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Abstract  21 
A natural hazard is a naturally occurring extreme event that has a negative effect on people and society or 22 
the environment. Natural hazards may have severe implications for human life and they can potentially 23 
generate economic losses and damage ecosystems. A better understanding of their major causes, probability 24 
of occurrence, and consequences enables society to be better prepared to save human lives, and to invest in 25 
adaptation options. Natural hazards related to climate change are identified as one of the Grand Challenges 26 
in the Baltic Sea region. We here summarize existing knowledge about extreme events in the Baltic Sea 27 
region with the focus on the past 200 years, as well as future climate scenarios. The events considered here 28 
are the major hydro-meteorological events in the region and include wind storms, extreme waves, high and 29 
low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, 30 
and drought. We also address some ecological extremes and implications of extreme events for society 31 
(phytoplankton blooms, forest fires, coastal flooding, offshore infrastructures, and shipping). Significant 32 
knowledge gaps are identified, including the response of large-scale atmospheric circulation to climate 33 
change and also concerning specific events, for example, occurrences of marine heat waves and small-scale 34 
variability of precipitation. Suggestions for future research include further development of high-resolution 35 
Earth System Models and the potential use of methodologies for data analysis (statistical methods and 36 
machine learning). With respect to expected impacts of climate change, changes are expected for sea level, 37 
extreme precipitation, heat waves and phytoplankton blooms (increase), and cold spells and severe ice 38 
winters (decrease). For some extremes (drying, river flooding, and extreme waves), the change depends on 39 
the area and time period studied. 40 

1      Introduction 41 
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Natural hazards and extreme events may have severe implications for society, including threats to human 42 

life, economic losses, and damage to ecosystems. A better understanding of their major causes and 43 

implications enables society to be better prepared, to save human lives, and to mitigate economic losses. 44 

Many natural hazards are of hydro-meteorological origin (storms, storm surges, flooding, droughts), and 45 

impacts can sometimes be due to a mixture of several factors (e.g. a storm surge in combination with heavy 46 

precipitation and river discharge). 47 

In Europe in 2018, four severe storms caused almost 8bn$ in losses (Munich Re, 2018), while a heat wave 48 

and drought caused roughly 3.9bn$ in losses. According to the European Environment Agency (EEA), 49 

increases in frequency and/or magnitude of extreme events such as floods, droughts, wind storms, or heat 50 

waves will be among the most important consequences of climate change (EEA, 2010). Although climate 51 

change has received considerable scientific attention, knowledge about changing extremes and their impacts 52 

is still somewhat fragmented, in particular when it comes to compound events (Zscheischler et al., 2018). 53 

While confidence in knowledge about the relation between global warming and hot extremes is high, it is 54 

only medium with respect to knowledge about global warming’s relation to heavy precipitation/drought 55 

(IPCC, 2018). Furthermore, the confidence level decreases when approaching the local scale (IPCC, 2014). 56 

Significant advances have occurred, but the understanding of mechanistic drivers of extremes and how they 57 

may change under anthropogenic forcing is still incomplete. 58 

What is defined as “extreme” depends on the parameter and the application in relation to thresholds of the 59 

extreme to generate extreme consequences in society or ecosystems. A large amount of the available 60 

scientific literature is based on extreme indices, which are either based on the probability of occurrence of 61 

given quantities or on threshold exceedances. Typical indices include the number, percentage, or fraction 62 

of days of occurrence below the 1st, 5th, or 10th percentile, or above the 90th, 95th, or 99th percentile, 63 

generally defined for given timeframes (days, month, season, annual) with respect to the 1961–1990 64 

reference time period (Seneviratne et al., 2012). Using predefined extreme indices allows for comparability 65 

across modelling and observational studies and across regions. Peterson and Manton (2008) discuss 66 

collaborative international monitoring efforts employing extreme indices. Extreme indices often reflect 67 

relatively moderate extremes, for example, events occurring during 5 or 10 % of the time. For more rare 68 

extremes, extreme value theory (EVT) is often used due to sampling issues. EVT (e.g., Coles, 2001) aims 69 

at deriving a probability distribution of events from the upper or lower tail of a probability distribution 70 

(typically occurring less frequently than once per year or per period of interest). Some literature has used 71 

other approaches for evaluating characteristics of extremes or changes in extremes, for instance, analysing 72 

trends in record events or investigating whether records in observed time series are being set more or less 73 

frequently than would be expected in an unperturbed climate (Benestad, 2003, 2006; Zorita et al., 2008; 74 

Meehl et al., 2009; Trewin and Vermont, 2010). Besides the actual magnitude of extremes (quantified in 75 

terms of probability/return frequency or absolute threshold), other relevant aspects from an impact 76 

perspective include the duration, the spatial area affected, timing, frequency, onset date, and continuity (i.e., 77 

whether there are “breaks” within a spell). There is thus no precise definition of an extreme (e.g. Stephenson 78 

et al., 2008). In particular, there are limitations in the definition of both probability-based and threshold-79 

based extremes and their relations to impacts. In the reviewed literature, a variety of definitions are used. 80 

The Baltic Sea watershed drains nearly 20 % of European land areas (see Fig.1). It ranges from the highly 81 

populated south, with a temperate climate and intensive agriculture and industry, to the north, where the 82 

landscape is boreal and rural. Changes in the recent climate as well as probable future climate change of 83 
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mean parameters in the Baltic Sea region are relatively well described (e.g. BACC I, 2008; BACC II 2015; 84 

Rutgersson et al., 2014), but the uncertainty is greater for extreme events due to larger statistical 85 

uncertainties for rare events. Natural hazards and extreme events have been identified as one of the grand 86 

scientific challenges for the Baltic Sea research community (Meier et al., 2014).  87 

Changes in extreme events can be caused by a combination of changes in local/regional conditions and 88 

changes of a larger scale; atmospheric circulation patterns are thus of crucial importance. Extreme events 89 

occur over a wide range of scales in time and space; short-term events range from sub-daily to a few days 90 

(basically meso-scale and synoptic-scale events) while long-lasting events range from a few days to several 91 

months. There is no clear separation between short-term and long-term events, and sometimes the presence 92 

of a long-term event may intensify the impact of a short-term one. We here summarize existing knowledge 93 

of extreme events in the Baltic Sea region. We focus on past and present states, as well as future climate 94 

scenarios and expected changes when possible.  95 

The events considered here include wind storms, high and low sea level, heat waves, drought, ice seasons, 96 

heavy precipitation, sea-effect snowfall, river floods, ice ridging, and extreme waves. We also address some 97 

ecological extremes and some implications of extreme events for society (phytoplankton blooms, forest 98 

fires, coastal flooding, offshore infrastructures, and shipping). It should be noted that this is not a 99 

comprehensive summary but a selected number of aspects with implications for society. The text focuses 100 

on the current base of knowledge but also identifies knowledge gaps and research needs.   101 

For almost three decades, knowledge about the Baltic Sea ecosystem has been systematically assessed, 102 

initially by BALTEX and, since 2013, by its successor, Baltic Earth. As a result, two comprehensive 103 

assessment reports have been released: BACC I (2008) and BACC II (2015). The present study is one of 104 

the thematic Baltic Earth Assessment Reports (BEARs), which comprises a series of review papers that 105 

summarize and assess the available published scientific knowledge on climatic, environmental, and human-106 

induced changes in the Baltic Sea region (including its catchment). As such, the series of BEARs constitutes 107 

a follow-up of the previous BACC assessments. BEARs are constructed around the Grand Challenges and 108 

scientific topics of Baltic Earth (baltic.earth/grandchallenges) with a general summary (Meier et al., 2021).  109 

1.1  Methods, past and present conditions 110 

For the past and present conditions, we focus on time periods covering up to the last 200 years, to rely on 111 

robust in situ measurements only (not proxy data). The Baltic Sea area is relatively unique in terms of long-112 

term data, with a dense observational network (compared to most regions) covering an extended time period, 113 

although many national (sub-) daily observations still await digitization and homogenization. The network 114 

of stations with continuous and relatively accurate measurements has been developed since the middle of 115 

the 19th century (a few stations were established in the middle of the 18th century). The period since about 116 

1950 is relatively well covered by observational data. For some applications (e.g. heavy precipitation), the 117 

relatively low frequency of sampling is a limitation; this was improved with the establishment of automatic 118 

stations at the end of the 20th century. In spite of the relatively good observational coverage over a long 119 

time, lack of observations is a major obstacle for assessing long-term trends and past extreme events and 120 

for climate model evaluation. The density of the observational network is high compared to many regions, 121 

but still low compared to the resolution required for evaluation of today’s most fine-scale climate models. 122 
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Despite shortcomings, a number of high-resolution gridded data sets derived from point-based observations 123 

exist at resolutions as high as a few kilometres for parts of the Baltic Sea region.  124 

The inclusion of satellite data since 1979 added to the spatial information, particularly over data-sparse 125 

regions. However, data that span extended periods cannot be expected to be homogeneous in time. This is 126 

particularly important for the increasing number of reanalysis products that are available for the region. In 127 

a reanalysis, all available observations are integrated as increments into a numerical model by means of 128 

data assimilation in space and time. This works fine if the overall structure of the observing system does 129 

not change dramatically over time; however, when completely new observing systems (for example, 130 

observations from satellites) are introduced, this structure changes. Making use of all available observations, 131 

a frozen scheme for the data assimilation of observations into state-of-the-art climate models is used to 132 

minimize inhomogeneities caused by changes in the observational record over time. However, studies 133 

indicate that these inhomogeneities cannot be fully eliminated (e.g., Stendel et al., 2016). In addition, 134 

systematic differences between the underlying forecast models, such as due to their different spatial 135 

resolutions (Trigo, 2006; Raible et al., 2008) and differences in detection and tracking algorithms (Xia et 136 

al., 2012) may affect parameters such as cyclone statistics (for example, changes in their intensity, number, 137 

and position). Reanalysis products include NCEP/NCAR (from 1948 onwards; Kalnay et al., 1996; Kistler 138 

et al., 2001), ERA-Interim, starting in 1979 (Dee et al., 2011), and more recently, CERRA (Schimanke et 139 

al., 2019) and ERA5 (Hersbach et al., 2020). Other reanalyses use a limited data assimilation scheme to go 140 

further back in time, such as the 20th Century Reanalysis 20CR (from 1871 onwards; Compo et al., 2011). 141 

On the regional scale, detailed regional reanalysis products with higher-resolution models and more 142 

observations have been developed (e.g. Dahlgren et al., 2016; Kaspar et al., 2020).  143 

1.2  Methods, future scenarios 144 

The development of general circulation models (GCMs) has created a useful tool for projecting how climate 145 

may change in the future. Such models describe the climate at a set of grid points, regularly distributed in 146 

space and time. In some cases, dynamical downscaling with regional models or empirical-statistical 147 

downscaling using statistical models are also used. A large multi-model co-ordinated climate model 148 

experiment, CMIP Project Phase, was initiated; currently version 5 (CMIP5, Taylor et al., 2012) is the main 149 

source of information, while the next phase, CMIP6 (Eyring et al., 2016), is increasingly being used. 150 

Co-ordinated downscaling activities including regional climate models (RCMs) include those of the 151 

European research projects PRUDENCE (Déqué et al., 2007) and ENSEMBLES (Kjellström et al., 2013) 152 

as well as the WCRP-supported international CORDEX project with its European branch EURO-CORDEX 153 

(Jacob et al., 2014). 154 

Projections of climate change depend inherently on scenario assumptions of future human activities. Widely 155 

used are the representative concentration pathways (RCPs) (van Vuuren et al., 2011). An RCP represents a 156 

climate-forcing scenario trajectory (e.g. including changes in greenhouse gas emissions, aerosols, land use, 157 

etc.) adopted by the IPCC for its Fifth Assessment Report (AR5) in 2014. RCPs describe different climate 158 

futures, all of which are considered possible depending on how strong the forcing of the climate system is. 159 

The four RCPs used for AR5, namely RCP2.6, RCP4.5, RCP6, and RCP8.5, are labelled after their 160 

associated radiative forcing values in the year 2100 (2.6, 4.5, 6.0, and 8.5 W/m2, respectively (Moss et al., 161 

2008; Weyant et al., 2009), relative to that in pre-industrial times, (e.g. 1750). RCP4.5 is used in many 162 

studies assuming increasing carbon dioxide emissions until 2040 and after that decreasing. RCP8.5 assumes 163 
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a rapidly increasing carbon dioxide and methane emissions and is increasingly seen as an unlikely worst-164 

case scenario (Hausfather and Peters, 2020). Prior to the RCPs, scenarios from the Special Report on 165 

Emission Scenarios (Nakicenovic et al., 2000) were widely used. The main scenario families included were: 166 

A1, representing an integrated world with rapid economic growth; A2, a more divided world with regional 167 

and local focus; B1, an integrated and more ecologically friendly world; and B2, a divided but more 168 

ecologically friendly world.   169 

2      Current state of knowledge 170 

2.1  Changes in circulation patterns 171 

The atmospheric circulation in the European/Atlantic sector plays an important role for the regional climate 172 

of the Baltic Sea basin and the surrounding areas (e.g., Hurrell, 1995; Slonosky et al., 2000; 2001). Large-173 

scale flow characteristics are among the main drivers of the connection between local processes and global 174 

variability and change. It is therefore essential to investigate the changes in large-scale flow. The main 175 

driver is the NAO (Hurrell et al., 2003); with quasi-stationary centres of action, the Icelandic Low and the 176 

Azores High, it is a measure of the zonality of the atmospheric flow. The dominant flow is westerly, but 177 

due to the large variability, other wind directions are also frequently observed.  178 

The strength of the westerlies is controlled by the pressure difference between the Azores High and the 179 

Icelandic Low (Wanner et al., 2001; Hurrell et al., 2003; Budikova, 2009) and is expressed by the NAO 180 

index, which is the normalized pressure difference between these two regions. The NAO index varies from 181 

days to decades. The long-term (1899–2018) temporal behaviour of the NAO (Fig. 2) is essentially irregular, 182 

and there is large interannual to interdecadal variability, reflecting interactions with and changes in surface 183 

properties, including sea surface temperature (SST) and sea ice content (SIC). While it is not clear whether 184 

there is a trend in the NAO, for the past five decades, specific periods are apparent. Beginning in the mid-185 

1960s, a positive trend towards more zonal circulation with mild and wet winters and increased storminess 186 

in Central and Northern Europe, including the Baltic Sea area, has been observed (Hurrell et al., 2003; 187 

Gillett et al., 2013). After the mid-1990s, however, there was a tendency towards more negative NAO 188 

indices, in other words, a more meridional circulation and more cold spells in winter, which can only occur 189 

with winds from an easterly or a northerly direction (see Sect. 2.2.3). Other studies (e.g., Deser et al., 2017; 190 

Marshall et al., 2020) do not find a significant long-term trend. It has been speculated that NAO changes 191 

are due to a shift of the Atlantic multidecadal variability (AMO) into the warm phase (Gastineau and 192 

Frankignoul, 2015).  193 

Most of the state-of-the-art climate models reproduce the structure and magnitude of the NAO reasonably 194 

well (e.g. Davini and Cagnazzo, 2014; Ning and Bradley, 2016; Deser et al., 2017; Gong et al., 2017). 195 

There is no consensus on how large a fraction of the interannual NAO variability is forced externally 196 

(Stephenson et al., 2000; Feldstein, 2002; Rennert and Wallace, 2009). Several such external forcing 197 

mechanisms have been proposed, including SST (Rodwell et al., 1999; Marshall et al., 2001), volcanoes 198 

(Fischer et al., 2007), solar activity (Shindell et al., 2001; Spangehl et al., 2010; Ineson et al., 2011), and 199 

stratospheric influences (Blessing et al., 2005; Scaife et al., 2005), including the quasi-biennial oscillation 200 

(Marshall and Scaife, 2009) and stratospheric water vapour trends (Joshi et al., 2006). Remote SST forcing 201 
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of the NAO originating from as far as the Indian Ocean was proposed by Hoerling et al. (2001) and 202 

Kucharski et al. (2006), while Cassou (2008) proposed an influence of the Madden–Julian Oscillation. In 203 

addition, Blackport and Screen (2020) showed that recent observations suggest that the observed correlation 204 

between surface temperature gradients and circulation anomalies in the middle troposphere have changed 205 

in recent years.  206 

Regarding sea ice, many authors have found an effect of sea ice decline on the NAO (Strong and 207 

Magnusdottir, 2011; Peings and Magnusdottir, 2016; Kim et al., 2014; Nakamura et al., 2015), while others 208 

(Screen et al., 2013; Sun et al., 2016; Boland et al., 2017) do not identify any dependence on changing sea 209 

ice extent. Furthermore, the interaction of changes in the Arctic on midlatitude dynamics is still under debate 210 

(Dethloff et al., 2006; Francis and Vavrus, 2012; Barnes, 2013; Cattiaux and Cassou, 2013; Vihma, 2017).  211 

Atmospheric blocking refers to persistent, quasi-stationary weather patterns characterized by a high-212 

pressure (anticyclonic) anomaly that interrupts the westerly flow in the mid-latitudes. By redirecting the 213 

pathways of mid-latitude cyclones, blockings lead to negative precipitation anomalies in the region of the 214 

blocking anticyclone and positive anomalies in the surrounding areas (Sousa et al., 2017). In this way, 215 

blockings can also be associated with extreme events such as heavy precipitation (Lenggenhager et al., 216 

2018) and drought (Schubert et al., 2014). 217 

A weakening of the zonal wind, eddy kinetic energy, and amplitude of Rossby waves in summer (Coumou 218 

et al., 2015) as well as an increased waviness of the jet stream associated with Arctic warming (Francis and 219 

Vavrus, 2015) in winter have been identified, which may be linked to an increase in blocking frequencies. 220 

Blackport and Screen (2020) argue that observed correlations between surface temperature gradients and 221 

the amplitude of Rossby waves have broken in recent years. Therefore, previously observed correlations 222 

may simply have been internal variability. On the other hand, it has been shown that observed trends in 223 

blocking are sensitive to the choice of the blocking index, and that there is a huge natural variability that 224 

complicates the detection of forced trends (Woollings et al., 2018), compromising the robustness of 225 

observed changes in blocking. A review by Overland et al. (2015) concluded that mechanisms remain 226 

uncertain as there are many dynamical processes involved, and considerable internal variability masks any 227 

signals in the observation record. There is weak evidence that stationary wave amplitude has increased over 228 

the North Atlantic region (Overland et al., 2015), possibly as a result of weakening of the North Atlantic 229 

storm track and transfer of energy to the mean flow and stationary waves (Wang et al., 2017). 230 

The decrease of the poleward temperature gradient will lead to a weakening of westerlies and increase the 231 

likelihood of blockings. On the other hand, maximum warming (compared to other tropospheric levels) will 232 

occur just below the tropical tropopause due to the enhanced release of latent heat, which tends to increase 233 

the poleward gradient, strengthen upper-level westerlies, and affect the vertical stability, thus altering the 234 

vertical shear in mid-latitudes. It is not clear which of these two factors has the largest effect on the jet 235 

streams (Stendel et al., 2020). 236 

State-of-the-art models are generally able to capture the general characteristics of extratropical cyclones 237 

and storm tracks, although many of them underestimate cyclone intensity and still exhibit comparatively 238 

large biases in the Atlantic/European sector (Davini and d’Andrea, 2016; Mitchell et al., 2017). IPCC has 239 

already stated that this is resolution-related (IPCC, 2013; Zappa et al., 2013). In addition, there is evidence 240 

for a correlation of the quality of simulations of cyclones and of blockings (Zappa et al., 2014). 241 
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There is significant natural variability of the atmospheric circulation over Europe on decadal time scales 242 

(Dong et al., 2017; Ravestein et al., 2018). Drivers of circulation changes have been proposed, including 243 

polar and tropical amplification, stratospheric dynamics, and the Atlantic meridional overturning circulation 244 

(AMOC) (Haarsma et al., 2015; Shepherd et al., 2018; Zappa and Shepherd, 2017). For more local changes, 245 

the attribution is more straightforward, where one example is the soil moisture feedback, for which an 246 

enhancement of heat waves due to a lack of soil moisture has been demonstrated (Seneviratne et al., 2013; 247 

Teuling, 2018; Whan et al., 2015).  248 

Räisänen (2019) finds only a small impact of circulation changes on the observed annual mean temperature 249 

trends in Finland, but circulation changes have considerably modified the trends in individual months. In 250 

particular, changes in circulation explain the lack of observed warming in June, the very modest warming 251 

in October in southern Finland, and about a half of the very significant warming in December. 252 

On a more global scale, CMIP5 simulations suggest enhanced drying and consequently an increase of 253 

summer temperatures due to more meridional circulation which would result in extra drying, particularly in 254 

spring. If that is the case, the summer soil moisture feedback would be enhanced (van der Linden et al., 255 

2019; van Haren et al., 2015). Soil drying, for example, under extended blocking situations, would lead to 256 

non-linear interactions between atmosphere and land resulting in further temperature increase (Douville et 257 

al., 2016; Douville and Plazzotta, 2017; Seneviratne et al., 2013; Teuling, 2018; van den Hurk et al., 2016). 258 

2.2  Extreme conditions (current knowledge, and potential future change) 259 

2.2.1 Wind storms  260 

In situ observations allow direct analysis of winds, in particular over sea (e.g., Woodruff et al., 2011). 261 

However, in situ information, especially over land, is often locally influenced, and inhomogeneities make 262 

the straightforward use of these data difficult, even for recent decades. Examples include an increase in 263 

roughness length over time due to growing vegetation or building activities, inhomogeneous wind data over 264 

the German Bight from 1952 onwards (Lindenberg et al., 2012), and “atmospheric stilling” in continental 265 

surface wind speeds due to widespread changes in land use (Vautard et al., 2010). Many studies turn down 266 

direct wind observations and instead rely on reanalysis products (see Sect. 1.1). However, analysis of storm 267 

track activity for longer periods using reanalysis data suffers from uncertainties associated with changing 268 

data assimilation and observations before and after the introduction of satellites, resulting in large variations 269 

across assessments of storm track changes (Chang and Yau, 2016; Wang et al., 2016).  270 

Owing to the large climate variability in the Baltic Sea region, it is unclear whether there is a trend in wind 271 

speed. Results regarding changes or trends in the wind climate are thus strongly dependent on the period 272 

and region considered (Feser et al., 2015a, 2015b). Through the strong link to large-scale atmospheric 273 

variability over the North Atlantic, conclusions about changes over the Baltic Sea region are best understood 274 

in a wider spatial context, considering the NAO. The positioning of the jet stream and storm tracks and the 275 

strength of the north–south pressure gradient in the North Atlantic can largely explain the decadal changes 276 

in 10-m wind speeds in Northern Europe, with low windiness in winters of the 1980s and 2010s and high 277 

windiness of the 1990s (Laurila et al., 2021).   278 
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Recent trend estimates of the total number of cyclones over the northern hemisphere extra tropics during 279 

1979–2010 reveal a large spread across the reanalysis product, strong seasonal differences, and decadal-280 

scale variability (Tilinina et al., 2013; Wang et al., 2016; Chang et al., 2016; Matthews et al., 2016; Gregow 281 

et al., 2020). Common to all reanalysis data sets is a weak upward trend in the number of moderately deep 282 

and shallow cyclones (7 to 11 % per decade for both winter and summer), but a decrease in the number of 283 

deep cyclones in particular for the period 1989–2010. Chang et al. (2016) have reported a minor reduction 284 

in cyclone activity in northern hemisphere summer due to a decrease in baroclinic instability as a 285 

consequence of Arctic temperatures rising faster than at low latitudes. Chang and Yau et al. (2016) also 286 

notice that state-of-the art models (CMIP5) generally underestimate this trend. In northern hemisphere 287 

winter, recent studies claim an increase in storm track activity related to Arctic warming. Recent research 288 

(Feser et al., 2021) reveals no clear trend but reports an increasing similarity over time in reanalyses, 289 

observations, and dynamically downscaled model data. 290 

Despite large decadal variations, there is still a positive trend in the number of deep cyclones over the last 291 

six decades, which is consistent with results based on NCEP reanalyses between 1958 and 2009 over the 292 

northern North Atlantic Ocean (Lehmann et al., 2011). Using an analogue-based field reconstruction of 293 

daily pressure fields over Central to Northern Europe (Schenk and Zorita, 2012), the increase in deep lows 294 

over the region might be unprecedented since 1850 (Schenk, 2015). For limited areas, the conclusions are 295 

rather uncertain. Past trends in homogenized wind speed time series (1959–2015), in both mean and 296 

maximum, have been generally negative in Finland (Laapas and Venäläinen, 2017). 297 

The role of differential temperature trends on storm tracks has been recently addressed, both in terms of 298 

upper tropospheric tropical warming (Zappa and Shepherd, 2017) and lower tropospheric Arctic 299 

amplification (Wang et al., 2017), including the direct role of Arctic sea ice loss (Zappa et al., 2018), and a 300 

possible interaction of these factors (Shaw et al., 2016). The remote and local SST influence has been further 301 

examined by Ciasto et al. (2016), who further confirmed sensitivity of the storm tracks to the SST trends 302 

generated by the models and suggested that the primary greenhouse gas influence on storm track changes 303 

was indirect, acting through the greenhouse gas influence on SSTs. The importance of the stratospheric 304 

polar vortex in storm track changes has received more attention (Zappa and Shepherd, 2017). In an aqua-305 

planet simulation, Sinclair et al. (2020) find a decrease in the number of extratropical cyclones and a 306 

poleward and downstream displacement due to an increase in diabatic heating. 307 

A projection of future behaviour of extratropical cyclones is impeded by the fact that several drivers of 308 

change interact in opposing ways. With global warming, the temperature gradient between low and high 309 

latitudes in the lower troposphere is decreasing due to polar amplification. Near the tropopause and in the 310 

lower stratosphere, the opposite is true, thus implying changes in baroclinicity (Grise and Polvani, 2014; 311 

Shaw et al., 2016; Stendel et al., 2020). An increase in water vapour enhances diabatic heating and tends to 312 

increase the intensity of extratropical cyclones (Willison et al., 2015; Shaw et al., 2016) and contribute to a 313 

propagation further poleward (Tamarin and Kaspi, 2017). The opposite is also true in parts of the North 314 

Atlantic region, for example, south of Greenland. For this region, the N–S gradient is increasing as the 315 

weakest warming in the entire northern hemisphere is over ocean areas south of Greenland. North of this 316 

local minima the opposite is true. The increase in the N-S gradient over the North Atlantic may be 317 

responsible for some GCMs showing an intensification of the low-pressure activity and thereby high wind 318 

speed over a region from the British Isles and through parts of north-central Europe (Leckebusch and 319 

Ulbrich, 2004). 320 
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So, in summary, there is no clear consensus in climate change projections as the extent to which changes in 321 

frequency and/or intensity of extratropical cyclones have an effect on the Baltic Sea region. 322 

Wind storms can also be accompanied by wind gusts (downbursts), potentially causing severe damage. 323 

Wind gusts driven by convective downdrafts or turbulent mixing can also occur during larger-scale wind 324 

storms, like Mauri in 1982 (Laurila et al., 2019). There is limited information on past or future trends 325 

concerning occurrence of wind gusts. 326 

2.2.2 Extreme sea level 327 

The rising global mean sea level poses a major hazard for the population living in the vicinity of the coast 328 

and will compound the risk of coastal floods. The effects of climate change on wind climate and tidal 329 

extremes may lead to further increases in the frequency and intensity of extreme sea levels on top of the 330 

mean sea level rise. Even if the sea level extremes only last a limited time, they are capable of causing 331 

severe damage to the coastal infrastructure and endangering human lives. Likewise, extreme sea levels are 332 

a major threat to coastal areas along the Baltic Sea coast due to flooding and erosion. Hence, sand dunes 333 

may experience large deformations during a single storm.  334 

In the Baltic Sea, extreme sea levels are caused by wind, air pressure (inverse barometric effect), and seiche. 335 

The Danish straits prevent the entrance of tidal waves into the Baltic Sea, and the amplitude of the internal 336 

tides is only a few centimetres. The only exceptions are the south-western Baltic Sea and the eastern Gulf 337 

of Finland, where tides can reach 20 cm (Medvedev et al., 2016). The water exchange between the North 338 

Sea and the Baltic Sea causes about a maximum 1 m variation in monthly mean sea levels (Leppäranta and 339 

Myrberg, 2009). Due to the shape of the Baltic Sea, the highest and lowest sea levels are found at the ends 340 

of the bays, as in the eastern end of the Gulf of Finland, northern end of the Gulf of Bothnia, and in the Gulf 341 

of Riga, whereas the amplitude of variation is smallest in the central Baltic Sea. The Baltic Sea areas with 342 

the largest sea level variations, based on tide gauge data from the period 1960–2010, are shown in Fig. 4 343 

(from Wolski et al., 2014).  344 

In the studies of observed extreme sea levels, no significant trends in extremes exceeding mean sea level 345 

rise have been found, excepting the Gulf of Bothnia. The frequency of extremes has been observed to 346 

increase for some locations. The observed maxima and minima on the Baltic Sea coast along with 100-year 347 

return levels based on interpolated coastal tide gauge observations from the period 1960–2010 were studied 348 

by Wolski et al. (2014). They observed an increase in the yearly number of storm surges (defined as sea 349 

levels 70 cm above zero level of the European Vertical Reference Frame or local mean sea level in Finland 350 

and Sweden). The increase was largest in the Gulf of Finland (Hamina and Narva) and in the Gulf of Riga 351 

(Pärnu). Ribeiro et al. (2014) investigated the changes in extreme sea levels in 1916–2005 from daily tide 352 

gauge records of seven stations in Denmark and Sweden on the Baltic Sea coast, using generalized extreme 353 

value (GEV) and quantile regression methods. The mean sea level rise was removed from the observations. 354 

They observed a statistically significant trend in annual sea level maxima in the Gulf of Bothnia (1.9 355 

mm/year for Ratan and 2.6 mm/year for Furuögrund). For other locations, the maxima could be considered 356 

stationary. Marcos and Woodworth (2017) studied the tide gauge data, concluding that the changes in the 357 

100-year return levels after 1960 in the Baltic Sea were explained by the mean sea level rise.  358 
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There are only few published projections of extreme sea levels in the Baltic Sea. As they are based on a 359 

limited set of climate projections, the extreme values can only be considered preliminary estimates which 360 

will be complemented by other sea level projections in the future. Projected extreme sea levels for the Baltic 361 

Sea coast in 2100 were calculated by Vousdoukas et al. (2016) considering only the effect of the atmosphere 362 

on the sea level (storm surges) while omitting global mean sea level rise and land uplift. The Delft3D sea 363 

level model was forced with eight global climate models from CMIP5 database, and the projected changes 364 

were calculated from ensemble means of model simulations. In 2100, the present-day 100-year storm surge 365 

was projected to take place every 72 years under RCP4.5 and every 44 years under RCP8.5. The ensemble 366 

means of storm surges (return periods from 5 to 100 years) increase along the northern Baltic Sea coast with 367 

time for both RCPs. The increase is largest in the Bothnian Bay and in the Gulf of Finland, reaching about 368 

0.5 m. Along the southern Baltic Sea coast, there is a smaller or no increase in most scenarios. When the 369 

storm surges are averaged over the Baltic Sea coast, the increase in the storm surges of return periods from 370 

5 to 500 years is only 10–20 cm for different scenarios. By 2100, the inter-annual variation in the seasonal 371 

maxima, indicated by the standard deviation, increased by 6 % in RCP4.5 and by 15 % in RCP 8.5. This 372 

indicated that the variations in the maxima might increase more than the 30-year mean, suggesting that the 373 

maxima could have a higher increasing trend than the mean sea level has. The extreme sea levels along 374 

Europe’s coasts, caused by the combined effect of mean sea level, tides, waves, and storm surges, were 375 

studied by Vousdoukas et al. (2017). In the Baltic Sea, the 100-year sea level due to waves and storm surges 376 

was projected to rise 35 cm (average over the Baltic coast) by 2100 in RCP8.5. The rise is largest in the 377 

eastern coast of the Baltic Sea, and the intra-model variation of the 100-year level increases up to 0.6 m in 378 

2100. To increase the confidence in the future projections of storm surges in the Baltic Sea, we must rely 379 

on future research where a larger set of regional and global climate models is used with refined sea level 380 

models. The dependence between extreme sea levels and wind waves has to be assessed when the joint 381 

effect of storm surge and wave setup on the coast is studied. For the Baltic Sea, this dependence should be 382 

included when joint probabilities of compound events of high sea levels and waves are calculated, as is 383 

done in Kudryavtseva et al. (2020). Sea levels are discussed extensively by Weisse et al. (2021). 384 

2.2.3 Warm and cold spells in the atmosphere 385 

Extreme events related to climate change include extended periods with high (or low) temperatures. The 386 

Baltic Sea area is generally less exposed to severe heat spells compared to, for example, southern parts of 387 

Europe. During the last decade, however, record-breaking heat waves have hit the region, namely, those in 388 

2010, 2014, and 2018 (Sinclair et al., 2019; Liu et al., 2020; Baker-Austin et al., 2016; Wilcke et al., 2020). 389 

Because people living in the Baltic Sea region are adapted to a relatively cool climate, high summertime 390 

temperatures pose a significant risk to health in the current climate (e.g., Kollanus and Lanki, 2014; Åström 391 

et al., 2016; Ruuhela et al., 2018, 2021), highlighting the need for measures against overheating of 392 

residential buildings (Velashjerdi Farahani et al., 2021). 393 

The interannual variability and trends in the magnitude, temporal and spatial extent, and frequency of heat 394 

waves in the Baltic Sea drainage basin are mainly driven by large-scale fluctuations in atmospheric 395 

circulation (Sect. 2.1), anthropogenic climate change, and associated regional increases in mean temperature 396 

that exceed the global average warming (BACC I, 2008; BACC II, 2015; Rutgersson et al., 2014; Jaagus et 397 

al., 2014, 2017; Irannezhad et al., 2015; Owczarek and Filipiak, 2016; Aalto et al., 2016; Räisänen, 2017; 398 

SMHI, 2019; Meier et al., 2021). While of particular importance are fluctuations in the occurrence of 399 

blockings and other circulation patterns (Horton et al., 2015; Brunner et al., 2017), other factors such as 400 
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local soil moisture feedbacks (Brulebois et al., 2015; Miralles et al., 2014; Whan et al., 2015; Cahynová 401 

and Huth, 2014; see also Sect. 2.2.5) and solar radiation also play a role. For example, Tomczyk and 402 

Bednorz (2014) showed a clear link between heat waves along the southern coast of the Baltic Sea and 403 

circulation patterns. Furthermore, the 2018 heat wave in Finland was strongly affected by abundant 404 

incoming short-wave radiation due to unusually clear skies (Sinclair et al., 2019; Liu et al., 2020). Regarding 405 

the local/regional amplitude of a heat wave, land cover use may also play a role. For example, several factors 406 

besides the very warm air mass likely contributed to the record high temperature in Finland in 2010 (37.2 407 

°C) (Saku et al., 2011), and in a recent simulation study it was found that replacing a dense urban layout by 408 

a suburban type of land use resulted in small but systematic decreases in air temperatures in July (Saranko 409 

et al., 2020).  410 

A widely used heat wave indicator is the warm spell duration index (WSDI), defined as the annual (or 411 

seasonal) count of days with at least 6 consecutive days when the daily maximum temperature exceeds the 412 

corresponding 90th percentile. If using the period 1961–1990 as a baseline when calculating the 90th 413 

percentiles, as done in Fig. 8 (top left), a statistically highly significant increasing trend across the period 414 

1950–2018 can be found in annual WSDI, when averaged over land areas of the Baltic Sea region (with a 415 

Theil-Sen’s slope of 1.7 per decade). In southern Sweden, the Baltic states, and southern and western 416 

Finland, 30-year averages of annual WSDI were about 14 days per year or more during a recent time span 417 

(1989–2018) (Fig. 8, bottom left), while during the baseline period the annual count there had been about 418 

6–8 on average. Similar results have been obtained by Irannezhad et al. (2019) and Matthes et al. (2015). 419 

The former detected statistically significant increases in annual WSDI near the western coast of Finland for 420 

the period 1961–2011, changes of both positive and negative signs in northern and eastern parts of the 421 

country, and not statistically significant increases elsewhere. The latter considered WSDI in 1979–2013 422 

separately in winter and summer and reported statistically significant increases in summer at several 423 

Swedish and Norwegian weather stations and, in winter, also at Finnish stations. 424 

In the future, heat waves are projected to occur more often and to become longer and more intense. Today’s 425 

warm spells tend to be increasingly frequent, but also increasingly “normal” from a statistical point of view 426 

(Rey et al., 2020). Accordingly, quantitative estimates of the rates of future changes strongly depend on the 427 

selected definition of “heat wave” (Jacob et al., 2014). The mean length and number of heat waves where 428 

the 20 °C daily mean temperature is exceeded have been projected to increase by about one and a half times 429 

in southern Finland under RCP4.5 between the periods 1900–2005 and 2006–2100 (Kim et al., 2018). A 430 

bias-adjusted median estimate for changes in WSDI in Scandinavia for the period 2071–2100, with respect 431 

to 1981–2010, is about 15 days under RCP8.5, with an uncertainty range of about 5–20 days (Dosio, 2016).  432 

Accompanying more frequent and longer warm spells are decreases in the frequency, duration, and severity 433 

of cold spells, based on both observations (Easterling et al., 2016) and model projections (Sillmann et al., 434 

2013; Jacob et al., 2014). Cold winter weather in the Baltic Sea region is closely associated with a negative 435 

phase of NAO and warm conditions in the Greenland region, and this statistical relationship has 436 

strengthened during the recent period of rapid Arctic warming (1998–2015), suggesting that Arctic 437 

influences might intensify in the future, perhaps leading to more unusual and persistent weather events 438 

(Vihma et al., 2020). On the other hand, northerly winds from the Arctic are milder than before (Screen, 439 

2014). A cold winter, with unusually low temperatures like those in southern parts of the Baltic Sea area in 440 

the winter of 2009/10, has become less likely because of anthropogenic changes (Christiansen et al., 2018). 441 
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The role of changes in circulation remains remarkable; they explain about one half of the very significant 442 

warming in December in Finland during the period in 1979–2018 (Räisänen, 2019). 443 

Analogous to WSDI, the cold spell duration index (CSDI) is defined as the annual or seasonal count of days 444 

with at least 6 consecutive days during which the daily minimum temperature is below the corresponding 445 

10th percentile. Because of statistically significant decreases in spatially averaged CSDI over land areas of 446 

the Baltic Sea region during the period 1950–2018 (with a Theil-Sen’s slope of -0.4 per decade), CSDI is 447 

nowadays typically clearly smaller than WSDI (Fig. 8, right). There are regional and seasonal differences, 448 

however. Statistically significant decreases in winter CSDI across the period 1979–2013 have been 449 

widespread in Norway and Sweden, but less prevalent in eastern Finland, while changes in summer have 450 

been small in general (Matthes et al., 2015). It is also worth noting that because of extremely cold weather 451 

in January-February 1985 and particularly in January 1987 (Twardosz et al., 2016) and owing to cold 452 

winters also more recently, results from trend analyses for the occurrence of cold spells can be strongly 453 

affected by the selection of a time period. 454 

The cold spell duration index in the northern subregion of Europe is projected to decrease in the future with 455 

a likely range of from 5 to 8 days fewer per year by 2071–2100 with respect to 1971–2000 (Jacob et al., 456 

2014).  457 

2.2.4 Marine Heat Waves 458 

Marine heat waves are becoming globally more common (Frölicher et al, 2018), and their intensity and 459 

occurrence are projected to increase further in the near future (Oliver et al., 2019). A first documented 460 

marine heat wave event in the Baltic Sea occurred in the summer of 2018, when the surface mixed layer 461 

became extraordinarily warm in many locations. Due to this and an accompanying atmospheric heat wave 462 

in the summer of 2018, large parts of the Baltic Sea were anomalously warm from mid-June to August. 463 

According to the satellite data, SST at the warming peak were up to 27 °C from the Bornholm Sea to the 464 

central eastern and western Gotland Sea, 22–25 °C in the Gulf of Bothnia, and 23–25 °C in the western 465 

parts (Naumann et al., 2018). For the entire Baltic Sea, May to August showed a positive SST anomaly of 466 

4–5 °C. 467 

In the coastal regions, the exceptional warming extended down to the bottom layer and had a significant 468 

impact on marine biogeochemistry (Humborg et al., 2019). According to the long-term measurement at the 469 

coastal region of the Gulf of Finland, the temperature at the bottom (31 m) was higher than 20 °C. That was 470 

the all-time record since 1926. Humborg et al. (2019) showed also that the warming elevated CO2 and CH4 471 

concentration at the bottom considerably. After the actual heat wave event, bottom greenhouse-gas-rich 472 

waters were exposed to the surface due to storm-induced upwelling and, as a final consequence, CO2 and 473 

CH4 fluxes from sea to atmosphere were enhanced.  474 

Knowledge about occurrence and impact of marine heat waves in the Baltic in the future is limited. Instead 475 

of directly analysing changes of marine heat waves, Meier et al. (2019) used climate projections to estimate 476 

how the number of warm SST days and the record-breaking anomalies of summer will change SST in the 477 

future. According to their study, both of these indicators will become more common in the future, but more 478 

important findings are that SST extremes exhibit large variability in time scales of decades and the changes 479 

are manifested in a more pronounced way in open sea areas than coastal regions.  480 
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2.2.5 Drought 481 

The Baltic Sea basin is a region that, in general, has sufficient water resources to support natural ecosystems 482 

and societal needs. Despite this, dry conditions occur from time to time in different parts of the region and 483 

cause meteorological, soil moisture, and hydrological droughts. The main driver of any kind of drought is 484 

a long-term precipitation deficit that might be strengthened by high temperature, winds, low humidity, and 485 

intense water consumption. In the Baltic Sea basin, droughts are strongly connected with blocking processes 486 

in the atmospheric circulation over the Atlantic–European sector (see Sect. 2.1). Drying conditions 487 

frequently connected with extreme temperatures are referred to in Sect. 2.2.3. Change in precipitation during 488 

the 20th century in the Baltic Sea basin has been variable and characterized by an increase in its extreme 489 

characters, also reflected in the river flow regime (see Sect. 2.2.7 and 2.2.9).  490 

There are some tendencies characterizing changes in dry conditions in recent decades. Drought frequency 491 

has increased since 1950 across Southern Europe and most parts of Central Europe with a corresponding 492 

decrease in low runoff. In many parts of Northern Europe, drought frequency has decreased, with an 493 

increase in winter minimum runoff, while in spring and summer months, strong negative trends were found 494 

(decreasing streamflow, shift towards drier conditions) (Stahl et al., 2010; 2012; Poljanšek et al., 2017; 495 

Gudmundsson et al., 2017). There are local and regional studies generally supporting this broader picture 496 

(Valiukas 2011; Przybylak et al., 2007; Stonevičius et al., 2018; Danilovich et al., 2019). However, Bordi 497 

et al. (2009) describe a negative trend of droughts since 2000. 498 

Future projections show that the number of dry days in the southern and central parts of the Baltic Sea basin 499 

will increase in summer (Lehtonen et al., 2014a). The time average near-surface soil moisture in the Baltic 500 

Sea basin during March–May under the RCP8.5 scenario for the period 2070–2099, relative to 1971–2000, 501 

averaged over 26 GCMs will decrease by up to 8 % in the north and up to 4 % in the south part of the basin 502 

(Ruosteenoja et al., 2018). According to Spinoni et al. (2018), the meteorological droughts are projected to 503 

become more frequent and severe by 2041–2070 and 2071–2100 in summer and autumn in the 504 

Mediterranean area, Western Europe, and northern Scandinavia according to RCP4.5, and in the whole 505 

European continent (except Iceland) under RCP8.5 scenario.  506 

The studies of soil moisture droughts showed drought projections ranging between strong drying and 507 

wetting conditions in Central Europe (Orlowsky and Seneviratne, 2013).  508 

In hydrological regime streamflow, droughts will become more severe and persistent in many parts of 509 

Europe due to climate change, except for northern and north-eastern parts of Europe. In north-eastern 510 

Europe, including the Baltic countries, flow deficits in the non-frost season show a declining trend, with 511 

reductions in deficit volumes of up to 60 % and more by the end of current century (Forzieri et al., 2014). 512 

The decrease of drought magnitude and duration is expected for Central and Northern Europe (except 513 

southern Sweden) according to Roudier et al. (2016). This reduction of low flow duration and magnitude is 514 

mainly caused by less snowfall and more precipitation for areas with low flows in winter and by a general 515 

increase of rainfall for areas with low flows in summer (Vautard et al., 2014).  516 

On the other hand, Prudhomme et al. (2014), using several climate and hydrological models, find a general 517 

increase of hydrological droughts over Europe, but they focus on less extreme droughts, and use RCP 8.5, 518 

at the end of the century. The runoff in late spring and summer is likely to decrease (thus an increase of 519 

probability of hydrological droughts) in most of the basin, due to earlier snowmelt, increased 520 
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evapotranspiration, and possibly, particularly in the southern parts, reduced summer precipitation 521 

(Räisänen, 2017). Increasingly severe river flow droughts are projected for most European regions, except 522 

central-eastern and north-eastern Europe (Cammalleri et al., 2020). Climate change scenarios project on 523 

average a small decrease in the lowest water levels during droughts in Finland (Veijalainen et al., 2019). 524 

2.2.6 Sea ice seasons 525 

Maximum Ice extent of the Baltic Sea (MIB) is one of the essential variables describing climate change and 526 

variability in the Baltic Sea. In an average winter, the maximum annual ice extent is 165,000 km2, indicating 527 

that the Bay of Bothnia, coastal areas of the Bothnian Sea, the Archipelago Sea, the Eastern Gulf of Finland, 528 

and the Bay of Riga are ice covered (BACC II, 2015; Meier et al., 2021). During extreme cold conditions, 529 

all the Baltic Sea sub-basins can be partly ice covered, and during the mildest winter, only the Bay of 530 

Bothnia is ice covered. Based on the MIB time series, which dates back to 1720, Seinä and Palosuo (1996) 531 

classified ice winters according to ice extent. Years with MIB less than 81,000 km2 were classified as 532 

extremely mild ice winters, and MIB larger than 383,000 km2 as extremely severe ice winters. Here we 533 

discuss the drivers of ice winter extremes and their observed and expected changes. In the parallel BEAR 534 

report by Meier et al. (2021), an analysis of observed and projected sea ice changes more broadly is 535 

provided.  536 

Annual maximum ice extent is a cumulative indicator of the severity of a winter. It is largely driven by the 537 

large-scale atmospheric circulation, and its inter-annual variability is well correlated with the NAO index 538 

(Omstedt and Chen, 2001; Vihma and Haapala, 2009). During winters with NAO index > + 0.5, the average 539 

MIB is 121,000 km2, with a range from 45,000 to 337,000 km2, while during winters with NAO index < - 540 

0.5, the average MIB is 259,000 km2, with a range from 150,000 to 405,000 km2. Extremely mild ice winters 541 

(MIB < 60,000 km2) have occurred in 1930, 1961, 1989, 2008, 2015, and 2020. According to Uotila et al. 542 

(2015), the winter of 2015 was the first winter when the Bay of Bothnia was definitely only partly ice 543 

covered. That winter was dominated by strong south-westerlies associated with a record high NAO index. 544 

This enhanced the atmospheric large-scale transport of warm Atlantic air masses to the Baltic Sea region. 545 

In addition, anomalous low ice extent was partly due to higher than average downward long-wave radiation 546 

because of increased cloudiness which decreased heat loss and cooling of the ocean surface layer. Also, 547 

episodes of warm Foehn winds due to cyclones passing over the Scandinavian mountains were observed in 548 

that winter. Uotila et al. (2015) concluded that extremely mild winters were more common during the 1985–549 

2015 period than in any other 30-year period since 1720. After 2015, only one winter has been average in 550 

terms of MIB. The others are classified as mild or extremely mild ice winters. The winter of 2020 was an 551 

all-time record low ice winter. In that winter, central parts of the Bay of Bothnia were again ice free and the 552 

MIB was only 37,000 km2. Extremely severe winters (MIB > 383,000 km2) have not been observed since 553 

1987. During the last 30 years, the most severe winter occurred in 2011, which caused major problems and 554 

economic losses for marine traffic (see Sect. 2.3.4). 555 

Ongoing changes towards a milder climate demand a revision of the Seinä and Palosuo (1996) definition of 556 

extremely mild and severe ice winters. They choose to classify 11 % of the lowest MIBs as extremely mild 557 

winters. Correspondingly, 11 % of the largest MIBs were counted as an extremely severe winter. If we are 558 

utilizing the same thresholds for the last 30 years’ data, limits for the extremely mild and severe winters 559 

would be ~ 50,000 km2 and ~ 240,000 km2, respectively. 560 
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According to climate projections, the Baltic Sea ice will experience considerable shrinking and thinning 561 
on average in the future (BACC I, 2008; BACC II, 2015). This is particularly clear for the Bothnian Sea, 562 
Bothnian Bay, and Gulf of Finland. Changes in mean sea ice conditions will also reflect on sea ice 563 
extremes. In general, present severe ice seasons will become rare and present extreme mild ice season 564 
more common but changes in sea ice extremes have not been examined in details yet. 565 

2.2.7 Precipitation 566 

Precipitation extremes in the Baltic Sea region are mainly related to i) synoptic-scale mid-latitude low-567 

pressure systems and ii) convective precipitation events associated with meso-scale convective systems or 568 

resulting from single intense cloudbursts. Additionally, sea-effect snowfall events can generate large 569 

amounts of snow in coastal areas downstream from the Baltic Sea (Sect. 2.2.8). Climatologically, summer 570 

is the season with the strongest convective activity, and this is also the season with the strongest cloudbursts. 571 

Precipitation extremes associated with low-pressure systems are most frequent in fall and winter when the 572 

large-scale atmospheric circulation is favourable for bringing low-pressure systems towards Northern 573 

Europe. 574 

High-resolution gridded data sets that may be used for evaluation of climate model performance for 575 

precipitation include: PTHBV covering Sweden at 4 km grid (Johansson and Chen, 2005); the Finnish data 576 

set at 1 km and 10 km grid by Aalto et al. (2016); the REGNIE data set at 1 km grid covering Germany 577 

(Rauthe et al., 2013); CPLFD-GDPT5 for Poland at 5 km (Berezowski et al., 2016); and seNorge2 for 578 

Norway at 1 km grid (Lussana et al., 2019). Another recent data set is the joint product consisting of PTHBV 579 

data in combination with precipitation estimates from radar data over Sweden resulting in the 4x4 km, 1 580 

hourly resolution HIPRAD (HIgh-resolution Precipitation from gauge-adjusted weather RADar) data set 581 

covering 2009–2014 (Berg et al., 2016). Finally, it is noted that these national data sets are derived using 582 

slightly different methods, implying that they cannot directly be compiled and used as one high-resolution 583 

data set for the entire Baltic Sea region. 584 

Representing the strong spatial and temporal variability of precipitation constitutes a true challenge for 585 

climate models, and careful evaluation against observations is key before the models can be applied. 586 

Typically, large-scale features such as the total precipitation volume over the Baltic Sea region are relatively 587 

well captured by climate models even at coarser resolution, as shown for a regional climate model at 50 km 588 

resolution by Lind and Kjellström (2009). However, such coarse-scale climate models are limited in their 589 

ability to reproduce fine-scale details of the observed precipitation climate. Higher resolution, for instance 590 

in the EURO-CORDEX ensemble (12.5km grid spacing), improves this (e.g. Prein et al., 2016), but spatial 591 

details are still too coarsely represented to adequately address precipitation over complex topography (e.g. 592 

Pontoppidan et al., 2017). In addition to spatial details, the simulation of the diurnal cycle is also often 593 

flawed in coarse-scale models (e.g. Walther et al., 2013). With even higher horizontal resolution, so-called 594 

convection-permitting models with grid spacing of a few kilometres are found to improve the simulation of 595 

both spatial and temporal features of precipitation (e.g. Belušić et al., 2020). Importantly, this also involves 596 

the representation of extreme events as they are much more capable of representing high-intensity rainfall 597 

than their coarser-scale counterparts (e.g. Kendon et al., 2012; Lenderink et al., 2019; Lind et al., 2020). 598 

For an example see Fig. 5, which shows how a convection-permitting model improves the representation of 599 

precipitation over Sweden. 600 
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According to BACC I (2008) and BACC II (2015), precipitation trends in the Baltic Sea basin over the past 601 

100 years have varied in time and space. Examples exist of both increasing and decreasing trends in different 602 

areas for different periods and seasons. Positive trends were detected for the cold part of the year for 603 

Fennoscandia by Benestad et al. (2007), and Estonia, Latvia, and Lithuania by Jaagus et al. (2018). Along 604 

with warming it is also noted that the fraction of snowfall in relation to total precipitation is decreasing with 605 

time (Hynčica and Huth, 2019; Luomaranta et al., 2019). 606 

Increasing intensity of precipitation events resulting from the larger water-holding capacity of a warmer 607 

atmosphere is an expected impact of climate change (Bengtsson, 2010). Based on European E-OBS data, 608 

Fischer and Knutti (2016) demonstrate that heavy daily precipitation, defined as the 99.9th percentile that 609 

roughly corresponds to a 1 in 3 years event, has become 45 % more frequent comparing the last 30 years 610 

with the preceding 30 years. For even more extreme precipitation events like 1 in 10, 20, or even 50 years, 611 

the large variability makes it difficult to draw any firm conclusions about changes, especially for small areas 612 

with only a few observation stations. For example, Olsson et al. (2017a) found no significant trend in annual 613 

maxima based on Swedish gauge data from 1880 to 2017, even when data from gauges across the whole 614 

country were used. For less intense events such as the 90th, 95th and 99th percentiles of daily precipitation 615 

or the total number of days with more than 10 mm of precipitation, a number of studies have reported on 616 

increasing trends in Europe (e.g. Donat et al. 2016) or parts of the Baltic Sea region for different seasons 617 

(e.g. BACC I (2008) and BACC II (2015) and references therein).  618 

Climate projections of future climate show increasing precipitation in Northern Europe, including the Baltic 619 

Sea region (IPCC, 2013; BACC I; BACC II, 2015). Southern Europe, on the other hand, is projected to 620 

receive less precipitation, and as the border line between increasing and decreasing precipitation moves 621 

from the south in winter to the north in summer, there are some models that project less precipitation in 622 

parts of the Baltic Sea region in summer (Christensen and Kjellström, 2018). In addition to changes in mean 623 

precipitation, projections show a similar north–south pattern of changes in wet‐day frequency with increases 624 

in the north and decreases in the south (Rajczak et al., 2013). Regardless of the sign of change in seasonal 625 

mean precipitation, heavy rainfall is projected to increase in intensity for most of Europe, including the 626 

Baltic Sea region (Nikulin et al., 2011; Rajczak et al., 2013; Christensen and Kjellström, 2018), as illustrated 627 

in Fig. 6. Snowfall is projected to decrease on an annual mean basis, but in winter, daily snowfall amounts 628 

and extreme events may increase (Danco et al., 2016). Precipitation intensities are projected to increase at 629 

durations ranging from sub-daily to weekly. Martel et al. (2020), based on three large ensembles, including 630 

one with a high-resolution regional climate model, concludes that increases in 100-year return values of 631 

annual maximum precipitation are stronger at sub-daily time scales than for 1-day or 5-day events. Newly 632 

developed convection-permitting regional climate models have been shown to sometimes yield different 633 

climate change signals for extreme precipitation events compared to coarser scale models (> 10 km grid 634 

spacing). For instance, Kendon et al. (2012) showed stronger increases in summertime intense precipitation 635 

in a 1.5 km model compared to a 12 km one for the southern UK. Similarly, Lenderink et al. (2019) showed 636 

a stronger increase for intense precipitation in a number of summer months when applying a synthetic 637 

warming signal of 2 °C to the large-scale boundary conditions. Until now, such models have not been 638 

applied for climate change studies of the Baltic Sea region and it is not clear what the response to warming 639 

would be. 640 

Stronger precipitation extremes associated with a warmer climate can have major impacts on society. Large 641 

amounts of precipitation are closely associated with flooding, which is common in the Baltic Sea region. 642 
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More intense cloud bursts are closely associated with urban flooding but also with adverse effects on 643 

agriculture and infrastructure in rural areas. Stronger climate change signals in recently developed 644 

convection-permitting models compared to previous state-of-the-art models can have major impacts on the 645 

provision of climate services and advice in the context of climate change adaptation. 646 

2.2.8 Sea-effect snowfall 647 

The sea-effect snowfall is typically generated in the early winter when thick cold air masses flow over the 648 

relatively warm open water basin. The warm water heats the cold air above the water and acts as a constant 649 

source of heat and moisture leading to convection. The rising air generates bands of clouds, which quickly 650 

grow into snow clouds. Snowfall is enhanced when the moving air mass is uplifted by the orographic effect 651 

on the shores or by the convergence of air near the coast as it packs air and forces it to rise, inflating 652 

convection (Savijärvi, 2012). The highest precipitation levels occur over the sea close to the coast 653 

(Andersson and Nilsson, 1990). With suitable wind direction, these snowbands can bring heavy snowfalls 654 

to the coastal land area. 655 

The sea-effect snowfall is very sensitive to the wind direction because a long fetch over the water body is 656 

required (Laird et al., 2003). On the Baltic Sea, the most favourable wind directions vary from north to 657 

north-east (Jeworrek et al., 2017) due to the cold air outbreaks from the north-eastern continent. 658 

Nevertheless, for the two major bays (the Gulf of Bothnia and the Gulf of Finland), the sea-effect snowfall 659 

can occur on any coast with cold air outbreaks. Favourable conditions for the development of convective 660 

snowbands include an optimum strong wind, large air-sea temperature difference, low vertical wind shear, 661 

high atmospheric boundary layer height, and favourable wind directions (Jeworrek et al., 2017; Olsson et 662 

al., 2020).  663 

Sea-effect (lake- or bay-effect) snowstorms may disrupt several sectors of society and can cause damage 664 

costing millions of euros (Juga et al., 2014). Intense and prolonged sea-effect snow events can produce tens 665 

of centimetres of snow accumulation and last for days. In Northern Europe, the transport systems are most 666 

impacted by winter extremes, such as snowfall, cold spells, and winter storms, by increasing the number of 667 

vehicle accidents, injuries, and other damage as well as greatly increasing travel times (Vajda et al., 2014; 668 

Groenemeijer et al., 2016). Critical infrastructures are affected by disturbances in the emergency and rescue 669 

services as well as roof and tree damage and failures in power transmission due to heavy snow loading. 670 

Road maintenance and transportation of snow to disposal sites if there is not enough space for snow storage 671 

along the streets can be costly (Keskinen, 2012). 672 

The impacts of a sea-effect snowfall event depend on its intensity and duration as well as on the location. 673 

In Stockholm (November 2016, ~40 cm of snow accumulation) and Gävle (December 1998, ~100 cm) in 674 

Sweden, public transport was affected; buses, trains and flights were late or cancelled and cars were trapped 675 

on roads. Also, the Danish island of Bornholm was overwhelmed by ~140 cm deep snowdrifts in December 676 

2010. As the snowfall lasted for several days, the island ran out of places to move the snow. A sea-effect 677 

snowfall in the Helsinki metropolitan area in Finland in February 2012 (~5–10 cm, Juga et al., 2014) caused 678 

severe pile-ups on the main roads, with hundreds of car accidents and dozens of injured persons. On the 679 

other hand, no damage or accidents were reported due to a much larger snowfall accumulation, 73 cm of 680 

new snow in less than 24 hours, in a small municipality of Merikarvia, on the western coast of Finland, in 681 

January 2016 (Fig. 7, Olsson et al., 2017b, 2018). 682 
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Our current knowledge is mainly based on studies from the Great Lakes in North America (Wright et al., 683 

2013; Cordeira and Laird, 2008; Laird et al., 2009, 2003; Niziol et al., 1995; Hjelmfelt, 1990). For the Baltic 684 

Sea there is an increasing number of studies concerning the formation (Olsson et al., 2017b; Mazon et al., 685 

2015; Savijärvi, 2015; Savijärvi, 2012; Andersson and Nilsson, 1990; Gustafsson et al., 1998) and statistical 686 

analysis (Jeworrek et al., 2017; Olsson et al., 2020) of sea-effect snowfalls, as well as the effects of excess 687 

snowfall on society (Juga et al., 2014; Vajda et al., 2014). 688 

Using simulations conducted with the regional climate model RCA4 for the period 2000–2010, 4 to 7 days 689 

a year showed favourable conditions for snowband formation in the western Baltic Sea area and 3 days per 690 

year in the eastern Baltic Sea area (Jeworrek et al., 2017; Olsson et al., 2020). A good physical 691 

understanding is essential if we want to assess potential changes in frequency and intensity in the future. 692 

Based on simple physical reasoning, the probability of the events might increase or decrease due to climate 693 

change. The ice-cover season is becoming shorter in different parts of the Baltic Sea, and the annual 694 

maximum ice extent is projected to decrease (BACC II, 2015; Luomaranta et al., 2014, Höglund et al., 2017; 695 

see also Sect. 2.2.6), extending the time period when convective snowbands can form. In addition, 696 

wintertime precipitation amounts are increasing (Sect. 2.2.7). On the other hand, on an annual mean basis, 697 

conditions might become less favourable for sea-effect snowfall due to a shorter thermal winter 698 

(Ruosteenoja et al., 2020) and a smaller share of snowfall compared to rain in the warming climate (Sect. 699 

2.2.7). 700 

The sea-effect snowfall events typically have smaller temporal and spatial scales than what is covered by 701 

the observational network and resolved by climate models. The high-resolution ERA5 data were used in a 702 

case study for January 2016. The preliminary results were promising towards the use of reanalysis data over 703 

sea, but the data cannot produce intensive enough convective snowfall over land (Olsson et al., 2018). 704 

Newly developed convection-permitting regional climate models (see Sect. 2.2.7), in turn, open up new 705 

possibilities to assess the future evolution of the probability of the occurrence. 706 

2.2.9 River floods 707 

River flooding affects more people worldwide than any other natural hazard. River floods often result in 708 

inundations, which means that the water level in the river exceeds the safe line and water floods to the 709 

adjacent territories. The flood risks are affected by global warming and large-scale and regional changes 710 

in the water cycle. In the Baltic Sea basin, the scale of spring floods is affected by precipitation, snow-711 

water accumulation prior to freshet, depth of frozen soil, soil wetness since the previous autumn, the 712 

presence of ice crust before flooding, and the combination of flood waves, among other things.  713 

A detailed assessment of climate change of river floods for Northern Europe was provided in BACC I 714 

(2008) and BACC II (2015). Estimates of annual streamflow in the Baltic Sea basin showed trends towards 715 

increase (Hisdal et al., 2010; Wilson et al., 2010). This has been confirmed for Latvian rivers; the trend was 716 

statistically significant for many rivers, including Daugava (Klaviņš et al., 2008; Kļaviņš and Rodinov, 717 

2008). However, some studies show a tendency for a decrease in annual discharge, particularly in the 718 

southern catchments (Hansson et al., 2011; Gailiuš et al., 2011).  719 

Most studies have detected positive trends with increasing streamflow in winter months in most catchments 720 

of the Baltic Sea basin (Stahl et al., 2010; Hisdal et al., 2010; Reihan et al., 2007). A tendency of spring 721 
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streamflow decreasing has been reported for the east Baltic states (excluding Russia and Belarus) by Reihan 722 

et al. (2007). Trends in the annual maximum and minimum discharges for the major rivers Daugava, 723 

Lielupe, Venta, Gauja, and Salaca indicate a statistically significant decrease in maximum discharge 724 

(Klaviņš et al., 2008; Kļaviņš and Rodinov, 2008). The same tendencies were found for the Daugava and 725 

Neman rivers in the Belarussian part of the Baltic Sea basin (Danilovich et al., 2007). 726 

After the last BACC publication in 2015 there are only a few studies devoted to the past hydrological regime 727 

changes. Arheimer and Lindström (2015) concluded that the observed anomalies in annual maximum daily 728 

flow for Sweden were normally within 30 % deviation from the mean of the reference period. There were 729 

no obvious trends in the magnitude of high flow events over the past 100 years. There was a slight decrease 730 

in flood frequency, although in a shorter perspective it seems that autumn floods have increased over the 731 

last 30 years. The flood decrease is connected with seasonality change in the study region. Changes in flood 732 

time occurrence in Europe were also established by Blöschl et al. (2017). In the Baltic Sea region, they 733 

detected floods shifting from late March to February due to the earlier snow-melting, driven by temperature 734 

increases in the region and a decreasing frequency of Arctic air mass advection (see Sect. 2.1). 735 

The number of severe floods has increased significantly since the 1980s in the Nemunas River delta. The 736 

floods occur often in spring and winter, but the lifetime of individual floods has become shorter 737 

(Valiuškevičius et al., 2018). No significant long-term trends in annual streamflow have been found in 738 

north-west Russia (Nasonova et al., 2018; Frolova et al., 2017) or Belarus (Partasenok, 2014). Meanwhile, 739 

the intra-annual distribution of runoff has changed significantly during the last decades. In particular, runoff 740 

during winter low-flow periods has increased significantly while spring runoff and floods during snow-melt 741 

have been decreasing due to the exhausted water supply in snow before spring. However, the general pattern 742 

of described changes in water regime varies from year to year due to the increasing and decreasing 743 

frequency of extreme flow events. 744 

For future climate, a decrease of annual mean (Latvia, Lithuania, and Poland) and seasonal streamflow 745 

according to the SRES scenario A1B, A2, and B2 was projected for the rivers in Norway and Finland 746 

(Beldring et al., 2008; Veijalainen et al., 2010; Apsīte et al., 2011; Kriaučiūnienė et al., 2008; Szwed et al., 747 

2010), and an annual streamflow increase by 9–34 % has been projected for Denmark (Thodsen et al., 2008; 748 

Jeppesen et al., 2009). Large uncertainties in the future hydrological regime were reported for Sweden 749 

(Yang et al., 2010; Olsson et al., 2011). Alfieri et al. (2015) showed positive changes in mean flow in 750 

Northern and Eastern Europe.  751 

Significant negative changes in maximum flow are mainly located in north-eastern Europe, including the 752 

Baltic countries, Scandinavia, and north-western Russia. According to Thober et al. (2018), in Northern 753 

Europe, floods will decrease by up to 5 % under 3 °C global warming and high flows increase up to 12 %. 754 

A decrease of floods in this region has been projected in several studies (Arheimer and Lindström, 2015; 755 

Alfieri et al., 2015; Roudier et al., 2016).  756 

According to Olsson et al. (2015), moderate changes in annual mean flow and a significant decrease of early 757 

spring discharge peaks by 2051–2090 are expected in Finland. A significant decrease in the magnitude of 758 

spring floods and a significant increase in autumn floods are shown for Sweden (Arheimer and Lindström, 759 

2015). For spring floods, the trend obtained using two climate projections indicates a 10–20 % reduction 760 

by the end of the century compared to the 1970s. For autumn floods, the trend was in the opposite direction, 761 
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with 10–20 % higher magnitudes by the end of the century. Roudier et al. (2016) established the relatively 762 

strong decrease in flood magnitude in parts of Finland, north-west Russia and northern Sweden, whereas in 763 

southern Sweden and some coastal areas in Norway, increases in floods are projected. Northern streams in 764 

Finland are predicted to lose much of the seasonality of their flow regimes by 2070 to 2100, which is 765 

explained by projected air temperature increase and maximal flow decrease (Mustonen et al., 2018). The 766 

increase of winter and decrease of spring streamflow has been projected for four main river basins in Belarus 767 

(Western Dvina, Neman, Dnepr, and Pripyat` rivers) by Volchek et al. (2017). The streamflow in the east 768 

of the Baltic Sea basin (the Western Dvina River within Russia and Belarus) will be characterized mostly 769 

by a decrease of mean streamflow in the upper stream and an increase in the lower part of the river basin. 770 

The projected maximal streamflow is expected to decrease, with the largest changes in the lower part of the 771 

river basin up to 25 % (Danilovich et al., 2019).   772 

However, there are studies opposing this finding. There are slight increases of floods in some parts of 773 

Sweden and Norway and in north-eastern Europe, according to Donnelly et al. (2017). High runoff levels 774 

are found to increase over large parts of continental Europe, increasing in intensity, robustness, and spatial 775 

extent with increasing warming. 776 

The increase of winter runoff and peak discharges was projected by Kasvi et al. (2019); the most significant 777 

changes are expected in wintertime – by 20–40 % to 2050–2079 in south-western Finland. The increases in 778 

floods are projected by Roudier et al. (2016) in southern Sweden and some coastal areas in Norway. Almost 779 

everywhere, the increase in 100-year floods (QRP100) is stronger than the 10-year floods (QPR10). 780 

2.2.10 Extreme waves  781 

It is important to better understand extreme ocean waves as a natural hazard in the Baltic Sea so that society 782 

can adapt and implement safety measures. Vertical motions on the ocean surface consist of an extensive 783 

spectrum of frequencies and periods (Munk, 1950; Holthuijsen, 2007). Here we focus on the wind-generated 784 

waves and mainly on the significant wave height representing the average height of the highest third of the 785 

waves. Significant wave height serves as an indicator when discussing extreme waves; however, the highest 786 

individual wave in a wave record is 1.6–2.0 times higher than significant wave height (Björkqvist et al., 787 

2018; Pettersson et al., 2018). Some ambiguity exists when it comes to which sea states can be called 788 

extreme (Hansom et al., 2015) because locally higher wave heights in not particularly stormy conditions 789 

can lead to damage and fatalities and may become labelled in the media as extreme, giant, freak, monster, 790 

or rogue waves. Rogue waves are typically defined as a maximum wave height of more than twice the 791 

significant wave height.  792 

The main drivers of extreme wave conditions are high-wind-speed events and circulation patterns leading 793 

to sustained wind direction over a fetch of water that varies depending on the location. On 12 January 2017, 794 

an intensive low-pressure system generated a wave in the northern Baltic Sea referred to in the media as a 795 

“monster wave” more than 14 m high, equalling or exceeding the previous record from 22 December 2004 796 

(EUMETSAT, 2017; Björkqvist et al., 2018). Significant wave heights measured around 8 m according to 797 

the Finnish Meteorological Institute (FMI). Even higher waves with significant wave heights up to 9.5 m 798 

have been estimated to occur in the northern Baltic Proper during the wind storm Gudrun in January 2005 799 

(Soomere et al., 2008; Björkqvist et al., 2018). A high-resolution numerical model study for the time period 800 

1965 to 2005 (Björkqvist et al., 2018) showed a 99.9th percentile for significant wave height in the Baltic 801 
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Sea of 6.9 m. They found 45 unique extreme wave events with modelled significant wave height above 7 802 

m during the 41-year simulation. Twelve of them had a maximum above 8 m, six exceeded 9 m, and one 803 

event showed significant wave height over 10 m. Extreme waves in the Baltic Sea can have a significant 804 

impact on sea level dynamics and coastal erosion, which is also discussed further in Weisse et al. (2021). 805 

Many studies have been conducted to characterize the present-day variations in the wave fields using 806 

measurements (e.g. Kahma et al., 2003; Pettersson and Jönsson, 2005; Broman et al., 2006) and using 807 

modelling (e.g. Jönsson et al., 2003; Räämet and Soomere, 2010; Björkqvist et al., 2018) also describing 808 

the seasonal dependence (e.g. Soomere, 2008; Räämet and Soomere; 2010). Björkqvist et al. (2018) showed 809 

that 84 % of wave events with significant wave heights above 7 m occurred during November through 810 

January. The areas of highest significant wave heights are found in the southern and eastern Baltic Proper 811 

(Björkqvist et al., 2018). This is consistent with the typical synoptic weather pattern of middle latitudes but 812 

modulated by bathymetry and fetch conditions, as well as meso-scale weather effects (Soomere, 2003, 813 

Nilsson et al., 2019). The pattern of 100-year return-value estimates of significant wave height, based on 814 

10 km resolution simulations for 1958–2009, is represented here by the 99.9th percentile significant wave 815 

height in Fig. 3 (in agreement with Aarnes et al., 2012; Björkqvist et al., 2018; Nilsson et al., 2020). The 816 

northern basins typically experience reduced wave heights, both due to the shorter fetch conditions and to 817 

the occurrence of sea ice limiting the wave growth during the season when the highest waves otherwise can 818 

be expected to occur (e.g. Tuomi et al., 2019; Nilsson et al., 2019). 819 

Only a few studies have also been conducted on near-shore extreme waves; for example, Gayer et al. (1995), 820 

Paprota et al. (2003), and Sulisz et al. (2016) discussed the formation of extreme waves and wave events 821 

along Polish and German coasts and reported a large number of freak-type waves. Although significant 822 

progress has been made in understanding and predicting ocean extremes and freak waves (e.g. Cavaleri et 823 

al., 2017; Janssen et al., 2019), a practical definition using usually more well-predicted parameters, such as 824 

significant wave height, is presently used in warnings (Björkqvist et al., 2018) based on high-resolution 825 

wave modelling. The horizontal resolution of wave modelling hindcast studies for the Baltic Sea has varied 826 

from about 1.1–1.85 km to about 22 km (Nilsson et al., 2019; Björkqvist et al., 2018; Jönsson et al., 2003). 827 

The small-scale spatial and time variations are often missed by the models, and coarse resolution (6–11 km) 828 

may not provide sufficient accuracy to study extremes (Larsén et al. 2015; Björkqvist et al., 2018). 829 

Present-day trends from long-term in situ observations and wave modelling are inconclusive and possibly 830 

site-specific (e.g. Soomere and Räämet, 2011b). From reviewing multiple studies discussing changes and 831 

trends in significant wave heights at Baltic Sea sites across time periods of more than 30 years, there is often 832 

no clear trend in severe wave heights, or the trends are small and explained by the large natural variability 833 

in the wind climate (Sect. 2.1 and 2.2.1) (e.g. Räämet et al., 2010, Soomere et al., 2012; Soomere and 834 

Räämet, 2011a). Trends in mean wave height are small but statistically significant (0.005 m/year for 1993–835 

2015) from satellite altimetry (Kudryatseva and Soomere, 2017), but higher quantiles behaved less 836 

predictably. A spatial pattern with an increase in the central and western parts of the sea and a decrease in 837 

the east was observed. 838 

Future changes to the Baltic Sea extreme wave characteristics are found to be uncertain and only a few 839 

studies exist. For the wave field in a future climate, Mentaschi et al. (2017) reported an increase of extreme 840 

wave energy flux (on average 20 %, with maxima up to 30 %). They used a global wave model 841 

(approximately 1.5-degree resolution) driven by an ensemble of global coupled models from the CMIP5 842 
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under the high emission RCP scenario 8.5. They suggest that the changes are caused by changes in the NAO 843 

index. Groll et al. (2017) analysed wave conditions under two IPCC AR4 emission scenarios (A1B and B1) 844 

by running a higher-resolution wave model and implementing effects of sea ice through ice-covered grid 845 

cells if ice thickness was larger than 5 cm. They found higher significant wave height in the future for most 846 

regions and simulations. Median wave results showed temporally and spatially consistent changes 847 

(sometimes larger than 5 % and 10 %), whereas extreme waves (99th percentile) showed more variability 848 

in space and among the simulations, and these changes were smaller (mostly less than 5 % or 10 %) and 849 

more uncertain. The changes reported were attributed to higher wind speeds and also to a shift to more 850 

westerly winds. The sea ice was clearly reduced in the Bothnian Sea, Bothnian Bay, and Gulf of Finland in 851 

the simulations, but changes in the 30-year mean of annual wind speed maximum showed a decrease in the 852 

northern Baltic Sea. Multi-decadal and the inter-simulation variability illustrated the uncertainty in the 853 

estimation of a climate change signal (Dreier et al., 2015; Groll et al., 2017). 854 

Simulations of sea ice variations in a warmer climate may be one of the most important factors determining 855 

the future wave field. If significant reduction of ice in the northern Baltic Sea basin occurs, changes to the 856 

wave field are likely unless compensated for by changing wind patterns (Groll et al., 2017). Zaitseva-857 

Pärnaste and Soomere (2013) showed significant correlation between energy flux and ice season. 858 

Comparing ice-free and ice-time included statistics, ice-free conditions increased significant wave heights 859 

on the order of about 0.3 m both for mean values and 99th percentile values (Tuomi et al. 2011, Björkqvist 860 

et al., 2018). Fairly small anthropogenic effects for the wave fields are expected for the next century, but 861 

results are uncertain and depend on changes in both wind climate (Sect. 2.1 and 2.2.1) and ice conditions 862 

(Sect. 2.2.6 and 2.2.11). 863 

2.2.11 Ice ridging 864 

Sea ice extremes depend on the temporal and spatial scale under consideration, but more importantly on 865 

geographical location and climate conditions – 5 m thick pressure ridges are common off the Hailuoto island 866 

in the Bay of Bothnia every winter, but rarely present in the southern Baltic Sea. The society’s capacity to 867 

manage sea-ice-related hazards also depends on the likelihood of occurrence of sea ice. In some regions, 868 

even a thin ice cover can cause large economic losses to society if the sea ice freezing occurs in a region 869 

where marine traffic is operated by non-ice-class vessels. On a local scale, the predominant feature of drift 870 

ice is its large variation in thickness. Due to the differential ice motion, pack ice experiences opening, 871 

closing, rafting, and ridging. In the Baltic Sea, the thickest ice, that is, pressure ridges, can be 30 m thick, 872 

but typically they are 2–5 m thick (Leppäranta and Myrberg, 2009; Ronkainen et al., 2018). After initial 873 

formation of ridges, they remain in the pack ice as obstacles for shipping. Ridges are formed when pack ice 874 

experiences convergent motion. In the Baltic Sea, this is common when pack ice is drifting against the fast 875 

ice. In those coastal boundary zones (Oikkonen et al., 2016), mean ice thickness can be half a metre thicker 876 

than in the pure thermodynamically grown level ice in the fast ice zone (Ronkainen et al., 2018). 877 

During the convergent motion, pack ice experiences compression and its internal stress increases. Internal 878 

stress, also called ice pressure or ice compression, depends on the strength of wind and currents but also on 879 

ice thickness, floe geometry, and cumulative area of coherent ice region in motion (Leppäranta, 2011). Ice 880 

motion, concentration, thickness, and internal stress of pack ice are strongly coupled. Internal stress of pack 881 

ice, which reduces ice motion, increases non-linearly with ice concentration and thickness. In an ultimate 882 

situation, very thick ice can be stationary even under strong winds. 883 
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For shipping, ridges are well observed obstacles using radar and visual methods. They mainly impact the 884 

duration of time at sea, but sea ice compression is more difficult to observe and can cause total stoppage or 885 

even damage to ships and vessels. Sea ice compression can be directly observed by in situ sea ice stress 886 

measurements, but those measurements are rare in the Baltic Sea (Lensu et al., 2013). Implicitly, ice 887 

compression events have been observed by ships navigating in ice. 888 

The most severe ice winters during the last 10 years occurred in 2010 and 2011 due to negative NAO 889 

(Cattiaux et al., 2010). In the winter of 2011, 14 ship accidents occurred due to harsh ice conditions 890 

(Hänninen, 2018). For a comparison, during the average winters there are only one to five accidents. Several 891 

compression events were also reported during the winter of 2011. The most hazardous one occurred at the 892 

end of February, when marine traffic was totally halted for a few days. Below, we provide an anatomy of 893 

this extreme event. 894 

January and February 2011 were characterized by cold and calm weather in the northern Baltic Sea. 895 

Consequently, the Gulf of Bothnia became totally ice covered by early February. Because of the weak 896 

winds, the Bothnian Sea was mainly covered by 15–30 cm thick undeformed ice (Fig. 9). This situation 897 

created favourable preconditions for an intensive ice compression and ridging event. After a cold and calm 898 

period, a change in weather pattern occurred on 24 February, when a cyclone arrived in the Bothnian Sea 899 

region. The wind speed increased up to 18 m/s, and strong south-westerly winds prevailed for the following 900 

five days. Consequently, pack ice drifted towards the north-eastern sector of the Bothnian Sea. The ice field 901 

experienced compression and strong deformations, and the undeformed level ice field was redistributed to 902 

a heavily deformed ice field. In the south-west area of the Bothnian Sea, a coastal lead was generated due 903 

to divergent ice motion (Fig. 9). According to helicopter electromagnetic measurements (Ronkainen et al., 904 

2018), the mean sea ice thickness along ~100 km transects in the heavily deformed areas increased up to 905 

1.6 m. Thickness of individual ridges was 4–8 m (Fig. 9). Sea ice compression, or internal stress of ice, has 906 

not been regularly measured in the Baltic Sea, but ice-breaker and merchant vessel crews have been 907 

reporting observations of ice pressure from their bridges. Indications of the ice pressure include closing of 908 

ship channels, reduction of ship speed, besetting in ice, and compression of ice against ships’ hulls. During 909 

the period from 24 February to 7 March 2011, 142 ice compression cases were reported in the Gulf of 910 

Bothnia. Of these, 25 reported severe compressions, or 3–4 on a scale of 4 (FMI ice service; Lensu et al., 911 

2013). Compression and thick ice caused a total close-down of marine traffic for several days. Even the 912 

largest merchant vessels needed assistance from the ice-breakers. In many cases, the ice-breakers needed to 913 

assist the merchant vessels one at a time as traditional assistance in convoys was not possible. 914 

Sea ice extent and thickness are projected to decrease markedly in the Baltic (Meier et al., 2021). It is also 915 

expected that occurrence of severe ice winters will decrease and consequently heavy ice ridging and 916 

compression events will become rare if wind conditions remain the same in the future.  917 

2.2.12 Phytoplankton blooms 918 

One component of the marine ecosystem here considered as an extreme event is phytoplankton blooms (for 919 

the marine ecosystem in general, see Viitasalo et al., 2021). Blooms are visible mass occurrences of 920 

phytoplankton after excessive growth. They become visible with increased water turbidity, sometimes even 921 

discoloration (red tides) or surface scums. The mass occurrence of toxic species (harmful algal blooms) 922 

may have a detrimental impact on the environmental components, lead to toxic incidents, and may also 923 
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cause economic harm, for example, by constraining the touristic use of the coastal waters (Wasmund, 2002). 924 

Phytoplankton (algae and cyanobacteria) undergoes typical annual successions, induced by the regular 925 

changes of abiotic (solar radiation, temperature, nutrient concentrations) and biotic (feeding, infections, 926 

competition, allelopathy) factors. Under favourable conditions, including sufficient nutrient (N, P, Si) 927 

concentrations and solar radiation as well as low wind that allows stratification in the upper water layers, 928 

massive phytoplankton growth may occur, leading to blooms. Phytoplankton forms the basis of the pelagic 929 

food web and, after sedimentation, feeds the benthos also. Its blooms are natural phenomena and a vital 930 

component of the ecosystem. Only the excessive blooms caused by anthropogenic eutrophication may be 931 

considered a nuisance, and phytoplankton blooms should be reduced to natural occurrences (HELCOM, 932 

2007). The natural level of occurrence has not yet been achieved in most areas of the Baltic Sea (HELCOM, 933 

2018). 934 

Eutrophication was identified as a major problem in the Baltic Sea in the 1960s and 1970s, leading to the 935 

foundation of the Helsinki Commission (HELCOM) in 1974 and the induction of complex monitoring in 936 

the Baltic Sea since 1979. Meanwhile, the concentrations of growth-limiting macronutrients, dissolved 937 

inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) are decreasing (Andersen et al., 2017). 938 

Major Baltic inflows (MBI) are rare events which lead to reoxygenation of deep waters and fixation of 939 

phosphorus in the sediment. The latest MBI occurred in December 2014 (Mohrholz et al., 2015). Its effect 940 

on oxygen concentrations in deep waters was only of short duration and DIP concentrations were increasing 941 

again by 2015, both in deep and surface waters of the Gotland Deep (Naumann et al., 2018). It had no clear 942 

effect on phytoplankton biomass, and it did not introduce new phytoplankton species into the Baltic Sea. 943 

The originally dominating diatoms in the spring blooms have decreased since the end of the 1980s in the 944 

Baltic Proper (Wasmund et al., 2013) and have been replaced by dinoflagellates (Klais et al., 2011). The 945 

ratio of diatoms and dinoflagellates may be a sensitive indicator for changes in the ecosystem, including the 946 

food web. It was used to develop the Dia/Dino index as an indicator for the implementation of the Marine 947 

Strategy Framework Directive (Wasmund et al., 2017). 948 

The summer blooms of cyanobacteria are the most massive ones in the Baltic Proper and the Gulfs of 949 

Finland, Riga, and Gdańsk. Long-term analyses including historical data revealed that cyanobacterial 950 

blooms became a common phenomenon as of the 1960s (Finni et al., 2001). Cyanobacteria seem to increase 951 

on a worldwide scale due to global warming (Karlberg and Wulff, 2013). Cyanobacterial species tend to 952 

have higher growth rates at high temperatures than other phytoplankton species and they are favoured in 953 

thermally stratified waters (O’Neil et al., 2012). Also, increased freshwater inflow, as projected mainly in 954 

the north of the Baltic area (BACC II, 2015), will intensify stratification and support cyanobacteria blooms. 955 

However, wind-induced upwelling in early summer may induce blooms, which is primarily an effect of 956 

phosphorus input into the surface water (Wasmund et al., 2012). If stratification is disrupted by wind, 957 

established cyanobacteria blooms may collapse (Wasmund, 1997). As the bloom-forming buoyant 958 

cyanobacteria have a patchy occurrence, representative sampling is difficult and the amount of data may be 959 

insufficient for a reliable trend analysis. The development of cyanobacteria blooms has been reported 960 

annually in HELCOM Environment Fact Sheets since 1990 (Öberg, 2017; Kownacka et al., 2020), but 961 

general trends could not be identified in these three decades. However, in specific regions, trends may occur 962 

which may even be in opposite directions (Olofsson et al., 2020). A few recent extreme blooms are 963 

mentioned here. 964 
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On 20 July 2017, cyanobacteria warnings were issued for eight beaches in the area of the Gulf of Gdańsk, 965 

and on 22–24 July 2017, three bathing sites were closed due to the decreased water transparency. In 2018, 966 

all the bathing sites of the Gulf of Gdańsk and Puck Bay were closed for 12 days owing to the formation of 967 

toxic scums. In the Gulf of Finland, the exceptionally warm summer of 2018 (see also marine heat waves, 968 

Sect. 2.2.4) caused the strongest cyanobacterial bloom of the 2010s (SYKE, 2018) . Remarkably, the typical 969 

cyanobacteria genus of the summer blooms was also abundant in winter under the ice on the western and 970 

eastern Finnish coasts, as identified for example on 7 January 2019 (SYKE, 2019).   971 

In the past decade, blooms of toxic dinoflagellates have increasingly been observed in shallow coastal 972 

waters of the Baltic Sea. Neurotoxic A. ostenfeldii now regularly forms dense bioluminescent summer 973 

blooms in the Åland archipelago and the Gulf of Gdańsk (Hakanen et al., 2012). The highest cell 974 

concentrations so far recorded for this species were measured in the Åland area in August 2015 (Savela et 975 

al., 2016). In July 2015, a dense bloom of Karlodinium veneficum, killing fish in a shallow bay at the south-976 

west coast of Finland, captured the attention of regional authorities (SYKE, 2016). 977 

Global warming is generally becoming a threat that may influence the phytoplankton strongly (Cloern et 978 

al., 2016; Reusch et al., 2018). Future changes in eutrophication as well as a changing climate will influence 979 

the occurrence of harmful algal blooms. If the Baltic Sea Action Plan is implemented successfully, it is 980 

suggested that record-breaking cyanobacteria blooms will not occur in the Baltic Sea in the future (Meier 981 

et al., 2019). 982 

A phenomenon worth mentioning is the extension of the growing season of phytoplankton in the oceans 983 

(Gobler et al., 2017), and also in the Baltic Sea (Groetsch et al., 2016). The period with satellite-estimated 984 

chlorophyll a (chl a) concentrations of at least 3 mg m-3 has doubled from approximately 110 days in 1998 985 

to 220 days in 2013 in the central Baltic Sea (Kahru et al., 2016). Based on weekly measurements of 986 

phytoplankton biomass and chl a concentrations at a coastal station in the Bay of Mecklenburg from 1988 987 

to 2017, Wasmund et al. (2019) found an earlier start of the spring bloom with a rate of 1.4 days/year and a 988 

later end of the autumn bloom with 3.1 days/year and a corresponding extension of the growing season (Fig. 989 

10). The earlier start of the growing season was correlated with a slight increase in sunshine duration during 990 

spring, whereas the later end of the growing season was correlated with a strong increase in water 991 

temperature in autumn. As the growing season has extended recently from February to December at the 992 

investigated site, a further extension is practically not possible. However, this process may be still ongoing 993 

in other regions of the Baltic Sea.  994 

2.3  Possible implications for society 995 

Extreme events and projected changes caused by global warming or changes in the atmospheric circulation 996 

could have significant and potentially disastrous consequences for Baltic societies. This section examines 997 

the potential implications of extremes and changes of extremes on forest fires, coastal flooding, offshore 998 

wind activities, and shipping in the Baltic Sea area, all of which are linked to key economic sectors. These 999 

are also linked to the multiple drivers of the Baltic Sea systems (Reckerman et al., 2021). 1000 

2.3.1  Forest fires 1001 
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Fires play a key role in the natural succession and maintain biological diversity in boreal forests. They also 1002 

pose a threat to property, infrastructure, and people’s lives (e.g., Rowe and Scotter, 1973; Zackrisson, 1977; 1003 

Esseen et al., 1997; Virkkala and Toivonen, 1999; Ruokolainen and Salo, 2006). Moreover, fires have a 1004 

deteriorating impact on air quality (Konovalov et al., 2011; R’Honi et al., 2013; Popovicheva et al., 2014), 1005 

in extreme cases even in regions hundreds of kilometres away from the actual fire (Mei et al., 2011; 1006 

Mielonen et al., 2012; Vinogradova et al., 2016). The emissions of gases and aerosols through fires as well 1007 

as changes in surface albedo also have impacts on climate. Due to increasing fire activity, boreal forests 1008 

may even shift from carbon sink to a net source of carbon to the atmosphere, resulting in a positive climate 1009 

feedback (Oris et al., 2014; Walker et al., 2019). The impact of aerosols is more complex, yet it is generally 1010 

short-lived. However, heat-trapping soot from large conflagrations can enter into the stratosphere and persist 1011 

there for months (Ditas et al., 2018; Yu et al., 2019). Changes in surface albedo due to fires tend to decrease 1012 

radiative forcing in the long term (e.g., Randerson et al., 2006; Lyons et al., 2008).   1013 

Large forest fires are often associated with long-lasting drought and heat waves. Recently, during the 1014 

exceptionally warm and dry summer of 2018, numerous large fires burned a total of more than 20,000 1015 

hectares of forest in Sweden (Sjöström and Granström, 2020; Krikken et al., 2021). According to an analysis 1016 

performed by Krikken et al. (2021), climate change has so far increased the probability of such events 1017 

roughly by 10 %. Also, during the heat wave of 2014, a single conflagration in Västmanland burned nearly 1018 

15,000 hectares. In Russia, the persistent heat wave of 2010 resulted in devastating forest fires (Bondur, 1019 

2011; Witte et al., 2011; Vinogradova et al., 2016).  1020 

The natural source of fire in boreal forests is lightning. Nowadays lightning strikes ignite about 10 % of 1021 

fires in Sweden and Finland (Granström, 1993; Larjavaara et al., 2005b). In Northern Europe, the 1022 

distribution of lightning-ignited fires follows approximately the thunderstorm climatology with fewer 1023 

ignitions in the north (Granström, 1993; Larjavaara et al., 2005a). In recent years, many of the largest fires 1024 

have been caused by forest machinery operations (Sjöström et al., 2019).  1025 

Irrespective of the ignition source, weather influences the conditions for the spreading of fires. In Northern 1026 

European boreal forests, climate, and particularly precipitation variability, has been an important decadal-1027 

scale driver of fires even during recent centuries with strong human influence on fire occurrence (Aakala et 1028 

al., 2018). In boreal forests in general, interannual variability in burned area can largely be explained by 1029 

fluctuations in lightning activity (Veraverbeke et al., 2017) and also by variations in large-scale atmospheric 1030 

circulation patterns (Milenković et al., 2019). Usually, only a few years with large forest fires account for 1031 

the majority of burned area from decadal to centennial time scales (Stocks et al., 2002).  1032 

In recent decades, burned area in Northern European forests has mainly remained low (Lindberg et al., 1033 

2021). This is because fires in the area tend to be small compared to other boreal regions, mainly thanks to 1034 

effective fire suppression. There are still some distinct differences in the fire activity between different 1035 

countries in the area. Most noteworthy, in recent years relatively large fires have been much more common 1036 

in Sweden than in Finland, though large fires are still much more common in Russia, Canada, and Alaska 1037 

(e.g., Stocks et al., 2002; Vivchar, 2011; Smirnov et al., 2015). However, large fires were not uncommon 1038 

in Fennoscandia before the cultural transition to modern agriculture and forestry led to a steep decline in 1039 

annual burned area by the end of the 19th century (Parviainen, 1996; Wallenius, 2011). In response to global 1040 

warming, the forest-fire danger is generally projected to increase across the circumboreal region (e.g., 1041 

Flannigan et al., 2009; Wotton et al., 2010; Shvidenko and Schepaschenko, 2013; Sherstyukov and 1042 
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Sherstyukov, 2014). This is particularly due to enhanced evaporation in a warmer climate. Already, within 1043 

recent decades, long-lasting drought events have become more intense throughout Europe (see Sect. 2.2.9), 1044 

increasing temperatures having been the main driver of the change (Manning et al., 2019). According to the 1045 

most extreme warming scenarios, summer months with anomalously low soil moisture that occurred 1046 

recently in Northern Europe once in a decade may occur more often than twice in a decade in the late 21st 1047 

century (Ruosteenoja et al., 2018). However, fire regimes in northern and mid-boreal forests have appeared 1048 

to be more sensitive to climate variations compared to fire regimes in southern boreal forests (Drobyshev 1049 

et al., 2014). Hence, Drobyshev et al. (2014) concluded that fire regimes across Scandinavia might even 1050 

show an asynchronous response to future climate changes. Moreover, years with large forest fires in 1051 

northern Scandinavia have historically tended to occur more frequently during cooler rather than warmer 1052 

climate periods (Drobyshev et al., 2016), yet these large-fire years have mainly occurred in association with 1053 

individual warm and dry summers. In Finland, the climate change impact on forest-fire risk has been 1054 

evaluated in several studies (Kilpeläinen et al., 2010; Mäkelä et al., 2014; Lehtonen et al., 2014b, 2016). In 1055 

these studies, the projected decrease in soil moisture content has been reflected as a projected increase in 1056 

fire risk. Assuming the current relationship between weather and the occurrence of forest fires, Lehtonen et 1057 

al. (2016) estimated that in Finland, the number of fires larger than 10 ha may double or even triple during 1058 

the present century. Nevertheless, there is considerable uncertainty regarding the rate of the change, largely 1059 

due to the uncertainty of precipitation projections. Yang et al. (2015) predicted that in northern Sweden, the 1060 

fire risk could even decrease in the future, whereas considering a projected decrease in population density, 1061 

Backman et al. (2021) predicted that in the Republic of Karelia, the number of fires would decrease in the 1062 

future and it is uncertain whether the burned area would increase or decrease. 1063 

In addition to meteorological conditions, fire potential is largely determined by the availability of flammable 1064 

fuels in forests. In Southern Europe, the biomass availability may become a limiting factor for increasing 1065 

fire activity (Migliavacca et al., 2013). However, in Northern Europe this is unlikely, as forest productivity 1066 

and biomass stock are projected to increase under a warming climate (Kellomäki et al., 2008; Dury et al., 1067 

2011).  1068 

2.3.2   Coastal flooding 1069 

The projected regional sea level rise (e.g. Grinsted et al., 2015) coupled with the expected intensification of 1070 

sea level extremes (e.g. Vousdoukas et al., 2018) discussed in Sect. 2.2.2 will widely affect both natural and 1071 

human systems along the Baltic Sea.  1072 

In the past, several major floods have occurred on the Baltic Sea coast. While there are few surviving sea 1073 

level measurements or other historical records dated before the 19th century, traces of extreme floods are 1074 

found from sand layers. Studies of coastal sediments, compared with historical records, imply that the 1497 1075 

flood, which damaged cities on the southern Baltic coast, was the largest storm surge on the Polish coast in 1076 

2000 years (Piotrowski et al., 2017). St. Petersburg has also proved vulnerable to coastal and fluvial 1077 

flooding, and the highest documented surge occurred in 1824, when the water level rose to 367 cm at 1078 

Kronstadt, and possibly even to 410 cm at St. Petersburg (Bogdanov and Malova, 2009) over local mean 1079 

sea level. In the era of tide gauges, the most severe flood along the southern Baltic coast happened in 1872. 1080 

This storm caused severe damage at the German and Danish coasts, and 271 lives were reported lost 1081 

(Rosenhagen and Bork, 2008). At Travemünde, Germany, the sea level rose to 340 cm (Jensen and Müller-1082 

Navarra, 2008); at Skanör, along the southern Swedish coast, the sea level reached approximately 240 cm 1083 
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(Fredriksson et al., 2016). For the Gulf of Finland and the Gulf of Riga, the most severe flooding on record 1084 

was caused by the Gudrun wind storm in 2005, when the observed sea level reached 197 cm in Hamina 1085 

(Finland), 230 cm in St. Petersburg (Russia), 207 cm in Ristna (Estonia), and 275 cm in Pärnu (Estonia) 1086 

(Suursaar et al., 2006). 1087 

In a European perspective, the uncertain influence of climate change on the frequency and intensity of 1088 

waves and wind as a predictor of future damage costs due to coastal flooding is of limited importance 1089 

relative to the observed and projected influence of sea level rise on storm surge heights. Hence, Vousdoukas 1090 

et al. (2018) find that the indirect effect of mean sea level rise, uplifting high sea levels under extreme 1091 

weather conditions, serves as the main driver of the increased coastal flood damage in the future and 1092 

accounts for 88–98 % of the total damage. Interestingly, the highest relative contribution from changes in 1093 

cyclones is projected along the Baltic Sea coast. This stems from a combination of low relative sea level 1094 

rise along the Baltic Sea catchment that is due to the land uplift and intensifying waves and storm surges 1095 

due to climate change based on the projections used by Vousdoukas et al. (2017). In general, there is no 1096 

consensus as to whether the wind storms are expected to become more frequent (Sect. 2.2.1). For Finland 1097 

and Sweden in particular, due to land uplift, the physical footprint of sea level rise in future damage 1098 

estimates is weakened. Conversely, socio-economic development along the coast is likely to be a main 1099 

driver and modulate the intensification of coastal hazards amongst Baltic Sea countries. 1100 

In the absence of improved coastal management practices and coastal adaptation, the expected population 1101 

exposed to coastal flooding along the Baltic Sea coastline annually as well as the expected annual damage 1102 

(EAD) due to coastal flooding are both likely to increase by orders of magnitude (e.g. Forzieri et al., 2016; 1103 

Vousdoukas et al., 2018; Mokrech et al., 2014; Brown et al., 2018). While the impacts on managed as well 1104 

as natural coastal and near-coastal terrestrial ecosystems may be significant, Baltic coastal cities are likely 1105 

to be mainly responsible for future coastal flood losses due to their high concentration of people, 1106 

infrastructure, and valuable assets. To keep future coastal flood losses low, climate change adaptation 1107 

measures urgently need to be installed or reinforced (Vousdoukas et al., 2020; Abadie et al., 2019) to 1108 

withstand extreme sea levels (see Sect. 2.2.2). 1109 

Apart from recent work by Paprotny and Terefenko (2017) for Poland, environmental and economic impact 1110 

assessments from the regional to the national level generally belong to the grey literature. Similarly, impact 1111 

assessments at the local (city) level have so far been mainly carried out by engineering consultancies to 1112 

facilitate the development of local adaptation strategies (Thorarinsdottir et al., 2017). Due to local 1113 

constraints and a lack of best practices, the methodologies behind such detailed assessments often vary 1114 

greatly and are not comparable.  1115 

Figure 11 shows different damage estimates related to coastal flooding, including for some of the most 1116 

exposed cities along the Baltic Sea. Prahl et al. (2017) have calculated a set of macroscale damage cost 1117 

curves (Fig. 11, main part), that is, damage cost as a function of flood height, for the 600 largest cities in 1118 

Europe, including all of the major cities along the Baltic Sea. Land-use information is being used rather 1119 

than population coupled with GDP per capita as the basis for approximating the location of assets; this 1120 

ensures that flooded assets are inherently co-located with the city. For the hydrological modelling, a high-1121 

resolution digital elevation model for Europe is used together with a simple static-inundation model that 1122 

only accounts for hydraulic connectivity. While this approach readily allows for estimation of the damage 1123 

costs associated with flooding for any European coastal city, the “coarseness” of the methodology 1124 
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(including the underlying empirical and categorical information on land-use and flood defences, which goes 1125 

into the calculations) can lead to overestimation of the damage cost curves, especially for low-lying urban 1126 

and high-value areas. This is particularly found to be the case for (but not restricted to) Copenhagen (Fig. 1127 

11, main part).  1128 

For comparison, Abadie et al. (2016) have carried out a set of economic impact assessments for 1129 

Copenhagen, Helsinki, and Stockholm in 2050 based on an improved version of the same large-scale 1130 

modelling framework (cf. the insert of Fig. 11, lower rows). Using the same input as Prahl et al. (2017), 1131 

Abadie et al. (2016) have developed a European-scale assessment framework, where a continuous stochastic 1132 

diffusion model is used to describe local sea level rise, and Monte Carlo simulations yield estimates of the 1133 

(risk) damage caused by the modelled sea level rise. This is paired with an economic damage function 1134 

developed for each city and point in time. The results found by Abadie et al. for the RCP8.5 scenario are 1135 

shown in Fig. 11. For Copenhagen and Stockholm, the damage cost estimates of Prahl et al. (2017) are 1136 

largely consistent with those of Abadie et al. (2016).  1137 

Vousdoukas et al. (2018, 2019, 2020) have estimated the EAD from coastal flooding for all countries in 1138 

Europe (excluding adaptation) by combining future climate model projections with a set of gridded 1139 

projections of gross domestic product, population dynamics, and exposed assets based on selected shared 1140 

socio-economic pathways. Flood defences are considered to be recorded in the FLOPROS database 1141 

(Scussolini et al., 2015). As seen in the table in Fig. 11 (upper rows), at the end of the century, Denmark is 1142 

expected to suffer the most severe damage from increased coastal flooding resulting from climate change 1143 

due to its long coastline, followed by Germany, Poland, and Sweden. 1144 

The large observed variation in cost estimates related to future coastal flooding in the Baltic Sea may easily 1145 

be ascribed to the different approaches, data, and scales used for impact modelling, including key 1146 

assumptions, in particular relating to economics. To improve confidence in impact assessments, a 1147 

comparable assessment of methods, models, and assumptions is needed in order to establish more solid 1148 

evidence within the area. Likewise, impacts due to compound events where, for example, extreme coastal 1149 

water levels are (locally) exacerbated by associated high water levels in nearby rivers or high intensity 1150 

rainfall (Bevacqua et al., 2019) are largely unaccounted for in most damage cost assessments. 1151 

2.3.3  Offshore wind energy activities 1152 

Offshore wind farms are growing rapidly in the Baltic Sea. Figure 12 shows the expansion of wind farm 1153 

clusters in southern parts of the Baltic Sea and in the North Sea. According to recent reports, offshore wind 1154 

power in the Baltic Sea is far from fully exploited and could reach 83 GW (Cecchinato, 2019; Freeman et 1155 

al., 2019). 1156 

Compared to onshore situations, offshore wind energy benefits from richer wind resources. It is also greatly 1157 

challenged by the harsher offshore environmental conditions, which makes the so-called levelized cost of 1158 

energy (LCOE) significantly higher. LCOE accounts for, among other things, the transportation of energy 1159 

from sea to land, the trips to the farms for maintenance, and water depth where the turbines will be installed. 1160 

Maintenance and construction become more challenging when storms are present, as storms cause rougher 1161 

conditions for the turbines and farms at sea than over land. There are no land obstacles to effectively 1162 

consume the atmospheric momentum; instead, waves are generated, swells develop and propagate, and 1163 
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waves break. This can put tremendous loads on construction of fixed as well as floating turbines. At the 1164 

same time, breaking waves release water drops and sea salt into the air. This, together with severe 1165 

precipitation at sea during storms, has a significant impact on the erosion process of the turbine blades and 1166 

affects the turbine performance (e.g. Mishnaevsky, 2019). At sea, the role of icing on blades was considered 1167 

generally small (e.g. Bredesen et al., 2017), while over the Baltic Sea, ice cannot be ignored (Heinonen et 1168 

al., 2019). The storm winds at sea reach the cut-off speed of 25 ms-1 at hub height more frequently, causing 1169 

more fluctuation in power production and accordingly significant challenges in the power integration system 1170 

(e.g. Sørensen et al., 2008; Cutululis et al., 2013). At the same time, strong winds and large waves directly 1171 

affect activities such as installation and operation and maintenance (O&M), see Diamond et al. (2012), 1172 

Leiding et al. (2014), Dangendorf et al. (2016) and Kettle (2018, 2019).   1173 

Several sections in this report have summarized studies on the climatological changes of a number of 1174 

relevant parameters including storms, waves, temperature, icing, precipitation, and water levels. Effort is 1175 

needed in co-ordinating the analysis and implementing these changes of the environmental parameters in 1176 

offshore wind energy planning. Design parameters need to be calculated to avoid placing turbines in a 1177 

dangerous wind environment and to identify the suitable turbine design class. Turbulence and the 10-min 1178 

value of the 50-year wind at hub height are two key design parameters (IEC 61400-1) requiring improved 1179 

estimation. 1180 

With the presence of storms over the sea, special organized atmospheric features develop, contributing to 1181 

turbulence over a broader frequency/wave number range than under typical stationary surface layer 1182 

conditions. These features include gravity waves, low-level jets, open cells, and boundary layer rolls. Over 1183 

the Baltic Sea, gravity waves and boundary layer rolls are present (e.g. Larsén et al., 2012a; Svensson et al., 1184 

2017; Smedman, 1991). Over the North Sea, it was found that open cells can add an extra 20–50 % to the 1185 

turbulence intensity (Larsén et al., 2019b).  1186 

For the studies of extreme winds for wind energy applications over Scandinavia, groups in Sweden and 1187 

Denmark pioneered by using long-term wind measurements (e.g. Abild, 1991; Bergström, 1992; Kristensen 1188 

et al. 2000). Later, long-term global reanalysis products were used, including in the Baltic Sea area (e.g. 1189 

Frank, 2001; Larsén and Mann, 2009). At early stages of wind energy development, the reference height of 1190 

10 m was most relevant for engineering applications. Today, the turbines are much bigger and the largest 1191 

(offshore) turbine has a 220 m rotor and 107 m blade. At the same time, wind energy is developing to give 1192 

greater global coverage over various land/sea conditions. These make the use of mesoscale models an 1193 

attractive option. A three-dimensional mesoscale numerical model, the MIUU model, was used for the 50-1194 

year wind speed to calculate both 10 min mean and 3 s gust values, with a grid space of 1 km (Bergström 1195 

and Söderberg, 2008). In addition, a variety of mesoscale models have been used for wind resource 1196 

assessment as well as extreme wind calculations, such as the HIRHAM model, the (e.g. Clausen et al., 2012; 1197 

Pryor et al., 2012), the KAMM model (e.g. Hofherr and Kunz, 2010; Larsén and Badger, 2012), the REMO, 1198 

the CCLM models (Kunz et al., 2010), and the WRF model (Bastine et al., 2018). For long-term data, the 1199 

models are run covering time periods up to decades. In compensation for the computational cost, most of 1200 

these models have been run at a spatial resolution of tens of kilometres. The effect of spatial and temporal 1201 

resolution of these mesoscale modelled winds was investigated in Larsén et al. (2012b) using modelled data 1202 

from WRF, REMO, and HIRHAM. Larsén et al. (2012b) developed a so-called spectral correction method 1203 

to fill in the missing variability in the modelled time series, thus reducing the underestimation of the extreme 1204 

wind. To calculate the extreme wind, Larsén et al. (2013;2019a) also developed a selective dynamical 1205 



31 
 

downscaling method to efficiently allocate modelling resources to storms at high resolution (i.e. 2 km). The 1206 

southern part of the Baltic Sea was included in these calculations. 1207 

The development of approaches for calculating design parameters over the Baltic Sea has provided different 1208 

estimations through time. The difference in these estimations (more than 10 %) is bigger than the effect 1209 

from climate change calculated from different climate scenarios (a few percent points). Climate modelling 1210 

describes future scenarios and provides a coherent calculation of the whole set of environmental parameters, 1211 

including wind, temperature, icing, and precipitation. One such output is from the research project Climate 1212 

and Energy Systems (CES) supported by the Nordic Research Council (Thorsteinsson, 2011). This study 1213 

features both opportunities and risks within the energy sector associated with climate change up to the mid-1214 

21st century. Fifteen combinations of regional and global climate models were used. The results, however, 1215 

did not portray a consensus on the change in storms and extreme winds in the future over the Scandinavian 1216 

seas (see also Sect. 2.2.1 and Belusic et al., 2019).  1217 

2.3.4  Shipping  1218 

There are several aspects where changes in extreme events and natural disasters have the potential to 1219 

influence shipping; one relates to ice conditions. As stated above (Sect. 2.2.6 and 2.2.11), winters on the 1220 

Baltic Sea can be different with highly variable ice conditions. This has been observed when the ice loads 1221 

encountered by ships have been measured in full scale by instrumenting ship hulls for ice load 1222 

measurements, see example in Fig. 13 (Kujala, 2017). Typically, the highest loads occur when ships are 1223 

moving through heavily ridged areas or are stuck in moving, compressive ice. The highest measured loads 1224 

occurred in severe ice winters, such as in 1985 and 1987. Extreme events can also cause significant damage 1225 

to the ship shell structures, as shown in Fig. 13(Kujala, 1991). Typically, ice-induced damage is in the form 1226 

of local dents on the shell structures, to the depth about 50–100 mm and width as well height about 0.5 m 1227 

by 0.5 m. The figure shows an example of the extensive damage outside Luleå (upper figure), when the ship 1228 

left the harbour independently without ice-breaker (IB) assistance and got stuck in compressive ice. The 1229 

whole shell structure was then permanently damaged to a depth of about 0.5 m and length and height of 1230 

several metres. The ice-strengthened ships are not designed for this type of situation as the design principle 1231 

is that ice-breakers will prevent ships from getting stuck in ice.  1232 

Increasing maritime traffic in areas where ice-breaker assistance is needed will increase the demand for 1233 

such assistance. The workload of an ice-breaker in its operational area, at a specific time, is strongly 1234 

dependent on the area specific ice conditions and ship traffic. This leads to large area- and time-specific 1235 

variations in the demand for ice-breaking assistance. Even under constant ice conditions, it is hard to 1236 

estimate local demand for assistance solely from the estimated increase or decrease in local maritime traffic. 1237 

There are a number of studies related to the development of the transit simulation models for ships 1238 

navigating in ice (e.g. Patey and Riska, 1999; Kamesaki et al., 1999; Montewka et al., 2015; Kuuliala et al., 1239 

2017 and Bergström et al., 2017). Typically, all these models simulate the speed variation of a single ship 1240 

when it is sailing in varying ice conditions such as level ice, ridged ice, and ice channel. In addition, the 1241 

real-time data from the vessels’ automatic identification systems (AIS) have been used to study the convoy 1242 

speed when IBs assist merchant ships (see Goerlandt et al., 2017). Monte Carlo random simulation can also 1243 

be used to study the uncertainties and variations on the ice conditions and on the calculation methods to 1244 

evaluate ship speed in various ice conditions (Bergström et al., 2017). 1245 
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The newest development includes simulation tools built around a deterministic IB-movement model 1246 

(Lindeberg et al., 2015, 2018). The new approach is that the simulation model also includes the decision 1247 

principles of IBs to determine which ships will be assisted and when. The model also includes the possible 1248 

assistance and towing principles of merchant ships behind an IB. The tool can be used for predicting local 1249 

demand for ice-breaking assistance under changing ice and traffic conditions. It can also be used to predict 1250 

how the traffic flow will react to changes in the IB operational areas of the modelled system by 1251 

adding/removing IBs from the system and/or by modifying the boundaries of IB operational areas. 1252 

Typically, during a normal winter starting in December and ending in April, there are about 10,000 ship 1253 

visits to our icebound harbours in the Baltic Sea and the traffic is assisted by five to nine IBs. The developed 1254 

model can be used to study the effect of winter hardness on the IB activities and waiting time for merchant 1255 

vessels (Lindeberg et al., 2018). The new environmental requirements will cause a decrease in the engine 1256 

power used by ships, which might mean that the need for IB assistance will increase. As studied by 1257 

Lindeberg et al. (2018), the new so-called energy efficiency design index (EEDI) ships will increase the 1258 

merchant vessel waiting time by 100 % when 50 % of the new ships will fulfil the EEDI requirements, so 1259 

this means that in the future we might need more IBs to guarantee smooth marine traffic. EEDI is a new 1260 

energy-efficient requirement that will decrease the engine power on typical merchant ships. The EEDI 1261 

requires a minimum energy efficiency level per capacity mile (e.g. tonne mile) for different ship types and 1262 

size segments are established by the International Maritime Organisation (IMO). Since 1 January 2013, 1263 

following an initial two-year phase zero, new ship designs need to meet the reference level for their ship 1264 

type. 1265 

The model can also be used to study the effect of winter hardness on the amount of needed IB assistance. 1266 

For example, during the hard winter of 2010–2011, the total number of IBs assisting was nine with the total 1267 

amount of assisting miles equal to 77056 nm, and during the mild winter of 2016–2017, it was eight IBs 1268 

and 29502 nm assisted. 1269 

In addition to ice conditions, the maritime shipping in the Baltic Sea is affected by wind and wave conditions 1270 

and icing due to sea spray. Although the mean wind and wave conditions are relatively low in the Baltic 1271 

Sea, some of the high wind events and especially the severest storms affect the maritime traffic (cf. Sect. 1272 

2.2.10 for extreme wave events). In the severest storms, smaller vessels need to find shelter or alternative 1273 

routes, and large vessels need to reduce speed or increase engine power. Increasing the vessels’ engine 1274 

power during these events will also increase the ship emissions (Jalkanen et al., 2009). Also, getting safely 1275 

in and out of harbours is an issue during high wind and wave events. 1276 

In the changing climate, the ice winters are estimated to get shorter and the ice extent smaller (Sect. 2.2.6). 1277 

The time of the year that in the present climate has ice cover partly coincides with the windiest time of the 1278 

year. This means that the wave climate in the Bay of Bothnia and eastern part of the Gulf of Finland, where 1279 

there is still ice every winter in the present climate, is estimated to get more severe, and this can cause 1280 

increasing dynamics of the ice, making navigation in ice more demanding. 1281 

However, the occurrence of extreme wave events is not only dependent on the changes in the ice conditions 1282 

but also on the changes in the wind conditions. Moreover, the Baltic Sea sub-basins are relatively small and 1283 

the high wind events are often fetch-limited, thus the wind direction plays a large role in the generation of 1284 
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the high wave events. As the frequency of strong westerly winds is projected to increase (see Sect. 2.2.1), 1285 

this will most likely lead to an increase in the high wave conditions from this sector. 1286 

Icing due to sea spray causes problems for maritime traffic in the Baltic Sea. In a future climate, this can 1287 

happen more often as the ice winters get milder and the sea is open during the time of the year when sea 1288 

surface temperatures are close to the freezing point, so the probability of getting freezing water on the ship 1289 

deck will potentially increase. 1290 

3      Knowledge gaps 1291 

As extreme events by definition are rare, long time series of data and/or large ensembles with model 1292 

simulations with high spatial coverage are a necessity for a full understanding of return periods and for 1293 

mapping expected changes in intensities of extreme events. When also adding the impact of climate change 1294 

and to some extent an unknown response of the climate system to partly unknown changes in forcing, the 1295 

uncertainty increases further, especially locally. This is particularly true for compound events (i.e. 1296 

interaction of multiple hazard drivers) and freak events (i.e. events that have very low probabilities but 1297 

which can potentially have disastrous impacts). These kinds of events are largely unexplored in the scientific 1298 

literature.  1299 

As previously discussed, many extreme events in the Baltic Sea region are related to the large-scale 1300 

atmospheric dynamics, including storms originating from the North Atlantic region. Knowledge gaps 1301 

concerning the response of large-scale atmospheric circulation in a warming climate include the dynamic 1302 

response of reduced Arctic sea ice and changing oceanic conditions as well as the possibility of changes in 1303 

the jet stream patterns and/or changing blocking frequencies over Europe.   1304 

Besides storms that are related to extratropical cyclones, strong winds can also be induced by extreme 1305 

convective weather, including downbursts, tornadoes, detached thunderclouds, derechos, and other 1306 

mesoscale convective systems (Rauhala et al., 2012; Punkka, 2015). Furthermore, wind gusts driven by 1307 

convective downdrafts or turbulent mixing can also occur during larger-scale windstorms (Laurila et al., 1308 

2019). Other severe small-scale extreme events include for example Meteo-tsunamis, long waves created 1309 

by air-sea interaction occurring in shallow seas during warm summers, they are amplified when arriving at 1310 

the coasts and can reach several meters (Pellikka et al., 2020). All these phenomena may be harmful to 1311 

infrastructure, the severity of the impacts depending on the intensity and location of occurrence of the 1312 

events. New convection-permitting climate models with grid spacing of a few kilometres (Sect. 2.2.7), as 1313 

well as an increasing observation density owing to the use of weather radars, satellites, and lightning-1314 

location sensors, open new possibilities to assess their probabilities of occurrence in the recent past and in 1315 

the projected future climate.  1316 

A local characteristic is the uncertainty in local responses to large-scale variability and global change. One 1317 

particular feature is soil water response to heat waves, but also features such as changes in frequency of 1318 

major Baltic inflows (Lehman et al., 2021; Meier et al., 2021). In the Baltic Sea region, the state of the 1319 

cryosphere has already changed remarkably. Past mean changes in frost, snow, icing, lake, and sea ice 1320 

conditions have been rather well estimated by regional models, but their future variability and change 1321 

ranging from synoptic to centennial time scales are uncertain. Moreover, the impact of extreme cryosphere 1322 
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changes on forestry, reindeer herding, spring floods, extreme wave heights, and shipping is largely 1323 

unknown. Concerning flood assessments, the majority of the studies are devoted to high flood extremes. 1324 

The low flow periods are less well described due to the absence of remarkable changes in flow regime 1325 

especially in Northern Europe because of the large model uncertainty in precipitation during the summer 1326 

(or warm period) when low flow usually occurs. 1327 

The prolongation of the growing season of phytoplankton is identified, but it may not be caused solely by 1328 

a simple direct influence of increased radiation and temperature. The temperature may also act via stronger 1329 

stratification, shifts in grazing pressure, infections, or other factors which still have to be identified in detail. 1330 

Earlier phytoplankton spring blooms, a longer summer minimum, and a later autumn bloom may have 1331 

decisive impacts on the food web and need to be investigated. The first major marine heat wave recorded 1332 

occurred in the Baltic Sea in 2018. Further research is needed to estimate probabilities of marine heat waves 1333 

in the future, but also to deepen our understanding about how biogeochemical processes are altered in those 1334 

conditions. 1335 

Simulation of storm tracks and their associated precipitation generally improve with increasing resolution 1336 

beyond that used in most current climate models (Michaelis et al., 2017; Barcikowska et al., 2018). Higher 1337 

resolution results in more sensitivity to warming (Willison et al., 2015). Understanding of high-intensity 1338 

extremes requires improved reanalysis products and carefully homogenized long time series data as well as 1339 

higher-resolution climate models. Here the better use of new tools might lead to an increased understanding. 1340 

The new tools include remote sensing data and new types of in situ or remote sensor systems in combination 1341 

with traditional observational networks. Combining new data with higher-resolution models as well as new 1342 

methodologies (machine learning, neural networks) has great potential.  1343 

The following aspects are the most important to address in future research: 1344 

• Coupled high-resolution process and Earth System Models for detailed understanding of extremes 1345 

and feedback mechanisms between different processes (see also Gröger et al., 2021). 1346 

• Addressing natural variability by assessing long-term observational time series and large samples 1347 

of simulated states of the climate system. 1348 

• Further development of statistical methods (including machine learning) for improved 1349 

understanding of risks and return periods of rare events, including compound and freak events. 1350 

• Dynamics of the larger scale, in particular addressing regional and local responses. While the local 1351 

effects of large-scale circulation changes are reasonably understood, it is not clear which factors 1352 

control or change the dynamics of the larger scale itself. This is particularly true for changes in 1353 

velocity and meandering of the jet stream and effects on blocking frequencies. 1354 

• Increase process-level understanding of the impact of the physical extremes on biogeochemical 1355 

cycles and fluxes such as an enhanced flux of matter from land to sea during extreme mild and wet 1356 

winters or enhanced greenhouse emissions from sea bottom to atmosphere during marine heat wave 1357 

events. 1358 

• Interaction of multiple hazard drivers, since compound events are potentially very damaging for 1359 

society. 1360 

• Further quantification of economic costs of extreme events as well as impacts on health, ecosystem, 1361 

and environment. 1362 
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4.     Conclusions and key messages 1363 

In this review, we have focused on extreme events and natural hazards in the Baltic Sea region. Temporal 1364 

and spatial scales of the events that are causing these hazards range over many orders of magnitude. Typical 1365 

short-term phenomena are dynamical events such as storms or heavy precipitation that are causing severe 1366 

economic and human losses regionally and locally. In contrast, heat waves and cold spells are gradually 1367 

developing events that prevail for weeks to months. Their impact on society and nature can cover the entire 1368 

Baltic Sea catchment region. 1369 

In Fig. 14, we summarize how the hazards are related to the atmospheric, oceanic, and hydrological 1370 

conditions. The weather in the Baltic Sea region is largely determined by the state of the large-scale 1371 

atmospheric circulation. In winter, the variability is largely governed by the NAO with dominating strong 1372 

westerlies and cyclones in its positive phase while more stable continental weather dominates in its negative 1373 

phase. Also, in summer there are large differences between more cyclone-dominated weather with relatively 1374 

mild air from the Atlantic and blocking-dominated weather with high pressure systems and warm 1375 

continental air. Large-scale atmospheric circulation is the main source of inter-annual variability of seasons, 1376 

and the extreme states are manifested in, for example, the extent of the seasonal ice cover. 1377 

Regional atmospheric events, cyclones, and blocking are directly causing storm damage or triggering heat 1378 

waves and forest fires, respectively. Cyclones are also generating storm surges and hazardous coastal 1379 

flooding and ocean waves. Summertime blocking situations are frequently causing heat waves, while in 1380 

winter they are connected to cold spells. For long-lasting situations, impacts of blocking are not restricted 1381 

to land as marine heat waves are also generated and consequently massive algal blooms are formed, as in 1382 

2018. 1383 

An important aspect is that the most hazardous events are often combinations of several factors (i.e. 1384 

compound events). For example, every cyclone can generate a storm surge, but the level of coastal flooding 1385 

depends on the total water volume in the Baltic Sea. Positive water volume, which is caused by persistent 1386 

westerlies, can provide an additional 50 cm (Leppäranta and Myrberg, 2009) to the maximum sea level. 1387 

Moreover, a single storm always causes a seiche oscillation, and a sequence of storms can produce 1388 

combined sea level changes due to the storm surge and seiche oscillation. In cities located at the river mouth, 1389 

a sea flood can be further amplified by the river flood. 1390 

Trends in circulation patterns are difficult to detect; the long-term temporal behaviour of NAO is essentially 1391 

irregular. There is, however, weak evidence that stationary wave amplitude has increased over the North 1392 

Atlantic region, possibly as a result of weakening and/or a north-eastward shift of the North Atlantic storm 1393 

track. There is an upward trend in the number of shallow and moderate cyclones, whereas there is no clear 1394 

change, although there is possibly a small decrease in the number of deep cyclones during the past decades. 1395 

Sea level extremes are expected to increase in a changing climate and are directly related to changes in 1396 

mean sea level, wind climate, storm tracks, and circulation patterns.  1397 

European summers have become warmer over the last three decades, partly explained by changes in 1398 

blocking patterns (see Sect. 2.1). There is a clear link between warmer summers and an increased risk of 1399 

drying (particularly in spring) and heat waves in most of the area. Floods decrease in a large part of the 1400 

Baltic Sea in spring, but streamflow has increased in winter and autumn during the last decades while the 1401 
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mean flow shows insignificant changes. Stronger precipitation extremes associated with warmer climate 1402 

can have strong impacts on society, particularly in urban regions, and are strongly associated with flooding 1403 

and more intense cloud bursts. Results from new, high-resolution convection-permitting climate models 1404 

indicate that increases in heavy rainfall associated with cloud bursts may increase even more than has 1405 

previously been found in coarser-scale regional climate models.  1406 

Sea-effect snowfall events can be a serious threat to the coastal infrastructure and should be considered also 1407 

in the future, although likely with an overall lower risk on an annual basis. More research is still needed for 1408 

deepening understanding of sea-effect snowfall and for developing a reliable way to assess the occurrence 1409 

of such events in the changing conditions. Another wintertime phenomenon of potentially hazardous 1410 

consequences is ice ridging, being one of the sea ice extremes with the greatest impact potential on coastal 1411 

infrastructures and shipping. 1412 

Phytoplankton blooms are extreme but natural biological events. However, eutrophication/de-1413 

eutrophication, pollution, and changes in irradiation, temperature, salinity, carbon dioxide, etc. may change 1414 

their magnitude, timing, and composition. Examples of extreme and mostly potentially toxic blooms are 1415 

given, but reasons can hardly be identified. Their sudden and sporadic appearance complicates trend 1416 

analyses and modelling. One trend that seems to be prominent is the prolongation of the phytoplankton 1417 

growing season. Climate change is the most probable reason for this. 1418 

Table 1 summarizes the changes of some extreme events for the past decades and, using scenarios, for the 1419 

upcoming decades. Here, a positive trend means increasing probability of occurrence and a negative trend 1420 

means a decreasing probability of occurrence. 1421 

Table 1: Selected event and the estimated frequency of occurrence. Scale for changes (major decrease, 1422 

minor decrease, no change, minor increase, major increase). Confidence scale (low, medium, high). 1423 

Event Past decades Future scenario 

Number of moderate and 

shallow extratropical 

cyclones 

minor increase no significant change  

Number of deep extratropical 

cyclones North Atlantic 

minor increase  minor increase  

Extreme ocean waves 

North of 59°N 

 

 

South of 59°N 

 

no significant change (in 

strength and frequency) 

 

no significant change (in 

strength and frequency) 

 

minor increase in frequency in 

wintertime  

 

no significant change  
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Extreme sea levels (relative 

mean sea level plus storm 

surge) 

North of 59°N 

 

South of 59°N 

 

 

 

minor decrease  

 

minor increase  

 

 

 

minor increase  

 

major increase  

Ice ridging  unknown major decrease  

Intense precipitation minor increase  increase  

Sea-effect snowfall unknown unknown 

Heat waves minor increase  major increase  

Cold spells major decrease major decrease 

Marine heat waves minor increase  increase  

Phytoplankton blooms minor increase  minor increase  

Extreme mild ice winters  major increase  major increase  

Severe ice winters major decrease  major decrease  

(uncertainties due to change in 

large-scale circulation) 

Drying 

North of 59°N 

 

South of 59°N 

 

decrease  

 

 

increase  

 

mainly decrease, increase in 

the north in the spring 

 

increase in some regions in 

spring and summer 

River flooding increasing in winter/autumn, 

decreasing in spring 

decrease in spring 

increase in winter 

For the selected societal elements discussed here, a combination of extremes and their changes are 1424 

controlling the development and potential future damage, in addition to numerous other factors. For forest 1425 

fires, drought, and heat waves, the risk might double during the present century in some areas; however, in 1426 

other areas the risk might decrease due to increased precipitation. The frequency of coastal flooding 1427 

responds mainly to sea level, but also to wind, wave, and precipitation features. The number of people 1428 

exposed to coastal flooding in terms of annual damage is expected to increase by orders of magnitude. Baltic 1429 

coastal cities are expected to be the main source of future coastal flood losses. The offshore wind energy 1430 

sector responds mainly to extreme wind and wave conditions. Here, loads and damage are important, but 1431 

also conditions for operation and management activities imposing limitations in the potential use. Shipping 1432 

in the Baltic Sea is affected by wind and wave conditions, icing due to sea spray, and ice conditions; 1433 
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although mean wind and wave conditions are relatively low, the most severe storms affect maritime traffic. 1434 

As ice winters are projected to get shorter, the wave climate is expected to get more severe (particularly in 1435 

the eastern part of the Bay of Bothnia and Gulf of Finland). 1436 
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Figures. 2843 

 2844 

Figure 1. The Baltic Sea drainage basin together with the spatial variability in annual mean water discharge (Q) 2845 

calculated with the HYdrological Predictions for the Environment (HYPE) model and with annual mean sea surface 2846 

salinity in the Baltic Sea. This salinity diagram shows the gradient from high (red) to low (green) salinities, 2847 

calculated with the Rossby Centre Ocean model. Courtesy of René Capell, Swedish Meteorological and 2848 

Hydrological Institute. Figure from Meier et al. (2014). 2849 

 2850 
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 2851 

Figure 2: Principal component (PC) time series of the leading EOF of seasonal (DJFM) SLP anomalies over the 2852 

Atlantic sector (20°N–80°N, 90°W–40°E), 1899–2018 (colours) and station-based index (Lisbon and 2853 

Stykkisholmur) (black line, see points on map). The correlation is 0.93 over 1899–2018. From Hurrell (2018). 2854 

 2855 



79 
 

Figure 3: Ice-free statistics (Type F in Tuomi et al. (2011)) for the 99.9th percentile significant wave height (Hs) 2856 

using a high-resolution wave hindcast for the years 1998–2013 (Nilsson et al., 2019). 2857 

 2858 

Figure 4. Surface water topography of the Baltic Sea for maximum levels (a), minimum levels (b), and the amplitude 2859 

of variations (c) from the period 1960–2010 (Wolski et al., 2014). 2860 

 2861 
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 2862 

  2863 

Figure 5. The top panel shows contributions per intensity bin to the total June-August mean precipitation over 2864 

Sweden, units in mm per hour. The observations are from a combined radar–rain gauge data set. The lower panel 2865 

shows differences with respect to the observations. The coarse scale RCM is operated at 12 km horizontal resolution 2866 

while the convectivonpermitting CPRCM runs at 3 km. The CPRCM data are shown both at the native resolution 2867 

(dashed) and remapped to the RCM grid (solid). The figure has been modified from Lind et al. (2020). 2868 

 2869 
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Figure 6. Change in 10-year return value of daily precipitation change (%) between 1971–2000 and 2071–2100 for 2870 

15 simulations from Euro-CORDEX according to the RCP8.5 scenario. Top row: inter; bottom row: summer. Left 2871 

column: lowest quartile; middle column: median value; right column: higher quartile. For the medians, only points 2872 

where 75 % of models agree on the sign are shown. Reproduced from Christensen and Kjellström (2018). 2873 

 2874 

 2875 

Figure 7.  Radar image of precipitation accumulation (mm/day) during recent national snowfall record in Finland. 2876 

The sea-effect snowfall accumulated 73 cm of new snow in less than a day to Merikarvia, Finland, in 8 January 2877 

2016. Figure from radar service of FMI intranet. 2878 

 2879 
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 2881 

Figure 8. Annual warm spell duration index (WSDI; left) and annual cold spell duration index (CSDI; left). Top: 2882 

Time series of the spatial averages over the area of 53-67N and 12-31E in 1950–2018. A fitted curve and a linear fit 2883 

are also shown. Bottom: Spatial distributions of the 30-year means during the period 1989–2018. The baseline 2884 

period in the calculations is 1961–1990. Data: wsdiETCCDI and csdiETCCDI created by climind 1.0.0 on 19 2885 

November 2019; Cornes et al. (2018).  2886 
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 2888 

 2889 

Figure 9. Ice charts before and after the major compression event in February 2011. Regions experienced opening 2890 

and compression/ridging are indicated as blue and red circles, respectively. Lower panel depicts ice thickness along 2891 

the yellow transect shown in the ice chart above.   2892 
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 2894 

Fig. 10:  Trends in the duration of the vegetation period (DD), based on phytoplankton biomass and chl a data, with 2895 

regression lines and corresponding formulas (Wasmund et al., 2019). 2896 
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 2898 

Figure 11. Estimated damage cost curves of a coastal flood event for select cities along the Baltic Sea based on Prahl 2899 

et al. (2017). The table insert shows high/low estimates of the expected annual damages (EAD) to Baltic countries 2900 

from extreme water levels by Vousdoukas et al. (2018, 2019, 2020) as well as specific estimates for major Baltic 2901 

cities in 2050 by Abadie et al. (2016). Note that the former is in billions of EUR, whereas the latter was estimated in 2902 

millions of USD.    2903 
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 2905 

Figure 12. Overview of wind farms over part of the Baltic and the North Sea in different development states 2906 

(www.4coffshore.com, 2021-03-09, courtesy of 4COffshore.com). 2907 

 2908 

Figure 13. Measured load on one frame at the bow of MS Kemira measured during 1985–1991 (Kujala, 2017), 2909 

showing also the possible effect of the increasing load on the damage of the ship shell structures. 2910 
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 2911 

  2912 

 2913 

 2914 

Figure 14. Simplified diagram to illustrate the relationship between atmospheric, hydrological, and marine processes 2915 

and their impact on society in winter and summer. 2916 


