimated to be a net carbon sink sequestering 3.2±0.6 PgC yr−1 or∼30% of anthropogenic

CO2 emissions (Friedlingstein et al., 2019). The net carbon balance of a given ecosystem is dependent on the balance between
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larger (and still uncertain) gross fluxes of uptake by photosynthesis, or gross primary productivity (GPP; 80-170 PgC yr−1;

Shao et al., 2013; Joiner et al., 2018; Jung et al., 2020), and losses from plant respiration (Ra; 40-80 PgC yr−1; assuming fixed

Ra:GPP ratio 0.46; Collalti and Prentice, 2019), heterotrophic decomposition (Rhet; 57.5±9.8 PgC yr−1; Sitch et al., 2015) and25

disturbance such as fire (∼2.2 PgC yr−1 (1997-2016); van der Werf et al., 2017). However, uncertainties associated with gross

fluxes remain large, for example the range of global GPP estimates is ∼60 % of the mean of estimates. Moreover, the response

of terrestrial ecosystems to elevated atmospheric CO2 concentrations and associated climate change are key unknowns in the

earth system (Jones et al., 2016). Uncertainties on ecosystem responses are greatest across the tropics, where data are scarce

and process models both diverge in their analysis of current C cycling and exhibit discordant C cycle responses to projected30

changes in climate (Exbrayat et al., 2019; Shao et al., 2013).

Brazil’s ecosystems are among the most biodiverse in the world spanning a range of biomes and climate space (Myers et al.,

2000; Lapola et al., 2014): moist-tropical forest of Amazonia and the Atlantic Forests, seasonally dry-tropical grassland forest

mosaics of the Cerrado and Caatinga, wetlands in Pantanal and temperate grasslands in Pampa (Figure 1). Brazil’s biomes store

large quantities of carbon in their biomass and soils, but Brazil is also among the largest emitters of CO2 from land-use change35

and deforestation (Baccini et al., 2012; Matthews et al., 2014). Between 1990 and 2015 Brazil’s forests lost 5.3 PgC (Sanquetta

et al., 2018), equating to ∼39% of global forest carbon loss for the same period (Köhl et al., 2015). Moreover, the Amazon

has been subject to increasingly frequent drought (Lewis et al., 2011) which significantly impacts net carbon exchange due to

increased mortality and decomposition (Yang et al., 2018).

Existing process-models of the terrestrial ecosystem simulate carbon stocks that differ significantly from current satellite-40

based Earth Observation (EO) based estimates and disagree over future trends (Sitch et al., 2008; Huntingford et al., 2013;

Shao et al., 2013; Exbrayat et al., 2018a, 2019). Process-orientated terrestrial ecosystem models (TEMs) predict the response

of ecosystems to changes in their environment and to disturbance (whether natural or of human origin). Analyses of ensembles

of TEM simulations, which are assumed to represent the combined model structural and parameter uncertainty (Todd-Brown

et al., 2013; Friend et al., 2014; Jones et al., 2016), have provided valuable information on the likely future dynamics of45

terrestrial ecosystems (e.g., Friend et al., 2014; Koven et al., 2015; Eyring et al., 2016; Jones et al., 2016; Zhou et al., 2018).

However, as TEMs typically lack information on their parametric uncertainty it remains unclear whether model differences

are driven by different parameter estimates or model structure. Moreover, estimated responses to environmental change are

sometimes contradictory between studies indicating model ensemble (i.e. model) specific conclusions (Zhou et al., 2018). For

example, using the ISI-MIP ensemble, Friend et al. (2014) showed that on global scales inter-model differences in the mean50

residence time (MRT) of biomass dominated uncertainty in future carbon stocks, rather than differences in carbon inputs from

photosynthesis, while the analysis by Koven et al. (2015), using the CMIP5 ensemble, indicated the reverse. Also using the

CMIP5 ensemble, Todd-Brown et al. (2013) showed that while on average simulated soil carbon stocks could be explained by

carbon inputs and residence time there was substantial between-model variation as a result of model structural and parameter

differences. Lacking a common basis for calibration and evaluation, model-intercomparisons have struggled to identify and55

reduce uncertainties surrounding model structure and parameterisation.
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Figure 1. Map of the major biomes of Brazil. Amazonia and Atlantic forests contain largely moist tropical forest. In contrast the Cerrado and

Caatinga are hot and seasonally droughted savannah ecosystems with substantial conversion to agriculture. The Pantanal is covered largely

by wetlands. The Pantanal region has a temperate moist climate covered largely by grasslands and agriculture. Map source: Brazilian Institute

of Geography and Statistics (IBGE), Biomes and Coastal-Marine System of Brazil map, https://www.ibge.gov.br/, accessed 17/11/2020.

Ecosystem parameters that drive C exchanges (e.g. plant traits) are known to be highly variable both in space and often in

time, even within a given biome (e.g. tropical moist forest) (Butler et al., 2017; Exbrayat et al., 2018b; Kattge et al., 2020).

Moreover, field based studies such as those across the Amazon basin have identified substantial spatial variation and trade-off

among ecosystem variables including allocation of net primary productivity to plant tissues, MRTs of C pools and carbon60

use efficiency (CUE = NPP / GPP) (Doughty et al., 2015; Malhi et al., 2015). In contrast, the majority of TEMs represent

ecosystems processes using a limited number of plant functional types (PFT), which assume a single parameterisation for each

biome (i.e. all tropical moist forests are assumed to have the same traits). These TEMs therefore lack spatial variation in the

traits that govern the response of ecosystems to changes in their environment, such as disturbance by fire (e.g., Exbrayat et al.,

2018b). Furthermore, PFTs are typically calibrated and evaluated at a single site, which may not be representative of a given65

biomes’ mean dynamics (Kuppel et al., 2012).

Model-data fusion (MDF) approaches offer an opportunity to use a diverse array of observations to calibrate and evaluate

TEMs by updating their current state and / or refining their parameters, weighted by observation uncertainty. For example,

Exbrayat et al. (2018b) calibrated an intermediate complexity C-cycle model independently in each 1 × 1 degree pixel across

the tropics using (among other data) location and time specific information on leaf area index (LAI), biomass and burned area70

from EO. Their analysis showed substantial within-biome variation in ecosystem variables (and model parameters) in response
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to varied intensity and frequency of fire. Such variations and parametric uncertainty are neglected in a classical PFT-based

TEM framework, introducing errors into their representation of ecosystem C dynamics. A critical output of a location-based

approach is the retrieval of both parameter magnitude and parameter uncertainty information at site level (i.e. pixel or grid cell).

Such information can highlight the greatest unknowns, underpin explicit uncertainty propagation into future environments75

(e.g. climate change), and directly investigate the parameter-process uncertainty interactions that drive changes in ecosystem

C stocks.

Uncertainty in future carbon cycle simulations (e.g., Arora et al., 2020) is dominated by combined model structure and

parameter uncertainty, however there remains a substantial contribution due to variations between climate change scenarios

themselves (Lovenduski and Bonan, 2017; Bonan and Doney, 2018). The potential mean global warming is estimated to be 1.780

- 5oC by 2100 (IPCC 2014). This uncertainty is driven largely by broad ranges in anthropogenic emissions and land-use and

land-cover change for which there are many plausible pathways leading to different atmospheric CO2 concentrations (O’Neill

et al., 2016) for use in model intercomparisons (e.g., Eyring et al., 2016). For example, Bonan et al. (2019) showed that both

land use and climate change scenarios had a significant impact on TEM-simulated terrestrial carbon stocks, indicating the need

to include future scenarios in any uncertainty partitioning experiment.85

Here we use the CARbon DAta MOdel fraMework (CARDAMOM; Bloom et al., 2016) to calibrate a suite of five intermedi-

ate complexity TEMs across Brazil (1 × 1 degree pixel; 2001-2017; monthly time step) to retrieve ensembles of pixel-specific

parameters. These localised parameter ensembles provide explicit estimates of parameter uncertainty and its spatial variability.

The five models have a common basic structure, but progressively more complex process representation, allowing quantification

of the model ensembles’ structural uncertainty. Moreover, our approach mimics the typical TEM model development process90

where incremental changes in process representation are evaluated for their impact on simulated outcomes (e.g. Mercado et al.,

2009; Verheijen et al., 2015; Jones et al., 2020) while we go further by explicitly quantifying the associated parameteric uncer-

tainty which is usually unavailable. Comparison of the dynamics of this model ensemble against independent estimates of the

Brazilian C cycle quantifies whether a given change in model structure (i.e. added complexity) leads to an improvement, degra-

dation or equally valid C cycle analysis. Once calibrated we simulate each model for each pixel over a parameter ensemble and95

under multiple climate change scenarios providing quantification of climate scenario uncertainty to 2100.

Using this approach we address the following research questions:

1) Does increasing model complexity improve agreement with independent evaluation information? Firstly, we hypothesise

that including a water-cycling sub-model will reduce photosynthesis due to soil moisture limitations and so improve

model outputs for the drier Cerrado and Caatinga regions. Secondly, we hypothesise that inclusion of a wood litter pool100

will increase fire emissions by adding another combustible dead organic matter pool and improve estimated emissions

particularly within areas of forest cover loss such as the south eastern edge of the Amazon (the arc of deforestation).

2) How is uncertainty associated with predicted carbon stocks partitioned between (i) parameter estimates, (ii) model struc-

ture and (iii) projected climate change scenario? We hypothesise that the climate change scenario will contribute a minor

component to the overall uncertainty, consistent with the results found by Bonan et al. (2019). Additionally, we hy-105
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pothesise that parameter uncertainty will be largest in areas of large biomass and soil carbon stocks (i.e. Amazon and

Atlantic Forests) due to larger uncertainties found in observational constraints at larger values whereas model structure

uncertainty will be more important in regions with lower stocks and more seasonality in fluxes, such as Cerrado.

3) Is forecast uncertainty more strongly linked to the mean residence time (MRT) of biomass or differences in carbon

inputs from photosynthesis? How does the relative importance of these factors vary spatially across biomes and among110

models with different process representation? We hypothesise that biomes with stronger environmental constraints on

production, for instance dry tropics compared to moist tropics, will have errors dominated more by this process than

MRT.

We investigate these questions at the scale of Brazil and also for its key biomes, to determine if there are regional differences.

We conclude with an assessment of key steps required to produce more robust projections of how Brazilian C stocks will115

respond to future forcing. The novelty of this study is to compare C cycle projections that include propagated error from model

calibration at pixel scale, for a range of models with difference process controls on C cycling, allowing a robust data-constrained

analysis.

2 Methods

We use the CARbon DAta MOdel fraMework (CARDAMOM; Bloom et al., 2016) to perform a model-data fusion (MDF)120

analysis of Brazil at 1 × 1 degree spatial (702 pixels) and monthly temporal resolutions between 2001 and 2017 (inclusive).

CARDAMOM retrieves ensembles of model parameters independently for each location (see Sec. 2.1) as a function of location

specific observational constraints (see Sec. 2.3). To quantify model structural uncertainty, parameters are retrieved for five

versions of the DALEC terrestrial ecosystem model, of differing complexity (see Sec. 2.2; Table 1). The DALEC calibrations

are evaluated using independent estimates of net biome exchange of CO2 (NBE), GPP and Fire (see Sec. 2.4). The calibrated125

DALEC models are then simulated into the future under four climate change scenarios (see Sec. 2.5) used in Phase 6 of the

Coupled Model Intercomparison Project (CMIP6; O’Neill et al., 2016).

Table 1. Summary information of process representations and total number of calibrated parameters of the different DALEC models. Model

complexity increases from model M1-5. ACM is the Aggregated Canopy Model used to predict photosynthesis (GPP), with ACM1 the

simplest version and ACM2 more complex with links to water balance. Plant respiration (Ra) can be determined as a simple ratio of GPP or

by separate maintenance (Rm) and growth (Rg) components.

Model Photosynthesis Water cycle Plant respiration Wood litter No. parameters

M1 ACM1 No Ra:GPP No 23

M2 ACM2 No Ra:GPP No 23

M3 ACM2 Yes Ra:GPP No 23

M4 ACM2 Yes Rm:GPP + Rg:NPP No 27

M5 ACM2 Yes Rm:GPP + Rg:NPP Yes 29
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2.1 CARDAMOM

CARDAMOM is a MDF framework which uses a Bayesian approach within an Adaptive Proposal - Markov Chain Monte Carlo

(AP-MCMC) to estimate ensembles of DALEC model parameters (x; Table A1) consistent with observational constraints and130

their uncertainties (Haario et al., 2001; Rodríguez-Veiga et al., 2020). CARDAMOM analyses are conducted independently

for each pixel location and repeated three times (each repeat is known as a chain). Each chain assesses 100 million parameter

proposalsTLS, drawn from uniform prior ranges, from which a sub-sample of 1000 accepted parameter vectors are stored.

[]Parameters from the second half of the accepted sub-sample are used for post-processing as we expect the chains to have

converged by this point and thus represent a realistic approximation of the real pixel level uncertainty. The chains are used135

to assess AP-MCMC quality; in each location the chains are expected to statistically converge based on the Gelman-Rubin

convergence criterion (Gelman and Rubin , 1992). Any location which did not achieve convergence is re-run. For further

details see appendix text A1.

Pixel-level uncertainties are estimated directly from the CARDAMOM retrieved ensembles of parameters, and their model

generated C stocks and fluxes. However, we lack a robust understanding of how uncertainties are correlated in space, making140

the propagation of uncertainties from pixel-level to Brazil-wide challenging. Assuming an intermediate value would lead to an

arbitrary estimate of uncertainty while assuming either fully-correlated or -uncorrelated uncertainties leads to either an over- or

under-estimate in Brazil-wide uncertainties respectively. To be conservative, here, we assume uncertainties are fully-correlated

when propagating from pixel to Brazil-wide estimates. To allow for non-Gaussian distributions in the pixel-level ensembles

we assume that the fully correlated assumption is approximated by aggregating the pixel-level 5 % and 95 % quantiles across145

Brazil as previously done (e.g., Exbrayat et al., 2018b). Again to be conservative we will only discuss in detail between-model

differences which are also supported in the pixel-level estimates.

2.2 DALEC models

The DALEC model suite used here comprises five related intermediate complexity models of the terrestrial carbon cycle (M1-

5). Each model version tracks the state and dynamics of live and dead carbon pools, their interactions, and their response150

to climate and exogenous factors such as fire or disturbance. The complexity (numbers of carbon pools, their connectivity)

and process representation (component sub-models of varying complexity) varies between DALEC models. There are three

alternate carbon cycle structures (Figure 2), plus a range of different sub-models (Table 1). The sub-models are related to

different simulations of GPP, Ra, and carbon-water interactions. These sub-models build on a common baseline structure,

facilitating efforts to disentangle the impact of each specific process representation. Due to their varied complexity the DALEC155

models have different numbers of parameters which are calibrated for each location. DALEC parameters for each model can

be found in Table A1 including a summary of the key features of each model in appendix text A2.
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Figure 2. The five DALEC versions include three carbon cycle structures. The top schematic shows the DALEC model carbon structure as

previously described in Bloom & Williams (2015) as is used for M1-3. The middle row shows M4 where Ra is partitioned between Rm and

Rg . The bottom row shows the inclusions of a wood litter pool used in M5.

2.3 Observational constraints and driving information

CARDAMOM uses a diverse array of data as both observational constraint and model inputs. Information on LAI (time series),

above ground biomass (AGB) and soil carbon are assimilated observations with an associated uncertainty. Meteorology, burned160

area, forest cover loss and soil texture (sand / clay fractions) are inputs without uncertainty. Summary information on the

assimilated observations and their uncertainties shown in Figure A1.

2.3.1 Leaf area index

Time series information on LAI magnitude and uncertainty is extracted from the 1× 1 km, 8-day product from the Copernicus

Service Information (2020). LAI was aggregated to the analysis resolution. Each LAI estimate has a corresponding uncertainty165

value, however the robustness of the uncertainty provided with EO LAI products remains unclear (Zhao et al., 2020). To be

conservative we assumed the maximum uncertainty value reported from the raw data used in the aggregation of each time step.

Each pixel will typically assimilate 204 EO-based LAI estimates, i.e. 12 months × 17 years.
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2.3.2 Wood C

A single estimate per-pixel of AGB and uncertainty is extracted from a combination of the Avitabile et al. (2016) and Longo170

et al. (2016) maps. Avitabile et al. (2016) combines multiple years of EO and field data to create a pan-tropical map nominally

representative of 2007. Longo et al. (2016) covers the Brazilian Amazonia only and uses field inventory and airborne lidar

explicitly representing 2014. These maps are created using different source data and algorithms; they will contain unique

errors and bias. Therefore, we use the Longo et al. (2016) map to provide constraint on Amazonian AGB and the Avitabile

et al. (2016) map elsewhere (Figure A1).175

The DALEC models simulate a combined above and below ground woody pool. To link the AGB maps to the simulated

wood pool we use an allometric relationship to estimate the below ground biomass (BGB) following Saatchi et al. (2011) (units

= Mg/ha).

BGB = 0.489 ·AGB0.89 (1)

AGB uncertainty is similarly converted based on the allometric equation neglecting statistical uncertainty of the allometric180

equation itself. Wood C and its uncertainty are then spatially aggregated assuming uncorrelated uncertainties as error covariance

remains unknown.

2.3.3 Soil C and texture

Location specific estimates of soil carbon and sand / clay fraction are extracted from the SoilGrids database (Hengl et al.,

2017). Soil carbon is used as a prior on the initial soil carbon stock while soil texture information is used as an input to the soil185

hydrology sub-model. SoilGrids uses inventory data of soil properties and interpolates these across a 250× 250 m grid using a

machine learning (ML) approach (Hengl et al., 2017). However, SoilGrids lacks an estimate of uncertainty. For simplicity, we

assumed an uncertainty was the standard deviation of the spatially aggregated dataset.

2.3.4 Disturbance

Fire and forest biomass removal was imposed using EO information. The MODIS burned fraction product (Giglio et al., 2018)190

determines the areas where fire is imposed. Emissions are determined assuming a fraction of simulated biomass undergoes

combustion or is converted to litter based on tissue specific combustion-completeness factors, following Exbrayat et al. (2018b).

Forest biomass removal is imposed using the global forest watch (GFW) forest cover loss product (Hansen et al., 2013). GFW

provides the year in which a forest area is removed, with biomass losses assumed to occur evenly across the year. All biomass

is assumed to be subject to removal except fine roots which remain in the ecosystem195

2.3.5 Meteorological drivers

Meteorological drivers are drawn from the CRU-JRAv1.1 dataset, a 6-hourly 0.5 × 0.5 degree reanalysis (CRU, 2019). At-

mospheric CO2 concentration is taken from the Mauna Loa global CO2 concentration (www.esrl.noaa.gov/gmd/ccgg/trends/,
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accessed: 22/08/2020). Owing to their differing complexities the DALEC models use different drivers. All models use temper-

ature, shortwave radiation and atmospheric CO2 concentrations. M2-5 additionally use vapour pressure deficit and wind speed.200

M3-5 use precipitation. Summary information for mean climate is shown in Figure A2.

2.4 Evaluation of models against independent data

To address research question 1, the five models were evaluated against a series of independent data on Net Biome Exchange of

CO2 (NBE), gross primary productivity (GPP) and fire emissions. These datasets were derived from atmospheric inversions,

upscaling from flux measurements, and from remote sensing of burned area. A key evaluation metric is the degree of consis-205

tency at pixel level between the DALEC models and the independent historical evaluation data. We define consistency as the

pixel-level ensemble of DALEC C-cycle estimates overlapping independent observations at >90 % of observed time steps.

CarbonTracker Europe (CTE) is a widely used atmospheric inversion system which estimates NBE by combining time

varying prior information on NBE along with imposed CO2 fluxes from fire, fossil fuels and ocean exchange with observations

of atmospheric CO2 concentrations (van der Laan-Luijkx et al., 2017). A single CTE analysis which spans the whole analysis210

period (2001-2017) is used to provide a long-term comparison of the trend in NBE (van der Laan-Luijkx et al., 2017). Spatial

comparisons are restricted to the 2009-2017 period using the dataset described below.

An ensemble of 15 analyses (1 × 1 degree; 2009-2017) which builds on the CarbonTracker South America (CT-SAM)

framework provided robust uncertainty estimates of NBE. In addition to CTE’s standard atmospheric measurements CT-SAM

includes airborne estimates focused over the Amazon forest (Gatti et al., 2014), and uses zoom regions over South America for215

improved atmospheric transport (van der Laan-Luijkx et al., 2015). The ensemble uses five NEE priors and three fire emission

drivers (combined to estimate NBE) but with a common set of atmospheric constraints and transport model (Schaefer et al.,

2008; Bodesheim et al., 2018; van Schaik et al., 2018; Haynes et al., 2019; Koren , 2020). The mean pixel level uncertainty

between ensemble members is∼0.5 gCm2d−1 which due to the near neutral estimates is∼50 times the mean value. By using a

range of priors it covers the uncertainty in the seasonal variation of C fluxes in tropical regions (Saleska et al., 2003; Restrepo-220

Coupe et al., 2013; Koren et al., 2018; Mengistu et al., 2020). In the remainder of this text the CTE and CT-SAM datasets are

collectively referred to as CTE.

Evaluation of GPP is provided by the combination of three independent estimates of GPP (FLUXCOM, Copernicus and

FluxSat v2). FLUXCOM GPP is estimated by an ensemble of ML approaches driven with meteorological reanalysis and EO

derived vegetation indices and calibrated using eddy covariance information drawn from the FLUXNET network (Jung et al.,225

2020). FLUXCOM has been widely evaluated using eddy covariance information and has been used to evaluate TEMs (Jung

et al., 2020). Copernicus gross dry matter productivity (i.e. GPP; Copernicus Service Information, 2020) uses a modified

Monteith (1972) approach which estimates GPP as a function of absorbed photosynthetically active radiation, temperature, at-

mospheric CO2 concentration and land cover specific parameters. FluxSat v2 combines MODIS reflectance and meteorological

information within a ML framework to estimate GPP (Joiner et al., 2021). Similar to FLUXCOM, FluxSat v2 is calibrated us-230

ing observations from the FLUXNET network. Collectively these independent GPP estimates are assumed to represent a more
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realistic estimate of GPP uncertainty (mean = ∼1.2 gCm2d−1 or 20 %) from observation-orientated sources for comparisons

with CARDAMOM-DALEC.

Independent estimates of fire emissions are drawn from the Global Fire Emissions Database version 4.1s (GFEDv4.1s

(2001-2017); van der Werf et al., 2017) and the Global Fire Assimilation System (GFAS (2003-2017); Kaiser et al., 2012).235

Neither product comes with uncertainty information. GFEDv4.1s uses MODIS burned area to impose fire on a TEM with

actual emissions determined based on the simulated magnitude of carbon pools at steady state in conjunction with pool specific

combustion completeness parameters (van der Werf et al., 2017). The GFAS product uses MODIS radiative energy and active

fire products combined with ecosystem specific parameters to estimate carbon emissions from fire (Kaiser et al., 2012). As

these products are based on fundamentally different approaches we assume that the range between them approximates the fire240

emissions uncertainty (mean = ∼0.04 gCm2d−1 or ∼100 %). We evaluate DALEC for their overlapping period (2003-2017).

2.5 Analysing the drivers of forecast uncertainty

To project DALEC to 2100, future climate drivers were extracted from the UK Earth System Model (UKESM; Sellar et al.,

2019) contribution to CMIP6 (Eyring et al., 2016). This study uses the core scenarios SSP1-2.6W m−2, SSP2-4.5W m−2,

SSP3-7.0W m−2, SSP5-8.5W m−2 spanning a mean global warming of 1.7-5oC (O’Neill et al., 2016). The scenarios are also245

used to impose future forest biomass extraction. The contemporary meteorology from observations differs from that generated

in the climate models used to project future climate. As a result there are step changes in drivers between historical and future

climate, impacting the simulation of the carbon cycle in an unrealistic manner. To avoid these step-change impacts future

meteorology is imposed as an anomaly relative to 2018. Specifically, each month of the future meteorology extracted from the

UKESM has the corresponding month from 2018 subtracted creating the anomaly time series, i.e. each month of 2018 anomaly250

would be equal to 0. The anomalies are then added to the absolute values of the monthly values from 2018 from the calibration

meteorology time series but with sanity checks to prevent negative values in positive definite variables.. The mean temperature

(M1-5), incoming shortwave radiation (M1-5), vapour pressure deficit (M2-5), wind speed (M2-5) and precipitation (M2-5)

anomalies for each scenario as shown in Figure A3. The time series of future atmospheric CO2 concentration is prescribed for

each scenario. Disturbance due to forest harvest is driven by the management scenarios associated with each SSP. However,255

as DALEC does not represent land cover types we neglect land use change in the drivers. Thus any forest which undergoes

biomass removal subsequently remains a forest and is allowed to regrow. Finally, as we currently lack a predictive model of

fire in DALEC (i.e. we drive fire with EO burned area), we extended observed fire for the contemporary period into the future

simulations.

Model analyses quantified the relative contribution of variation in model parameters, model structure and climate change260

scenario to overall uncertainty in the simulation of biomass and DOM to 2100. Parameter uncertainty was estimated to be

the 90% CI resulting from the simulation of the retrieved parameter ensembles. Model structural uncertainty was estimated

as the between model range of the pixel-level median estimates. Both parametric and structural uncertainties were estimated

for each climate change scenario and then averaged across scenarios to provide an overall estimate. Climate change scenario
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uncertainty was estimated as the pixel-level range of median estimates across scenarios for each model. This analysis address265

research question 2.

To address question 3, quantifying the role of key ecosystem traits (NPP partitioning and MRTs) on C stock trajectories,

the ensemble of pixel level estimates of GPP, CUE, NPP allocation and MRTs are correlated with the ensemble of biomass

and DOM stock change estimated between 2001-2100. It is the ensembles of per-pixel parameters and by extension ensembles

of C stock and flux estimates, that uniquely allow CARDAMOM to explicitly quantify the uncertainty in critical ecosystem270

properties with C stock dynamics.

Table 2. Summary of Brazil wide carbon budgets for each DALEC model and independent estimates. Fluxes are gross primary productivity

(GPP), autotrophic respiration (Ra), heterotrophic respiration (Rh), forest biomass loss, carbon emissions due to fire, net ecosystem exchange

of CO2 (NEE = Ra + Rh - GPP) and net biome exchange (NBE = NEE + Fire) . All units are in PgC yr−1. Values given as the median pixel

level estimates averaged across Brazil while values in parenthesis are Brazil wide averaged for the 5% and 95% quantiles, i.e. assuming

fully correlated uncertainties. Independent estimates are derived from FLUXCOM FluxSat v2 and Copernicus for GPP, Global Forest Watch

(GFW, for forest loss), Global Fire Emissions database v4.1s for fire and CarbonTracker Europe for NBE. Time period of all data is 2001-

2017.

Flux M1 M2 M3 M4 M5 Independent estimate

GPP 17.7 (9.8 / 23.4) 19.0 (14.6 / 22.3) 17.8 (12.7 / 21.8) 17.8 (12.7 / 21.8) 17.8 (12.7 / 21.8) 18.4-20.9

Ra 7.7 (3.5 / 12.9) 8.8 (5.1 / 13.0) 7.8 (4.2 / 12) 7.7 (3.8 / 11.9) 7.6 (3.8 / 11.9) -

Rh 7.3 (3.2 / 14.3) 7.4 (3.6 / 14.1) 7.6 (3.7 / 14.2) 7.6 (3.8 / 14.4) 7.3 (3.5 / 14.0) -

Fire 0.11 (0.07 / 0.19) 0.11 (0.08 / 0.18) 0.11 (0.07 / 0.18) 0.12 (0.08 / 0.23) 0.17 (0.1 / 0.38) 0.20

Forest loss 0.18 (0.12 / 0.28) 0.18 (0.12 / 0.28) 0.18 (0.12 / 0.29) 0.18 (0.12 / 0.28) 0.18 (0.13 / 0.28) 0.24

NEE -1.9 (-6.1 / 3.9) -2.3 (-6.2 / 3.5) -2.0 (-6.3 / 4.4) -2.1 (-6.4 / 4.5) -2.5 (-6.7 / 3.9) -0.26

NBE -1.8 (-5.9 / 4.0) -2.2 (-6.1 / 3.7) -1.9 (-6.1 / 4.6) -2.0 (-6.3 / 4.7) -2.3 (-6.5 / 4.1) 0.014

3 Results

We conducted MDF analyses to retrieve ensembles of location specific parameters for five DALEC models of varied complex-

ity across Brazil. Each model simulated the calibration data with a good degree of skill, returning similar likelihood scores

(R2 >0.98; Figures 3-5, A4-5). Simulated NBE, GPP and fire emissions have been evaluated at 1 degree (Figure 4) and na-275

tional scale (Figure 5; Table 2) against independent estimates. The 1 degree spatial parameter ensembles show that there is a

strong dependency between NBE and wood stocks (R2 >0.8; Figure A6). Furthermore, we quantify the reduction in posterior

parameter distributions relative to their prior ranges which indicates substantial variability both spatially (Figure A7), between

parameters (Table A2) and parameters representing different ecosystem components (Table A3) The DALEC parameter en-

sembles have been projected to 2100 (Figure 6) and show that parameter, not structure or climate change scenario, dominates280

overall uncertainty in most areas (Figure 7). Finally, using the parameter ensembles to quantify the correlation between ecosys-

tem variables and future carbon stock dynamics we identify allocation of NPP to wood (NPPwood) and MRTwood as targets for

further constraint on model forecasts (Figures 8-9).
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Figure 3. Comparison between observational constraints used to calibrate the DALEC models and the corresponding model outputs. The

grey line shows the 1:1 line. LAI is presented as a pixel wise comparison of the mean annual LAI and as a Brazil-wide average time series

highlighting the long term trend of increasing LAI.

3.1 Calibration constraints

All DALEC models match their calibration information with a high degree of skill (Figure 3). The root mean square error285

(RMSE) is small for LAI and the initial soil carbon stock (<5 %). The RMSE between simulated wood stocks and calibration

observations is larger in wood stocks (<16 %) and is dominated by model-observation mismatch at smaller wood stocks (<50

MgC/ha; 20-28 %) with smaller errors (<1 %) otherwise. The calibrated Ra:GPP (CUE = 1-Ra:GPP) fraction across Brazil is

consistent with the assimilated prior (M1,4,5 = 0.43; M2 = 0.46; M3 = 0.44) for each model (mean deviation <0.06; prior =

0.46±0.12; Figure A5). The largest deviations from the prior are found in Caatinga (Figure A5), a hot, dry biome with mean290

air temperature >25 oC and rainfall <800 mm yr−1 (Figure A2). In M2 (ACM2, no water cycle) Caatinga has a higher Ra:GPP

(deviations up to 0.33) while models M3-5 (ACM2, with water cycle) estimate a lower Ra:GPP in Caatinga (deviations up to

-0.25). M1 shows no substantial spatial patterning (ACM1, no water cycle). The inter-model differences follow the switching

between photosynthesis models and the inclusion of the water cycle, indicating that drought stress has a significant impact on

Ra:GPP (Table 1).295

[]The reduction of parameter uncertainty between the 90 % confidence interval and the prior range is highly variable across

Brazil, between parameters and to a lesser extent models (Table A2, A3, Figure A7). The reduction in the parameter posteriors

relative to the prior bounds (1-posteriorCI90:prior range) varies between model (M2 = 0.55, M5 = 0.46; Table A2) but with

much larger variability between parameters (Rhet coefficient = 0.12, initial soil = 0.96) and across Brazil (Caatinga = 0.62-

0.7, Amazon = 0.42-0.5; Figure A7). The spatial pattern across Brazil broadly follows the spatial distribution of precipitation300
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(Figure A2). The greatest reduction in posterior parameter uncertainty is typically achieved in M2 with the lowest in M5 and

broadly similar values in M1, 3, 4. Parameters related to initial C conditions and canopy phenology are best constrained, as

expected given the majority of observations directly relate to these parameter groups, while NPP allocation and turnover /

decomposition related parameters are least constrained in the posterior (Table A3).

3.2 Independent evaluation of Brazilian C-cycling305

DALEC-simulated NBE was statistically consistent with the CTE ensemble at the 90% confidence interval (CI) across >95%

of Brazil (2009-2017; Figure 4), i.e. there is overlap between CARDAMOM’s 90% CI and the spread of estimates from the

CTE ensemble across >90 % of time steps with CTE estimates. Moreover, both CTE and DALEC models indicate a long-term

decreasing trend in NBE (i.e. increasing net carbon uptake) (Figure 5). While statistically consistent there is persistent negative

bias between DALEC and CTE (i.e. DALEC models estimate a large sink over the whole time period while CTE transitions310

from a small source to small sink) over the Amazon (M1-5; Figure A8). This Amazon bias leads to the DALEC models

consistently estimating Brazil’s NBE to range between -2.3 and -1.8 PgC yr−1, which contrasts the near neutral 0.014 PgC

yr−1 estimated by CTE (2001-2017; Table 2). However, both the CTE ensemble and DALEC uncertainties cross the source

/ sink boundary, indicating that neither analysis can confidently quantify Brazil as a net source or sink overall for 2009-2017

(Figure 5; Table 2).315

The DALEC models are consistent with independent GPP at the 90% CI across 93-97% of Brazil (Figure 4). Inter-model

variation follows the implementation of the differing photosynthesis models and inclusion of carbon-water cycle interactions.

The simplest model, M1, (ACM1, no water cycle; 97%) was the most consistent with independent estimates; followed by

M2 (ACM2, no water cycle; 94%). M3-5, which use ACM2 and simulate water cycling, are least consistent (∼93%) over

Brazil. The non-consistent areas for all models are concentrated in the Caatinga and Cerrado (Figure 4), which have strong320

seasonality in rainfall and more extreme temperatures (Figure A2). Moreover, the DALEC models all estimate a lower GPP for

these regions (by∼5 MgC/ha yr−1) than independent estimates suggesting different high temperature and drought sensitivities

between analyses (Figure A8). The activation of water cycling between M2 and M3-5 reduces Brazil’s GPP by an average of

7% but varies substantially in space with declines across the Cerrado and Caatinga of ∼30%.

Brazil’s mean annual GPP estimated by the DALEC models (17.7 - 19.0 PgC yr−1) encompasses the range of independent325

estimates (18.4-20.9 PgC yr−1) as do the model specific uncertainties (Table 2). All DALEC models estimated Brazil’s mean

annual GPP to increase between 2001 and 2017 (∼0.15 MgC/ha yr−2) while respiration increased by roughly half that of GPP

(Figure 5, A9). The net change between GPP and respiration is consistent with the trend of declining NBE estimated by both

DALEC (-0.038 to -0.06 MgC/ha yr−2) and CTE (-0.032 MgC/ha yr−2; Figure 5). However, the increasing GPP trend is not

uniform, with GPP declining in the Cerrado and Caatinga (range ±0.45 MgC/ha yr−2; Figure A9). Independent estimates of330

GPP are in agreement with the sign of the GPP trend across most of Brazil (i.e. Cerrado, Caatinga, Atlantic forest, Pampa and

Pantanal). The Amazon is the exception which is consistently estimated to remain constant or declining GPP, which contrasts

the DALEC estimates.
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Figure 4. Comparison of DALEC model M1-5 estimated NBE and GPP with independent estimates of NEE from CarbonTracker Europe

(2009-2017), GPP (2001-2017) from FLUXCOM/FluxSatv2/Copernicus and fire (2003-2016) GFEDv4.1s & GFAS. Stippling shows areas

where the 90% confidence interval derived from DALEC analysis overlaps the independent value.

DALEC-estimated fire emissions show large inter-annual variation between ∼100 TgC yr−1 and ∼300 TgC yr−1, reduc-

ing the annual net C uptake by 3-30 % over this period (Figure 5). At the 90% CI the DALEC models are consistent with335

GFEDv4.1s and GFAS fire emissions estimates over 41-47% of Brazil (Figure 4). DALEC has, however, a persistent low bias

(∼2 MgC/ha yr−1) across the boundary between the Amazon and Cerrado (Figure A8). Spatial consistency is greatest in M1

(47%) and M4 (45%). Whereas a comparison of total fire emissions show that M1-4 estimates are substantially lower than

either GFAS (mean = 65-69 TgC yr−1) or GFEDv4.1s (mean = 92-96 TgC yr−1) (Figure 5). Whereas M5 estimates, while still

lower than GFAS (mean = 13 TgC yr−1) or GFEDv4.1s (mean = 41 TgC yr−1), fall between the independent estimates in 11 of340

15 years in which these data sets overlap (Figure 5). Despite the improvement in estimation of C emissions due to fire there is

no corresponding improvement in NEE or NBE due to compensating changes in both autotrophic and plant respiration (Table

2). This result highlights the need for greater overall constraint on the C-cycle, for instance independent estimates of respiratory
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Figure 5. Time series comparison showing the carbon budget for Brazil as estimated by CARDAMOM for each version of DALEC using

the pixel level median estimates. Independent data, where available, is shown as a single solid line. The shaded areas denote the maximum

range the independent estimate for CTE (blue), the maximum range between FLUXCOM, Copernicus and FluxSat v2 (orange), and the

range between GFEDv4.1s and GFAS fire emissions estimates (purple).

fluxes. DALEC-estimated C losses due to forest biomass removals from GFW show substantial inter-annual variation (120-400

TgC yr−1) reducing net uptake by 5-32 % (Figure A11). For further details see SI text A2.345

3.3 Constraints on Brazilian C-cycling

Simulated net biome exchange (NBE = NEE + fire) is dominated by wood stock dynamics. Variation in wood stock dynamics

explains 85-93 % of variation of simulated NBE while variation in soil stock dynamics explains 1-18 % (Figure A6). Carbon

dynamics of wood, not soil, is the primary driver of net exchange. Using the per-model, 1 degree resolution parameter ensem-

bles provides quantification across Brazil of whether a given 1 degree pixel is a net source or sink of carbon, i.e. the sign of350
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Table 3. Mean Brazilian C cycle NPP allocation fractions and mean residence times (MRT; years) calculated with five different model

structures (M1-5). The Brazil-wide mean is calculated from the median pixel level estimates, with the equivalent estimates for the 5 % and

95 % quantiles in parenthesis denoting the 90 % confidence interval. Note that litter in M5 includes the additional wood litter pool.

M1 M2 M3 M4 M5

NPP Foliage 0.22 (0.09 / 0.41) 0.21 (0.1 / 0.38) 0.21 (0.1 / 0.38) 0.18 (0.09 / 0.32) 0.19 (0.10 / 0.33)

Fine root 0.47 (0.20 / 0.73) 0.52 (0.26 / 0.74) 0.48 (0.22 / 0.71) 0.46 (0.21 / 0.69) 0.43 (0.19 / 0.67)

Wood 0.28 (0.1 / 0.55) 0.25 (0.1 / 0.49) 0.29 (0.1 / 0.54) 0.28 (0.1 / 0.53) 0.30 (0.1 / 0.54)

MRT Foliage 1.3 (0.6 / 2.3) 1.5 (0.8 / 2.4) 1.5 (0.8 / 2.4) 1.6 (0.9 / 2.4) 1.5 (0.8 / 2.4)

Fine root 0.48 (0.19 / 1.7) 1.0 (0.39 / 1.85) 0.86 (0.3 / 1.8) 0.82 (0.29 / 1.8) 0.80 (0.29 / 1.8)

Wood 16.3 (5.6 / 58.7) 15.2 (5.5 / 51.8) 15.5 (5.8 / 50.5) 14.9 (5.6 / 49.3) 21 (7.0 / 58.6)

Litter 0.18 (0.08 / 1.5) 0.18 (0.08 / 1.4) 0.18 (0.07 / 1.3) 0.24 (0.1 / 2.8) 0.96 (0.29 / 3.4)

Soil 36.0 (10.3 / 146) 36.2 (11.0 / 131.3) 33.2 (10.3 / 120) 27.8 (9.5 / 73.6) 38.4 (12.2 / 110.3)

NBE (Figure A6). At the 90 % confidence interval our analyses indicate there is currently insufficient observational constraint

to confidently determine the sign of NBE or soil C dynamics. The same was largely true for wood stock dynamics, except that

the sign of wood stock trajectories could be confidently determined for ∼5 % of Brazil’s land area after the inclusion of the

water cycle increasing to 11% on the inclusion of a wood litter pool. The areas of statistical confidence are concentrated in the

Cerrado (Figure A6).355

The CARDAMOM analyses provide spatially explicit estimates of critical ecosystem traits such as the allocation of NPP to

live tissues (Figure A12) and carbon stock MRT (Table 3, Figure A13).Moreover, our analysis allows us to partition MRT into

its constituent drivers, i.e. natural, fire and biomass removal, which indicates that given currently available drivers disturbance

is only a major determinant of MRT across the Amazon Cerrado boundary (Figure A14). All five models estimate similar mean

Brazil-wide partitioning of NPP to plant tissues. The MRT of the foliar pool is best constrained across models, consistently360

estimated to be ∼1.5 years with an uncertainty ranging between 84-116 days. The MRT of fine roots increases by 67-101%

between M1 which uses ACM1 and M2-5 which use ACM2. A key feature of ACM2 is the inclusion of fine roots in determining

potential water supply to the canopy underpinning stomatal conductance. Wood MRT while associated with large uncertainty

(∼50 years) is consistently estimated to be 15-16 years for M1-4. In M5 with the inclusion of the wood litter pool increased

median wood MRT by 25 % to 21 years. No significant impacts on mean estimates or uncertainty of litter or soil MRT are365

noted.

These analyses show clear spatial patterning both between and within biome in the estimates of NPP (Figure A12) and MRT

(Figure A13). Spatial patterns of NPP allocation are similar between models, except M2, which has several notable differences

in the Cerrado and Caatinga. All models estimate the fraction of NPP allocated to foliage across the Amazon, Atlantic forest,

Pantanal and Pampas to be relatively low at 0.1-0.2 with a larger fractional allocation (0.3-0.5) estimated across the Cerrado and370

Caatinga. The change in foliar allocation is compensated for in the allocation to fine roots, where models M1, 3-5 estimate the

fractional allocation to fine roots across Brazil to be 0.5-0.6 except in the Cerrado and Caatinga which have a lower fractional

allocation at ∼0.4. M2 estimated a similar spatial pattern and magnitude of fine root allocation except over the Cerrado and
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Figure 6. Simulated Brazil-wide total stock change between 2001 and 2100 for Biomass (labile + foliar + fine root + wood) and dead organic

matter (DOM; Litter + Wood Litter (M5 only) + Soil). The left column shows each model for the SSP2-4.5 W m−2 climate scenario while the

right column shows the DALEC suite mean for each climate scenario. Median estimates are shown using a solid line while the dashed lines

indicate the 90% confidence interval. Note that uncertainties were propagated from pixel level to Brazil-wide totals assuming fully-correlated

uncertainties.

especially the Caatinga which is estimated to have a larger allocation fraction of up to 0.8. The larger fractional allocation to

fine roots comes as a trade-off with allocation to wood leading to very low wood allocation fractions across the Cerrado and375

Caatinga (< 0.15).

There are substantial variations between models in estimated MRTs, in addition to biome level differences (Figure A13).

MRTroot shows the greatest between-model variation with short (<1 year) MRTs estimates across the majority of Brazil (i.e.

little biome level variation) in M1 but longer MRT in all other models (1-2 years). Models M2-5 have larger biome-level

variability in MRT, with longer (> 1 year) MRTroot in the drier Cerrado and Caatinga regions compared to other biomes. In380

models M1-4 MRTwood is ∼10 years across much of Brazil except the Amazon which has MRTs of up to 50 years but notable

short MRT along the boundary of with the Cerrado (i.e. the arc of deforestation). Longer residence times were estimated across

parts of the Caatinga in M3-5, likely linked to the inclusion of the water cycle in these models. In M5, where an explicit wood

litter pool is included, MRTwood increased in the southern Cerrado and Atlantic forest from < 10 years to > 10 years. Finally,

the estimate of the combined litter (i.e. foliar, fine root and wood) MRT in model M5 was greater across Brazil than other385

models due to the explicit inclusion of slowly decomposing wood litter.
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Figure 7. Quantification of the relative contribution of model parameter (top row), structural (middle row) and climate change scenario (lower

row) uncertainties on the simulated Brazilian carbon cycle in 2100 at 1 degree resolution. Carbon cycle components shown in columns as the

live biomass (Bio) and dead organic matter (DOM) stocks in 2100, and their change between 2017 and 2100. The colour bar indicates the

fractional contributions.

3.4 Quantifying uncertainty in the future Brazilian C-cycle

3.4.1 Future Brazilian carbon stocks

The calibrated DALEC models were simulated under four climate change scenarios to estimate changes in biomass and DOM

between 2001 and 2100 (Figure 6). We assess the model specific behaviour under scenario SSP2-4.5 W/m2, which is considered390

to be the central pathway, and the model average response for each of the four scenarios (O’Neill et al., 2016).

The median forecasts of all DALEC models simulated a net increase of biomass and DOM by 2100 under the SSP2-4.5 W

m−2 climate change scenario (Figure 6, S3). M1-2 and M5 simulated a larger C accumulation (∼75 PgC) while M3-4 simulate

a smaller increase (∼40 PgC). The 90% CI (i.e. the 5% - 95% quantiles) is greater than the median predicted accumulation

for each model, therefore crossing the source / sink boundary for the next century in all cases (Figure 6). Using our ensemble395

based approach we estimate that the likelihood of a net increase of C in biomass by 2100 is 73-85 % while the likelihood of a

net accumulation in DOM is 64-84 % (Table A6). C accumulation is simulated to be most likely concentrated in the Amazon

and to a lesser degree the Atlantic forests (e.g. M5). However, only across Caatinga does our analysis estimate confidence in

the sign of C accumulation with >90 % confidence as either a small source or sink (Figure A15, A16).

The analyses indicate that live biomass and DOM stocks will most likely increase under each climate change scenario (Figure400

6). Median C accumulation under SSP1-2.6 W m−2 plateaus by 2080 before turning into a carbon source by 2100 (i.e. begins

losing its accumulated carbon), while all other scenarios continue to accumulate carbon to 2100. As expected, accumulation of

DOM lags that of biomass, as turnover of biomass provides inputs to DOM in the models. Analysis uncertainty is larger than

the mean predicted accumulation for all scenarios, with the lower bound of the 90% CI indicating a possible net loss of carbon
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Figure 8. Correlation maps between the simulated change in biomass stocks (SSP2-4.5; 2001-2100) and ecosystem variables. These maps

identify spatial variation in the sensitivity of biomass change to key ecosystem variables. Correlates are wood mean residence time (MRT;

years) and gross primary productivity (GPP; gC m−2 day−1) estimated across the whole simulation period.

for the next century. The spatial variation in carbon source / sink distribution indicated for SSP2-4.5 W m−2 is consistent for405

each scenario (Figure A15, A16).

3.4.2 Partitioning uncertainty: parameter, model structure and climate change scenario

Across Brazil for forecasts of live biomass and DOM change to 2100, the largest proportion of uncertainty is derived from

parameters (biomass = 0.62, DOM = 0.68), followed by model structure (biomass = 0.21, DOM = 0.24), with the remaining

due to climate change scenario uncertainty (biomass = 0.16, DOM = 0.18) (Figure 7). However, there were important spatial410

variations in uncertainty contributions both between and within biomes. Parameter uncertainty was on average the largest across

the Amazon (biomass = 0.74, DOM = 0.72) and Atlantic forest (biomass = 0.71, DOM = 0.66), with smaller contributions in

the Cerrado (biomass = 0.64, DOM = 0.52) and Caatinga (biomass = 0.49, DOM = 0.38; Figure 7). Structural uncertainty

follows the inverse spatial pattern, contributing its largest component (though still smaller than parameters) across the Cerrado

(biomass = 0.20, DOM = 0.30) and Caatinga (biomass = 0.29, DOM = 0.36). Uncertainty due to climate change scenarios was415

relatively large in Cerrado and Caatinga (0.11-0.26), but was still the minority contribution in all cases. Moreover, in absolute

uncertainty terms, structural (range = 0.4-1.0 MgC ha−1) and climate change (range = 0.3-0.7 MgC ha−1) uncertainty vary

relatively little compared to parameter uncertainty (range = 0.9-4.9 MgC ha−1) which has its largest absolute uncertainties

across the Amazon and Atlantic forests with smaller values over the Cerrado and Caatinga (Figure A17).

3.4.3 Quantifying the determinants of future carbon stock change420

Our analysis highlights substantial differences in the magnitude and spatial variation of correlations between ecosystem vari-

ables for both biomass (Figure 8, A18) and DOM (Figure 9, A19). Overall, both simulated biomass and DOM change are most

strongly correlated with NPPwood, MRTwood and MRTsoil with only small variations in this pattern among models.

On average MRTwood (r = 0.57) is the most important correlate with biomass change, followed by NPPwood (r = 0.31),

MRTsoil (r = 0.27; Figure 8) and GPP (r = 0.25). There is substantial spatial variation with NPPwood being the dominant corre-425

late in 12-29% of pixels (between model variation). MRTwood is strongly correlated with biomass change (r > 0.9) across most

of Brazil, except the Amazon and isolated areas of the Cerrado and Caatinga where the correlation coefficient declines (r <
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Figure 9. Correlation maps between the simulated change in DOM stocks (SSP2-4.5; 2001-2100) and ecosystem variables. These maps

identify spatial variation in the sensitivity of biomass change to key ecosystem variables. Correlates are soil mean residence time (MRT;

years) and gross primary productivity (GPP; gC m−2 day−1) estimated across the whole simulation period.

|0.25|). In contrast, NPPwood is the process most strongly correlated with biomass in Caatinga and parts of the Amazon, consis-

tent for all models. There are some between-model differences indicating varied sensitivity to ecosystem variables (Figure 8).

For example, GPP becomes on average an increasingly important correlate as model complexity increases (from M1 = 0.16 to430

M5 = 0.30), potentially in response to the implementation of drought impacts on productivity. Litter MRT has a low correlation

value (M1-4 = ∼0.01) for all models except M5 (which includes wood litter, M5 = 0.06), which has increased correlation in

Caatinga (M1-4 = ∼0.03, M5 = 0.18), the Atlantic forest (M1-4 = ∼0.01, M5 = 0.11) and Pampa (M1-4 = ∼0.01, M5 = 0.12).

Uncertainty in DOM stock change is most strongly correlated with MRTsoil (r = 0.5), NPPwood (r = 0.36) and MRTwood

(r = 0.33; Figure 9). GPP (r = 0.17 to 0.30) and MRTsoil (r = 0.36 to 0.56) become increasingly correlated as model com-435

plexity increases. MRTwood and NPPwood correlation remains similar between models. There is substantial spatial variation

and between-models differences. For example, NPPwood is more strongly correlated with DOM change than MRTsoil in 10-44

% of pixels, concentrated over the Cerrado and western Amazon. As with simulated biomass change, MRTlitter correlation

increases in model M5.

4 Discussions440

4.1 Does increasing model complexity improve agreement with evaluation information?

Increasing model complexity by including a wood litter pool (M5) reduces bias (by ∼ 65 %) between total fire emissions esti-

mated by DALEC and independent estimates (Table 2, Figure 5). However, the spatial consistency remains largely unchanged

with a persistent spatial disagreement across the southern Cerrado / Amazon boundary (Figure 4) and the DALEC estimated

Brazil-wide fire emissions uncertainty increased on the addition of a wood litter pool (Table 2). The assimilation of repeat445

estimate EO biomass should help resolve carbon stock trajectories and provide constraint on the wood litter pool determining

the available fuel load for fire combustion (Smallman et al., 2017; Quegan et al., 2019). Fire has a significant impact on the

Brazilian C-cycle reducing net carbon uptake by up to 30% (Table 2) but with substantial inter-annual variation (Figure 5).

Thus, inclusion of wood litter is potentially a major step forward in improving DALECs fire emissions but is dependent on
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appropriate observational constraint. Wood litter has received comparatively little attention in TEMs, but plays an important450

role in ecosystem carbon and nutrient cycling (Brovkin et al., 2012; Magnússon et al., 2016).

Contrary to our hypothesis net carbon uptake was not reduced by the inclusion of a water cycle (Table 2). The inclusion

of water stress between M2 and M3-5 reduces GPP by up to 30% (Figure A8), so the hypothesised sensitivity of simulated

C uptake to soil moisture was confirmed. However, these reductions in GPP were compensated by by changes to C losses

which are governed by turnover / decomposition parameters which are more uncertain (Table A3), therefore the modelled net455

carbon exchange was not strongly affected (Figure 4, A6). Such compensating changes in C uptake and losses reinforces the

importance of improving constraint on C loss processes such as residence times.

DALEC and CTE estimate that net carbon uptake increased between 2001 and 2017 (Figure 5) are consistent with the net

increase in LAI observed by Copernicus and reproduced by each DALEC model (Figure 3). The observed net increase in LAI is

consistent with that found across the globe and has been associated with the accumulation of atmospheric CO2 (Zhu et al., 2016;460

Piao et al., 2020). In our analyses, the trend in NBE is concurrent with changes in GPP and respiration over time but dominated

by GPP (Table 2; Figure A9). CTE NBE estimates are consistent with other atmospheric inversion and TEM intercomparisons

(e.g., Jung et al., 2020; Zscheischler et al., 2017). This consistency among TEM and atmospheric inversion supports robustness

of the increasing sink strength estimated by DALEC, but also that the DALEC models are likely overestimating current net

uptake across the Amazon (Figure A8).465

There is consistent evidence of a net increase in LAI (Zhu et al., 2016; Piao et al., 2020). However, disagreement remains as to

whether GPP is also increasing, especially in tropical forests.For example, there is substantial divergence between observational

orientated estimates of GPP (such as those used as independent evaluation here) both in terms of absolute values (∼20 %,

Table 2) and trends over time (Figure A10). Whether a given analysis indicates increasing GPP concurrent with LAI is linked

to the sensitivity of the respective models to variations in atmospheric CO2 (Melnikova and Sasai , 2020; Sun et al., 2019).470

The sensitivity of GPP to CO2 remains poorly quantified, especially in the tropics, due to the lack of in-situ data and large

observational uncertainties (Sun et al., 2019). As a result, process-model-enhanced GPP may be overestimated, due to missing

nutrient limitation (He et al., 2017), acclimation processes (Ainsworth & Rogers, 2007) or errors in the coupling of the water

and C cycles (Wang et al., 2020). Our analyses estimate increases in both LAI and GPP for much of Brazil, but declines in

water-limited regions (e.g. Caatinga) (Figure A9, A10), consistent with other studies using alternate methodologies (He et al.,475

2017; Jung et al., 2020; Sun et al., 2018; Zhang et al., 2019).

4.2 What is the relative importance of parameter, structure and climate change scenario on projections of future

carbon stocks?

The five DALEC models and their parameter ensembles were projected to the year 2100 under four climate change scenarios

(Figure 6). The resultant multi-model ensemble of carbon cycle trajectories shows a similar spread and behaviour as that found480

in regional model intercomparisons (e.g., Arora et al., 2020). For example, by 2100 the ensemble contains models which are

still accumulating carbon, have plateaued and those which have peaked and are now declining (Figure 6; Friend et al., 2014;
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Arora et al., 2020). Given the similar behaviours we found, meaningful lessons can be drawn from our analysis to inform

ESM/TEM model inter-comparisons.

Uncertainty associated with projections of biomass and DOM dynamics is dominated by parameter uncertainty, followed by485

model structure and climate change scenario. For parameter uncertainty there are also clear spatial patterns, particularly focused

over the Amazon and Atlantic forests (Figure 7, A17), while spatial patterning is weaker for model structure and climate change

scenario. A reduction of parameter uncertainty (∼75%) in the Cerrado and Caatinga relative to the Amazon (Figure A17) may

be linked with these areas being more water-limited (Figure A2), providing a smaller ecologically realistic parameter space (as

defined by the EDCs; see SI Text S1.1 for details) and thus reducing uncertainty. This spatial patterning is consistent irrespective490

of the parameters constrain ecosystem processes or initial conditions (Figure A7). However, the uncertainty associated with

parameters alone precludes determination of whether Brazil is a net sink or source of carbon at the 90 % confidence level

(Figure 6). In order to reduce projection uncertainties there has been substantial effort within the ESM and TEM communities

on identifying the underlying processes (i.e. structure) driving model error at a range of scales (e.g., Friend et al., 2014; De

Kauwe et al., 2014; Zhou et al., 2018) and methodologies to weight existing analyses based on their simulation of contemporary495

observation constraints (e.g., Wenzel et al., 2014; Exbrayat et al., 2018a). However, increasing model complexity also increases

the number of parameters that may be poorly constrained in the absence of adequate observational data (Prentice et al., 2015). In

fact, parameteric uncertainty is largely unquantified in large scale ESMs/TEMs meaning the relative contribution of parameter

and model structure uncertainties. Our framework for exploring the relative impact of parameter uncertainties on future carbon

dynamics contrasts strongly with the typical process of model development. Typically in TEM development relatively small500

model structural changes are made and the resultant response being extensively investigated in the absence of knowledge on

parameter uncertainties (e.g. Mercado et al., 2009; Verheijen et al., 2015; Jones et al., 2020). Uncertainties in terrestrial carbon

cycling have remained large over multiple inter-comparison cycles (Arora et al., 2020). Thus, we argue that a greater focus is

needed on refining parameters themselves.

4.3 Which ecosystem traits are most strongly correlated with simulated carbon dynamics?505

MRTwood was the parameter most tightly coupled to the response of biomass C stocks to climate change between now and 2100

(Figure 8), and the third most important determinant of the response of DOM (Figure 9). There are three possible interacting

explanations for this high importance. First, there is a relatively weak constraint on the MRTwood parameter in each pixel over

the calibration period due to lack of repeat observations of wood biomass. Second, woody biomass is typically the largest

biomass pool, and MRTwood is a key control on turnover and therefore on decadal changes in the size of this pool. Third,510

MRTwood is a key control on C inputs to the soil C (all models) and wood litter (M5 only) pools in DALEC, generated by

modelled wood losses. The analysis of long term C trajectories contrasts with the correlation between GPP and net C exchange

during the calibration period. This contrast highlights the importance of considering the timescale of change that is of interest,

with wood and soil residence times driving long term net C exchanges rather than inter-annual variability.. Similarly, it is

important to note that NPPwood is the second most important determinant of future dynamics of both biomass and DOM, and515

in many areas is co-dominant with MRTwood (Figure 8). Efforts to constrain estimates of both MRTwood and NPP allocation

22



are thus critical for more robust predictions of C storage (Friend et al., 2014; Koven et al., 2015; Zhou et al., 2018). These

efforts should be enhanced by current and future missions that repeatedly and with high confidence measure woody biomass

from space (Quegan et al., 2019), using approaches like CARDAMOM for model calibration (Smallman et al., 2017). While

EO derived AGB maps do exist of different time periods (e.g. ESA CCI santoro et al., 2021) these estimates are typically520

created using different processing chains, calibration data, satellite etc. resulting in these estimates having different bias and

error structures making them more challenging dataset to use at this time. Therefore, robust assessments of wood biomass

uncertainty in these EO products will be critical to producing more constrained C cycle projections (Exbrayat et al., 2019).

Higher resolution studies (e.g. at ha or km2 resolution) over areas of rapid biomass change, such as the arc of deforesta-

tion in Brazil, will provide added insights into model structure and parameter uncertainties. There are challenges for the525

CARDAMON-DALEC approach to work at finer scales and with more dynamic ecosystems. For instance, the concept of MRT

is less appropriate in modelling successional change (i.e. species change driving change community trait composition) and

highly dynamic systems, where internal feedbacks may adjust C losses (mortality) with variations in density (e.g competition)

and age (Peters , 2003; Ge et al., 2019). Chronosequence data at high spatial and temporal resolutions can provide the means

to test alternate representations of successional variation in C cycling and storage (e.g., Safar et al., 2020).530

Variations in C storage linked to model structure were smaller than those linked to model parameterisation, except in specific

areas of Brazil (Caatinga; Figure 7, S15). The selection of five model structures was limited by our choice, so it is perhaps

not surprising that the parameter calibration, which allows for multidimensional variation over broad priors, contributes more

variation to projections than does model structural variability. However, the variation in model structure was designed to test

whether hypothesised key processes were important in projections and similar to the kinds of developments which are tested535

and interpreted in ESMs and / or TEMs. For instance, we used models with and without a water cycle simulation to test the

importance of carbon-water feedbacks in projections of C storage to 2100. Models M3-5 included dynamic simulation of

soil moisture changes and its interactions with canopy processes. Projections with these models thus included the potential

development of soil moisture stress, with an impact on GPP. Models M1 and M2 had no direct effect of soil moisture on

C cycling. This soil moisture feedback on GPP only manifested itself in projections for north east Brazil, the driest part of540

the country, in the Caatinga biome, and some nearby parts of Cerrado (Figures 4, A8). This feedback does have an impact

on projected C storage (Figure 7; Table A5), but these effects are of similar or less magnitude to parameter uncertainty. We

conclude that for much of Brazil, outside of Caatinga, our model-data fusion shows a limited sensitivity of C cycling to future

soil moisture stress. However, our modelled analysis contrasts the finding of the Caxiuana rainfall exclusion experiment which

found drought enhanced tree mortality and reduced productivity (da Costa et al., 2010). Our result is likely a result of CO2545

fertilisation leading to reductions in plant water demand that are explicit in both ACM GPP models. However, it is possible

that land surface models like DALEC are overestimating CO2 fertilisation effect (Wang et al., 2020)and/or by using time

invariant parameters (i.e. traits) we are neglecting the impact of species change (i.e. biodiversity shifts) on ecosystem response.

Collectively, these results highlight the need for further evaluation and refinement.

As expected climate change scenario uncertainty is dwarfed by uncertainties in both model structure and parameters (Figure550

7). However, we have only used projections from one earth system model (UKESMv1), and therefore we have not quantified the
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impact of uncertainty in meteorology / climate change itself for a given emissions scenario. While uncertainty in meteorology

has been shown on longer time scales (decadal) to contribute a minority component relative to the overall uncertainty (e.g.,

Huntingford et al., 2013; Bonan et al., 2019), we do consider multi-model forcing well worth including in future analyses to

provide the most robust assessment of observation constrained carbon trajectories possible.555

4.4 Future avenues to improve observational constraint

Improving constraints on NPP and MRT will reduce uncertainties associated with simulated biomass and DOM change (Figure

8-9). The reverse is also true: providing information on contemporary biomass and DOM dynamics will improve constraint

on NPP and MRT, which in turn reduces uncertainty when simulating into the future. In addition to repeat measurement of

biomass stocks there are a diverse range of alternate observational constraints which could provide critical information.560

In this study we chose to retain atmospheric inversion estimated net carbon exchange for evaluation giving us a clear bench-

mark for future improvement, these data could provide constraint on simulated biomass and DOM change and therefore on

their correlated ecosystem variables and parameters. The divergence between estimates of net carbon exchange by different

atmospheric inversion systems, while still substantial (mean CTE CI = ∼3 MgC ha yr−1 or 50 times the mean exchange), has

reduced substantially over recent years (Gaubert et al., 2019). Moreover, given sufficient observational constraint, posterior565

estimates of net exchange can converge even with substantially different priors of biospheric exchange indicating a robust

analysis (White et al., 2019). But this approach limits ecological learning (e.g. refining MRT to reduce prediction uncertain-

ties). Direct assimilation of atmospheric observations of CO2 concentrations into TEMs has previously been used to refine a

limited number of parameters for specific plant functional types (PFT) (e.g., Reuter et al., 2011). However, key ecosystem traits

(e.g. NPP allocation and MRTs) vary within what would classically be considered the same PFT (e.g., Exbrayat et al., 2018b)570

necessitating the development of strategies to allow direct model parameterisation at sub-PFT scales. We recognise that this

approach will have substantial technical and computational challenges but the potential benefits are too great to ignore.

Methodologies to estimate potential biomass, i.e. in the absence of direct human disturbance (Exbrayat and Williams ,

2015), or potential regrowth rates (Cook-Patton et al., , 2020) have recently gained attention. However, a key weakness of these

estimates is their dependence on current biomass ∼ climate relationships, thus lacking the ability to project into new climate575

or disturbance regimes (Lewis et al., 2019). Nevertheless, we see an opportunity to use potential biomass information as an

additional constraint, in conjunction with existing EO biomass maps, on the steady state generated by a given combination of

current climate and parameters in the absence of human disturbance (which can be determined analytically). As simulation

of biomass change correlates strongly with both MRTwood and NPPwood (Figure 8), we expect that assimilation of potential

biomass will also provide constraints on these parameters, increasing confidence in simulations of climate-sensitive carbon580

cycle trajectories.

Forest biomass removal has a significant impact on the Brazilian C-cycle, resulting in losses between 100-450 TgC yr−1

(Table 2; Figure A11) and the subsequent regrowth of secondary forests. Secondary forests across the Brazilian Amazon alone

are estimated to cover an area of 22-28 Mha accumulating 1.5-11.25 MgC ha yr−1 but are estimated to be re-cleared every

5-10 years (Poorter et al., 2016; Yang et al., 2020). It is likely that we are missing losses driven by degradation, re-clearance585
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events, and edge effects (e.g., Yang et al., 2020)(e.g. Yang et al., 2020) that are not accounted for in existing EO datasets,

such as GFW, that are used to drive disturbance in our models (Milodowski et al., 2017; Silva Junior et al., 2020). Missing

these disturbance events would lead to overestimation of long term accumulation of woody carbon, consistent with the likely

overestimate of net carbon uptake estimated by the DALEC models already discussed in comparison with CTE. Moreover,

improved disturbance drivers can add additional constraint to the C-cycle, potentially reducing uncertainty and refining our590

best estimates of key ecosystem traits as has previously been demonstrated due to the inclusion of fire disturbance information

(Exbrayat et al., 2018b). Therefore, improvements in EO-based estimates of deforestation, degradation and the inclusion of

re-clearance information is essential to reflect their associated emissions and therefore improve model calibration efforts.

5 Conclusions

We use a MDF approach in conjunction with 5 related terrestrial carbon cycle models, with differences in key feedbacks and595

processes, and observational constraints to quantify the current and future state, trajectory and uncertainties of the Brazilian

carbon cycle. Our analysis shows that parameter uncertainty exceeded both the structural uncertainty captured within our

model ensemble and uncertainties in projected climate except in drier areas of the country. Parameter uncertainty alone was

large enough to span the source / sink boundary identifying a clear need to further refine parameter constraint not just model

structural complexity. We identify NPPwood, MRTwood and MRTsoil as key uncertainties influencing future trajectories. Given600

the bi-directional nature of these associations we have identified future avenues for new observational constraints on these

ecosystem properties. Such constraints include repeat estimations of AGB, estimates of NBE from atmospheric inversion,

estimates of potential AGB stocks and improved estimates of fluxes driven by ecosystem disturbance and regrowth. Improving

constraints on residence times will greatly improve our ability to make meaningful predictions into the future.

Code and data availability. The model outputs parameters and carbon cycle outputs are freely available to download from doi:https://doi.org/10.7488/ds/3000.605

CARDAMOM and DALEC source codes are available to download from a Github repository https://github.com/GCEL/CARDAMOM with

registration provided on request to either T. L. Smallman or M. Williams.

Appendix A: Further methods

A1 Description of the CARDAMOM framework

CARDAMOM is a MDF framework which uses a Bayesian approach to estimate ensembles of DALEC model parameters610

(x; Table A1) consistent with observational constraints and their uncertainties. The likelihood (i.e. probability) of a given x

is estimated with respect to the assimilated observations (P(x|O)) as a function of the likelihood of the observations given the

current parameters (P(O|x)) and any prior knowledge. In our analyses we assume a prior range on each parameter defined as

Prange(x) and ecological and dynamical constraints (EDCs) estimated as a function of DALEC output (PEDC(DALEC(x)))
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(See Bloom and Williams , 2015, for details). Finally, all models apply a prior value (Pprior(x)) on the ratio of Ra to GPP615

(Ra:GPP) of 0.46±0.12 (Collalti and Prentice, 2019). The Ra:GPP is also known as the carbon use efficiency (CUE = NPP/GPP,

Ra:GPP = 1-CUE).

P(x|O)∝ P(O|x) ·Prange(x) ·Pprior(x) ·PEDC(DALEC(x)) (A1)

P(O|x) is calculated by comparing the nth observation (On) to the corresponding model state variables or flux (Mn) and

scaled by the observation uncertainty (σn).620

P(O|x) = exp(−0.5 · ε(On−Mn)
2/σ2

n) (A2)

CARDAMOM uses EDCs to ensure ecological realism in the accepted parameter sets that are challenging to constrain

directly with a numerical prior (Bloom et al., 2016). The EDCs include preventing inappropriate parameter combinations e.g.

fine root residence times being longer than wood. PEDC(DALEC(x)) = 1 when all EDC conditions are achieved otherwise

PEDC(DALEC(x)) = 0 and the proposed x is rejected.625

A2 Summary description of DALEC models

The structure of each DALEC model follows a similar system of carbon stocks and fluxes (Figure 2). Carbon enters the

system via GPP which is estimated as a function of leaf area (as simulated by DALEC), canopy photosynthetic efficiency

(estimated per pixel), absorbed solar radiation, atmospheric CO2 concentration and air temperature. GPP is allocated to Ra

and live tissues based on fixed fractions. Canopy growth is determined by a combination of direct allocation from GPP and630

release of carbon from the labile pool, which is controlled by a day of year model. Similarly, canopy senescence is determined

by a day year model with a parameterised leaf life-span. Wood and fine roots follow continuous turnover based on first order

kinetics. Decomposition of dead organic matter and associated Rhet follows first order kinetics with an exponential temperature

sensitivity. Using EO derived information on burned area fire emissions (FIRE) are based on available carbon stocks. From

these, key emergent fluxes are derived including net primary productivity (NPP = GPP - Ra), net ecosystem exchange of CO2635

(NEE = Ra + Rhet - GPP) and net biome exchange (NBE = NEE + FIRE). Model M1 is DALEC as described in Bloom and

Williams (2015). Each subsequent model cumulatively increases the complexity of its process representation in the following

ways.

In M2 the photosynthesis model (ACM1; Williams et al., 1997) is replaced with a revised version (ACM2; Smallman and

Williams , 2019). The key new feature of ACM2 is a stomatal conductance model which explicitly balances supply of water640

via the roots and atmospheric demand, estimated as a function of absorbed radiation and vapour pressure deficit (VPD). ACM2

also includes a full water cycle simulating evaporation, drainage and runoff. However to isolate the impact of the stomatal

conductance model itself the soil moisture is fixed at saturation. In M3 soil moisture is dynamic allowing explicit simulation

of the water cycle including the potential for development of drought.
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Figure A1. Maps of observational constraints and their associated uncertainties used in the CARDAMOM assimilation framework. Mean

annual LAI, wood stocks and initial soil stocks.

In M4, rather than estimating Ra as a fixed fraction of GPP (Ra:GPP), Ra is divided between that associated with mainte-645

nance (Rm) or growth (Rg). Rm is estimated as a fixed fraction of GPP while Rg is estimated as 22% of carbon allocated to live

tissue (equivalent to 28% of NPP; Waring and Schlesinger , 1985). This development provides the first step in explicit simula-

tion of respiratory costs needed for implementation of economic theory within DALEC (e.g. Thomas et al., 2019; Flack-Prain

et al., 2020).

M5 includes a wood litter pool rather than allocating wood litter directly to the soil. The inclusion of a wood litter pool tests650

our ability to constrain this potentially large but challenging to observe carbon store (Magnússon et al., 2016). Furthermore,

wood litter can play an important role in carbon emissions due to fire (vanderwerf et al., 2006) and its inclusion here allows us

to investigate whether M5 has an improved estimate of fire emissions.

Appendix B: Further results

DALEC estimated carbon losses due to forest biomass removals are estimated to vary between 120 - 400 TgC yr−1 reducing655

the biospheric sink by 5 - 32% (Figure 5). The largest biomass extractions are estimated for 2016 (387 - 425 TgC yr−1; between

model range) and 2017 (302-337 TgC yr−1; between model range). In all other years the mean biomass loss was substantially

lower at 102-220 TgC yr−1. The interannual variation follows the GFW estimate as the fraction forest cover loss is derived by

GFW. GFW estimates forest losses are larger than the DALEC models at the beginning of the analysis but converging by 2017

potentially driven by the accumulation of wood in the DALEC models. As GFW is used as a forest loss driver by the DALEC660

suite this comparison is not fully independent. However, disagreement between these estimates highlights the importance of

the biomass map underpinning the analyses (See discussion for further details).
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Figure A2. Mean meteorological conditions for the calibration period from CRU-JRA dataset (2001-2017).
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Figure A3. Maps of mean climate anomaly averaged between two 5 year periods at the beginning (2018-2022) and end (2095-2099) of the

future simulations.
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Figure A4. Maps showing the pixel level median log-likelihood scores achieved by each. More negative values indicate a greater disagree-

ment between the model simulated carbon cycle and corresponding observational constraints. The Brazil wide averaged likelihood scores are

-48.7, -47.7, -45.1, -45.6, -45.7 for models M1-5 respectively.
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Figure A5. Comparison between Ra:GPP estimated by DALEC models and prior value assimilated by CARDAMOM. The top row shows

the maps of the pixel level median estimated by each model. The bottom row shows the histograms of the mapped information. The vertical

solid red line shows the prior value and the vertical dashed red line shows the uncertainty range associated with the prior value.
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Figure A6. DALEC suite estimates of NBP (2001-2017) (i.e. -NBE to provide sign consistency with C stocks), wood and soil carbon stock

change. Stippling to indicate >90% confidence on a given pixel being a net source or sink of carbon during our analysis.
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Figure A7. Maps showing 1-posterior:prior for parameters at the 90 % confidence interval, i.e. the reduction in parameter uncertainty in

the posterior relative to the prior parameter ranges. The top row shows parameters associated with ecosystem processes, the middle row

parameters that specify the initial conditions of the model C and water pools, the bottom row shows those parameters which are common

across all models. For information on common parameters see Table A1.
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Figure A8. Maps showing the mean bias between each DALEC model and independent data for NBE, GPP and fire emissions. See Figure 4

for details.
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Figure A9. Model specific trends (2001-2017) in GPP, Rauto, Rhet, LAI estimated from the pixel level median estimates.
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Figure A10. FLUXCOM, Copernicus and FluxSatv2 GPP trends across Brazil (2001-2017). The maps in the left column the trends on the

same axis as the DALEC models in Figure A9. The middle column shows the same information but on an axis based on values found in

each independent estimate only to highlight their spatial patterning. The right column shows a comparison between trends estimates by each

independent GPP estimate and the DALEC models (FLUXCOM R2 = 0.17-0.19, Copernicus R2 = 0.09-0.14, FluxSatv2 R2 = 0.40-0.45).

36



Figure A11. Comparison of DALEC estimated forest biomass loss.

37



Figure A12. Maps of the localised median estimates of NPP allocation fractions to live tissues for each model.
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Figure A13. Maps showing the localised median estimates of carbon pool mean residence times (MRT) for each model. Note that for models

M1-4 litter MRT is foliar and fine root litter, while M5 also includes wood litter.
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Figure A14. Maps of DALEC model estimates of the contribution of natural, fire and biomass removals to biomass mean residence time.

The mapped values are estimated from the pixel level median estimates.
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Figure A15. Maps of DALEC model estimates biomass (sum of labile, foliage, fine root and wood) change between 2001 and 2100. The

mapped values are estimated from the pixel level median estimates. Areas with biomass change with >90% confidence are shown with

stippling.
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Figure A16. Maps of DALEC model estimates DOM (sum of soil, litter and in M5 wood litter) change between 2001 and 2100. The mapped

values are estimated from the pixel level median estimates. Areas with DOM change with >90% confidence are shown with stippling.
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Figure A17. Absolute uncertainty range (5 - 95% quantiles) simulated for each pixel in 2100 attributed to model parameters, model structural

diversity and climate change scenario.

Figure A18. Correlation maps between the simulated change in biomass stocks (SSP2-4.5; 2001-2100) and ecosystem variables. These maps

identify spatial variation in the sensitivity of biomass change to key ecosystem variables. Correlates are pool specific mean residence time

(MRT; years), net primary productivity (NPP; gC m−2 day−1), carbon use efficiency (CUE = 1-Ra:GPP) and gross primary productivity

(GPP; gC m−2 day−1) estimated across the whole simulation period.
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Figure A19. Correlation maps between the simulated change in DOM stocks (SSP2-4.5; 2001-2100) and ecosystem variables. These maps

identify spatial variation in the sensitivity of biomass change to key ecosystem variables. Correlates are pool specific mean residence time

(MRT; years), net primary productivity (NPP; gC m−2 day−1), carbon use efficiency (CUE = 1-Ra:GPP) and gross primary productivity

(GPP; gC m−2 day−1) estimated across the whole simulation period.
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Table A1. Description of parameters estimated for each DALEC model, each parameter is given a name, unit, description. As not all

parameters are used by all models the applicable models are also given following the code used in the main text. Note: Gross Primary

Productivity = GPP, Autotrophic respiration = Ra, Autotrophic maintenance respiration = Rm, heterotrophic respiration = Rh. Litter is

assumed to be the combined foliage and fine root litter pools, where appropriate wood litter will be explicitly stated. Note that GPP allocation

fractions are applied sequentially such that GPP allocation to Cwood = GPP - (GPP·Ra:GPP) - (GPP·GPPlab) - (GPP·GPProot).

Name units Description Model(s)

Ra:GPP fraction Fraction of GPP allocated to Ra M1-3

Rm:GPP fraction Fraction of GPP allocated to Rm M4-5

GPPfol fraction Fraction of GPP allocated to foliage M1-5

GPPlab fraction Fraction of GPP allocated to labile M1-5

GPProot fraction Fraction of GPP allocated to fine root M1-5

Leaf lifespan years Maximum natural leaf lifespan M1-5

Leaf growth day day of year Julian day on which max labile turnover to foliage as defined by the phenology model M1-5

Leaf growth period days Standard deviation defining the period over which labile turnover to foliage occurs M1-5

Leaf fall day day of year Julian day on which max foliar turnover to litter as defined by the phenology model M1-5

Leaf fall period days Standard deviation defining the period over which foliar turnover to litter occurs M1-5

Wood turnover day−1 Fraction of wood loss per day M1-5

Fine root turnover day−1 Fraction of fine root loss per day M1-5

Litter decomposition day−1 at 0oC Fraction of fine root loss per day M1-3

Decomp efficiency fraction Fraction of litter and wood litter turnover allocated to soil M4-5

Litter mineralisation day−1 at 0oC Baseline litter turnover to Rhet M1-3

Litter turnover day−1 at 0oC Baseline litter turnover applied in conjunction with “Decomp efficiency” M4-5

Wood Litter turnover day−1 at 0oC Baseline wood litter turnover applied in conjunction with “Decomp efficiency” M5

Soil mineralisation day−1 at 0oC Baseline soil turnover to Rhet M1-5

Rhet coefficient - Exponential temperature response coefficient for Rhet M1-5

LMA gCm−2 Leaf mass per unit leaf area M1-5

Ceff gCm−2day−1 Potential photosynthetic activity per unit leaf area M1-5

Coarse root fraction fraction Fraction of wood assumed to be coarse root. Used in determining rooting depth M3-5

Root depth coefficient gm−2 Total coarse and fine root biomass required to reach 50% of max rooting depth M3-5

Max rooting depth m Max rooting depth M3-5

Initial soil water fraction Initial soil water content as fraction of field capacity M3-5

Initial labile gCm−2 Size of the labile C pool at time step 1 M1-5

Initial foliage gCm−2 Size of the foliar C pool at time step 1 M1-5

Initial fine root gCm−2 Size of the fine root C pool at time step 1 M1-5

Initial wood gCm−2 Size of the wood C pool at time step 1 M1-5

Initial litter gCm−2 Size of the litter C pool at time step 1 M1-5

Initial soil gCm−2 Size of the soil C pool at time step 1 M1-5

Initial wood litter gCm−2 Size of the wood litter C pool at time step 1 M5
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Table A2. Summary information of posterior parameter constraint for each model. Presented is Brazil wide mean 1-posterior:prior indicate

the relative reduction in parameter uncertainty for each DALEC model. As not all parameters are used by all models the row value will be left

black where a parameter is not applicable. Each parameter is also allocate to one of the following broad parameter definitions: GPP allocation

(P1), canopy phenology (P2), other plant turnover (P3), decomposition processes (P4) and initial conditions (P5) which are used to provide

parameter group means in Table A3. Note: Gross Primary Productivity = GPP, Autotrophic respiration = Ra, Autotrophic maintenance

respiration = Rm, heterotrophic respiration = Rh. Litter is assumed to be the combined foliage and fine root litter pools, where appropriate

wood litter will be explicitly stated. Note that GPP allocation fractions are applied sequentially such that GPP allocation to Cwood = GPP -

(GPP·Ra:GPP) - (GPP·GPPlab) - (GPP·GPProot).

Parameter M1 M2 M3 M4 M5

Ra:GPP P1 0.40 0.43 0.42 - -

Rm:GPP P1 - - - 0.46 0.46

GPPfol P1 0.55 0.62 0.62 0.59 0.57

GPPlab P1 0.50 0.55 0.53 0.50 0.50

GPProot P1 0.18 0.28 0.23 0.23 0.22

Leaf lifespan P2 0.77 0.77 0.78 0.77 0.77

Leaf growth day P2 0.90 0.90 0.91 0.90 0.51

Leaf growth period P2 0.35 0.36 0.36 0.37 0.36

Leaf fall day P2 0.93 0.92 0.92 0.92 0.57

Leaf fall period P2 0.49 0.48 0.49 0.48 0.49

Wood turnover P3 0.41 0.42 0.45 0.44 0.53

Fine root turnover P3 0.14 0.46 0.37 0.34 0.34

Litter decomposition P4 0.23 0.21 0.21 - -

Decomp efficiency P4 - - - 0.29 0.29

Litter mineralisation P4 0.20 0.19 0.21 - -

Litter turnover P4 - - - 0.17 0.16

Wood Litter turnover P4 - - - - 0.22

Soil mineralisation P4 0.23 0.25 0.23 0.24 0.31

Rhet coefficient P4 0.12 0.12 0.13 0.13 0.13

LMA P3 0.22 0.28 0.26 0.25 0.25

Ceff P1 0.51 0.66 0.67 0.67 0.67

Coarse root fraction P3 - - 0.14 0.14 0.14

Root depth coefficient P3 - - 0.24 0.24 0.24

Max rooting depth P3 - - 0.45 0.44 0.44

Initial soil water P5 - - 0.20 0.21 0.20

Initial labile P5 0.96 0.95 0.96 0.95 0.95

Initial foliage P5 0.83 0.83 0.83 0.83 0.83

Initial fine root P5 0.70 0.60 0.60 0.60 0.57

Initial wood P5 0.64 0.64 0.62 0.62 0.68

Initial litter P5 0.67 0.67 0.68 0.45 0.56

Initial soil P5 0.96 0.96 0.96 0.96 0.96

Initial wood litter P5 - - - - 0.54
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Table A3. Aggregated of information presented in Table A2 of posterior parameter constraint for each model. Presented is Brazil wide mean

1-posterior:prior indicate the relative reduction in parameter uncertainty for each DALEC model. Each parameter is allocate to one of the

following broad parameter definitions: GPP allocation (P1), canopy phenology (P2), other plant turnover (P3), decomposition processes (P4)

and initial conditions (P5), see Table A2 for groupings.

M1 M2 M3 M4 M5

Mean 0.52 0.55 0.50 0.49 0.46

Mean (initial pools) 0.79 0.78 0.77 0.66 0.66

Mean (process parameters) 0.42 0.46 0.42 0.43 0.39

Mean (common parameters) 0.55 0.59 0.58 0.56 0.54

Mean P1 0.43 0.51 0.49 0.49 0.48

Mean P2 0.69 0.69 0.69 0.69 0.54

Mean P3 0.26 0.38 0.32 0.31 0.35

Mean P4 0.19 0.19 0.20 0.21 0.22

Mean P5 0.79 0.78 0.69 0.66 0.62
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Table A4. Climate change scenario specific estimates of Biomass change (2001-2100) by DALEC for each of the Brazil biomes (Figure 1).

Units are PgC and values in parenthesis are the 5 and 95 % quantiles defining the 90 % confidence interval. For clarity values are rounded to

the nearest PgC or two significant figures. SSP126 = SSP1-2.6W m−2, SSP245 = SSP2-4.5W m−2, SSP370 = SSP3-7.0W m−2 and SSP585

= SSP5-8.5W m−2.

Model Scenario Amazon Atlantic Forest Cerrado Caatinga Pantanal Pampa

M1 SSP126 63 (-45 / 162) 4.4 (-5.3 / 19) 1.5 (-1.3 / 7.6) 4.5 (-5.3 / 22) 0.5 (-0.6 / 2.1) 0.7 (-0.6 / 3.3)

SSP245 80 (-35 / 191) 7.4 (-3.2 / 26) 2.7 (-0.6 / 11) 6.9 (-4.0 / 28) 0.8 (-0.4 / 2.8) 0.8 (-0.5 / 3.6)

SSP370 96 (-26 / 216) 10 (-1.3 / 33) 4.0 (0.1 / 14) 9.1 (-2.8 / 34) 1.0 (-0.2 / 3.3) 1.3 (-0.3 / 4.6)

SSP585 107 (-20 / 233) 12 (-0.1 / 38) 4.6 (0.3 / 16) 11 (-1.8 / 39) 1.2 (-0.1 / 4.0) 1.6 (-0.1 / 5.6)

M2 SSP126 66 (-42 / 160) 4.2 (-5.7 / 19) 0.73 (-1.8 / 7.1) 6.0 (-4.4 / 26) 0.43 (-0.7 / 1.8) 0.8 (-0.6 / 4.0)

SSP245 73 (-38 / 170) 6.2 (-4.3 / 23) 2.5 (-1.1 / 13) 7.9 (-3.3 / 30) 0.04 (-0.9 / 1) 1.0 (-0.5 / 4.4)

SSP370 79 (-36 / 182) 7.6 (-3.5 / 27) 4.4 (-0.1 / 18) 9.6 (-2.4 / 34) 0.4 (-0.7 / 1.6) 1.3 (-0.3 / 5.0)

SSP585 88 (-31 / 197) 9.7 (-2.1 / 32) 6.7 (-1.2 / 23) 12 (-1.3 / 41) 0.4 (-0.7 / 1.7) 1.6 (-0.2 / 5.9)

M3 SSP126 50 (-53 / 140) 1.3 (-8.6 / 12) -0.5 (-2.7 / 1.5) 4.1 (-6.1 / 22) -0.05 (-1.0 / 1.0) 0.6 (-0.7 / 3.2)

SSP245 54 (-50 / 146) 1.3 (-8.6 / 12) -0.1 (-2.4 / 2.4) 5.1 (-5.6 / 23) -0.33 (-1.2 / 0.3) 0.8 (-0.6 / 3.6)

SSP370 54 (-51 / 149) 1.5 (-8.5 / 12) -0.04 (-2.4 / 2.6) 6.4 (-4.8 / 26) -0.3 (-1.2 / 0.4) 1.2 (-0.4 / 4.5)

SSP585 63 (-46 / 164) 2.9 (-7.3 / 16) 0.6 (-1.9 / 3.9) 7.9 (-4.1 / 31) -0.23 (-1.2 / 0.6) 1.3 (-0.3 / 4.9)

M4 SSP126 52 (-52 / 142) 1.3 (-8.7 / 13) -0.46 (-2.5 / 1.9) 4.5 (-6.0 / 23) -0.13 (-1.1 / 1.1) 0.68 (-0.8 / 3.4)

SSP245 56 (-49 / 148) 1.3 (-8.8 / 12) -0.04 (-2.3 / 2.7) 5.6 (-5.5 / 24) -0.37 (-1.3 / 0.4) 0.9 (-0.7 / 3.8)

SSP370 56 (-50 / 151) 1.5 (-8.6 / 13) 0.08 (-2.2 / 3.0) 6.8 (-4.7 / 27) -0.35 (-1.2 / 0.6) 1.3 (-0.5 / 4.7)

SSP585 65 (-45 / 166) 2.9 (-7.4 / 16) 0.69 (-1.7 / 4.3) 8.4 (-4.0 / 32) -0.3 (-1.2 / 0.8) 1.4 (-0.4 / 5.1)

M5 SSP126 71 (-29 / 150) 3.5 (-11 / 15) -0.29 (-3.2 / 2.3) 8.8 (-3.0 / 27) -0.20 (-2.0 / 1.0) 1.35 (-0.2 / 4.1)

SSP245 75 (-26 / 157) 3.3 (-11 / 14) 0.21 (-2.9 / 3.4) 10 (-2.4 / 29) -0.53 (-2.2 / 0.3) 1.56 (-0.02 / 4.6)

SSP370 75 (-27 / 160) 3.6 (-11 / 15) 0.29 (-2.9 / 3.6) 12 (-1.6 / 32) -0.49 (-2.2 / 0.4) 2.1 (0.2 / 5.6)

SSP585 86 (-22 / 176) 5.4 (-9.4 / 19) 1.1 (-2.4 / 5.2) 14 (-0.7 / 38) -0.4 (-2.1 / 0.6) 2.27 (0.3 / 6.0)
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Table A5. Climate change scenario specific estimates of DOM change (2001-2100) by DALEC for each of the Brazil biomes (Figure 1).

Units are PgC and values in parenthesis are the 5 and 95 % quantiles defining the 90 % confidence interval. For clarity values are rounded to

the nearest PgC or two significant figures. SSP126 = SSP1-2.6W m−2, SSP245 = SSP2-4.5W m−2, SSP370 = SSP3-7.0W m−2 and SSP585

= SSP5-8.5W m−2.

Model Scenario Amazon Atlantic Forest Cerrado Caatinga Pantanal Pampa

M1 SSP126 110 (-51 / 282) 20 (-10 / 58) 6.7 (-3.8 / 20) 16 (-10 / 49) 1.8 (-1.2 / 5.5) 2.8 (-1 / 7.4)

SSP245 134 (-37 / 319) 30 (-5.0 / 75) 11 (-1.5 / 28) 22 (-6.5 / 59) 2.5 (-0.8 / 6.9) 3.2 (-0.7 / 7.9)

SSP370 151 (-27 / 349) 38 (-0.7 / 91) 15 (0.7 / 35) 28 (-3.8 / 68) 3.1 (-0.5 / 7.8) 4.4 (-0.2 / 10)

SSP585 168 (-18 / 373) 45 (2.8 / 103) 17 (1.4 / 38) 34 (-0.8 / 79) 3.8 (-0.2 / 9.1) 5.5 (0.4 / 12)

M2 SSP126 116 (-47 / 281) 20 (-11 / 59) 2.2 (-7.3 / 18) 22 (-6.2 / 59) 1.9 (-1.2 / 5.2) 3.7 (-0.8 / 9.5)

SSP245 119 (-45 / 287) 23 (-9.3 / 64) 9.4 (-4.6 / 32) 25 (-4.4 / 64) -0.25 (-2.3 / 2.2) 4.3 (-0.4 / 10)

SSP370 126 (-44 / 302) 28 (-7.5 / 74) 18 (0.9 / 44) 29 (-2.6 / 70) 1.04 (-1.6 / 4.0) 5.0 (-0.2 / 12)

SSP585 139 (-38 / 324) 36 (-3.2 / 87) 27 (8.8 / 54) 37 (1.1 / 37) 0.86 (-1.8 / 3.9) 5.9 (0.3 / 13)

M3 SSP126 81 (-69 / 238) 3.1 (-22 / 34) -4.04 (-10 / 2.6) 14 (-12 / 49) 0.0 (-2.4 / 3.2) 2.5 (-1.4 / 7.8)

SSP245 80 (-69 / 238) 1.8 (-25 / 26) -2.4 (-8.6 / 5.3) 14 (-12 / 49) -1.9 (-3.4 / -0.04) 2.9 (-1.2 / 8.5)

SSP370 76 (-74 / 239) 1.4 (-25 / 28) -1.9 (-8.3 / 5.9) 17 (-11 / 53) -1.7 (-3.4 / 0.26) 4.1 (-0.5 / 10)

SSP585 88 (-67 / 261) 4.5 (-21 / 38) 0.6 (-6.6 / 10) 22 (-8.4 / 63) -1.5 (-3.2 / 0.5) 4.4 (-0.4 / 11)

M4 SSP126 81 (-65 / 240) 2.2 (-23 / 35) -3.8 (-9.8 / 3.0) 15 (-12 / 50) -0.17 (-2.7 / 3.4) 2.6 (-1.4 / 8.1)

SSP245 80 (-66 / 240) -3.2 (-25 / 26) -2.5 (-8.9 / 5.5) 15 (-11 / 50) -2.0 (-3.5 / 0.2) 3.0 (-1.1 / 8.7)

SSP370 76 (-71 / 240) -2.8 (-25 / 28) -1.5 (-8.2 / 6.6) 18 (-9.9 / 55) -1.9 (-3.5 / 0.6) 4.4 (-0.5 / 11)

SSP585 89 (-63 / 262) 3.7 (-21 / 39) 0.99 (-6.5 / 11) 23 (-7.4 / 65) -1.7 (-3.3 / 0.95) 4.6 (-0.3 / 11)

M5 SSP126 91 (-45 / 219) 3.4 (-23 / 33) -3.5 (-9.8 / 2.9) 17 (-8.2 / 47) -0.35 (-3.5 / 3.0) 2.9 (-0.8 / 7.4)

SSP245 92 (-45 / 222) 1.5 (-26 / 26) -2.0 (-8.8 / 5.8) 17 (-8.1 / 48) -2.1 (-4.3 / -0.09) 3.1 (-0.5 / 8.0)

SSP370 90 (-48 / 225) -1.0 (-25 / 27) -1.2 -8.4 / 6.3) 19 (-6.7 / 53) -1.9 (-4.3 / 0.21) 4.5 (0.2 / 9.9)

SSP585 103 (-41 / 246) 4.9 (-21 / 37) 1.4 (-6.7 / 9.9) 25 (-3.9 / 62) -1.7 (4.1 / 0.6) 4.7 (0.28 / 11)

Table A6. Climate change scenario specific estimates of the likelihood of Biomass and dead organic matter (DOM) increasing (2001-2100)

per DALEC model. Likelihoods are presented a percentage to the nearest percentile. SSP126 = SSP1-2.6W m−2, SSP245 = SSP2-4.5W

m−2, SSP370 = SSP3-7.0W m−2 and SSP585 = SSP5-8.5W m−2.

M1 M2 M3 M4 M5

SSP126 Biomass 80 82 70 71 80

DOM 77 80 66 65 65

SSP245 Biomass 84 85 73 74 82

DOM 81 79 66 64 65

SSP370 Biomass 88 86 71 72 80

DOM 82 79 62 60 61

SSP585 Biomass 90 84 69 70 79

DOM 83 72 55 53 53
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