
Summary of Revisions 

RC = Reviewer comment 

We thank all three reviewers for their positive and constructive feedback. In order to 

provide a quick overview of the changes to the to-be-revised manuscript, we give a 

summary here:  

- The title has been changed to: “Exploring the ocean and atmosphere coupled 

system with a data science approach applied to observations from the Antarctic 

Circumnavigation Expedition” (following RC3.3). 

- We have added research questions in the introduction for a framework that better 

structures the manuscript as a whole (following RC1.6).  

- The methods description has been revised substantially to make the language more 

accessible to non-data scientists (following the general and several targeted 

comments of Reviewer #1).  

- Section 5 (description of individual LVs) will be moved to a new appendix A to 

substantially shorten the manuscript. We now summarize the outcome of all LVs 

briefly in a revised section 4.1, and highlight the novel aspects we found there as 

well. We give give one condensed description of LV9 as example in a revised 

section 4.2.  (following RC1.7, 3.1, 3.4) 

 

 

RC = Reviewer Comment, AC = Author Comment, new suggested text in blue 

Answer to Reviewer 3 

Anonymous Referee #3, 02 Jun 2021 

 

General comments: 

RC3.1: I find this paper uses an interesting approach that has a potentially high value 

and high impact for the ocean-atmosphere interdisciplinary research community.  The 

paper takes the observations from the Antarctic Circumnavigation Expedition (ACE, 

austral summer 2016/2017) cruise and combines them with a sparse Principal 

Component Analysis (sPCA) to understand how different observed variables are linked 

together and to the general context (e.g. distance from land, cyclone activity, etc.).  The 

paper is also very long, which makes reading and understanding the entire content of the 

paper and really getting into the new conclusions that result from this study extremely 

difficult.   



I support this paper as a proof of concept for this approach, but I find the science 

questions posed (or hypotheses) and conclusions in the study are very weak.  This paper 

should be published after the comments from the other reviewers and the comments 

below are addressed. 

AC3.1: We thank the reviewer for the positive and constructive feedback. We appreciate 

the reviewer’s remark that the approach presented in our paper might be a valuable 

addition to the way that our community analyses large, heterogeneous data sets. We 

also agree that the paper is very long, which might be a disadvantage to clearly 

communicate our message. Therefore, we have taken multiple measures (see summary 

of revisions and detailed responses) to shorten the paper (e.g. moved the individual 

presentation of all 14 LVs to the appendix A). In addition, we have taken an effort to 

more clearly state the science questions (see AC3.2 and AC1.6) and made a dedicated 

effort to clearly state the novel results (in the new section 4.1, see AC3.4 and AC1.7) and 

the advantages of the sPCA (in the new section 3.5, see AC1.2). We hope that these 

changes will help to better bring across our key messages. Our detailed responses are 

provided below.  

  

Major comments: 

RC3.2: Most of the conclusions made using this very complex analysis are simplified 

statements of well known phenomena.  So, I’m not sure what is the added value of this 

approach compared to what is already known.  This is seen in the various “In summary” 

statements that come at the end of each section that focuses on the latent variables 

(LVs).  This is seen most clearly in the summary for LV7 and LV10, which mostly put 

things into a seasonal and diurnal cycle context.  I do not see what we have learned by 

using this “data science” approach.  One way to address this would be to acknowledge in 

the abstract and very early in the study that there are no main scientific conclusions 

using data science in this study, but that this sets up the methodology that can be used 

in the future for this purpose. 

AC3.2: We agree that the value of this manuscript lies first and foremost in setting up the 

method for future studies, which were designed a priori around interdisciplinary research 

questions. The sPCA fills an important gap in this regard, because it is more powerful 

than simple correlation analysis, and it allows to relate a large number of variables, which 

reflect processes of different time scales and at a level of detail that comprehensive 

Earth System Models cannot address. 

One of the key aspects of this analysis is that it provides the possibility for an untargeted, 

and therefore more objective and unbiased, analysis, whereas traditional methods are 

often biased by a certain method that is tailored to a specific question. We should have 

pointed this aspect out more clearly and also more clearly state which of the results are 

novel and which are well known aspects. 



We now highlight these new aspects that the analysis was able to depict in section 4.1, 

the abstract, and conclusions. They include:  

- New insights into the Southern Ocean water cycle, where surprisingly, our large-

scale assessment of concurrent precipitation and salinity measurements does not 

yield a direct response of the surface ocean salinity to precipitation events. Instead, 

we here show that variations in surface ocean salinity are driven by the climatological 

(long-term) patterns set by surface freshwater fluxes integrated over time-scales 

longer than synoptic events (LV1) and seasonal melting on sea ice (LV9).  

- We also find a latitudinal distribution of the nutrient availability and its effect on the 

productivity, which is highlighted in LV11, LV6 and LV8. This shows, at the largest 

scale ever reported, nutrient limitation regimes for the subantarctic front, south of 

the polar front and associated with the island mass effect as previously reported. 

- The sPCA produced unexpected results for some of the reactive trace gases, notably 

isoprene (LV7). This result points towards a complex interplay between the 

seasonality of emissions (sources) and seasonality of oxidation pathways (sinks), 

which, coupled with the potential effect of transport from terrestrial sources, paint a 

very complex picture for atmospheric isoprene in the Southern Ocean. 

We also think that this contribution has provided a valuable overview of Southern Ocean 

processes on different time and spatial scales. In addition, the published datasets are a 

benchmark for the current state of the Southern Ocean, against which data in several 

years or decades time can be compared. We have added the following to the abstract in 

l. 11ff:  

“Our results provide a proof of concept that sPCA with uncertainty analysis is able to 

identify temporal patterns from diurnal to seasonal cycles, as well as geographical 

gradients and “hotspots” of interaction between environmental compartments. While 

confirming many well known processes, our analysis provides novel insights into the 

Southern Ocean water cycle (freshwater fluxes), trace gases (interplay between 

seasonality, sources and sinks), and microbial community (nutrient limitation and mass 

island effects at the largest scale ever reported). Our results establish…”  

And in l. 24:  

“It thereby fills an important gap between simple correlation analyses and complex Earth 

System Models. The former would not be able to relate such a large number of variables, 

while the latter is less constrained by observations and comes with analytical challenges 

to depict single processes.” 

And in the  introduction in l.42 (This addition in l. 42 is also a response to reviewer 

comment RC1.6):  

“To explore interactions between the Southern Ocean system components, we apply an 

unsupervised learning method, sparse principal component analysis (sPCA). Application of the 

sPCA has two objectives: i) conducting an untargeted and therefore more objective analysis 

of data, where the method is less tailored to the science question as compared to more 

traditional regression analysis, and ii) to  target a set of specific research questions (RQ):  



RQ1: Is sparse principal component analysis an adequate tool to extract interaction processes 

inherent to a heterogeneous and short data set, which describes environmental variability? 

RQ2: Is it possible to identify geographic locations (“hotspots”) that are common to several 

interaction processes? 

RQ3: Which are the key observed environmental variables that strongly contribute to several 

interaction processes? 

Specific answers to RQ1 are given in section 3.5, with respect to model limitations and 

advantages, and 6.2, with respect to interaction processes. RQ2 is answered in section 6.1 

and RQ3 in section 6.3. Note that we focus on the proof of concept of the sparse principal 

component method by basing the interpretation primarily on the known processes of the 

Southern Ocean climate system. New scientific insights from this novel approach are 

described in section 4.1. 

Just as a point of clarification, the summaries at the end of each section 5.x are meant 

for the quick reader to grasp the essence. There are more interesting and potentially 

novel details in the descriptions, which can inspire researchers with an interest in the 

specific processes to explore those further. And of course, in a way the temporal patterns 

in LV7 and LV10 are trivial, but thinking this the other way around, it would not be a good 

sign if LV7 and LV10 did not feature, because this is an obvious performance check.   

 

RC3.3: The paper should be re-titled to more clearly reflect the paper content.  The 

paper focuses on all of the aspects of the ACE cruise, not just biogeochemistry and 

physics.  I would recommend something more general like “Understanding processes 

observed in the southern ocean-atmosphere system using ACE observations combined 

with data science”. 

AC3.3: Thank you for the suggestion. We have retitled the paper:  

Exploring the ocean and atmosphere coupled system with a data science approach 

applied to observations from the Antarctic Circumnavigation Expedition 

We spell out ACE, because there was another cruise a couple of decades ago in the 

Southern Ocean called the Aerosol Characterization Experiment (ACE).  

 

RC3.4: I recommend that the authors work on shortening the paper by moving some of 

the very lengthy discussion into supplementary materials or into an annex to make this 

paper more readable.  I would like the authors to get to the point of what was learned in 

addition to what is already known more quickly. 

AC3.4: We appreciate the reviewer’s point of view and suggest the following: Section 4 

has been renamed “Sparse PCA results”, Section 4.1 is now “Short summary of all latent 

variables and new insights”. and contains the text here below, which is merged from the 



original section 4.1 first paragraph and section 5.8 “Short summary of all latent 

variables”, and contains new additions to highlight the new insights. We also provide a 

condensed description of LV9 in a new section 4.2 to give one prominent example with new 

insights. The remainder of section 4 stays in the main manuscript. The manuscript then 

continues with the former section 6 “Discussion”. We highlight the new text in blue.   

This is the new section 4.1:  

“Figure 3 shows the time series of the 14 LVs, where the blue dots indicate the average of the 

principal components of the bootstrap runs and the shading indicates the 95% confidence 

interval (±2 standard deviations). The 14 LVs can be related to physical, biological and/or 

chemical processes, or changes in the environment that influence the variance of OVs within 

each LV. We name each LV according to the process or environmental condition, which they 

reflect (Table 2). Overall, the sPCA solution describes 55% of the variability of the 111 OVs. 

Here we provide a short summary for all LVs, and in section 4.2 an example description of 

LV9. Detailed interpretations for each LV are provided in Appendix A.  

 

The largest signal by far originates from the large-scale horizontal temperature and pressure 

gradients that exist between the low and high latitudes. The effect of these gradients on 

physical properties of the surface ocean and its activity are mostly captured in the two climatic 

zone signals (LV1 and LV14). The latitudinal temperature and pressure gradients give rise to 

the meridional advection of cold and warm air (LV3) with implications on cyclone activity (LV13) 

and the freshwater cycle with the intermittent character of precipitation events (LV4). 

The sPCA led to some new insights into the Southern Ocean water cycle. We were able to 

systematically identify the different modes of variability in the isotopic signal of marine 

boundary layer water vapour. δ18Ovap and δ2Hvap show significant contributions to 

climatological signals (LV1) and the RH environment (LV3), while dexcvap mainly reflects the 

contrasting air-sea moisture fluxes in different RH environments. While an excess of 

precipitation over evaporation is generally thought to cause a relatively fresh Southern Ocean 

surface (Dong et al., 2007; Ren et al., 2011), surprisingly, our large-scale assessment of 

concurrent precipitation and salinity measurements does not yield a direct response of the 

surface ocean salinity to precipitation events. Instead, we here show that variations in surface 

ocean salinity are driven by the climatological (long-term) patterns set by surface freshwater 

fluxes integrated over time-scales longer than synoptic events (LV1) and seasonal melting on 

sea ice (LV9).  

We also find a latitudinal distribution of the nutrient availability and its effect on the productivity, 

which is highlighted in LV11, LV6 and LV8. This confirms, at the largest scale ever reported, 

nutrient limitation regimes for the subantarctic front, south of the polar front and associated 

with the island mass effect as previously reported (Pollard et al. 2002; Blain et al. 2007; Cassar 

et al 2007; Weber and Deutsch 2010). Moreover, the sPCA successfully decouples the high 

spatial and temporal variability of iron-limited (LV8) and iron-fertilized blooms (LV6) and their 

dependence on nutrient availability (LV11), helping to identify the macro- and micro-nutrients  

responsible for changes to the biogeochemistry and microbial community structure and the 

source of those nutrients e.g. upwelling, aeolian deposition, sea-ice melt.  



The method further highlights the effects of diurnal variability of solar forcing on phytoplankton 

photosynthetic efficiency and trace gas oxidation (LV10) as well as that of the seasonal 

variation of the solar forcing on dissolved as well as atmospheric trace gas concentrations and 

seasonal cycle in microbial productivity (LV7). While the sPCA confirmed known seasonal 

trends for a number of relatively long-lived key atmospheric trace gases (methane, CO and 

ozone), it produced unexpected results for some of the reactive trace gases, notably isoprene 

(LV7). This result points towards a complex interplay between the seasonality of emissions 

(sources) and seasonality of oxidation pathways (sinks), which, coupled with the potential 

effect of transport from terrestrial sources, paint a very complex picture for atmospheric 

isoprene in the Southern Ocean. Further future analysis is required to better understand these 

processes. 

The sPCA solution also clearly highlights aerosol sources (especially for INP and fluorescent 

aerosol) on or in the proximity of islands and continents (LV5), which was previously not as 

evident (Moallemi et al., 2021). We observe a clear link between wind speed and sea state 

and the concentration of large sea spray aerosol (LV12), tying them to the most wind-driven 

regions of the Southern Ocean. In contrast to that, the smaller accumulation mode particles 

(LV2) are ubiquitous, because of their long lifetime and various source processes contributing 

to their abundance. 

4.2 Marginal sea ice zone and snowfall (LV9) 

 

LV9 has a very distinct regional signal that is mostly active during Leg 2 of the cruise, with a 

clear peak between 27 January and 2 February 2017 when the ship was going through sea 

ice while approaching and leaving the Mertz region ([ref to old] Figure 12a and b), explaining 

about 3.4(±0.6)% of the variance of all 111 variables (Table 2). The largest contribution to this 

LV comes from the sea ice concentration (Ci), i.e. fraction of surface area covered by sea ice 

([ref to old] Figure 12c), which was unusually low during the austral summer season 2016/2017 

(Schlosser et al., 2018).  

 

The sPCA highlights four interesting characteristics of the coupled ocean, ice, and atmosphere 

system in the melting sea ice region. Firstly, positive LV9 periods are associated with a low 

surface ocean salinity (Ssw) and density (sigma0,sw; ([ref to old] Figure 12c). These relatively 

fresh and light surface waters suggest a stable surface ocean stratification associated with 

recently melted sea ice, confirming previous observations (Haumann et al., 2016). While other 

surface freshwater fluxes such as snow and glacial melt could have been responsible for the 

low salinity surface ocean, the absence of a low delta18Osw in LV9 suggests no significant 

contribution of these fluxes. A second interesting observation is the large contribution of the 

wave period (Tm−1,1) to LV9 (([ref to old] Figure 12c), with a significantly longer wave period 

in the partially ice covered region when LV9 is positive. Therefore, the sPCA confirms that ice 

floes in the marginal ice zone dissipate wave energy (Squire, 2020; Ardhuin et al., 2020) with 

a faster rate for short-wave components of the spectrum (Meylan et al., 2018). Thirdly, net 

community production (NCP) and phytoplankton biomass (Chlafluo) are both positively 

correlated with LV9. Therefore, the sea ice melt appears to increase the water column 

productivity most likely through iron fertilization (Lannuzel et al., 2008, 2016), and/or enhanced 

water column stratification, relieving light limitation (Vernet et al., 2008; Cassar et al., 2011; 

Eveleth et al., 2017). A fourth aspect of LV9 is the large contribution of snowfall (SR). While a 

higher snowfall compared to rainfall is expected near the Antarctic coast in summer, it is 



unclear if there is a link between snowfall and the presence of sea ice in LV9 - an aspect that 

requires further investigation. However, the sPCA suggests an atmospheric boundary layer 

over sea ice that is dominated by Antarctic continental air masses near the surface with moist 

and warm advection aloft (see back trajectories in supplementary information section S4) 

producing snowfall at times. Antarctic air masses near the surface in LV9 are indicated by the 

very low abundances of heavy water molecules (delta2Hvap and delta18Ovap) in the 

atmospheric water vapour (w), and a low carbon monoxide (CO) concentration.  

 

The presence of sea ice thus helps to maintain Antarctic air masses properties over the ocean 

by forming a barrier between the ocean and the atmosphere, limiting the influence of surface 

fluxes on the air mass before it reaches the open ocean (see e.g. Renfrew and Moore, 1999). 

Therefore, the sea ice influences the vertical atmospheric boundary layer structure, possibly 

favoring snowfall. 
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RC3.5: The authors should discuss how different timescales of processes that occur in 

nature that control the observed variables that were seen as a snapshot in space and 

time on the ship.  Is it fair to group things into a data science approach variables that are 

observed in the atmosphere, ice, and ocean that have very different lifetimes and 

controlling factors that may not be co-located (i.e. relating them in the same space and 

time may give the wrong correlations/dependencies compared to what happens in 

nature)? 

AC3.5: This is an important question and has been addressed in section 3.5 “Model 

limitations and advantages”, and section 6.2 “Atmosphere-ocean interactions”. The two 

main limitations we highlight are:  

a) There is no underlying temporal model, meaning two observations sampled within a 

short period of time are more related than two observations sampled within a longer 

period of time - one example is the lack of observation of the relation between dissolved 

DMS and aerosol MSA. The sPCA does not model time, and therefore lags and 

nonlinear temporal effects between measurements are not taken into account. However, 

note that we perform an independent temporal resampling prior to sPCA (as 

preprocessing) in order to homogenize temporal resolution. This comes with the 

drawback of potentially increasing relatedness between measurements acquired within 

the resampling time window, but also has the benefit of increasing the temporal 

correlation of each OV.  

b) The strict linearity means non-linear process cannot be considered.  We highlight the 

key observations on time scale relations from section 6.2 here below. In essence, we find 

if processes happen on sufficiently different time scales, sPCA succeeds in not relating 

them, as their covariance is usually low. To prevent solutions driven by noise and 

spurious correlations also along different spatio-temporal scales, we introduce the use of 

bootstrapping, which allows us to focus only on significant relationships.  

Here below follow excerpts from the manuscript that address these points:  

L. 1023: In most LVs, we find a coinciding activation of variables in the Atmospheric 

dynamics and thermodynamics and in the Oceanic dynamics and thermodynamics 

category, which are related to local coupling of wind and waves, larger-scale variations of 

air and water temperature, and characteristics of the ocean currents. These LVs only 

activate OVs from the Atmospheric dynamics and thermodynamics category, but not 

from the Oceanic dynamics and thermodynamics. One possible explanation for the 

absence of a clear influence on the ocean is that the precipitation (LV4) and the diurnal 

cycle (LV10) represent strong variation of atmospheric OVs on time scales of less than a 

day, which might be too short to trigger considerable oceanic variability of detectable 

strength. 

L. 1033: Links between ocean and atmosphere are visible for LVs with a strong low-

frequency (> 1month) component like the climatic zones (LV1; Figure 22a), the seasonal 

signal (LV7; Figure 22g), and intermediate frequencies (in the order of days) such as sea 

ice cover (LV9; Figure 22i), and cyclone activity (LV13; Figure 22m). LVs which happen 



on short time scales, for example strong precipitation related variations of LV4, trigger 

only a weak (w < 1) marine reaction… 

L. 1049: The above observations show that our analysis targets processes that manifest 

themselves in rather local correlations, such as the established link between wind speed 

and sea state or correlations based on smooth variations over time and space, such as 

the large-scale horizontal gradients in the air and sea water temperature and the 

hydrological cycle. To include processes occurring with a time lag or those affected by 

transport across larger scales, the coupling with air mass back trajectory analysis 

provides a valuable extension to infer potential relations of the observed signals with up-

wind conditions and air mass history, for example the advection of cold or warm air (see 

section 5.2.1),... 

 

 

RC3.6: How do non-local processes get integrated into this approach?  This is not 

currently clear for me. 

AC3.6: This is a good point. The method succeeds by itself in including several large-

scale and longer temporal features: climatic zones and large-scale horizontal gradients 

are represented by LV1 and LV14, large-scale weather systems feature in LV13, LV7 

highlights seasonal patterns. In addition to that, we have included back trajectory 

analyses to understand how in situ observations carry signatures of air mass history (i.e. 

larger spatial and temporal extent). This was somewhat addressed in the discussion 

section in  l. 1051. Following the reviewer’s comment, we have made the formulation 

more explicit (l. 1051): 

To better understand the ability of the sPCA to capture non-local processes occurring 

with a time lag or those affected by transport across larger scales, we analyse air mass 

back trajectories. This analysis provides a valuable extension to infer potential relations 

of the observed signals with up-wind conditions and air mass history. Two examples are 

the advection of cold or warm air (see LV3 - Meridional cold and warm air advection, 

Appendix A), and the removal of accumulation mode aerosols during successive 

precipitation events (see LV2 - Drivers of the cloud condensation nuclei population, 

Appendix A)." 

 

RC3.7: The authors should expand their discussion of missing data and the influence 

this has on their analysis (as noted by reviewer 1). 

AC3.7: To answer this question, we have to distinguish between two types of missing 

data: Data measured by sensors but filtered or dropped due to quality control or sensor 

failures, and data that is missing, because their temporal resolution is too low. For the 

former, we deal with them explicitly by using imputation strategies and temporal 



averaging to cope with uneven sampling and spurious missing data. The temporal 

interval of imputation has been selected based on the overall OV temporal resolution, 

and selected by comparing different strategies. We describe this in detail in Sections 3.3 

and 3.4.  

For the second category, i.e. data that has been sampled less frequently than our 

temporal resampling interval of 3 hours, we perform iterative imputation by sPCA model 

inversion. We employ this strategy in order to provide continuous LVs along the temporal 

dimension, but we cannot verify the quality of this imputation strategy or identify 

variations on time scales shorter than the actual sampling frequency. For this reason, 

OVs with very low temporal resolution have a lower number of datapoints, which affects 

the strength of the correlations between different OVs. In addition, such missing values 

generally reduce the significance of the results after bootstrapping, which tends to assign 

larger standard deviations and lower median weights to sparser OVs. It results that OVs 

with lower correlations are generally discarded by the sPCA. The lower significance and 

correlations, result in the tendency of assigning lower importance of sparsely measured 

OVs for the corresponding LVs. For example, the mixed-layer depth is only derived from 

the relatively sparse CTD and XBT profile locations and therefore has a much lower temporal 

resolution compared to the other OVs in our data set. As a consequence, it appears to be 

less important for air-sea exchange processes and biological production in our results as one 

might expect. This issue is a clear limitation of our study that is important to consider when 

interpreting results.  

Future work can be devoted to the inclusion of OVs temporal models within a sPCA like 

strategy, in order to better estimate the contribution of missing data of the two types 

described above. Ideally, imputation will not only be made based on linear dependencies 

between the input OVs, but also accounting temporal co-variations, potentially providing 

more robust decomposition solutions with respect to gaps in measurements.  

Proposed manuscript changes:  

- New sentences, L266: "The data filling performed at the preprocessing step is 

complementary to the data imputation performed by sPCA. While the former is an 

independent data filling based on temporal averages, the latter can be seen as an 

estimation based on inverting the sPCA model on missing data, corresponding to 

a regression from non-missing OVs. The more correlated the OVs to the one 

containing a missing data point to be estimated, the better the estimation. The 

lower significance and correlations, result in the tendency of assigning lower 

importance of sparsely measured OVs for the corresponding LVs. For example, 

the mixed-layer depth is only derived from the relatively sparse water column 

profile locations and therefore has a much lower temporal resolution compared to 

the other OVs in our data set. As a consequence, it appears to be less important 

for air-sea exchange processes and biological production in our results as one 

might expect. This issue is a clear limitation of our study that is important to 

consider when interpreting results. " 

 



  

Minor comments: 

RC3.8: There are a few small typos as noted by reviewer 2.  I suggest a careful re-

reading before publication. 

AC3.8: Thank you for pointing this out. We have corrected all typos we found.  

  

 


