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Abstract. Atmosphere and ocean dynamics display many complex features and are characterized by a wide variety of processes

and couplings across different timescales. Here we demonstrate the application of Multivariate Empirical Mode Decomposition

(MEMD) to investigate the multivariate and multiscale properties of a reduced order model of the ocean-atmosphere coupled

dynamics. MEMD provides a decomposition of the original multivariate time series into a series of oscillating patterns with

time-dependent amplitude and phase by exploiting the local features of the data and without any a priori assumptions on5

the decomposition basis. Moreover, each oscillating pattern, usually named Multivariate Intrinsic Mode Function (MIMF),

represents a local source of information that can be used to explore the behavior of fractal features at different scales by

defining a sort of multiscale/multivariate generalized fractal dimensions. With these two approaches, we show that the ocean-

atmosphere dynamics presents a rich variety of features, with different multifractal properties for the ocean and the atmosphere

at different timescales. For weak ocean–atmosphere coupling, the resulting dimensions of the two model components are very10

different, while for strong coupling for which coupled modes develop, the scaling properties are more similar especially at

longer time scales. The latter result reflects the presence of a coherent coupled dynamics. Finally, we also compare our model

results with those obtained from reanalysis data demonstrating that the latter exhibit a similar qualitative behavior in terms

of multiscale dimensions and the existence of a scale-dependency of topological and geometric features for different regions,

being related to the different drivers and processes occurring at different timescales in the coupled atmosphere-ocean system.15

Our approach can therefore be used to diagnose the strength of coupling in real applications.

1 Introduction

The atmosphere and the ocean form a complex system whose dynamical variability extends over a wide range of spatial and

temporal scales (Liu, 2012; Xue et al., 2020). As an example, the tropical regions are markedly characterized by inter-/multi-20
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annual processes like the El Niño–Southern Oscillation (ENSO) (Neelin et al., 1994; Meehl et al., 2003), while the North

Atlantic Oscillation (NAO) affects extra-tropical Northern regions at seasonal and decadal timescales (Ambaum et al., 2001).

The sources of these processes have been widely investigated by means of multiple data analysis methods and various types of

modelling (e.g., Philander, 1990; Czaja and Frankignoul, 2002; Van der Avoird et al., 2002; Mosedale et al., 2006; Kravtsov

et al., 2007; Feliks et al., 2011; Liu, 2012; L’Hévéder et al., 2014; Farneti, 2017; Vannitsem and Ghil, 2017; Wang, 2019; Xue25

et al., 2020, and reference therein), highlighting how the atmospheric low-frequency variability (LFV) is strictly related to

the ocean. The latter develops thanks to the interaction with the ocean mixed layer (OML) driven by a mixing process due to

the development of an instability within the water column (Czaja and Frankignoul, 2002; D’Andrea et al., 2005; Wunsch and

Ferrari, 2004; Gastineau et al., 2012) that also shows a strong seasonal variability. The relation between the OML and the LFV

can be investigated from a dynamical systems point of view by developing suitable reduced order ocean-atmosphere models30

dealing with the modelling of the coupling between the atmosphere and the underlying surface layer of the ocean. Recently, by

means of a 36-variable model displaying marked LFV Vannitsem et al. (2015) demonstrated that the LFV in the atmosphere

could be a natural outcome of the ocean-atmosphere coupling.

The current work presents an investigation on how a recently introduced concept of multiscale generalized fractal dimensions

can be used to analyze the topological and geometric properties of attractors in coupled ocean-atmosphere systems (Alberti et35

al., 2020a). This demonstration is done by means of the reduced order model developed in Vannitsem et al. (2015). Indeed, the

dynamical properties of physical systems can be related to their support fractal dimension as well as its singularities by means

of different established concepts like the box-counting dimension (Ott, 2002), generalized correlation integrals (Grassberger,

1983; Hentschel and Procaccia, 1983; Pawelzik and Schuster, 1987), the pointwise dimension method (Farmer et al., 1983;

Donner et al., 2011), and related characteristics (Badii and Politi, 1984; Primavera and Florio, 2020). These methods are based40

on partitioning the phase-space into hypercubes of size ` to define a suitable invariant measure through the filling probability

of the i−th hypercube by Nk points as pk =Nk/N , with N being the total number of points. With M(`) denoting the number

of filled hypercubes, we can define some useful dynamical invariants such as the box-counting (or capacity or simply fractal)

dimension

D0
.=− lim

`→0
lim
N→∞

logM(`)
log`

, (1)45

the information dimension

D1
.= lim
`→0

lim
N→∞

∑M(`)
k=1 pk logpk

log `
, (2)

and the correlation dimension

D2
.= lim
`→0

lim
N→∞

1
N2

∑
i 6=jΘ(`− |xi−xj |)

log`
, (3)

with Θ(· · ·) being the Heaviside function. All these fractal dimension measures, as well as their higher order extensions Dq ,50

have been used to characterize the global dynamical, topological, and geometric properties of a given system (Hentschel and

Procaccia, 1983), however, without exploring how these properties evolve at different scales (Alberti et al., 2020a). More
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recently, by means of a suitable combination between a state of the art time series decomposition method (the Empirical Mode

Decomposition) and the concept of generalized fractal dimensions, Alberti et al. (2020a) introduced a multiscale approach to

deal with the investigation of the evolution of topological properties in dynamical systems.55

Here, we extend for the first time the concept of multiscale generalized fractal dimensions in a multivariate framework by

means of the Multivariate Empirical Mode Decomposition (MEMD), allowing us to investigate the multiscale and multivariate

properties of a reduced order model of the ocean-atmosphere coupled dynamics. By using the oscillating patterns forming the

decomposition basis of the MEMD algorithm, usually named Multivariate Intrinsic Mode Function (MIMF), we define a sort

of multiscale/multivariate generalized fractal dimensions. The MEMD results allow us to capture the essential dynamics of the60

phase-space trajectory that can be used for reconstructing the skeleton of the phase-space dynamics, while the evaluation of

the fractal dimensions at different timescales provides a quantitative characterization of the intrinsic complexity of oscillating

patterns that can be related to the attractor properties. Our results also allow for associating the geometric and topological

properties to the dynamical regimes at different timescales of the coupled ocean–atmosphere system. Finally, our findings for

the reduced order model well reconcile with corresponding results for reanalysis data, thus supporting and encouraging the use65

of reduced order models for investigating the essential aspects of the coupled ocean–atmosphere system in terms of topological

and geometrical features.

2 The reduced order ocean-atmosphere model

Reduced order coupled ocean-atmosphere models are key tools in the hierarchy of climate models, allowing for an extensive

analysis of the features of the coupled dynamics that would otherwise be impossible to evaluate (Lorenz, 1984; Nese and Dut-70

ton, 1993; Roebber, 1995; Jin, 1996; Timmermann et al., 2003; Van Veen, 2003; De Cruz et al., 2016; Vannitsem, 2017). These

models allow for obtaining key insights into the role of coupling for the development of LFV in the atmosphere associated with

the presence of the ocean.

Recently, dynamical analysis have been conducted by means of the development of a suitable reduced order model of

the coupled ocean-atmosphere system. It has been developed starting from the quasi-geostrophic equations describing the75

interaction between a two-layer atmosphere and a one-layer ocean over an infinitely deep quiescent ocean layer (Vannitsem et

al., 2015; Vannitsem, 2015; De Cruz et al., 2016; Vannitsem, 2017; De Cruz et al., 2018). The ocean flow passively advects

the temperature within the ocean, while momentum, radiative, and heat transfer mechanisms realize the coupling between

the atmosphere and the ocean. By expanding the solutions of these equations into Fourier series, by truncating them at low

wavenumbers, and by projecting onto the Fourier modes retained, a set of ordinary differential equations is derived. The fields80

are defined over a rectangular domain with 0≤ x≤ 2πL/n and 0≤ y ≤ πL, being n the aspect ratio between the meridional

and the zonal extents of the domain and L the characteristic spatial scale. Moreover, periodic boundaries along the zonal

direction and free-slip along the meridional direction are chosen for the atmosphere, while a closed basin with no flux through

the boundaries is imposed for the ocean.
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In the reduced order coupled model version proposed in Vannitsem et al. (2015), a long-periodic attracting orbit combining85

atmospheric and oceanic variables emerges from a Hopf bifurcation for large values of the meridional gradient of radiative

input and frictional coupling. Beyond a certain value of the meridional gradient for the radiative input, a chaotic behavior

appears, which is still dominated by LFV on decadal and multi-decadal time-scales.

Here we used the original version of the model (Vannitsem et al., 2015) where the four relevant fields, i.e., the barotropic and

baroclinic atmospheric streamfunctions, the ocean streamfunction and the ocean temperature, are given by ψa =
∑10
i=1ψa,iFi,90

θa =
∑10
i=1 θa,iFi, Ψo =

∑8
i=1 Ψo,iφi and To =

∑8
i=1To,iφi, where Fi and φi are simplified notations for the sets of modes

used, compatible with the boundary conditions of both the atmosphere and the ocean. The parameter values used are the ones

given in Figs. 8 and 9 of Vannitsem (2017). Depending on the choice of the surface friction coefficient C, different solutions

are found with a highly chaotic dynamics without marked LFV in the atmosphere for small values of C, but a more moderately

chaotic dynamics with stronger LFV in both the ocean and the atmosphere (related to the development of a coupled mode) for95

larger values of C.

3 Methods

Traditional multivariate and/or spatiotemporal data analysis methods are commonly based on fixing an orthogonal decom-

position basis, satisfying certain mathematical properties of completeness, convergence, linearity, and stationarity (Chatfield,

2016). However, these conditions are not usually met when real-world geophysical data are analyzed, which calls for more100

adaptive methods (Huang et al., 1998). Moreover, geophysical data are usually also characterized by scale-invariant features

over a wide range of scales with different complexity and show a scale-dependent behavior due to several factors like forcings,

coupling, intrinsic variability, and so on (Franzke et al., 2020). For the above reasons, in this work we put forward a novel ap-

proach based on combining two different data analysis methods for investigating the multiscale fractal behavior of the coupled

ocean-atmosphere system: Multivariate Empirical Mode Decomposition (MEMD; Rehman and Mandic, 2010) and generalized105

fractal dimensions (Hentschel and Procaccia, 1983).

3.1 Multivariate Empirical Mode Decomposition (MEMD)

The Multivariate Empirical Mode Decomposition (MEMD) is the "natural" multivariate extension of the univariate Empirical

Mode Decomposition (EMD) (Huang et al., 1998; Rehman and Mandic, 2010). MEMD directly works on the data domain,

instead of defining a conjugate space as for Fourier or Wavelet transforms, with the aim of being as adaptive as possible to110

minimize mathematical assumptions and definitions (Huang et al., 1998) in extracting embedded structures in the form of

so-called Multivariate Intrinsic Mode Functions (MIMFs) (Rehman and Mandic, 2010). Each MIMF is an oscillatory pattern

of the multivariate coordinates having the same number (or differing at most by one) of local extremes and zero crossings, and

whose upper and lower envelopes are symmetric (Huang et al., 1998; Rehman and Mandic, 2010). MIMFs are derived through

the sifting process (Huang et al., 1998). This process is easily realized for univariate signals (Huang et al., 1998), while needs115

to be carefully implemented for multivariate processes (Rehman and Mandic, 2010), since it is based on the cubic spline
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interpolation of local extremes that cannot easily be defined on a k-dimensional space (Rehman and Mandic, 2010). Rehman

and Mandic (2010) proposed an alternative definition of local extremes for multivariate signals by considering the k-variate

data as composed by k-dimensional signals projected onto appropriate directions in this k-dimensional space. This allows us

to perform cubic spline interpolation in each direction, with the suitable directions chosen by means of a combination of a120

quasi-Monte Carlo-based low-discrepancy sequences and a uniform angular sampling method (Rehman and Mandic, 2010).

These allow a uniform distribution of vectors and a proper estimate of the local mean estimates (see, e.g., Rehman and Mandic,

2010, for more details).

The main steps of the sifting process acting on a k-variate signal {s(t)}|t∈T = {s1(t),s2(t), . . . ,sk(t)} can be summarized

as below:125

1. identify local extremes (i.e., data points where abrupt changes in the local tendency of the series under study are ob-

served);

2. interpolate local extremes separately by cubic splines (i.e., produce continuous functions with smaller error than other

polynomial interpolation);

3. derive the upper {u(t)}|t∈T and the lower {l(t)}|t∈T envelopes;130

4. derive the mean envelope {m(t)}|t∈T as {m(t)}|t∈T = {u(t)}|t∈T+{l(t)}|t∈T
2 ;

5. evaluate the resulting candidate MIMF as {h(t)}|t∈T (t) = {s(t)}|t∈T −{m(t)}|t∈T .

The previous steps are iteratively repeated until the obtained candidate MIMF {h(t)}|t∈T (t) can be identified as a Multivariate

Intrinsic Mode Function (also called multivariate empirical mode) (Huang et al., 1998; Rehman and Mandic, 2010), while the

full sifting process ends when no more MIMFs {cj(t)}|t∈T can be filtered out from the data. Hence, we can write135

{s(t)}|t∈T =
Nj∑

j=1

{cj(t)}|t∈T + {r(t)}|t∈T . (4)

In this way a multivariate signal is decomposed into Nj k-dimensional functions, each containing the same frequency distri-

bution, e.g., into a set of k-dimensional embedded oscillating patterns {cj(t)}|t∈T which form the multivariate decomposition

basis, plus a multivariate residue {r(t)}|t∈T .

For each MIMF we can define a k?−variate mean timescale as140

τj,k? =
1
T

T∫

0

t′cj,k?(t′)dt′, (5)

representing the typical oscillation scale of the j−th mode for the k?-th univariate component cj,k? extracted from the mul-

tivariate signal {s(t)}|t∈T = {sk?(t)} for k? ∈ [1,k]. Similarly, by ensemble averaging over the k-dimensional space we can

introduce the concept of a multivariate mean timescale as

τj =
1
T

T∫

0

t′〈{cj(t′)}|t′∈T 〉kdt′, (6)145
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with 〈· · · 〉k denoting an ensemble average over the k-dimensional space. Thus, the k?−variate timescale τj,k? is evaluated

for each mode and for each k?−dimensional data, while the multivariate mean timescale τj is the mean over all k? ∈ [1,k].

Moreover, as for univariate EMD (Huang et al., 1998), we can introduce the concepts of instantaneous amplitudes {aj(t)}|t∈T
and phases {φj(t)}|t∈T of each MEMD mode via the Hilbert Transform along the different directions of the k-dimensional

space. The instantaneous energy content is then derived as {Ej(t)}|t∈T = {aj(t)}|2t∈T . Thereby, we can characterize the150

spectral content by introducing an alternative yet equivalent definition of the power spectral density (PSD) as

S(τ) =
1
T 2

T∫

0

〈{Ej(t′)}|t′∈T 〉kdt′ ·
T∫

0

t′〈{cj(t′)}|t′∈T 〉kdt′ .= σ2(τ) · τ, (7)

with σ2(τ) being the k−variate variance of MIMFs and τ the mean timescale defined as in Eq. (6). Moreover, from the

instantaneous energy content {Ej(t)}|t∈T the relative contribution ej can be derived as

ej =
1
T

∫ T
0
〈{Ej(t′)}|t′∈T 〉kdt′

∑Nj
j=1

1
T

∫ T
0
〈{Ej(t′)}|t′∈T 〉kdt′

. (8)155

Finally, as for the univariate decomposition (Huang et al., 1998), also the MIMFs are empirically and locally orthogonal each

other, the decomposition basis is a complete set (Rehman and Mandic, 2010) and partial sums of Eq. (4) can be obtained

(Alberti, 2018; Alberti et al., 2020b).

3.2 Multivariate and multiscale generalized fractal dimensions

The behavior of complex systems usually consists of a collection of scales whose dynamical features determine their collective160

behavior. Nevertheless, vast efforts have been made to determine collective properties of systems (e.g., Hentschel and Pro-

caccia, 1983), instead of considering to measure scale-dependent features. Recently, Alberti et al. (2020a) introduced a new

formalism allowing measuring information at different scales by combining a data-adaptive decomposition method and the

classical concept of generalized fractal dimensions. The starting point is that a multivariate signal manifesting a multiscale

behavior can be written as165

{s(t)}|t∈T = 〈{s}|t∈T 〉+
∑

τ

δ{sτ (t)}|t∈T = {s0}+ {s1(t)}|t∈T , (9)

with 〈· · · 〉 representing a steady-state average operation and δ indicating a fluctuation at scale τ . For any given τ we can

introduce a local natural probability measure dµτ such that the probability pi of visiting the i−th hypercube Bs∗,τ (`) of size `

centered at the point {s∗} on the considered (d−dimensional) phase-space of {s1(t)}|t∈T can be defined as

pi
.=

∫

s1∈Bs∗,τ (`)

dµτ . (10)170

By defining a q−th order partition function

Γq(µτ ,Bs∗,τ (`)) =
∑

i

pqi =
∫
dµτ (s)µτ (Bs∗,τ (`))q (11)
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and taking the limit `→ 0, the multiscale generalized fractal dimensions are derived as

Dq,τ =
1

q− 1
lim
`→0

logΓq(µτ ,Bs∗,τ (`))
log `

. (12)

Here we identify the intrinsic oscillations by using the MEMD and then we investigate the phase-space properties at different175

scales by deriving the generalized dimensions (Alberti et al., 2020a). Summarizing:

1. we extract multiscale components from {s(t)}|t∈T by using the MEMD;

2. we evaluate the intrinsic scale τj of each MIMF;

3. we evaluate reconstructions of modes by means of Eq. (4)

∑

τ

δ{sτ (t)}|t∈T → Fj?(t) =
j?∑

j=1

{cj(t)}|t∈T (13)180

with j? = 1, . . . ,Nj (by construction, MIMFs are ordered from short to long scales, i.e., τj < τj′ if j < j′);

4. we evaluate the generalized dimensions Dq,τ from Fj?(t) for each j? (i.e., for each scale τj? ),;

5. we evaluate the singularities and singularity spectrum

ατ =
d

dq
[(q− 1)Dq,τ ] (14)

fτ = f(ατ ) = qατ − [(q− 1)Dq,τ ] . (15)185

From Eq. (13) we can inspect local properties of fluctuations in terms of the geometry of the phase-space, thus providing a

characterization of dynamical features of different regimes and disentangling the different dynamical components of (possibly)

different origin. Finally, it is expected (for ensuring convergence) that when j?→Nj then Dq,τ →Dq , with Dq being the

standard generalized fractal dimensions proposed by Hentschel and Procaccia (1983).

4 Results190

4.1 Multivariate Empirical Mode Decomposition

Figure 1 reports the 3-D projection of the full system attractor in the subspace (To,2,Ψo,2,ψa,1) for two representative values

of the friction coefficient C (0.008 and 0.015 kg m−2 s−1 as indicated by red and black points, respectively). In the following,

we will omit the physical units of this parameter for the sake of brevity. The considered subspace characterizes the dynamics of

the system as represented by the dominant mode of the meridional temperature gradient in the ocean (To,2), by the double-gyre195

transport within the ocean (Ψo,2), and by the vertically averaged zonal flow within the atmosphere (ψa,1), respectively.

The behavior of the system is clearly dependent on the friction coefficient, with both the location and the topology of the

attractor changing as C is increased from 0.008 (red points in Fig. 1) to 0.015 (black points in Fig. 1). This behavior has also

7
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Figure 1. 3-D projection of the full system attractor in the subspace (To,2,Ψo,2,ψa,1) for C = 0.008 (red) and C = 0.015 (black), respec-

tively.

been previously reported by Vannitsem et al. (2015) and Vannitsem (2015), indicating a drastic qualitative change of the nature

of the dynamics at about C = 0.011 above which substantial LFV emerges (Vannitsem et al., 2015; Vannitsem, 2015, 2017).200

However, all model components are clearly characterized by multiscale variability, spanning a wide range of timescales that

can contribute to the dynamics in different ways, depending on the values of the friction coefficient and the intrinsic variability

of the coupled ocean-atmosphere system.

Figure 2 displays the behavior of the spectral energy content S(τ) of the different MIMFs as a function of their mean

timescales τ as in Eq. (7) for the full system (atmosphere+ocean) and for the two subsystems separately (i.e., the atmosphere205

and the ocean, respectively). First of all, it is important to underline that a different number of MIMFs has been identified

for the two different cases: Nj = 17 for C = 0.008 and Nj = 22 for C = 0.015. This underlines that the respective dynamical

behavior of the system is different, being characterized by different sets of empirical modes and consequently by a different

number of relevant timescales. Moreover, by keeping in mind that for pure noise the expected number of MIMFs is log2N

with N being the number of data points, both situations cannot be related with a purely stochastic dynamics. Indeed, in both210

cases we have used N = 105 data points, thus the expected number of MIMFs is N noise
j = 16 (Flandrin et al., 2004). However,

an interesting feature is that for the lower C value a number of MIMFs closer to that expected for noisy data is found, possibly

related to the more irregular dynamics in this low friction coefficient case. Conversely, a marked departure from Nj = 16 is

found for the higher C case, corresponding to a more regular dynamics characterized by significant LFV.

Furthermore, from Fig. 2 it is easy to note that the behavior of S(τ) depends on both the friction coefficient C and the dif-215

ferent components of the model. For the full system (i.e., atmosphere+ocean) S(τ) decreases as τ increases for both values of

C, while it is characterized by increasing spectral energy content at larger scales (i.e., at lower frequencies). By discriminating
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Figure 2. Spectral energy content S(τ) of the different MIMFs as a function of their mean timescales τ as in Eq. (7) for the full system

(atmosphere+ocean, blue circles), only for the atmosphere (orange asterisks), and only for the ocean (yellow diamonds). Left and right

panels refer to the two values of the friction coefficient, C = 0.008 and C = 0.015, respectively.

between the atmospheric and the oceanic contribution we are able to see that (as expected), the short-term variability of the

full system can be attributed to the atmosphere, while the long-term one is a reflection of the ocean dynamics. Moreover, when

C increases we note an increase of the spectral energy content at all timescales, together with a flattening of the atmospheric220

spectral behavior, while the ocean dynamics seems to preserve its spectral features. These behaviors can be related to the exis-

tence of multiscale variability of the full system that can be linked to the different components operating at different timescales

and to the different dynamics of the system as the friction coefficient C is changed.
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Figure 3. Relative contribution (in percentage) Eχ,τ of each variable χ= {ψa,i,θa,i,Ψo,i,To,i} in dependence on the mean timescale τ .

Left and right panels refer to the two values of the friction coefficient C = 0.008 and C = 0.015, respectively. The white line separates the

atmospheric variables from the oceanic ones.
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To further clarify the latter aspect, we evaluate the relative contribution (in percentage) Eχ,τ of the different MIMFs (i.e., at

different timescales τ ) for each variable χ= {ψa,i,θa,i,Ψo,i,To,i} as reported in Fig. 3. It can be clearly noted that the oceanic225

variability mainly contributes to the low-frequency dynamics (Eχ,τ > 95% for χ= {Ψo,i, To,i} and τ & 104 days), while the

atmosphere is mainly characterized by short-term variability forC = 0.008 (Eχ,τ > 95% for χ= {ψa,i, θa,i} and τ . 10 days)

and by both short- and long-term dynamics for C = 0.015. This points towards the C-dependent behavior of the atmospheric

dynamics, with the ocean multiscale variability being less affected by changes in the values of the friction coefficient, and to

the role of the ocean in developing LFV in the atmosphere as C increases.230

Thanks to the completeness property of the MEMD we can explore the dynamics of the system as reproduced by the most

energetic empirical modes via partial sums of Eq. (4). By using the information coming from the energy percentage distribution

across the different timescales for each variable χ we can provide MIMF reconstructions accounting for a certain percentage of

energy with respect to the total spectral energy content. By ordering the empirical modes with decreasing relative contribution

ej and summing up those contributing at least 95% of the total spectral content, we are able to investigate the 3-D projection235

of the full system attractor onto the subspace (To,2,Ψo,2,ψa,1) and compare it with the projection obtained by considering all

timescales (as in Figure 1). Thus, for each variable χ= {ψa,i,θa,i,Ψo,i,To,i}we can define a reconstruction based on empirical

modes, Rχ,95%, as

Rχ,95%(t) .=
∑

j′|ej′≥95%

{cχ,j′(t)}|t∈T (16)

with {cχ,j′(t)}|t∈T being the j′−th multivariate empirical mode extracted via the MEMD of the variables χ. The 3-D pro-240

jection onto the subspace (To,2,Ψo,2,ψa,1) of Rχ,95% is shown in Fig. 4, while Tab. 1 summarizes the mode indices j′ and

corresponding k?−variate timescales τj′,k? (see Eq. (5)) used for the reconstruction.

Table 1. Mode indices j′ and corresponding k?−variate timescales τj′,k? (see Eq. (5)) used for the reconstruction based on empirical modes

Rχ,95%.

C χ j′ τj′,k? [days]

ψa,1 1, 2 3, 5

0.008 Ψo,2 14, 15, 16 631, 1333, 2086

To,2 14, 15, 16 599, 1132, 1913

ψa,1 21 2690

0.015 Ψo,2 19, 20, 21 829, 1469, 2449

To,2 19, 20, 21 735, 1506, 2598

By comparing Figs. 1 and 4 it can be easily noted that the underlying structure of the 3-D projection of the full attractor

is essentially the same, thus suggesting that the subspace topological and geometric information can be recovered by a subset

of multivariate empirical modes. This underlines that the dynamics of the full system can be reproduced by only few relevant245
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Figure 4. 3-D projection of the full system attractor in the subspace (To,2,Ψo,2,ψa,1) for C = 0.008 (red) and C = 0.015 (black), respec-

tively, as obtained from reconstructions based on the multivariate empirical modes Rχ,95%(t) accounting for 95% of the total variance of the

model dynamics.

timescales without too much loss of information, thus reducing the complexity of the low order model itself. These results

appear relevant if put into the wider context of coupled ocean-atmosphere dynamics, allowing us to recover the main features

by only considering the most relevant (in terms of energy) timescale dynamical components.

4.2 Multiscale generalized fractal dimensions

Under general conditions, the complexity of a dynamical system can be conveniently investigated by means of the nonlinear250

properties of its phase-space trajectory (e.g., its attractor or repellor in case of dissipative dynamics) (Ott, 2002). One of the most

common ways to characterize the topology of an attractor is to compute its spectrum of generalized fractal dimensions, allowing

us to statistically characterize important properties of the dynamics as reflected by its phase-space geometry, including its

information content, complexity, and underlying fractal structure (Grassberger, 1983; Hentschel and Procaccia, 1983; Donner

et al., 2011). However, classical approaches can only provide global information on the phase-space topology (Hentschel and255

Procaccia, 1983; Ott, 2002), while multiscale dynamical systems can be characterized by topological properties changing as

different scales are considered (Alberti et al., 2020a). For this purpose, we investigate the topological properties of the attractor

of the coupled ocean-atmosphere model by evaluating the multiscale generalized fractal dimensions described in Section 3.2.

Figures 5 and 6 report the behavior of the correlation dimension D2 for both values of the friction coefficient and for three

different cases: (a) for each MIMF individually (Dj
2), (b) for reconstructions of MIMFs summing up from j = 1 to Nj (D

∑
j

2 ),260

and (c) for reconstructions of MIMFs performed separately for each variable χ= {ψa,i,θa,i,Ψo,i,To,i}.
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Figure 5. Multiscale correlation dimensionD2,τ for C = 0.008 at different timescales τj for different cases: (a) for each MIMF individually

(Dj
2), (b) for reconstructions of MIMFs summing up from j = 1 to Nj (D

∑
j

2 ), and (c) for reconstructions of MIMFs separately for each

variable (barotropic modes - blue circles, baroclinic modes - orange asterisks, transport modes - yellow diamonds, and temperature modes -

violet symbol). Each panel also shows the 95% confidence intervals as error bars.

As expected, the multiscale correlation dimension for each MIMF decreases with increasing timescale, being representative

of a more regular, less stochastic/chaotic, behavior of large-scale MIMFs as compared with the short-term ones (Alberti et al.,

2020a). Particularly, when approaching the largest timescales, D2,τ → 1 suggesting the existence of fixed-scale MIMFs, i.e.,

with the instantaneous frequencies being almost constant (as expected, e.g., Rehman and Mandic, 2010). Conversely, when the265

multiscale correlation dimensions are evaluated by summing up the different MIMFs, starting from the shortest up to the largest

scale, a clearly scale-independent behavior ofD2,τ is highlighted for both values of the friction coefficientC. However, the role

of C clearly emerges in determining the values of D2,τ , being lower for the larger C value. Indeed, D2,τ ∼ 8 for C = 0.008,

while D2,τ ∼ 1.5 for C = 0.015. This reflects the different topological properties of the attractor of the full system associated

with a different dynamical behavior of the model variables (Faranda et al., 2019). However, the most interesting features emerge270

when the different variables of both atmosphere and ocean are separately investigated by means of the multiscale generalized

fractal dimensions.

The described findings are not only valid for the multiscale correlation dimension D2,τ but are also observed for both the

multiscale capacity dimension D0,τ and the multiscale information dimension D1,τ as reported in Figs. 7 and 8, together with

the multiscale correlation dimension D2,τ , for both values of C. Our formalism reveals the expected property that for q < q′,275

12

https://doi.org/10.5194/esd-2020-96
Preprint. Discussion started: 13 January 2021
c© Author(s) 2021. CC BY 4.0 License.



10
0

10
5

j

0

1

2

3
(a)

 C = 0.015

10
0

10
5

j

0

1

2

3
(b)

10
0

10
1

10
2

10
3

10
4

10
5

j

0

1

2

3
(c)

Barot

Baroc

Trans

Temp

Figure 6. Same as in Fig. 5, but for C = 0.015.

Dq,τ >Dq′,τ ∀τ (Alberti et al., 2020a; Hentschel and Procaccia, 1983). Moreover, when evaluating the multiscale generalized

fractal dimensions for each MIMF separately (e.g., Figs. 7(a) and 8(a)) a decreasing value for Dj
q is found as τ increases, with

all Dj
q converging towards the same value of 1 at large timescales. Conversely, when the Dq,τ are evaluated for reconstructions

based on MIMFs a completely different behavior emerges between the oceanic and the atmospheric variables. In this case, the

atmospheric variables are characterized by scale-independent Dq,τ , being representative of a high-dimensional system whose280

prime dynamics occurs at short timescales and with little effects of large-scale processes on the collective dynamics of the

atmosphere. By contrast, a clearly scale-dependent behavior is found for the oceanic variables, with the multiscale generalized

dimensions decreasing at larger timescales, reflecting the effects of large-scale dynamics dominating with respect to the short-

term one for the ocean variability.

By estimating the Lyapunov spectra (not shown) separately for the ocean and the atmosphere we obtained that forC = 0.008285

the instability is large for the atmosphere with a Lyapunov dimension DL ∼ 10, while for C = 0.015 the instability is weaker

for the atmosphere, and the Lyapunov dimension is a bit larger than 4. Following the Kaplan-Yorke conjecture (Kaplan and

Yorke, 1979), the Lyapunov dimension can be used as a proxy of the Hausdorff and, hence, capacity dimension. Hence, our

results are clearly consistent with the dimension estimates for the atmosphere. For the ocean, however, there seems to be a less

good agreement, with DL ≈ 2 while we found that D0,τ ≈ 4. This quantitative disagreement could be related to the fact that290

the ocean can be viewed as a relatively stable system perturbed by high-frequency "noise" provided the atmosphere. Deeper

investigations will be devoted to clarify this point in future research.
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Figure 7. Multiscale capacity dimension D0,τ , multiscale information dimension D1,τ , and multiscale correlation dimension D2,τ for

C = 0.008 at different timescales τj for different cases: (a) for each MIMF individually (Dj
q), (b) for reconstructions of MIMFs summing

up from j = 1 to Nj (D
∑
j

q ), and (c)-(f) for reconstructions of MIMFs separately for each variable (barotropic modes - (c), baroclinic modes

- (d), transport modes - (e), and temperature modes - (f)).
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Figure 8. Same as in Fig. 7, but for C = 0.015.

As a further step, we evaluate the full spectrum of generalized fractal dimensions for each MIMF by considering all mo-

ments q ∈ [−20,20], thus providing an estimate of the asymptotic values D±∞,τ . This analysis allows characterizing how the
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(multi)fractal properties of the system evolve with the timescale τ . Indeed, there are ongoing discussions on the fractal structure295

of both, the atmosphere and the ocean, especially dealing with the short-term variability and in terms of scaling-law behavior

and statistics of increments (e.g., Franzke et al., 2020).
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Figure 9. Dq,τ spectra for the coupled ocean-atmosphere dynamics at different timescales τj (indicated by different line colors) for recon-

structions of MIMFs summing up from j = 1 to Nj (D
∑
j

q ) for (a) C = 0.008 and (b) C = 0.015.

The Dq,τ spectrum for q ∈ [−20,20] is reported in Fig. 9, where colored lines correspond to different timescales. It can be

observed that for both values of the friction coefficient C, the full system exhibits signatures of multifractality at all timescales,

especially at very short and very long timescales. By defining the multifractal width as ∆∞
.=D−∞,τ−D+∞,τ we observe (see300

Fig. 10(a,b), black circles) that ∆∞ = 3 for τ ∈ [τS , τL] days, while ∆∞ > 3 for both τ < τS and τ > τL, with τS ∼ 20 days

and τL ∼ 1 year. This behavior could be the reflection of processes operating at different timescales for both the atmosphere (at

short timescales) and the ocean (at long timescales). In order to further disentangle those processes, we also evaluated the full

spectra of the generalized multifractal dimensions by considering all orders q ∈ [−20,20] for each subsystem (i.e., atmosphere

and ocean) individually. For both values of C, the corresponding results are shown in Fig. 11.305

We clearly see that for the atmosphere, there is a scale-independent behavior of Dq,τ for all q, rendering the different curves

almost invariant with respect to the scale. By contrast, a scale-dependent behavior emerges for the ocean for the lower value

of C. Indeed, it is evident that as the timescale increases the multiscale generalized dimensions tend to decrease for all values

of q, moving from Dq,τ1 ∈ [5,8] to Dq,τ17 ∈ [1,3] for C = 0.008. Conversely, although there is an overall reduction in the

Dq,τ values for C = 0.0015 with respect to those evaluated for C = 0.008, the decrease with the timescale is less evident for310

this higher C value, although it is still present for τ > 1 year (see orange and red curves in comparison with the blue ones in

Fig. 11(d)). This clearly suggests that the presence of strong multifractality in the full system can be essentially attributed to

the atmosphere, with only a marginal role of the ocean variability in determining the fractal structure of the full system. By

evaluating the difference between D−∞,τ and D+∞,τ we can clearly see that larger values, of the order of 4, are found for the

atmosphere, at almost all timescales (and especially at shorter timescales), for both values of C. Conversely, larger values are315

found at shorter timescales for both values of C for the ocean. As the timescale increases, this difference tends to be reduced
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Figure 11. Dq,τ spectra for the dynamics of atmosphere and ocean individually at different timescales τj (indicated by different line colors)

for reconstructions of MIMFs summing up from j = 1 to Nj (D
∑
j

q ) for (a,c) C = 0.008 and (b,d) C = 0.015. Panels (a,b) refer to the

atmosphere, (c,d) to the ocean.
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to values close to 2, suggesting a reduced multifractality of the ocean with respect to the atmosphere, especially for the lower

value of C at larger timescales when the role of the ocean becomes dominant as compared to the atmosphere (see Fig. 2).

4.3 Comparison with regional averages from reanalysis data

As a final step we compare our previous results for the reduced order coupled ocean-atmosphere model with those obtained320

from reanalysis data (Poli, 2015). More specifically, we use three different sets of regional time series based on the European

Centre for Medium-range Weather Forecasts (ECMWF) ORA-20C project (De Boisséson and Balmaseda, 2016; De Boisséson

et al., 2017) that is a 10-member ensemble of ocean reanalyses covering the complete 20th century using atmospheric forcing

from the ERA-20C reanalysis (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c). Here, we focus on

data from January 1958 to December 2009 at monthly resolution in terms of different monthly-averaged time series, the set of325

data also used previously in Vannitsem and Ekelmans (2018). This period has been chosen in the latter study because of the

ocean reanalysis dataset showing here smaller uncertainties than during the first half of the 20th century (De Boisséson and

Balmaseda, 2016).

Three different representative regions are chosen: the North Atlantic region, corresponding to the domain defined by λ ∈
[55◦W,15◦W] and φ ∈ [25◦N,60◦N], the North Pacific region, i.e., a spherical-rectangle domain with λ ∈ [165◦E,225◦E] and330

φ ∈ [25◦N,60◦N], and the Tropical Pacific region, corresponding to λ ∈ [165◦E,225◦E] and φ ∈ [25◦S,25◦N] (Vannitsem and

Ekelmans, 2018). The individual series for the two extratropical regions have been derived by projecting the reanalysis fields on

two dominant Fourier modes: (i) F1 =
√

2cos(πy/Ly), and (ii) φ2 = 2sin(πx/Lx)sin(2πy/Ly) (Vannitsem and Ekelmans,

2018). For the Tropical Pacific region, the series are formed by spatial averages. In this way, we obtain two sets of three time

series each for both the North Atlantic and the North Pacific (i.e., one for the atmosphere and two for the ocean), and a third335

set of three time series for the Tropical Pacific (two for the atmosphere at two different pressure levels and one for the ocean).

This allows us to build up a 3-D projection of the local atmosphere-ocean coupled dynamics for each region (see Vannitsem

and Ekelmans, 2018, for more details).

By using the MEMD analysis to investigate the multivariate patterns of reanalysis data we found the same number ofNj = 9

MIMFs for each region, whose mean timescales range from∼ 2 months up to∼ 20 years, suggesting the existence of multiscale340

variability over a wide range of scales. As for the reduced order model, we first investigate the behavior of the spectral energy

content S(τ) of the different MIMFs as a function of their mean timescales τ as in Eq. (7) for the three different regions as

shown in Fig. 12. We clearly observe an increase of the spectral energy content up to a timescale τ ∼ 1 year for all regions,

then declining for both the North Atlantic and the North Pacific. Conversely, the Tropical Pacific is characterized by larger

spectral content also for timescales larger than 1 year, up to τ ∼ 5 years, which coincide with the typical timescales of the El345

Niño–Southern Oscillation (ENSO). Furthermore, for all regions a decreasing spectral energy content is found at the largest

timescales (i.e., τ > 5 years.

To further compare our above model results with those obtained for the reanalysis data, we evaluate the multiscale gen-

eralized fractal dimensions for the three different regions. For each region, we derive both the multifractal width ∆∞
.=

D−∞,τ −D+∞,τ and the full multiscale multifractal spectrum at different timescales τj for reconstructions of MIMFs sum-350
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Figure 12. Spectral energy content S(τ) of the different MIMFs as a function of their mean timescales τ as in Eq. (7) for the North Atlantic

(blue circles), the North Pacific (orange asterisks), and the Tropical Pacific (yellow diamonds).

ming up from j = 1 to Nj (D
∑
j

q ). Figure 13 shows the corresponding results for the North Atlantic region, the North Pacific

region, and the Tropical Pacific region, respectively.

First of all, it is important to underline that the multiscale generalized fractal dimensions are clearly different with respect to

those obtained from the ocean-atmosphere model. This directly follows from the different numbers of variables (time series)

in the model, being a 36-dimensional dynamical system, with respect to the reanalysis data, being a 3-dimensional projection355

of the regional ocean-atmosphere dynamics. Nevertheless, although different in terms of absolute values, both the model and

the reanalysis data show a similar qualitative behavior with varying scale τ , although some differences are found between the

different regions.

On the one hand, both the North Atlantic and the North Pacific regions (see Fig. 13(d,e)) are characterized by a scale-

dependent behavior, with decreasing Dq,τ as τ increases. Moreover, by looking at the multifractal width as a function of the360

scale (Fig. 13(a,b)) we find evidence for a decreasing ∆∞ as τ increases, being representative of a transition from a short-

term multifractal nature to long-term monofractal one. These features can be interpreted in terms of the different multiscale

dynamical processes affecting the atmosphere on short scales and the ocean on larger scales.

On the other hand, by looking at the Tropical Pacific region we clearly see an enhancement of ∆∞, i.e., the emergence

of multifractal features (see Fig. 13(c)), at annual/multi-annual timescales (i.e., τ ∼ 1− 8 years), being also characterized by365

the largest values of the multiscale generalized fractal dimensions (see Fig. 13(f)). This could be related to the role of the El

Niño–Southern Oscillation (ENSO) cycle manifesting at these timescales (between 2 and 7 years), which is likely responsible

for the different scale-dependent behavior of Dq,τ as compared to the two other extratropical regions.
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Figure 13. (a)-(c) Multifractal width ∆∞ and (d)-(f) Dq,τ spectra at different timescales τj for reconstructions of MIMFs summing up from

j = 1 to Nj (D
∑
j

q ) for (a,d) the North Atlantic, (b,e) the North Pacific, and (c,f) the Tropical Pacific, respectively.

In summary, by means of the reanalysis data, we have been able to demonstrate that i) the reduced order coupled ocean-

atmosphere model and the reanalysis data show some qualitatively similar behavior of the multiscale generalized fractal di-370

mensions, although characterized by different absolute values due to the different numbers of variables considered in the

model and the projections on a few modes of the reanalysis data, and that ii) interesting features emerge when looking at the

scale-dependency of topological and geometric features for different regions, being the reflection of different driving mecha-

nisms and processes operating at different timescales in the coupled ocean-atmosphere system. However, further investigations

are needed to characterize the role of the different processes as well as their intrinsic dimensionality, occurrence, and spatial375

dependency in more detail. Such an in-depth investigation is outlined as a part of our future work.

5 Conclusions

We have provided a first time systematic investigation of the multiscale dynamics of a reduced order coupled ocean-atmosphere

model (Vannitsem et al., 2015) as described by means of the topological and geometric features (Alberti et al., 2020a).

First, by means of the Multivariate Empirical Mode Decomposition (MEMD) we have been able to detect oscillating patterns380

with time-dependent amplitude and phase that are directly linked to a rich variety of features of the coupled ocean-atmosphere
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system. We have found that the underlying structure of the 3-D projection of the full attractor is essentially reproduced by a

subset of Multivariate Intrinsic Mode Functions (MIMFs) corresponding to the most relevant timescales without too much loss

of information, thus further reducing the complexity of the reduced order model itself. These results appear relevant if put into

the wider context of coupled ocean-atmosphere dynamics, allowing us to recover the main features by only considering the385

most relevant (in terms of energy) timescale dynamical components.

Second, by exploiting the novel concept of multiscale/multivariate generalized fractal dimensions we have investigated

the different multifractal properties for the ocean and the atmosphere at different timescales. We have demonstrated that for

weak ocean-atmosphere coupling (i.e., for low values of the friction coefficient C), the resulting dimensions of the two model

components are very different, while for strong coupling (larger C) at which coupled modes develop at low frequencies, the390

scaling properties are more similar especially at longer time scales. These results suggest that as C increases, we observe the

development of a coherent coupled dynamics, primarily at large timescales. In terms of the underlying fractal structure, we

have found that for both considered values of the friction coefficient C, the full system exhibits signatures of multifractality at

all timescales, especially pronounced at short and long as compared to intermediate timescales. By means of the full spectrum

of generalized fractal dimensions, we have clearly evidenced that for the atmosphere, there is a scale-independent behavior of395

Dq,τ for all q, rendering the multifractal spectra almost invariant with respect to the timescale. By contrast, a scale-dependent

behavior emerges for the ocean for the lower value of C. This clearly suggests that the presence of strong multifractality in the

full system can be attributed to the atmosphere, with only a marginal role of the ocean variability in determining the fractal

structure of the full system.

Finally, we have compared our results for the reduced order coupled ocean-atmosphere model with those derived from400

reanalysis data (Poli, 2015) by using three sets of different regional time series from the ORA-20C project (De Boisséson and

Balmaseda, 2016; De Boisséson et al., 2017). Although the resulting multiscale generalized fractal dimensions clearly differ

quantitatively from those obtained from the ocean-atmosphere model – which can be easily understood by considering the

different dimensions of the model (a 36-dimensional dynamical system) and the reanalysis data (3-dimensional projections of

the local ocean-atmosphere dynamics) – we observed a similar qualitative behavior with the scale τ . Interestingly, the multiscale405

multifractal features of different regions show different scale-dependent behaviors. Specifically, both the North Atlantic and the

North Pacific regions are characterized by a scale-dependent behavior, with decreasing Dq,τ as τ increases, with a transition

from a short-term multifractal nature to long-term monofractal one. These features can be interpreted in terms of the different

multiscale dynamical processes affecting the atmosphere at short timescales and the ocean at longer timescales. Conversely,

the Tropical Pacific region is characterized by the emergence of multifractal features at annual/multi-annual timescales (i.e.,410

τ ∼ 1−8 years), being also characterized by the largest values of the multiscale generalized fractal dimensions. This behavior

can be seen as a manifestation of the El Niño–Southern Oscillation (ENSO) cycle that typically acts at these timescales and can

be considered the key driving factor of a different scale-dependent behavior of Dq,τ as compared to the two other extratropical

regions.

Our findings for both the model and the reanalysis data suggest that our approach can be used to diagnose the strength of cou-415

pling in the ocean-atmosphere system and to investigate the topological features of the system. We have demonstrated that the

20

https://doi.org/10.5194/esd-2020-96
Preprint. Discussion started: 13 January 2021
c© Author(s) 2021. CC BY 4.0 License.



model and the reanalysis data show qualitatively similar behavior of the multiscale generalized fractal dimensions. However,

the different scale-dependency of topological and geometric features for different regions can contribute to a better under-

standing on the different driving mechanisms and processes operating at different timescales in the coupled ocean-atmosphere

system. These observations suggest that further investigations are needed to better characterize the role of the different pro-420

cesses as well as their intrinsic dimensionality, occurrence, and spatial dependency, which shall be further addressed in our

future work.
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