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1 Datasets and additional Figures

The observational and reanalysis datasets used in this study are shown in Table S1. The single model initial-condition large

ensembles (SMILEs) used in the study are found in Table S2. Figure S1 shows the same Hovmöller from Figure 2 of the

main paper for SST anomalies, rather than relative SST. Figure S2 shows the relationship between the projected change of the

mean-state SST gradient and the projected change in EP and CP event amplitude.5

2 Supplementary Methods

2.1 Choice of features

In this study we tested three sets of input features (Table S3). First we use only the three niño indices 1.2, 3 and 4 averaged over

austral summer (DJF), which is the peak ENSO season. We find that the classifier can already perform reasonably well using

just this limited amount of information. However, the precision score is not as high for the CP events as the other classes. Next10

we add temporal information, which we hypothesise should help to better classify the CP events as they evolve differently in

the temporal domain than EP events. We find that this improves the overall classifier performance, especially when considering

the CP and EP events, which are now more precisely classified. Finally, we add additional spatial information by splitting the

niño 3 and 4 regions into halves (east and west). We perform this split at the niño3.4 boundary. This does not improve the

overall classifier performance. Given this does not decrease the classifier performance and more features may be useful when15

later applying the algorithm to climate models we use this as the final feature set. We note that we also tested a classifier

that had all grid points between 160oE, 90oW, 15oS and 15oN, where all data was regridded to a 1x1 spatial grid first (full
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Table S1. Input datasets used in this study.

dataset years reference

AMSREv07 2002-2010 Systems (2014)

COBEv1 1896-2019 Ishii et al. (2005)

COBESST2 1896-2018 Hirahara et al. (2014)

HadISST 1896-2017 Rayner et al. (2003)

ERSSTv3b 1896-2018 Smith et al. (2010)

ERSSTv4 1896-2018 Huang et al. (2015)

ERSSTv5 1896-2019 Huang et al. (2017)

GECCO2 1948-2016 Köhl (2015)

GODAS 1980-2019 Behringer and Xue (2004)

kaplan 1896-2019 Kaplan et al. (1998)

OISST 1981-2018 Reynolds et al. (2007)

ORAS4 1958-2016 Balmaseda et al. (2012)

ORAs5 (5 ensemble members) 1979-2017 Zuo et al. (2019, 2017)

soda3.11.2 1980-2015 Carton et al. (2018)

soda3.12.2 1980-2017 Carton et al. (2018)

soda3.4.2 1980-2018 Carton et al. (2018)

soda3.6.1 1980-2008 Carton et al. (2018)

soda3.7.2 1980-2016 Carton et al. (2018)

Table S2. SMILEs used in this study, the length of their historical period, the forcing scenario used and the reference for the dataset.

SMILE historical period scenario ensemble size reference

MPI-GE 1850-2005 RCP8.5 100 Maher et al. (2019)

CESM-LE 1920-2005 RCP8.5 40 Kay et al. (2015)

CanESM2 1950-2020 RCP8.5 50 Kirchmeier-Young et al. (2017); Kushner et al. (2018)

GFDL-ESM2M 1950-2005 RCP8.5 30 Rodgers et al. (2015)

CSIRO 1850-2005 RCP8.5 30 Jeffrey et al. (2012)

CanESM5 1850-2014 SSP370 23 Swart et al. (2019)

IPSL-CM6A 1850-2014 n/a 26 Boucher et al. (2020)

region). In this case the scores are low. We note that this result is dependent on the classifier used. We find that the nearest

neighbour classifier performs poorly, which is likely due to its difficulty to perform, when the data has too many dimensions.

A neural network also performs poorly, likely due to too much redundant information, and over-fitting. This is an example of20

how ’fat data’, too many features, with quite a low number of events can cause an algorithm to fail. We note that a random

forest algorithm, which is built to avoid over-fitting, performs well, but still not as well as using niño regions alone.
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Figure S1. Hovmöller of SST along the equator in the Pacific Ocean for composites of EP and CP El Niños, and EP-CP El Niños (top,

middle and bottom row respectively). Shown for HadISST observations (left column) and each individual SMILE (in order of appearance;

MPI-GE, CESM-LE, CanESM2, GFDL-ESM2M, CSIRO, CanESM5 and IPSL-CM6A). SST is averaged between 5N and 5S and shown for

August to April. SMILE data has the forced response (ensemble mean) removed prior to calculation, HadISST is detrended using a second

order polynomial then each months average is removed. The time period used is all of the historical, which is shown for the observations in

Table S1 and SMILEs in Table S2.

2.2 Choice of algorithm

First we identified all standard algorithms used for supervised learning in python (Table S4) and tested their performance. In

this case we train the classifier on all datasets bar HadISST, which we hold aside for testing. We additionally tested ensemble25

classifiers that used a combination of the standard algorithms (Table S4). We exclude algorithms 4, 6, and 7 as they have low

precision for CP events. The final classifier used in this study is an ensemble of algorithms 1,5 & 9 with soft voting. This

algorithm performs best when considering all scores.

Within the final classifier we optimised the three input algorithms to find the best possible parameters for performance. As

a last step we test whether a two-step classifier would perform better than a one-step classifier. The two steps for the two-step30

classifier are as follows:

1. Train the algorithm to classify into three categories LN, NE and EN (all El Niño events

2. Then re classify EN into EL and CP
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Figure S2. Relationship between future projected change in ENSO amplitude and the projected change of the mean-zonal gradient. Shown for

a) EP El Niños and b) CP El Niños. Amplitude is calculated as the November, December, January mean for the region 160E to 80W between

5N and 5S after the ensemble mean has been removed for each event. All changes are calculated over the period 2069-2098 compared to

1950-1979. The zonal mean gradient is calculated as the difference in SST in the western Pacific (5S-5N and 150-180E) minus the eastern

Pacific (5S-5N and 80-180W) as in Wang et al. (2019).

Theoretically this could help the classifier perform due to the low numbers of EL and CP events. However, we find that this

does not improve our classifier (Table S4) and as such choose to use the simpler one-step classifier for the rest of this study.35

Table S3. Scores for different feature inputs tested. Scores are defined in section 2.2 of the main paper. The full tropical Pacific is 160E-80W

and 15S-15N.

Features used Accuracy CVS P-CP P-EP P-LN P-NE

DJF-mean Niño 12,3,4 0.73 0.73 0.54 0.70 0.93 0.73

O,N,D,J,F,M-months Niño 12,3,4 0.94 0.90 0.92 1 1 0.91

O,N,D,J,F,M-months Niño 12,3E/W,4E/W 0.93 0.92 0.92 1 1 0.90

O,N,D,J,F,M-months Full tropical Pacific 0.47 0.66 0.27 0.45 0.48 0.65

Nearest Neighbours n=1 0.35 0.61 0.21 0.29 0.30 0.54

Neural Network 0.11 0.30 0.1 0 0 0

Random Forest 0.85 0.90 0.75 0.95 0.90 0.83

4



Table S4. Scores for different algorithms tested. Scores are defined in section 2.2 of the main text.

Algorithm Accuracy CVS P-CP P-EP P-LN P-NE

(1) NearestNeighbours 0.93 0.88 0.86 1 1 0.90

(2) LinearSVM 0.82 0.80 0.64 0.89 1 0.79

(3) RBFSVM 0.66 0.63 1 1 1 0.60

(4) DecisionTree 0.77 0.81 0.46 0.94 0.89 0.82

(5) NeuralNet 0.85 0.87 0.75 0.90 1 0.81

(6) AdaBoost 0.59 0.55 0.25 0 0.73 0.84

(7) NaiveBayes 0.72 0.69 0.4 0.85 0.81 0.83

(8) QDA 0.83 0.82 1 0.8 1 0.78

(9) RandomForest 0.79 0.76 0.77 0.83 1 0.75

Hard Vote (1,3,5,9) 0.92 0.92 0.86 1 1 0.89

Hard Vote (1,2,5,9) 0.92 0.91 0.86 1 1 0.90

Hard Vote (1,2,3,5,7,8,9) 0.89 0.90 0.92 1 1 0.84

2-step soft vote (1,5,9) 0.93 n/a 0.92 1 1 0.9

FINAL Soft vote (1,5,9) 0.93 0.92 0.92 1 1 0.9

3 Shifted niño regions

Given climate models have known ENSO biases, particularly in the location of SST anomalies along the equator, we addi-

tionally classify by shifting the longitudes of the niño regions. This shift is defined as the difference in location between the

maximum variability between 5N and 5S in the Pacific Ocean in the observations and the maximum variability in each individ-

ual SMILE (Table S5). We find that this does not significantly change the results in the main text except for CSIRO frequency40

where EP El Niños and La Niñas are now more realistically represented. The spatial patterns for each model (Figure S3) and

evolution of SST anomalies (Figure S4) are very similar when applying this shift. This method additionally does not change

the results for ENSO frequency (Figure S5) or amplitude (Figure S6).

4 Extreme El Niños

4.1 Method45

We additionally investigate Extreme El Niño events, by including the strongest events in the observational period as their own

class strong El Niños (ST). The years defined as ST El Niños are 1957,1965, 1972, 1982, 1987,1997 and 2015. We choose

only to include strong EP events in this category. We use the same ensemble classifier algorithm to classify these events. The

algorithm performs well when the original training and evaluation are used (Table S6). However, this algorithm performs less

well when we test the sensitivity to this construction. In this case the precision of EP and ST events is reduced and can be as50
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Figure S3. SST pattern for composites of EP, CP and LN events (left, middle and right columns respectively) for the shifted centers of

varaiblity. Shown for HadISST observations (top row) and each individual SMILE (in order of appearance; MPI-GE, CESM-LE, CanESM2,

GFDL-ESM2M, CSIRO, CanESM5 and IPSL-CM6A). SST pattern is shown for the November, December, January average. SMILE data

has the forced response (ensemble mean) removed prior to calculation, HadISST is detrended using a second order polynomial then each

months average is removed. The time period used is all of the historical, which is shown for the observations in Table S1 and SMILEs in

Table S4.
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Table S5. Frequency of events (as a percentage) in the historical period for observations (HadISST) and the SMILEs as well as the correlation

between EP and CP patterns shown for the shifted center of variability. The mean frequency and correlation across each ensemble is shown

with the minimum and maximum in brackets. The time period used is all of the historical, which is shown for the observations in Table S1

and SMILEs in Table S2.

Model EP no ev shift CP no ev shift LN no ev shift EP/CP shift-corr shift longitude

HadISST 16.1 11.2 21.0 0.85 na

MPI-GE 15.6 (9.0/21.9) 11.0 (4.5/18.1) 15.9 (7.1/20.6) 0.72 (0.59/0.92) -11

CESM-LE 23.2 (17.6/29.4) 7.7 (2.4/11.8) 23.9 (15.3/35.3) 0.69 (0.42/0.88) -8

CanESM2 20.6 (11.4/28.6) 9.9 (2.3/17.1) 21.3 (10/28.6) 0.83 (0.59/0.94) -11

GFDL-ESM2M 17.3 (10.9/23.6) 20.0 (12.7/25.5) 25.3 (16.4/36.4) 0.71 (0.56/0.92) -12

CSIRO 11.6 (7.1/15.2) 17.1 (10.3/23.9) 16.1 (11.0/20.6) 0.85 (0.79/0.92) -26

CanESM5 11.2 (6.7/17.1) 5.1 (1.2/9.8) 13.6 (9.8/18.3) 0.79 (0.51/0.88) -10

IPSL-CM6A 18.7 (14.6/22.0) 7.6 (3.6/12.8) 18.7 (14.6/22.6) 0.80 (0.67/0.90) -11

low as zero for the ST events (Table S6), likely due to the small number of events in this class. This means that the classifier is

less well constrained when including ST events. Because of this we used the better constrained algorithm that does not include

ST events to present the main finding of this study and discuss this additional algorithm for ST here in the Supplementary.

We then apply the classifier that includes extreme El Niños (ST) to the same set of SMILEs and compare the results for the

EP and ST classes from this new classification. We find that the evolution of SST anomalies on the equator is similar for EP55

and ST events, however the ST events have much larger SST anomalies demonstrating that this classifier is now splitting the

original set of EP events into weaker and stronger subsets (Figure S7).

4.2 Results

When considering projections of amplitude and frequency (Figure S8) we find that the CESM-LE and CanESM5 amplitude

increases occur for only the EP events, but that the CanESM2 and GFDL-ESM2M decreases occur for both types of El Niño.60

For frequency we find that the projected changes are confined to the ST events, demonstrating that it is the stronger events that

drive the changes previously seen in the EP class. Last, the SST and precipitation projected changes are similar for EP and ST

events (Figure S9), with the changes consistently stronger for the extreme El Niños. These results are in conflict with previous

work that finds an increase extreme EP events in future (Cai et al., 2014, 2018, 2021). However, based on limitations of our

classification due to the small number of ST events available to train the classifier as well as clear model differences found,65

this warrants further investigation in future work.

7



HadISST
Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar

Apr

E
P

 N
in

o

Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar

Apr

C
P

 N
in

o

140 200 260

Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar

Apr

E
P

 N
in

o
 -

 C
P

 N
in

o

MPI-GE

140 200 260

CESM-LE

140 200 260

CanESM2

140 200 260
longitude (E)

GFDL-ESM2M

140 200 260

CSIRO

140 200 260

CanESM5

140 200 260

IPSL-CM6A

140 200 260

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

oC

Figure S4. Hovmöller of relative SST along the equator in the Pacific Ocean for composites of EP, CP El Niños and EP-CP El Niños (top,

middle and bottom row respectively) for the shifted centers of variability. Shown for HadISST observations (left column) and each individual

SMILE (in order of appearance; MPI-GE, CESM-LE, CanESM2, GFDL-ESM2M, CSIRO, CanESM5 and IPSL-CM6A). SST is averaged

between 5N and 5S and shown for August to April. SMILE data has the forced response (ensemble mean) removed prior to calculation,

HadISST is detrended using a second order polynomial then each months average is removed. The time period used is all of the historical,

which is shown for the observations in Table S1 and SMILEs in Table S4. Relative SST is calculated by removing the average SST between

120E and 280E individually for each month.

Table S6. Minimum, mean and maximum scores for the ensemble classifier. Test 1 uses all available data, with HadISST kept aside for

testing. This split is completed 10 times to find the minimum and maximum scores possible due to random noise. Test 2 uses the longer

datasets, ERSST, COBE, Kaplan and HadISST for training and testing. The data is split so that the augmented events must all occur in the

same section of the data. To complete this we use the python function train test split. 10 splits are manually chosen to ensure that they sample

events from across the time-dimension and have a reasonable amount of each type of event.

Test Min/Max score Accuracy clf P-CP P-EP P-LN P-NE P-ST

Test 1 Min 0.93 0.91 0.92 1 1 0.9 1

Mean 0.93 0.91 0.92 1 1 0.9 1

Max 0.93 0.92 0.92 1 1 0.9 1

Test 2 w/check Min 0.56 0.93 0.39 0.23 0.55 0.66 0

Mean 0.69 0.94 0.55 0.42 0.83 0.76 0.61

Max 0.79 0.94 0.79 0.57 1 0.87 1
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Figure S5. ENSO frequency in each SMILE for EP, CP and LN events (left, middle and right columns respectively) for the shifted centers

of variability. Black line shows the ensemble mean for each year, red line shows the ensemble maximum and the blue line the ensemble

minimum. Dashed lines represent the same result for the shifted tropical Pacific variability. Frequency is calculated as the number of events

in a single ensemble member per 30 years, taken as a running calculation along the time-series. PDFs show the distribution of ensemble

members for the entire time-series. Black dots on the x-axis demonstrate when the signal (current ensemble mean minus the ensemble mean

at the beginning of the time-series) is greater than the noise (standard deviation taken across the ensemble). Red dots show when the signal

is 1.645 times the noise, while magenta dots show the same when the signal is greater than 2 times the noise. These thresholds correspond to

the likely, very likely and extremely likely ranges.
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Figure S6. ENSO amplitude in each SMILE for EP, CP and LN events (left, middle and right columns respectively) for the shifted centers

of variability. Black line shows the ensemble mean for each year, red line shows the ensemble maximum and the blue line the ensemble

minimum. Dashed lines represent the same result for the shifted tropical Pacific variability. Amplitude is calculated as the November,

December, January mean for the region 160E to 80W between 5N and 5S after the ensemble mean has been removed for each event. PDFs

show the distribution of ensemble members for the entire time-series. Black dots on the x-axis demonstrate when the signal (current ensemble

mean minus the ensemble mean at the beginning of the time-series) is greater than the noise (standard deviation taken across the ensemble).

Red dots show when the signal is 1.645 times the noise, while magenta dots show the same when the signal is greater than 2 times the noise.

These thresholds correspond to the likely, very likely and extremely likely ranges.
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CanESM2, GFDL-ESM2M, CSIRO, CanESM5 and IPSL-CM6A). SST is averaged between 5N and 5S and shown for August to April.
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Figure S8. ENSO amplitude and frequency in each SMILE for EP and ST events. Black line shows the ensemble mean for each year, red

line shows the ensemble maximum and the blue line the ensemble minimum. Dashed lines represent the same result for the shifted tropical

Pacific variability. Amplitude is calculated as the November, December, January mean for the region 160E to 80W between 5N and 5S after

the ensemble mean has been removed for each event. Frequency is calculated as the number of events in a single ensemble member per 30

years, taken as a running calculation along the time-series. PDFs show the distribution of ensemble members for the entire time-series. Black

dots on the x-axis demonstrate when the signal (current ensemble mean minus the ensemble mean at the beginning of the time-series) is

greater than the noise (standard deviation taken across the ensemble). Red dots show when the signal is 1.645 times the noise, while magenta

dots show the same when the signal is greater than 2 times the noise. These thresholds correspond to the likely, very likely and extremely

likely ranges.
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Figure S9. Change in SST and precipitation patterns (left and right columns respectively) in each SMILE in the period 2050-2099 as

compared to 1950-1999 for EP and ST events. Shown for each individual SMILE (in order of appearance; MPI-GE, CESM-LE, CanESM2,

GFDL-ESM2M, CanESM5 and IPSL-CM5). SST and precipitation patterns are calculated as the November, December, January average and

composited for each event type over each time-period. SMILE data has the forced response (ensemble mean) removed prior to calculation.
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