
Summary of Revisions 

RC = Reviewer comment 

We thank all three reviewers for their positive and constructive feedback. In order to 

provide a quick overview of the changes to the to-be-revised manuscript, we give a 

summary here:  

- The title has been changed to: “Exploring the ocean and atmosphere coupled 

system with a data science approach applied to observations from the Antarctic 

Circumnavigation Expedition” (following RC3.3). 

- We have added research questions in the introduction for a framework that better 

structures the manuscript as a whole (following RC1.6).  

- The methods description has been revised substantially to make the language 

more accessible to non-data scientists (following the general and several targeted 

comments of Reviewer #1).  

- Section 5 (description of individual LVs) will be moved to a new appendix A to 

substantially shorten the manuscript. We now summarize the outcome of all LVs 

briefly in a revised section 4.1, and highlight the novel aspects we found there as 

well. We give give one condensed description of LV9 as example in a revised 

section 4.2.  (following RC1.7, 3.1, 3.4) 

- We have changed the original Figure 22 from a spider plot to a bar chart type (now 

Fig. 7).  

- Please see the tracked changes version also for minor semantic and grammatical 

improvements of the text.  

 

RC = Reviewer Comment, AC = Author Comment, new suggested text in blue 

Note, line numbers refer to the original manuscript, the location in the revised version can 

be seen best in the tracked changes document. We indicate these line numbers in ().   

Answers to Reviewer 1 

Anonymous Referee #1, 28 May 2021 

 

Summary and overall impression 

RC 1.1: This manuscript makes use of a large interdisciplinary dataset from the Antarctic 

Circumnavigation Expedition, a 90-day cruise from December 2016 to March 2017, in 

combination with the sparse PCA (sPCA) method to extract process understanding from 



this comprehensive dataset. The study has a very broad scope, aiming to obtain a holistic 

understanding of the process biogeochemical and physical processes in the Southern 

Ocean and atmosphere. The method (sPCA), goes beyond standard PCAs, which are 

commonly used in oceanography and meteorology. sPCAs aim to increase interpretability 

when dealing with many variables and processes. In addition, the authors apply a 

bootstrapping approach in order to quantify the uncertainty of their sPCA results. 

I find this a very exciting study and it has the potential to be relevant and valuable to the 

community. I see three main strengths of the manuscript. First, it presents a method 

(sPCA) that is relatively new in Earth System Science and may be useful for further studies 

analyzing ship data. Second, the method allows the authors to conduct an extremely 

multidisciplinary analysis including a broad range of observed variables and are able to 

extract an understanding of the dominant processes in the study region. Third, the study 

is based on a new comprehensive observational dataset from a historically under-sampled 

region (the Southern Ocean), and includes measurements in the ocean, atmosphere, and 

cryosphere, covering all sectors, different interfrontal zones, both open ocean and near 

islands and continents, and covering a broad range of physical and biogeochemical 

variables. 

At the same time, I have several major comments that I believe need to be addressed 

before publication. My main concern is the description of the method. I have to admit that 

I am not too familiar with standard PCAs, and sPCAs are completely new to me. Assuming 

that this may be the same for many readers, I believe the manuscript can gain 

considerable clarity by improving the description of the methods (see general comments 

for more specific details on this and other major comments). 

AC1.1: We thank the reviewer for the positive and very constructive review. Their comments 

made our study much more targeted, structured, and understandable. We agree that the 

description of the method was too technical and we have therefore rewritten the text following 

the major and general comments below. Please refer to our direct answers there.  

General comments 

RC1.2: sPCA method: I suggest expanding Section 3.1. I would appreciate a discussion 

on why setting some weights to zero is ok and why this does not lose crucial information. 

In a standard PCA, we say e.g., 80% of the variability is linked to OV1, 5% each to OV2 

and OV3. We then know that there is a remaining 10% of variability due to other 

processes. With sPCA (the way I understand it from the manuscript) we reduce the 

complexity, ignoring some variables, to explain all of the remaining variability. Here, we 

get to 100%, but we actually know that we weighted many variables with 0 in order to do 

so. Isn’t the standard approach more complete in its interpretation? What are the pros and 

cons of each? It should also be mentioned if the user chooses which weights are set to 

zero, or if the algorithm does that. (My apologies if I have misunderstood the sPCA 

method. If that is the case, I suggest you clarify it). 



AC1.2: We thank the Reviewer for the valuable comments, these points greatly help in 

clarifying the methodological sections. We have divided the comment into three points and 

answer them separately here below.  

Point 1 : Is the standard approach not more complete in its interpretation?  

The standard approach is only more complete in the sense that in the limit where #LV = 

#OV, the explained variance will always be 100%, as the Reviewer correctly pointed out. 

With sPCA, one trades off this full explanation with interpretability, by using an algorithm 

that sets some OV weights to 0. That is, although standard PCA could explain 100% of 

the variability, many OV have small associated weights which make it hard to appreciate 

their contribution to a given LV, whereas forcing the algorithm to set those unimportant 

variables to a weight of 0, one can safely reduce the amount of OV contributing to a given 

LV and therefore facilitating interpretation of each LV.  

Proposed manuscript change, L169 (L216 in tracked changes). New text:  

"The standard PCA has the ability to extract 100% of the data variance, when considering 

a number of LVs which is equal to the number of OVs. While at a first glance this might 

be a strength of the standard PCA, in fact this comes at the cost of having typically a large 

number of small weights associated to OVs, which makes it difficult to unambiguously 

select a subset (or cluster) of OVs relevant for a specific LV. By using the sPCA approach 

presented here, the algorithm instead optimises these weights, so that some are exactly 

zero. This approach makes it possible to interpret groups of OVs that contribute to any 

given LV, and their association strength, by looking at the subset of OVs with nonzero 

weights. Note that if one would discard OVs associated with small weights in standard 

PCA solutions, the explained variance would decrease and there is no guarantee that the 

resulting LVs are as different from each other as possible, and therefore containing the 

least redundant information. In practice, sPCA optimizes this thresholding process. " 

 

Point 2:  What are the pros and cons of each? 

The main point in favour of sPCA, as opposed to the standard PCA, is the automatic 

reduction of the number of OVs contributing to the LVs. This has several benefits. The first 

advantage is the increased ease of interpretation, which is the main motivation for its use 

in our context. By discarding a large number of OVs, which the algorithm does not deem 

necessary, to the construction of a given LV, the users only have to focus on a smaller set 

of input OVs. In our case, by using such a high dimensional and heterogeneous input set, 

this was a must, because we cannot select which OV features are important in each LV a 

priori, in an objective and unbiased manner. Secondly, when only few data points are 

available, the estimation of the data covariance might become an ill-posed problem when 

many input dimensions are considered. sPCA circumvents this problem by reducing the 

dimensionality of the estimation problem. This acts as a regularization, which makes it 

harder for the sPCA to summarize LV corresponding to noise and minor variations, which 

usually relate to the low variance components of the standard PCA. 



These benefits, however, come at the cost of a harder optimisation problem, which does 

not guarantee that running the method twice will produce the same solution (non-convex), 

as opposed to standard PCA which generally has a unique solution. To alleviate this issue, 

and to actually take advantage of this, we developed a bootstrap approach to quantify 

uncertainty of the sPCA. In addition, since decomposition weights can be 0, LVs could be 

correlated, although in practice they are close to orthogonal (uncorrelated). This also 

makes it impossible to summarize 100% of the variance in the same number of 

components as for the traditional PCA. However, as the algorithm is not forced to do so, 

noise components and minor variability modes  are automatically discarded, making this 

robustness to noise also a strength.  

Proposed manuscript changes:  

- L258: Change subsection 3.5 title as "Model limitations and advantages" 

- L277 (L360 tracked changes), new paragraph:  "The main advantage of the sPCA 

approach over its standard counterpart is the automatic selection of OVs by 

assigning non-zero weights for a given LV. The automatic optimisation of the 

weights associated with the OVs is done sequentially for each LV, starting from the 

one corresponding to the largest mode of variance. This ensures that, although not 

exactly, all the LVs are as uncorrelated as possible. The use of sPCA has also the 

advantage of being less susceptible to noise and unimportant data variations. This 

advantage can be understood when contrasting the sPCA results with the large 

number of principal components with very low explained variance of the standard 

PCA. Although by considering these components the standard PCA is able to fully 

explain the data variance, such variance directions are of little practical use in our 

case, as it would be difficult to link them to natural processes. Compared to the 

standard PCA, sPCA is less likely to return components with very small explained 

variance, which are usually corresponding to noise. This advantage is further 

strengthened by our novel use of the bootstrap analysis, which promotes 

robustness to noise, meaning that OVs which contribute mainly through noise are 

identified as such. Data is resampled randomly, and the influence of noise can be 

observed in large fluctuations of the solution. Therefore, analyses relying on 

aggregated bootstrapped solutions are more robust to the influence of noise than 

the traditional PCA or even a single run sPCA. Moreover, using sPCA over the 

standard PCA has also the benefit of not being susceptible to rank-deficient 

covariance matrices, in particular when the number of data points is smaller 

compared to the number of OVs. And last, but not least, the exploratory character 

of the sPCA allows researchers to conduct an untargeted analysis and potentially 

find relationships or (spatial / temporal) patterns which would have been left 

undiscovered in a targeted analysis because one did not think of the possibility." 

Point 3: It should also be mentioned if the user chooses which weights are set to zero, or 

if the algorithm does that. 

In most implementations of sparse algorithms, the user does not manually set the input 

weights corresponding to the OV, but these are set by the algorithm itself. This is a step that 



sPCA does automatically, as being part of its internal optimization routine, which aims at 

maximizing the variance explained by each LV (starting from the first), under the constraint 

of using a small subset of all available OV. The user usually has indirect control over it, by 

selecting a hyperparameter controlling the strength of such an effect. We state how we 

select the hyperparameters in lines 241-247 in the manuscript.  

 

Proposed manuscript changes:  

- L163  as for Point 1. 

- L161 (L206 tracked changes), new text: : " … hence promoting sparsity. Sparsity 

is obtained automatically as the solution of Eq. 2 leads to the selection of the 

smallest possible subset of OVs to maximize the variance of the LV." 

 

RC1.3: LVs: I find the current explanation of what an LV is quite confusing (L85-87), which 

led to further confusion later in the document. I recommend making it really clear here 

what an LV is in an sPCA and how it is different to the OVs. I recommend explicitly stating 

that the LVs are the processes we want to understand (i.e., the output from the sPCA) 

with the help of OVs (i.e., the input to the sPCA). (it becomes clearer later in the document, 

but is needed early on). 

 

AC1.3: Thanks for the comment. This is indeed an important point, and we clarified it in 

the text. The Reviewer is correct: LVs are the processes, as estimated by the sPCA 

algorithm, while OVs are the input variables, i.e. the measurements.  

Proposed manuscript changes:  

- L87 (L107 tracked changes), new text: "… of maximal variance. In practice, LVs 

can be seen as artificial output variables returned by the PCA algorithm that are 

linear combinations of the input OVs, i.e the actual measurements. Therefore, LVs 

are the target variables that we aim to interpret in this study, where each LV 

summarises a specific aspect of the data, which we relate to natural processes. 

This approach has the advantage of reducing many OVs to a few LVs that we can 

interpret in terms of the processes that they represent." 

- L95 (L118 tracked changes), new text: "... sparse weight matrix. The OVs with non-

zero weights form a subset (a cluster) of variables that are related to each other 

and compose a specific LV, which can be interpreted with one or several underlying 

natural processes. 

 

RC1.4: Please add a section that summarizes what happens during the sPCA to add clarity 

on the method for people unfamiliar with it. The way I understand how the sPCA works 

from your manuscript, the user chooses a set number of processes they want to know 

about (here: 14), feeds all OVs (here: 111) into the algorithm. Some of the OVs are set 



weighted 0 to reduce the number of OVs for each LV. (→ This should be discussed and 

mentioned if this happens randomly.) The algorithm then identifies 14 different sets of 

OVs. The users then see which OVs have non-zero weights in each LV to determine which 

process each LV represents. i.e. the user has to make a choice: if sea surface 

temperature, salinity, and MLD are OVs in an LV, then the LV might represent a process 

linked to ocean circulation. (→ For each LV, it would be good to know which OVs are in it 

so that the reader can understand how the label for each LV was chosen). We can then 

also see the percentage of the variability that process has on the variability in all of the 

111 variables. 

→ Is this correct? If yes, it might give you hints about which pieces of information the 

reader might want to hear about. If not, my understood explanation might give you hints 

about which parts were confusing. 

AC1.4: The Reviewer is correct in their summary. The only minor feedback we can give, is 

about the estimation of the weights, which is given in the reply to RC1.1. This is a step that 

sPCA does automatically, as being part of its internal optimization routine: maximize the 

variance explained by each LV (starting from the first), under the constraint of using a small 

subset of all available OVs.  

In the original Figures 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, and 20 in the manuscript 

we show the weights of those OVs that are larger than 2 standard deviations. In the SI we 

provide lists of all OVs with non-zero weights for each of the 14 LVs. Note that these figures 

have been moved to the appendix, following a comment by reviewer 3 (RC3.4).  

 

We also think that adding a summary of the main steps of the overall approach is a good idea, 

and we did so in Section 3.3 (corresponding to subsection 3.4 in the new version of the 

manuscript).  

 

Proposed manuscript change:  

- Switch sections 3.3 "Data preprocessing and model setup" and 3.4 "Missing data and 

imputation" 

- L247 (L321 tracked changes), new paragraph. "Our analysis pipeline can be 

summarized as follows: First, the measurements are preprocessed as described above 

in order to obtain the input OVs. Then, for each bootstrap, a random subset of data 

points is sampled, with replacement. This subset is used to compute an sPCA solution 

with the settings described above. Once all 30 bootstrap solutions are obtained, we 

perform the alignment of the principal components described in Section 3.2 and 

compute the distribution of the weights associated with each OV, the distributions of 

the LV activations, and the average explained variance per principal component. We 

then interpret these three outputs of the bootstrapped sPCA  to understand the 

underlying natural processes that cause the variability described by each LV." 

 

RC1.5: Unimportant variables for an LV “are forced to be zero”: could we accidentally lose 

information here? Is this a subjective choice by the authors or done by the algorithm? This 

should be discussed further. 



AC1.5: As the reviewer remarked, the process of setting weights to 0 does not come without 

caveats. First, this process is automatically done by the algorithm, so there is as little human 

bias as possible. Usually, OVs that strongly contribute to a given LV (i.e. to a given variance 

direction) are assigned a non-zero weight, while OVs that do not strongly correlate with the 

given LV are almost always assigned a weight of 0, because they are noisy and do not carry 

substantial information. But there is indeed a risk to lose information for variables “in between”, 

and in particular for OVs that are undersampled. In order to minimize this risk, in our setting, 

we use bootstrapping: resampling and estimation of model weights provides a measure for 

how much the solutions vary, which tells us about the stability of the assignments. The more 

stable the solution is, the smaller the risk of losing information. However, as the algorithm does 

not have guarantees to converge to the global minimum of the optimization, we cannot exclude 

that some minor information is lost. By bootstrapping, controlling the optimization through 

hyperparameter selection, and performing missing data imputation, we believe that the 

obtained LVs are stable and as rich in information as possible.   

We proposed to change the manuscript as written in AC1.2.   

 

RC1.6:Research Question(s): Another concern is linked to the research question(s) the 

article wants to answer. It is such a broad study that scratches on so many topics that it 

becomes a bit blurry in the introduction where this is all going. The way it is currently 

presented, it appears as a data mining approach of plugging in all the data and seeing 

what happens. Were there some hypotheses before that you wanted to test? I would find 

it helpful to add a (couple of) specific research question(s) and build on that in the 

introduction why we want to know about that. E.g., Is it about the processes? Is it about 

showing that sPCAs are a good tool? (or both). Are there some processes we are unsure 

about, which the sPCA might shine a light on? 

AC1.6: Thank you for pointing this out. Including some more structure in the manuscript by 

means of our targeted research questions is a very good idea. We have now included the 

following in the introduction in l. 42 (L49 tracked changes):  

“To explore interactions between the Southern Ocean system components, we apply an 

unsupervised learning method, sparse principal component analysis (sPCA). Application of 

the sPCA has two objectives: i) conducting an untargeted and therefore more objective 

analysis of data, where the method is less tailored to the science question as compared to 

more traditional regression analysis, and ii) to  target a set of specific research questions (RQ):  

RQ1: Is sparse principal component analysis an adequate tool to extract interaction processes 

inherent to a heterogeneous and temporally and spatially short data set, which describes 

environmental variability? 

RQ2: Is it possible to identify geographic locations (“hotspots”) that are common to several 

interaction processes? 

RQ3: Which are the key observed environmental variables that strongly contribute to several 

interaction processes? 



Specific answers to RQ1 are given in section 3.5, with respect to model limitations and 

advantages, and 6.2, with respect to interaction processes. RQ2 is answered in section 6.1 

and RQ3 in section 6.3. Note that we focus on the proof of concept of the sparse principal 

component method by basing the interpretation primarily on the known processes of the 

Southern Ocean climate system. New scientific insights from this novel approach are 

described in section 4.1. 

To make the structure of the introduction a bit more evident we introduced the following key 

words:  

L. 43 (L61 tracked changes): “Southern Ocean Processes:” 

L. 72 (L91 tracked changes): “The Expedition:” 

L. 82 (L101 tracked changes): “Unsupervised learning approach:” 

In addition, we would like to point out that one of the key strengths of the sPCA is to allow for 

a more untargeted and therefore more objective analysis of data, where the method is less 

tailored to the science question as compared to more traditional regression analysis. 

Therefore, it arises naturally that our study is not following a clear hypothesis that identifies a 

specific air-sea interaction process. We also now better clarify this aspect of the analysis in 

the abstract (lines 24/25; L30 tracked changes): 

“The sPCA processing code is available as open-access. As we show here, it can be used for 

an exploration of environmental data that is less prone to cognitive biases, and confirmation 

biases in particular, compared to traditional regression analysis that might be affected by the 

underlying research question.” 

 

RC1.7: Linked to my previous comment: it is not clear to me which findings are 

confirmations of processes we already knew, and which findings are new insights. This 

should be clarified. 

AC1.7: This is indeed important and needs more highlighting. We have restructured the 

manuscript significantly, following this remark and that of reviewer 3, RC3.4. Now all of section 

5 has been moved to appendix A. We keep part of the text from former section 5.8 and moved 

this up to section 4.1. Section 4.1 is now “Short summary of all latent variables and new 

insights”, and contains the text here below, which is merged from the original section 4.1 

first paragraph and section 5.8 “Short summary of all latent variables”, and contains new 

additions to highlight the new insights. We also provide a condensed description of LV9 in a 

new section 4.2 to give one prominent example with new insights. We highlight the new text 

in blue.   

“Figure 3 shows the time series of the 14 LVs, where the blue dots indicate the average of the 

principal components of the bootstrap runs and the shading indicates the 95% confidence 

interval (±2 standard deviations). The 14 LVs can be related to physical, biological and/or 

chemical processes, or changes in the environment that influence the variance of OVs within 

each LV. We name each LV according to the process or environmental condition, which they 



reflect (Table 2). These LV names result from our interpretation of what each LV represents 

as discussed in Appendix A. Overall, the sPCA solution describes 55% of the variability of the 

111 OVs. Here we provide a short summary for all LVs, and in section 4.2 an example 

description of LV9. Detailed interpretations for each LV are provided in Appendix A.  

 

The largest signal by far originates from the large-scale horizontal temperature and pressure 

gradients that exist between the low and high latitudes. The effect of these gradients on 

physical properties of the surface ocean and its activity are mostly captured in the two climatic 

zone signals (LV1 and LV14). The latitudinal temperature and pressure gradients give rise to 

the meridional advection of cold and warm air (LV3) with implications on cyclone activity 

(LV13) and the freshwater cycle with the intermittent character of precipitation events (LV4). 

The sPCA led to some new insights into the Southern Ocean water cycle. We were able to 

systematically identify the different modes of variability in the isotopic signal of marine 

boundary layer water vapour. δ18Ovap and δ2Hvap show significant contributions to 

climatological signals (LV1) and the RH environment (LV3), while dexcvap mainly reflects the 

contrasting air-sea moisture fluxes in different RH environments. While an excess of 

precipitation over evaporation is generally thought to cause a relatively fresh Southern Ocean 

surface (Dong et al., 2007; Ren et al., 2011), surprisingly, our large-scale assessment of 

concurrent precipitation and salinity measurements does not yield a direct response of the 

surface ocean salinity to precipitation events. Instead, we here show that variations in surface 

ocean salinity are driven by the climatological (long-term) patterns set by surface freshwater 

fluxes integrated over time-scales longer than synoptic events (LV1) and seasonal melting on 

sea ice (LV9).  

We also find a latitudinal distribution of the nutrient availability and its effect on the productivity, 

which is highlighted in LV11, LV6 and LV8. This confirms, at the largest scale ever reported, 

nutrient limitation regimes for the subantarctic front, south of the polar front and associated 

with the island mass effect as previously reported (Pollard et al. 2002; Blain et al. 2007; Cassar 

et al 2007; Weber and Deutsch 2010). Moreover, the sPCA successfully decouples the high 

spatial and temporal variability of iron-limited (LV8) and iron-fertilized blooms (LV6) and their 

dependence on nutrient availability (LV11), helping to identify the macro- and micro-nutrients  

responsible for changes to the biogeochemistry and microbial community structure and the 

source of those nutrients e.g. upwelling, aeolian deposition, sea-ice melt.  

The method further highlights the effects of diurnal variability of solar forcing on phytoplankton 

photosynthetic efficiency and trace gas oxidation (LV10) as well as that of the seasonal 

variation of the solar forcing on dissolved as well as atmospheric trace gas concentrations and 

seasonal cycle in microbial productivity (LV7). While the sPCA confirmed known seasonal 

trends for a number of relatively long-lived key atmospheric trace gases (methane, CO and 

ozone), it produced unexpected results for some of the reactive trace gases, notably isoprene 

(LV7). This result points towards a complex interplay between the seasonality of emissions 

(sources) and seasonality of oxidation pathways (sinks), which, coupled with the potential 

effect of transport from terrestrial sources, paint a very complex picture for atmospheric 

isoprene in the Southern Ocean. Further future analysis is required to better understand these 

processes. 



The sPCA solution also clearly highlights aerosol sources (especially for INP and fluorescent 

aerosol) on or in the proximity of islands and continents (LV5), which was previously not as 

evident (Moallemi et al., 2021). We observe a clear link between wind speed and sea state 

and the concentration of large sea spray aerosol (LV12), tying them to the most wind-driven 

regions of the Southern Ocean. In contrast to that, the smaller accumulation mode particles 

(LV2) are ubiquitous, because of their long lifetime and various source processes contributing 

to their abundance. 

4.2 Marginal sea ice zone and snowfall (LV9) 

 

LV9 has a very distinct regional signal that is mostly active during Leg 2 of the cruise, with a 

clear peak between 27 January and 2 February 2017 when the ship was going through sea 

ice while approaching and leaving the Mertz region ([ref to old] Figure 12a and b), explaining 

about 3.4(±0.6)% of the variance of all 111 variables (Table 2). The largest contribution to this 

LV comes from the sea ice concentration (Ci), i.e. fraction of surface area covered by sea ice 

([ref to old] Figure 12c), which was unusually low during the austral summer season 2016/2017 

(Schlosser et al., 2018).  

 

The sPCA highlights four interesting characteristics of the coupled ocean, ice, and atmosphere 

system in the melting sea ice region. Firstly, positive LV9 periods are associated with a low 

surface ocean salinity (Ssw) and density (sigma0,sw; ([ref to old] Figure 12c). These relatively 

fresh and light surface waters suggest a stable surface ocean stratification associated with 

recently melted sea ice, confirming previous observations (Haumann et al., 2016). While other 

surface freshwater fluxes such as snow and glacial melt could have been responsible for the 

low salinity surface ocean, the absence of a low delta18Osw in LV9 suggests no significant 

contribution of these fluxes. A second interesting observation is the large contribution of the 

wave period (Tm−1,1) to LV9 (([ref to old] Figure 12c), with a significantly longer wave period 

in the partially ice covered region when LV9 is positive. Therefore, the sPCA confirms that ice 

floes in the marginal ice zone dissipate wave energy (Squire, 2020; Ardhuin et al., 2020) with 

a faster rate for short-wave components of the spectrum (Meylan et al., 2018). Thirdly, net 

community production (NCP) and phytoplankton biomass (Chlafluo) are both positively 

correlated with LV9. Therefore, the sea ice melt appears to increase the water column 

productivity most likely through iron fertilization (Lannuzel et al., 2008, 2016), and/or enhanced 

water column stratification, relieving light limitation (Vernet et al., 2008; Cassar et al., 2011; 

Eveleth et al., 2017). A fourth aspect of LV9 is the large contribution of snowfall (SR). While a 

higher snowfall compared to rainfall is expected near the Antarctic coast in summer, it is 

unclear if there is a link between snowfall and the presence of sea ice in LV9 - an aspect that 

requires further investigation. However, the sPCA suggests an atmospheric boundary layer 

over sea ice that is dominated by Antarctic continental air masses near the surface with moist 

and warm advection aloft (see back trajectories in supplementary information section S4) 

producing snowfall at times. Antarctic air masses near the surface in LV9 are indicated by the 

very low abundances of heavy water molecules (delta2Hvap and delta18Ovap) in the 

atmospheric water vapour (w), and a low carbon monoxide (CO) concentration.  

 

The presence of sea ice thus helps to maintain Antarctic air masses properties over the ocean 

by forming a barrier between the ocean and the atmosphere, limiting the influence of surface 

fluxes on the air mass before it reaches the open ocean (see e.g. Renfrew and Moore, 1999). 



Therefore, the sea ice influences the vertical atmospheric boundary layer structure, possibly 

favoring snowfall. 
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RC1.8: Eddies: One process that doesn’t seem to be covered in this study, but is a known 

driver behind variability in the Southern Ocean are mesoscale eddies. This should be 

discussed. 

AC1.8: Thank you for pointing out this limitation of our study, which we had not yet discussed 

in detail. The main issue why eddies are not captured by our analysis is the resolution for two 

reasons. 1) Most data are sampled only every couple of hours and 2) even if we have 

continuous measurement for certain OVs, the 3-hour subsampling/interpolation of the sPCA 



input data would filter all mesoscale (eddy) activity. For example, given a ship speed of about 

10kn (about 19km/h), the 3-hour interval translates to a spatial resolution of about 57 km, 

which is too coarse to capture eddies. At 50degS, the baroclinic Rossby radius of deformation 

ranges between 10 and 25km (Chelton et al., 1998). Apparently, this is a substantial limitation 

of our study that is not able to capture mesoscale and submesoscale variability in the ocean 

and if future studies wanted to focus on the influence of eddy/mesoscale or submesoscale 

processes, they would need to use a much higher resolution data set. We have added a 

respective comment to clarify this limitation (l. 982, L518 tracked changes): 

“It is important to note that our study is constrained to the spatio-temporal scales of the ACE 

cruise (single season), the sampling intervals along the cruise track (varies among 

variables), and the chosen 3-hourly resolution for the sPCA analysis. This limitation has the 

important implication that we cannot identify variations and processes on longer scales, such 

as interannual variations, or shorter scales, i.e. the meso- or submeso-scale. For example, 

meso-scale eddies that are an important driver of Southern Ocean variability are not 

resolved by our analysis, because the 3-hour interval (about 57 km if the ship moved at 10 

knots) is larger than the Rossby radius of deformation at these latitudes (Chelton et al., 

1998).”  

 

References: 

Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N. (1998). 

Geographical Variability of the First Baroclinic Rossby Radius of Deformation. Journal of 

Physical Oceanography, 28(3), 433-460. https://doi.org/10.1175/1520-

0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2 

 

 

RC1.9: Seasonality: Please add a discussion on the fact that the cruise is only 90 days 

long (i.e., during one season) and that the ship is moving during that time, making it difficult 

(or impossible?) to conduct a seasonal analysis. The discussion should include why it is 

possible (or not possible?) to robustly conclude on any seasonal signals with this data. 

AC1.9: We agree that conclusions on seasonality need to be further discussed and that the 

constant movement of the ship limits a detailed seasonal interpretation of signals. We have 

added the following to the manuscript in l. 983 (L524 tracked changes):  

 

“Even though the ACE cruise covered a relatively long time period from late December to 

late March, the robustness of the derived seasonal signals from this dataset is limited. This 

limitation arises from the ship’s movement, thereby covering a wide range of  environmental 

conditions. Thus, signals on time scales such as the seasonal signal depicted by LV7 need 

to be interpreted as integrated signals occurring on sufficiently large scales. For example, 

the seasonal variation of the intensity of solar radiation in LV7 shows a decrease anywhere 

across the Southern Ocean towards austral fall. We can also attribute a seasonal signal to 

phenomena which only occur during a certain period and certain location. For example, the 

melting of sea ice discussed in LV9 only occurred in a limited region at the time of the cruise, 

but it would have been a much more widespread signal if the cruise had taken place in 

austral spring when the sea ice cover was more extensive. Therefore, it is important to note 



that we cannot discuss the full seasonal evolution of the signal, because we only spent a few 

days in the sea ice region, but the input of freshwater from the melting sea ice emerges as 

an important seasonal phenomenon in our analysis.” 

    

Specific and minor comments to the text: 

RC1.10: L. 131: In this section, I would have liked to also find out a bit more about the 

measurements, e.g., if the ocean measurement are at the sea surface only (same for 

atmosphere) and I recommend adding a sentence or two stating the nature of the 

measurements (sensors, air/water/ice samples… were some data collected by platforms 

other than the ship, such as satellites/planes…?). 

AC1.10: This is a good point. We have added the following information at the end of 

section 2.1 (L158 tracked changes):  

“Generally, all atmospheric measurements were taken from either the container or 

monkey deck, i.e. 15 m and up to 31.5 m above sea level, respectively. Ocean 

measurements were either obtained from the underway water line, with an intake at the 

front of the ship at about 4.5 m below sea level, or from conductivity, temperature, depth 

(CTD) casts. Details on the sampling locations are given in the cruise report (Walton and 

Thomas, 2018), whereas details on the measurement methodologies are given in the 

supplementary information section S1.” 

 

RC1.11: L. 145: It should also be mentioned here (and possibly in the 

abstract/introduction) that this is an unsupervised machine learning approach (as stated 

in the Conclusion). 

AC1.11: Thank you for pointing this out. We have rephrased the sentence in L. 146 (L. 

190 tracked changes) to: “Sparse PCA, an unsupervised machine learning approach,  

was used to…”.  

In the abstract in l. 9, we added: “..we applied an unsupervised machine learning 

method, the sparse Principal Component Analysis (sPCA)...” 

 



Summary of Revisions 

RC = Reviewer comment 

We thank all three reviewers for their positive and constructive feedback. In order to 

provide a quick overview of the changes to the to-be-revised manuscript, we give a 

summary here:  

- The title has been changed to: “Exploring the ocean and atmosphere coupled 

system with a data science approach applied to observations from the Antarctic 

Circumnavigation Expedition” (following RC3.3). 

- We have added research questions in the introduction for a framework that better 

structures the manuscript as a whole (following RC1.6).  

- The methods description has been revised substantially to make the language 

more accessible to non-data scientists (following the general and several targeted 

comments of Reviewer #1).  

- Section 5 (description of individual LVs) will be moved to a new appendix A to 

substantially shorten the manuscript. We now summarize the outcome of all LVs 

briefly in a revised section 4.1, and highlight the novel aspects we found there as 

well. We give give one condensed description of LV9 as example in a revised 

section 4.2.  (following RC1.7, 3.1, 3.4) 

- We have changed the original Figure 22 from a spider plot to a bar chart type (now 

Fig. 7).  

- Please see the tracked changes version also for minor semantic and grammatical 

improvements of the text.  

 

RC = Reviewer Comment, AC = Author Comment, new suggested text in blue 

Note, line numbers refer to the original manuscript, the location in the revised version can 

be seen best in the tracked changes document. We indicate these line numbers in ().   

Answers to Reviewer 2 

Anonymous Referee #2, 01 Jun 2021 

Comments on "Biogeochemistry and Physics of the Southern Ocean-Atmosphere 

System Explored With Data Science" by Landwehr et al. 

RC2.1: This manuscript presents a detailed exploration of a very large ensemble of 

measurements of in-situ variables from the Southern Ocean and from the Southern 

Atmosphere.  It emphasizes the technique of sparse principal component analysis which 



indicates possible causal relationships and tries to identify underlying processes 

explaining how the variations of the observed variables. As it is now the manuscript is 

well written but it could benefit from incorporating the minor remarks I have below. I also 

propose to more clearly delineate the advantages of the sPCA method to guide the 

reader about the choice of analysis made here. 

AC2.1: We thank the reviewer very much for their positive and constructive remarks. We 

address all comments below in detail.  

 

Major comments: 

RC2.2: The following sentence at the end of the discussion (Page 60, lines 1102-1103) 

would need to be better backed up by the authors: “In summary, we find that the sPCA is 

not only capable of resolving many of the complex connections between the OVs 

(Observed Variables) but also to provide estimates of their relative importance for the 

observed variability of each OV.” 

AC2.2: The reviewer makes a good point. Rereading the section and the first summary 

sentence, we find that this particular sentence is misplaced here and partly non-sensical. 

This is because the complex connections are discussed in detail in the individual LV 

descriptions, where we highlight a number of processes involving several OVs, but this 

is not the topic of this section 6.3. The second half of the sentence makes grammatically 

no sense, because “their” refers to “OVs” resulting in  “... but also to provide estimates of 

OVs’ relative importance for the observed variability of each OV.” What we meant to say 

is that the occurrence of OVs in several LVs provides insight into where the OV 

variability might stem from. In order not to repeat information from the individual OV 

discussions and the section 6.3, we removed this sentence and start the summary as 

follows (L667 tracked changes):  

“In summary, we find that state variables of the environment such as the air-sea 

temperature difference,...” 

 

RC2.3: I would welcome a paragraph stating, with possible examples from the results 

and the discussion, the strengths of the sPCA method. The weaknesses are well 

described but the reader would also like to have the view of the authors on what guided 

them to select this method for an analysis. 

 AC2.3: This is an important point, which we apparently did not communicate very 

clearly. To make this clearer, we have added the following short paragraph in section 3.5 

for a general description of the advantages, and a second paragraph in the introduction 

to Section “6 Discussion” in l. 982. The discussion section actually highlights some of the 

aspects which we consider to be key advantages, that is the identification of “hotspots” 

and  of “key OVs”. The attribution of a number of processes that explain the variability of 



each OV  is discussed further upfront in the manuscript and is shown in Fig. 5. And last, 

but not least, the exploratory character of the sPCA allows researchers to conduct an 

untargeted analysis and potentially find relationships or (spatial / temporal) patterns 

which would have been left undiscovered in a targeted analysis because one did not 

think of the possibility.  

- L277 (L360 tracked changes), new paragraph:  "The main advantage of the sPCA 

approach over its standard counterpart is the automatic selection of OVs by 

assigning non-zero weights for a given LV. The automatic optimisation of the 

weights associated with the OVs is done sequentially for each LV, starting from the 

one corresponding to the largest mode of variance. This ensures that, although not 

exactly, all the LVs are as uncorrelated as possible. The use of sPCA has also the 

advantage of being less susceptible to noise and unimportant data variations. This 

advantage can be understood when contrasting the sPCA results with the large 

number of principal components with very low explained variance of the standard 

PCA. Although by considering these components the standard PCA is able to fully 

explain the data variance, such variance directions are of little practical use in our 

case, as it would be difficult to link them to natural processes. Compared to the 

standard PCA, sPCA is less likely to return components with very small explained 

variance, which are usually corresponding to noise. This advantage is further 

strengthened by our novel use of the bootstrap analysis, which promotes 

robustness to noise, meaning that OVs which contribute mainly through noise are 

identified as such. Data is resampled randomly, and the influence of noise can be 

observed in large fluctuations of the solution. Therefore, analyses relying on 

aggregated bootstrapped solutions are more robust to the influence of noise than 

the traditional PCA or even a single run sPCA. Moreover, using sPCA over the 

standard PCA has also the benefit of not being susceptible to rank-deficient 

covariance matrices, in particular when the number of data points is smaller 

compared to the number of OVs. And last, but not least, the exploratory character 

of the sPCA allows researchers to conduct an untargeted analysis and potentially 

find relationships or (spatial / temporal) patterns which would have been left 

undiscovered in a targeted analysis because one did not think of the possibility." 

 

- L.983 (L502 tracked changes), new discussion section: “Sparse PCA is a 

powerful method to detect various features in a multi-variable and heterogeneous 

dataset. The key strengths of the method are: First, sPCA has an untargeted 

exploratory character, i.e. the possibility of relating many different OVs with each 

other and identifying correlations, which one might not intuitively address in a 

targeted analysis. Second, because sPCA can easily relate geographical 

information with all OVs, it is possible to explore spatial patterns and obtain a 

geographic overview. This also allows us to identify geographical hotspots, as 

discussed in Section 6.1. Third, sPCA can help to identify original variables which 

are key to many processes, as discussed in section 6.3. Due to the possibility of 

exploring a large number of OVs at the same time, it becomes straightforward to 



isolate those OVs that stand out. Forth, we can explore which processes (LVs) 

contribute to explaining the variability of the OVs, as is shown in Fig. 5.” 

 

RC2.4: The distance to the continent (Latent Variable 5, LV5) is not the best indicator of 

land influences as the authors seem to suggest. A much better indicator would be a 
222Rn concentration measurement.  Radon-222 is a radiogenic gas which emission flux 

is 100 times more important over land than over ocean. As such, you can use the 

concentration of 222Rn to trace how long ago an air parcel was over  a continent. Several 

authors have used this property as a measure of the continental influence of an air 

parcel travelling over the ocean (Heimann et al. (1990) Balkanski and Jacob (1990)). 

AC2.4:  We agree with the reviewer that 222Rn would be much better suited as a 

terrestrial tracer. Unfortunately, there were no such measurements undertaken. Hence, 

we resorted to a simple metric such as distance to land.  

  

Minor comments: 

RC2.5: Caption of Figure 1: do you really mean “microbial gases” or is it rather “biogenic 

gases”. If you use the terms ‘microbial gases’ you imply that these gases are exclusively 

emitted by microbial organisms. 

AC2.5: This is correct, it should read “biogenic gases”. We have corrected the caption.  

 

RC2.6: Was there any attempt made to tag the air masses or use back-trajectories to 

know how long ago this air mass was above continents? It could (for example) explain 

why certain air masses have a higher O3 content as discussed in lines 457-458 page 26. 

AC2.6: The ozone mixing ratio is relatively invariant across most of the expedition with 

two exceptions, that is during the passage of the Balleny Islands for a few days (see Fig. 

8 negative activation of the LV East of 180°E) and from South Georgia to Cape Town. 

Particularly the latter, long period is reflective of the air mass transported between 60 °S 

and 50 °S as shown with the 48 hrs back trajectories in Fig. 8. This is not necessarily 

evidence of continental influence. However, using CO as a semi-conservative tracer for 

continental influence (combustion) beyond 48 hrs, we find a relative concentration 

increase between South Georgia and Cape Town, which might be an indication of 

continental influence. The first instance of higher ozone concentrations near Balleny is 

clearly characterized by Antarctic air mass outflow, where the higher elevation of the 

continent, from which air masses descended, might have played a role. In light of these 

observations, we have added the following in l. 459 (L881 tracked changes) after “(see 

Figure 8c)”:  



“This might indicate enhanced vertical mixing in the marine boundary layer during cold 

air advection, which might lead to the entrainment of free tropospheric air masses with 

higher O3 concentration into the marine boundary layer (see Figure 8c). Such 

entrainment is particularly likely for the high ozone concentrations observed during a 

cold air outbreak from Antarctica, where air masses descended from further aloft. For 

elevated ozone concentrations between South Georgia and Cape Town, continental 

pollution outflow from South America cannot be ruled out, because CO concentrations 

are also slightly elevated.” 

 

RC2.7: Lines 480-482: did you check whether the values of RH for these warm air 

masses. Could the values of RH be an indicator for prior precipitation? 

AC2.7:  As RH in LV3 is a measure of the strength and direction of air-sea moisture 

fluxes and a tracer of large-scale moisture advection, it is not positively correlated with in 

situ measurements of rainfall. This is in contrast with LV4, which represents changes in 

RH due to precipitation events. RH and the amount of precipitation in the five days prior 

to arrival of the trajectories in the marine boundary layer are indirectly related as can be 

seen in a very weak, but significant correlation of the two variables in our dataset 

(Pearson correlation of 0.11 with a p-value of 0.005). We interpret this as a signal of 

precipitation occurring in the advected warm air mass, that is characterised by high RH. 

Due to several processes (meridional advection of moist air over a cold ocean surface, 

precipitation, and long-distance moisture advection), which affect RH in an air mass, and 

due to high variability of RH during a time period of five days, RH cannot directly be used 

as a tracer of precipitation during transport. As we can see in this study, the sPCA 

analysis succeeded in identifying these different time periods, which were affected by 

the aforementioned moist processes (see LV3, LV4 and LV9). Please, also be aware, 

that the simulated rainfall along the backward trajectories is only poorly constrained in 

the study area due to a lack of observations. Therefore, our results regarding 

precipitation during large-scale transport need to be interpreted carefully and further 

research is needed to understand the role of precipitation on the cycling of water vapour 

during warm air advection. 

RC2.8: Page 31, lines 531-534, the following sentence comes a bit out of nowhere: 

“There is no apparent explanation for the inclusion of carbon monoxide (CO), the mass 

concentration of sulfate in  nonrefractory particulate matter (SO2− 4  ), and the 

atmospheric isoprene concentration (Isopreneair ), and further analysis is beyond the 

scope of this work.” 

You might be missing something important here relative to isoprene. It would be worth 

investigating or asking other groups to think about this positive correlation between 

extratropical cyclone activity and isoprene in air. Isn’t it simply that isoprene sources are 

abundant in the subtropical regions and the cyclones channel rapidly air from lower 

latitudes to the latitudes at which you are making these measurements? 



AC2.8: It is true that this sentence might appear to come out of nowhere. In fact, it is 

there, because we consider OV contributions, if their median value of the contributing 

weight is larger than their single standard deviation from the bootstrap runs. We state 

this in l. 324f (L959 tracked changes), but we cannot expect the reader to remember 

this. Hence we added after the sentence:  

“We mention them here, because their contributing weight to the LV is larger than their 

single standard deviation from the bootstrap runs.”  

Thank you for the hint on the potential transport of isoprene from lower latitudes. This is 

an interesting point. However, if that were the case one would expect a similar behaviour 

for CO (more sources in the subtropics, and it is longer-lived than isoprene). Instead we 

see CO anticorrelating with LV13 (i.e., low CO and high isoprene when LV13 is 

activated). In addition to that, previous measurements (albeit sparse) of marine isoprene 

in subtropical regions (as summarised by Hackenberg et al., GBC, 2017) do not show 

that isoprene mixing ratios are higher in these regions than at higher latitudes. There are 

of course higher terrestrial emissions of isoprene in the subtropics, but 1) the short 

lifetime of isoprene at these latitudes would limit how far it can be transported and 2) one 

would expect a similar behaviour from CO (see also the previous point). 

Reference: Hackenberg, S. C., et al. (2017), Potential controls of isoprene in the surface 

ocean, Global Biogeochem. Cycles, 31, 644– 662, doi:10.1002/2016GB005531.  

 

RC2.9: With regards to the results described for LV2: Drivers of the cloud condensation 

nuclei population. You do not mention that small particle in the nucleation mode will 

eventually end up in the accumulation mode upon growth and coagulation. 

Condensation nuclei (CN) that are not activated will join the accumulation mode aerosol.   

A very noteworthy reference concerning CCN is the one from Lee et al (2013). The 

authors studied twenty right parameters that cover all important aerosol processes to 

understand the cause of uncertainty for CCN. 

AC2.9:  It is correct that we have not discussed the nucleation and Aitken modes in the 

LV 2 section. This is because we limit the discussion to the OVs which are displayed in 

the specific LV figures, those are the ones that contribute with their weight beyond one 

single standard deviation from the bootstrap runs. We understand that for an audience 

who is more focused on aerosol science it might be unsatisfactory that the discussion is 

short from an expert’s perspective. Given that the manuscript is already lengthy and we 

have been asked to shorten the discussion by Reviewer 3, we only added the following 

sentence in l. 680 (L1111 tracked changes):  

“We refer the reader to Lee et al. (2013) for a comprehensive investigation on aerosol 

processes relevant to CCN number concentrations and their uncertainty.” 

 

https://doi.org/10.1002/2016GB005531


RC2.10: Lines 685-687 why is your hypothesis limited to rainout and does not include 

washout? “To check our hypothesis concerning rainout, we investigated the precipitation 

rate along the backward trajectories for the previous three days (see Figure 14)” 

AC2.10:  We actually meant “washout” in general, not specifically removal by rain. We 

have hence replaced “rainout” by “washout”.  

RC2.11: Paragraph 5.5 why is LV12 not related to Nccn,0.15,  Nccn,0.30 and Nccn,1.0? 

Monahan et al. (1986) parametrization of sea salt emission predicts that these small 

seasalt aerosols would be abundantly produced at high wind speeds. 

AC2.11: This is indeed an interesting point. The reviewer is correct that the Monahan et 

al., (1986) source function predicts the emission of small sea spray particles at high wind 

speeds. Furthermore, this is supported by more recent sea spay source functions that 

also predict substantial emissions of small sea spray particles (e.g. de Leeuw et al., 

2011). These particles are composed of sea salt and organics, and are therefore 

hygroscopic and efficient CCN. However, recent aerosol-focused ship-based studies 

have found that on a number basis and excepting very high wind speed events, sea 

spray particles still only form minor fractions of the total marine aerosol (typically less 

than 20%), and consequently, only minor fractions of marine CCN populations (Modini et 

al., 2015; Quinn et al., 2017; Schmale et al., 2019). Instead, it appears that under typical 

conditions marine CCN populations are composed primarily of non-sea-salt sulfate 

aerosols. 

The overall sPCA results are consistent with this picture. LV2 contains strong 

contributions from Nccn at all 3 supersaturations, as well as accumulation mode aerosol 

number concentrations and aerosol sulfate concentrations. This suggests high 

correlation between these variables and supports the recent ship-based studies 

mentioned in the paragraph above. On the contrary and as noted by the reviewer, the 

Nccn variables do not show up in LV12, which is the LV related to sea spray aerosol. We 

believe that this is because, on average, sea spray only contributes minor fractions to 

the Nccn populations, and thus, to a first order, the variability in Nccn is not driven by 

variability in the number of sea spray particles. This does not preclude the occurrence of 

very high wind speed events where sea spray completely dominates CCN populations 

(such extreme cases are discussed for the ACE cruise in Schmale et al., 2019), but it 

does suggest that these events do not occur frequently enough to be picked up the 

sPCA analysis.    

This picture is also reflected in Fig. 5, which shows that the variability in the Nccn 

variables is dominated by LV2 and not LV12. 

To answer the reviewers question we have added the following brief summary in line 

700 (L1132 tracked changes): 

“Since SSA particles contain sea salt they are hygroscopic and efficient CCN. Therefore, 

it is interesting to note that all of the CCN OVs are absent in LV12. The absence can be 

explained by recent studies that suggest that, on average, SSA particles only form a 



minor fraction of the total marine CCN budget (Modini et al., 2015; Quinn et al., 2017; 

Schmale et al., 2019), which instead appears to be dominated by accumulation mode 

non-sea-salt sulfate aerosols (e.g. see discussion of LV2 in Appendix A).” 

References: De Leeuw et al. (2011), doi: 10.1029/2010rg000349; Monahan et al. 1986, 

doi: https://doi.org/10.1007/978-94-009-4668-2_16, Modini et al. (2015), doi: 

10.1002/2014JD022963, Quinn et al. (2017), doi: 10.1038/ngeo3003, Schmale et al. 

(2019), doi: 10.1175/bams-d-18-0187.1 

 

RC2.12: Page 41, line 713: please be more specific than ‘The relatively large size of 

airborne SSA droplets’ since particles much larger than 2 or 3 um do not scatter as 

efficiently at visible wavelengths than particles between 0.2 and 2 um. 

AC2.12: Thanks for pointing out this lack of clarity. We rephrased this sentence to 

indicate the specific size range of SSA particles that we were referring to in l. 713 (L1149 

tracked changes): 

“The size distributions of dried SSA particles peak at diameters of around 0.2 µm and 

therefore contain substantial contributions from particles with diameters in the range 

from ~0.1 to 1 µm (Prather et al., 2013). The strong contribution to this size range means 

that SSA particles are effective at scattering solar radiation and thereby reducing 

visibility through the atmosphere.” 

 

RC2.13: FVFM is defined line 1664: ‘’FVFM is the maximum photochemical efficiency of 

photosystem II’ and used line 738 without definition. 

AC2.13: Thank you for spotting this. We have added the definition in line 738 and 

removed it from l. 1664.  

  

RC2.14: Lines 762-764: explain for the non-specialist what to look for in Figure 5: “ 

Bacterial abundance has a relatively high negative contribution to LV11 (see Figure 5), 

as bacterial concentrations are linked to the availability of dissolved organic matter (a 

product of particulate organic matter including POC and PON) and nutrients (Church et 

al., 2000; Kirchman et al., 2009).” 

 AC2.14: We apologize, the reference should point to Figure 16. We have corrected it 

accordingly.  

 

 

https://doi.org/10.1007/978-94-009-4668-2_16


RC2.16: Page 54, line 989: You wrote “strong precipitation even”, did you mean “strong 

precipitation event”? 

AC2.16: Yes, this has been corrected to “event”.  

 

  



Summary of Revisions 

RC = Reviewer comment 

We thank all three reviewers for their positive and constructive feedback. In order to 

provide a quick overview of the changes to the to-be-revised manuscript, we give a 

summary here:  

- The title has been changed to: “Exploring the ocean and atmosphere coupled 

system with a data science approach applied to observations from the Antarctic 

Circumnavigation Expedition” (following RC3.3). 

- We have added research questions in the introduction for a framework that better 

structures the manuscript as a whole (following RC1.6).  

- The methods description has been revised substantially to make the language more 

accessible to non-data scientists (following the general and several targeted 

comments of Reviewer #1).  

- Section 5 (description of individual LVs) will be moved to a new appendix A to 

substantially shorten the manuscript. We now summarize the outcome of all LVs 

briefly in a revised section 4.1, and highlight the novel aspects we found there as 

well. We give give one condensed description of LV9 as example in a revised 

section 4.2.  (following RC1.7, 3.1, 3.4) 

- We have changed the original Figure 22 from a spider plot to a bar chart type (now 

Fig. 7).  

- Please see the tracked changes version also for minor semantic and grammatical 

improvements of the text.  

 

RC = Reviewer Comment, AC = Author Comment, new suggested text in blue 

Note, line numbers refer to the original manuscript, the location in the revised version can 

be seen best in the tracked changes document. We indicate these line numbers in ().   

 

Answer to Reviewer 3 

Anonymous Referee #3, 02 Jun 2021 

 

General comments: 

RC3.1: I find this paper uses an interesting approach that has a potentially high value 

and high impact for the ocean-atmosphere interdisciplinary research community.  The 



paper takes the observations from the Antarctic Circumnavigation Expedition (ACE, 

austral summer 2016/2017) cruise and combines them with a sparse Principal 

Component Analysis (sPCA) to understand how different observed variables are linked 

together and to the general context (e.g. distance from land, cyclone activity, etc.).  The 

paper is also very long, which makes reading and understanding the entire content of the 

paper and really getting into the new conclusions that result from this study extremely 

difficult.   

I support this paper as a proof of concept for this approach, but I find the science 

questions posed (or hypotheses) and conclusions in the study are very weak.  This paper 

should be published after the comments from the other reviewers and the comments 

below are addressed. 

AC3.1: We thank the reviewer for the positive and constructive feedback. We appreciate 

the reviewer’s remark that the approach presented in our paper might be a valuable 

addition to the way that our community analyses large, heterogeneous data sets. We 

also agree that the paper is very long, which might be a disadvantage to clearly 

communicate our message. Therefore, we have taken multiple measures (see summary 

of revisions and detailed responses) to shorten the paper (e.g. moved the individual 

presentation of all 14 LVs to the appendix A). In addition, we have taken an effort to 

more clearly state the science questions (see AC3.2 and AC1.6) and made a dedicated 

effort to clearly state the novel results (in the new section 4.1, see AC3.4 and AC1.7) and 

the advantages of the sPCA (in the new section 3.5, see AC1.2). We hope that these 

changes will help to better bring across our key messages. Our detailed responses are 

provided below.  

  

Major comments: 

RC3.2: Most of the conclusions made using this very complex analysis are simplified 

statements of well known phenomena.  So, I’m not sure what is the added value of this 

approach compared to what is already known.  This is seen in the various “In summary” 

statements that come at the end of each section that focuses on the latent variables 

(LVs).  This is seen most clearly in the summary for LV7 and LV10, which mostly put 

things into a seasonal and diurnal cycle context.  I do not see what we have learned by 

using this “data science” approach.  One way to address this would be to acknowledge in 

the abstract and very early in the study that there are no main scientific conclusions 

using data science in this study, but that this sets up the methodology that can be used 

in the future for this purpose. 

AC3.2: We agree that the value of this manuscript lies first and foremost in setting up the 

method for future studies, which were designed a priori around interdisciplinary research 

questions. The sPCA fills an important gap in this regard, because it is more powerful 

than simple correlation analysis, and it allows to relate a large number of variables, which 

reflect processes of different time scales and at a level of detail that comprehensive 

Earth System Models cannot address. 



One of the key aspects of this analysis is that it provides the possibility for an untargeted, 

and therefore more objective and unbiased, analysis, whereas traditional methods are 

often biased by a certain method that is tailored to a specific question. We should have 

pointed this aspect out more clearly and also more clearly state which of the results are 

novel and which are well known aspects. 

We now highlight these new aspects that the analysis was able to depict in section 4.1, 

the abstract, and conclusions. They include:  

- New insights into the Southern Ocean water cycle, where surprisingly, our large-

scale assessment of concurrent precipitation and salinity measurements does not 

yield a direct response of the surface ocean salinity to precipitation events. Instead, 

we here show that variations in surface ocean salinity are driven by the climatological 

(long-term) patterns set by surface freshwater fluxes integrated over time-scales 

longer than synoptic events (LV1) and seasonal melting on sea ice (LV9).  

- We also find a latitudinal distribution of the nutrient availability and its effect on the 

productivity, which is highlighted in LV11, LV6 and LV8. This shows, at the largest 

scale ever reported, nutrient limitation regimes for the subantarctic front, south of 

the polar front and associated with the island mass effect as previously reported. 

- The sPCA produced unexpected results for some of the reactive trace gases, notably 

isoprene (LV7). This result points towards a complex interplay between the 

seasonality of emissions (sources) and seasonality of oxidation pathways (sinks), 

which, coupled with the potential effect of transport from terrestrial sources, paint a 

very complex picture for atmospheric isoprene in the Southern Ocean. 

We also think that this contribution has provided a valuable overview of Southern Ocean 

processes on different time and spatial scales. In addition, the published datasets are a 

benchmark for the current state of the Southern Ocean, against which data in several 

years or decades time can be compared. We have added the following to the abstract in 

l. 11ff:  

“Our results provide a proof of concept that sPCA with uncertainty analysis is able to 

identify temporal patterns from diurnal to seasonal cycles, as well as geographical 

gradients and “hotspots” of interaction between environmental compartments. While 

confirming many well known processes, our analysis provides novel insights into the 

Southern Ocean water cycle (freshwater fluxes), trace gases (interplay between 

seasonality, sources and sinks), and microbial community (nutrient limitation and mass 

island effects at the largest scale ever reported). Our results establish…”  

And in the introduction in l.42 (L49 in tracked changes) (This addition in l. 42 is also a 

response to reviewer comment RC1.6):  

“To explore interactions between the Southern Ocean system components, we apply an 

unsupervised learning method, sparse principal component analysis (sPCA). Application of the 

sPCA has two objectives: i) conducting an untargeted and therefore more objective analysis 

of data, where the method is less tailored to the science question as compared to more 

traditional regression analysis, and ii) to  target a set of specific research questions (RQ):  



RQ1: Is sparse principal component analysis an adequate tool to extract interaction processes 

inherent to a heterogeneous and temporally and spatially short data set, which describes 

environmental variability? 

RQ2: Is it possible to identify geographic locations (“hotspots”) that are common to several 

interaction processes? 

RQ3: Which are the key observed environmental variables that strongly contribute to several 

interaction processes? 

Specific answers to RQ1 are given in section 3.5, with respect to model limitations and 

advantages, and 6.2, with respect to interaction processes. RQ2 is answered in section 6.1 

and RQ3 in section 6.3. Note that we focus on the proof of concept of the sparse principal 

component method by basing the interpretation primarily on the known processes of the 

Southern Ocean climate system. New scientific insights from this novel approach are 

described in section 4.1. 

Just as a point of clarification, the summaries at the end of each section 5.x are meant 

for the quick reader to grasp the essence. There are more interesting and potentially 

novel details in the descriptions, which can inspire researchers with an interest in the 

specific processes to explore those further. And of course, in a way the temporal patterns 

in LV7 and LV10 are trivial, but thinking this the other way around, it would not be a good 

sign if LV7 and LV10 did not feature, because this is an obvious performance check.   

 

RC3.3: The paper should be re-titled to more clearly reflect the paper content.  The 

paper focuses on all of the aspects of the ACE cruise, not just biogeochemistry and 

physics.  I would recommend something more general like “Understanding processes 

observed in the southern ocean-atmosphere system using ACE observations combined 

with data science”. 

AC3.3: Thank you for the suggestion. We have retitled the paper:  

Exploring the ocean and atmosphere coupled system with a data science approach 

applied to observations from the Antarctic Circumnavigation Expedition 

We spell out ACE, because there was another cruise a couple of decades ago in the 

Southern Ocean called the Aerosol Characterization Experiment (ACE).  

 

RC3.4: I recommend that the authors work on shortening the paper by moving some of 

the very lengthy discussion into supplementary materials or into an annex to make this 

paper more readable.  I would like the authors to get to the point of what was learned in 

addition to what is already known more quickly. 

AC3.4: We appreciate the reviewer’s point of view and suggest the following: Section 4 

has been renamed “Sparse PCA results”, Section 4.1 is now “Short summary of all latent 



variables and new insights”. and contains the text here below, which is merged from the 

original section 4.1 first paragraph and section 5.8 “Short summary of all latent 

variables”, and contains new additions to highlight the new insights. We also provide a 

condensed description of LV9 in a new section 4.2 to give one prominent example with new 

insights. The remainder of section 4 stays in the main manuscript. The manuscript then 

continues with the former section 6 “Discussion”. We highlight the new text in blue.   

This is the new section 4.1:  

“Figure 3 shows the time series of the 14 LVs, where the blue dots indicate the average of the 

principal components of the bootstrap runs and the shading indicates the 95% confidence 

interval (±2 standard deviations). The 14 LVs can be related to physical, biological and/or 

chemical processes, or changes in the environment that influence the variance of OVs within 

each LV. We name each LV according to the process or environmental condition, which they 

reflect (Table 2). These LV names result from our interpretation of what each LV represents 

as discussed in Appendix A. Overall, the sPCA solution describes 55% of the variability of the 

111 OVs. Here we provide a short summary for all LVs, and in section 4.2 an example 

description of LV9. Detailed interpretations for each LV are provided in Appendix A.  

 

The largest signal by far originates from the large-scale horizontal temperature and pressure 

gradients that exist between the low and high latitudes. The effect of these gradients on 

physical properties of the surface ocean and its activity are mostly captured in the two climatic 

zone signals (LV1 and LV14). The latitudinal temperature and pressure gradients give rise to 

the meridional advection of cold and warm air (LV3) with implications on cyclone activity (LV13) 

and the freshwater cycle with the intermittent character of precipitation events (LV4). 

The sPCA led to some new insights into the Southern Ocean water cycle. We were able to 

systematically identify the different modes of variability in the isotopic signal of marine 

boundary layer water vapour. δ18Ovap and δ2Hvap show significant contributions to 

climatological signals (LV1) and the RH environment (LV3), while dexcvap mainly reflects the 

contrasting air-sea moisture fluxes in different RH environments. While an excess of 

precipitation over evaporation is generally thought to cause a relatively fresh Southern Ocean 

surface (Dong et al., 2007; Ren et al., 2011), surprisingly, our large-scale assessment of 

concurrent precipitation and salinity measurements does not yield a direct response of the 

surface ocean salinity to precipitation events. Instead, we here show that variations in surface 

ocean salinity are driven by the climatological (long-term) patterns set by surface freshwater 

fluxes integrated over time-scales longer than synoptic events (LV1) and seasonal melting on 

sea ice (LV9).  

We also find a latitudinal distribution of the nutrient availability and its effect on the productivity, 

which is highlighted in LV11, LV6 and LV8. This confirms, at the largest scale ever reported, 

nutrient limitation regimes for the subantarctic front, south of the polar front and associated 

with the island mass effect as previously reported (Pollard et al. 2002; Blain et al. 2007; Cassar 

et al 2007; Weber and Deutsch 2010). Moreover, the sPCA successfully decouples the high 

spatial and temporal variability of iron-limited (LV8) and iron-fertilized blooms (LV6) and their 

dependence on nutrient availability (LV11), helping to identify the macro- and micro-nutrients  

responsible for changes to the biogeochemistry and microbial community structure and the 

source of those nutrients e.g. upwelling, aeolian deposition, sea-ice melt.  



The method further highlights the effects of diurnal variability of solar forcing on phytoplankton 

photosynthetic efficiency and trace gas oxidation (LV10) as well as that of the seasonal 

variation of the solar forcing on dissolved as well as atmospheric trace gas concentrations and 

seasonal cycle in microbial productivity (LV7). While the sPCA confirmed known seasonal 

trends for a number of relatively long-lived key atmospheric trace gases (methane, CO and 

ozone), it produced unexpected results for some of the reactive trace gases, notably isoprene 

(LV7). This result points towards a complex interplay between the seasonality of emissions 

(sources) and seasonality of oxidation pathways (sinks), which, coupled with the potential 

effect of transport from terrestrial sources, paint a very complex picture for atmospheric 

isoprene in the Southern Ocean. Further future analysis is required to better understand these 

processes. 

The sPCA solution also clearly highlights aerosol sources (especially for INP and fluorescent 

aerosol) on or in the proximity of islands and continents (LV5), which was previously not as 

evident (Moallemi et al., 2021). We observe a clear link between wind speed and sea state 

and the concentration of large sea spray aerosol (LV12), tying them to the most wind-driven 

regions of the Southern Ocean. In contrast to that, the smaller accumulation mode particles 

(LV2) are ubiquitous, because of their long lifetime and various source processes contributing 

to their abundance. 

4.2 Marginal sea ice zone and snowfall (LV9) 

 

LV9 has a very distinct regional signal that is mostly active during Leg 2 of the cruise, with a 

clear peak between 27 January and 2 February 2017 when the ship was going through sea 

ice while approaching and leaving the Mertz region ([ref to old] Figure 12a and b), explaining 

about 3.4(±0.6)% of the variance of all 111 variables (Table 2). The largest contribution to this 

LV comes from the sea ice concentration (Ci), i.e. fraction of surface area covered by sea ice 

([ref to old] Figure 12c), which was unusually low during the austral summer season 2016/2017 

(Schlosser et al., 2018).  

 

The sPCA highlights four interesting characteristics of the coupled ocean, ice, and atmosphere 

system in the melting sea ice region. Firstly, positive LV9 periods are associated with a low 

surface ocean salinity (Ssw) and density (sigma0,sw; ([ref to old] Figure 12c). These relatively 

fresh and light surface waters suggest a stable surface ocean stratification associated with 

recently melted sea ice, confirming previous observations (Haumann et al., 2016). While other 

surface freshwater fluxes such as snow and glacial melt could have been responsible for the 

low salinity surface ocean, the absence of a low delta18Osw in LV9 suggests no significant 

contribution of these fluxes. A second interesting observation is the large contribution of the 

wave period (Tm−1,1) to LV9 (([ref to old] Figure 12c), with a significantly longer wave period 

in the partially ice covered region when LV9 is positive. Therefore, the sPCA confirms that ice 

floes in the marginal ice zone dissipate wave energy (Squire, 2020; Ardhuin et al., 2020) with 

a faster rate for short-wave components of the spectrum (Meylan et al., 2018). Thirdly, net 

community production (NCP) and phytoplankton biomass (Chlafluo) are both positively 

correlated with LV9. Therefore, the sea ice melt appears to increase the water column 

productivity most likely through iron fertilization (Lannuzel et al., 2008, 2016), and/or enhanced 

water column stratification, relieving light limitation (Vernet et al., 2008; Cassar et al., 2011; 

Eveleth et al., 2017). A fourth aspect of LV9 is the large contribution of snowfall (SR). While a 

higher snowfall compared to rainfall is expected near the Antarctic coast in summer, it is 



unclear if there is a link between snowfall and the presence of sea ice in LV9 - an aspect that 

requires further investigation. However, the sPCA suggests an atmospheric boundary layer 

over sea ice that is dominated by Antarctic continental air masses near the surface with moist 

and warm advection aloft (see back trajectories in supplementary information section S4) 

producing snowfall at times. Antarctic air masses near the surface in LV9 are indicated by the 

very low abundances of heavy water molecules (delta2Hvap and delta18Ovap) in the 

atmospheric water vapour (w), and a low carbon monoxide (CO) concentration.  

 

The presence of sea ice thus helps to maintain Antarctic air masses properties over the ocean 

by forming a barrier between the ocean and the atmosphere, limiting the influence of surface 

fluxes on the air mass before it reaches the open ocean (see e.g. Renfrew and Moore, 1999). 

Therefore, the sea ice influences the vertical atmospheric boundary layer structure, possibly 

favoring snowfall. 
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RC3.5: The authors should discuss how different timescales of processes that occur in 

nature that control the observed variables that were seen as a snapshot in space and 

time on the ship.  Is it fair to group things into a data science approach variables that are 

observed in the atmosphere, ice, and ocean that have very different lifetimes and 

controlling factors that may not be co-located (i.e. relating them in the same space and 

time may give the wrong correlations/dependencies compared to what happens in 

nature)? 

AC3.5: This is an important question and has been addressed in section 3.5 “Model 

limitations and advantages”, and section 6.2 “Atmosphere-ocean interactions”. The two 

main limitations we highlight are:  

a) There is no underlying temporal model, meaning two observations sampled within a 

short period of time are more related than two observations sampled within a longer 

period of time - one example is the lack of observation of the relation between dissolved 

DMS and aerosol MSA. The sPCA does not model time, and therefore lags and 

nonlinear temporal effects between measurements are not taken into account. However, 

note that we perform an independent temporal resampling prior to sPCA (as 

preprocessing) in order to homogenize temporal resolution. This comes with the 

drawback of potentially increasing relatedness between measurements acquired within 

the resampling time window, but also has the benefit of increasing the temporal 

correlation of each OV.  

b) The strict linearity means non-linear process cannot be considered.  We highlight the 

key observations on time scale relations from section 6.2 here below. In essence, we find 

if processes happen on sufficiently different time scales, sPCA succeeds in not relating 

them, as their covariance is usually low. To prevent solutions driven by noise and 

spurious correlations also along different spatio-temporal scales, we introduce the use of 

bootstrapping, which allows us to focus only on significant relationships.  

Here below follow excerpts from the manuscript that address these points:  

L. 1023: In most LVs, we find a coinciding activation of variables in the Atmospheric 

dynamics and thermodynamics and in the Oceanic dynamics and thermodynamics 

category, which are related to local coupling of wind and waves, larger-scale variations of 

air and water temperature, and characteristics of the ocean currents. These LVs only 

activate OVs from the Atmospheric dynamics and thermodynamics category, but not 

from the Oceanic dynamics and thermodynamics. One possible explanation for the 

absence of a clear influence on the ocean is that the precipitation (LV4) and the diurnal 

cycle (LV10) represent strong variation of atmospheric OVs on time scales of less than a 

day, which might be too short to trigger considerable oceanic variability of detectable 

strength. 

L. 1033: Links between ocean and atmosphere are visible for LVs with a strong low-

frequency (> 1month) component like the climatic zones (LV1; Figure 22a), the seasonal 

signal (LV7; Figure 22g), and intermediate frequencies (in the order of days) such as sea 

ice cover (LV9; Figure 22i), and cyclone activity (LV13; Figure 22m). LVs which happen 



on short time scales, for example strong precipitation related variations of LV4, trigger 

only a weak (w < 1) marine reaction… 

L. 1049: The above observations show that our analysis targets processes that manifest 

themselves in rather local correlations, such as the established link between wind speed 

and sea state or correlations based on smooth variations over time and space, such as 

the large-scale horizontal gradients in the air and sea water temperature and the 

hydrological cycle. To include processes occurring with a time lag or those affected by 

transport across larger scales, the coupling with air mass back trajectory analysis 

provides a valuable extension to infer potential relations of the observed signals with up-

wind conditions and air mass history, for example the advection of cold or warm air (see 

section 5.2.1),... 

 

 

RC3.6: How do non-local processes get integrated into this approach?  This is not 

currently clear for me. 

AC3.6: This is a good point. The method succeeds by itself in including several large-

scale and longer temporal features: climatic zones and large-scale horizontal gradients 

are represented by LV1 and LV14, large-scale weather systems feature in LV13, LV7 

highlights seasonal patterns. In addition to that, we have included back trajectory 

analyses to understand how in situ observations carry signatures of air mass history (i.e. 

larger spatial and temporal extent). This was somewhat addressed in the discussion 

section in  l. 1051. Following the reviewer’s comment, we have made the formulation 

more explicit (l. 1051, L612 tracked changes): 

To better understand the ability of the sPCA to capture non-local processes occurring 

with a time lag or those affected by transport across larger scales, we analyse air mass 

back trajectories. This analysis provides a valuable extension to infer potential relations 

of the observed signals with up-wind conditions and air mass history. Two examples are 

the advection of cold or warm air (see LV3 - Meridional cold and warm air advection, 

Appendix A), and the removal of accumulation mode aerosols during successive 

precipitation events (see LV2 - Drivers of the cloud condensation nuclei population, 

Appendix A)." 

 

RC3.7: The authors should expand their discussion of missing data and the influence 

this has on their analysis (as noted by reviewer 1). 

AC3.7: To answer this question, we have to distinguish between two types of missing 

data: Data measured by sensors but filtered or dropped due to quality control or sensor 

failures, and data that is missing, because their temporal resolution is too low. For the 

former, we deal with them explicitly by using imputation strategies and temporal 



averaging to cope with uneven sampling and spurious missing data. The temporal 

interval of imputation has been selected based on the overall OV temporal resolution, 

and selected by comparing different strategies. We describe this in detail in Sections 3.3 

and 3.4.  

For the second category, i.e. data that has been sampled less frequently than our 

temporal resampling interval of 3 hours, we perform iterative imputation by sPCA model 

inversion. We employ this strategy in order to provide continuous LVs along the temporal 

dimension, but we cannot verify the quality of this imputation strategy or identify 

variations on time scales shorter than the actual sampling frequency. For this reason, 

OVs with very low temporal resolution have a lower number of datapoints, which affects 

the strength of the correlations between different OVs. In addition, such missing values 

generally reduce the significance of the results after bootstrapping, which tends to assign 

larger standard deviations and lower median weights to sparser OVs. It results that OVs 

with lower correlations are generally discarded by the sPCA. The lower significance and 

correlations, result in the tendency of assigning lower importance of sparsely measured 

OVs for the corresponding LVs. For example, the mixed-layer depth is only derived from 

the relatively sparse CTD and XBT profile locations and therefore has a much lower temporal 

resolution compared to the other OVs in our data set. As a consequence, it appears to be 

less important for air-sea exchange processes and biological production in our results as one 

might expect. This issue is a clear limitation of our study that is important to consider when 

interpreting results.  

Future work can be devoted to the inclusion of OVs temporal models within a sPCA like 

strategy, in order to better estimate the contribution of missing data of the two types 

described above. Ideally, imputation will not only be made based on linear dependencies 

between the input OVs, but also accounting temporal co-variations, potentially providing 

more robust decomposition solutions with respect to gaps in measurements.  

Manuscript changes:  

- New sentences, L271 (L346 tracked changes): "The data filling performed at the 

preprocessing step is complementary to the data imputation performed by sPCA. 

While the former is an independent data filling based on temporal averages, the 

latter can be seen as an estimation based on inverting the sPCA model on 

missing data, corresponding to a regression from non-missing OVs. The more 

correlated the OVs to the one containing a missing data point to be estimated, the 

better the estimation. The lower significance and correlations, result in the 

tendency of assigning lower importance of sparsely measured OVs for the 

corresponding LVs. For example, the mixed-layer depth is only derived from the 

relatively sparse water column profile locations and therefore has a much lower 

temporal resolution compared to the other OVs in our data set. As a 

consequence, it appears to be less important for air-sea exchange processes and 

biological production in our results as one might expect. This issue is a clear 

limitation of our study that is important to consider when interpreting results. " 

 



  

Minor comments: 

RC3.8: There are a few small typos as noted by reviewer 2.  I suggest a careful re-

reading before publication. 

AC3.8: Thank you for pointing this out. We have corrected all typos we found.  
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