
Multiscale fractal dimension analysis of a reduced order model of
coupled ocean-atmosphere dynamics
Tommaso Alberti1, Reik V. Donner2, 3, and Stéphane Vannitsem4

1INAF-IAPS, via del Fosso del Cavaliere 100, 00133 Rome, Italy
2Department of Water, Environment, Construction and Safety, Magdeburg–Stendal University of Applied Sciences,
Breitscheidstraße 2, 39114 Magdeburg, Germany
3Research Department IV – Complexity Science and Research Department I – Earth System Analysis, Potsdam Institute for
Climate Impact Research (PIK) – Member of the Leibniz Association, Telegrafenberg A31, 14473 Potsdam, Germany
4Royal Meteorological Institute of Belgium, Bruxelles, Belgium

Correspondence: Tommaso Alberti (tommaso.alberti@inaf.it)

Abstract. Atmosphere and ocean dynamics display many complex features and are characterized by a wide variety of processes

and couplings across different timescales. Here we demonstrate the application of Multivariate Empirical Mode Decomposition

(MEMD) to investigate the multivariate and multiscale properties of a reduced order model of the ocean-atmosphere coupled

dynamics. MEMD provides a decomposition of the original multivariate time series into a series of oscillating patterns with

time-dependent amplitude and phase by exploiting the local features of the data and without any a priori assumptions on5

the decomposition basis. Moreover, each oscillating pattern, usually named Multivariate Intrinsic Mode Function (MIMF),

represents a local source of information that can be used to explore the behavior of fractal features at different scales by

defining a sort of multiscale/multivariate generalized fractal dimensions. With these two complementary approaches, we show

that the ocean-atmosphere dynamics presents a rich variety of features, with different multifractal properties for the ocean

and the atmosphere at different timescales. For weak ocean–atmosphere coupling, the resulting dimensions of the two model10

components are very different, while for strong coupling for which coupled modes develop, the scaling properties are more

similar especially at longer time scales. The latter result reflects the presence of a coherent coupled dynamics. Finally, we also

compare our model results with those obtained from reanalysis data demonstrating that the latter exhibit a similar qualitative

behavior in terms of multiscale dimensions and the existence of a scale-dependency of the statistics of the phase-space density

of points for different regions, which is related to the different drivers and processes occurring at different timescales in the15

coupled atmosphere-ocean system. Our approach can therefore be used to diagnose the strength of coupling in real applications.

Copyright statement. This work is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction

The atmosphere and the ocean form a complex system whose dynamical variability extends over a wide range of spatial and

temporal scales (Liu, 2012; Xue et al., 2020). As an example, the tropical regions are markedly characterized by inter-/multi-20
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annual processes like the El Niño–Southern Oscillation (ENSO) (Neelin et al., 1994; Meehl et al., 2003), while the North

Atlantic Oscillation (NAO) affects extra-tropical Northern hemispheric regions at seasonal and decadal timescales (Ambaum

et al., 2001). The sources of these processes have been widely investigated by means of multiple data analysis methods and

various types of modelling (e.g., Philander, 1990; Czaja and Frankignoul, 2002; Van der Avoird et al., 2002; Mosedale et al.,

2006; Kravtsov et al., 2007; Feliks et al., 2011; Liu, 2012; L’Hévéder et al., 2014; Farneti, 2017; Vannitsem and Ghil, 2017;25

Wang, 2019; Xue et al., 2020, and references therein), highlighting how the atmospheric low-frequency variability (LFV) is

related to the ocean. The latter develops thanks to the interaction with the ocean mixed layer (OML) driven by a mixing process

due to the development of an instability within the water column (Czaja and Frankignoul, 2002; D’Andrea et al., 2005; Wunsch

and Ferrari, 2004; Gastineau et al., 2012) that also shows a strong seasonal variability. The relation between the OML and the

LFV can be investigated from a dynamical system point of view by developing suitable reduced order ocean-atmosphere30

models dealing with the modelling of the coupling between the atmosphere and the underlying surface layer of the ocean.

Recently, by means of a 36-variable model displaying marked LFV Vannitsem et al. (2015) demonstrated that the LFV in the

atmosphere could be a natural outcome of the ocean-atmosphere coupling. Other sources could be invoked to explain and to

contribute to the development of LFV in the atmosphere, such as the long-range system memory as a consequence of the heat

storage mechanism of the land-ocean-atmosphere system (e.g., Lovejoy, 2021; Lovejoy et al., 2021), the internal dynamics of35

the atmosphere itself (e.g., Legras and Ghil, 1985), or even the interaction between the tropical and extratropical regions (e.g.,

Alexander et al., 2002; Vannitsem et al., 2021), just to quote a few.

The current work presents an investigation on how a recently introduced concept of multiscale generalized fractal dimen-

sions can be used to analyze the statistics of attractors in coupled ocean-atmosphere systems (Alberti et al., 2020a). This

demonstration is done by means of the reduced order model developed in Vannitsem et al. (2015). Indeed, the dynamical prop-40

erties of physical systems can be related to their support fractal dimension as well as its singularities by means of different

established concepts like the box-counting dimension (e.g., Steinhaus, 1954; Mandelbrot, 1967; Ott, 2002), generalized cor-

relation integrals (Grassberger, 1983; Hentschel and Procaccia, 1983; Pawelzik and Schuster, 1987), the pointwise dimension

method (Farmer et al., 1983; Donner et al., 2011), and related characteristics (Badii and Politi, 1984; Primavera and Florio,

2020). These methods are based on partitioning the phase-space into hypercubes of size ` to define a suitable invariant measure45

through the filling probability of the i−th hypercube by Nk points as pk =Nk/N , with N being the total number of points.

WithM(`) denoting the number of filled hypercubes, we can define some useful dynamical invariants such as the box-counting

(or capacity or simply fractal) dimension

D0
.
=− lim

`→0
lim
N→∞

logM(`)

log`
, (1)

the information dimension50

D1
.
= lim
`→0

lim
N→∞

∑M(`)
k=1 pk logpk

log `
, (2)

and the correlation dimension

D2
.
= lim
`→0

lim
N→∞

1
N2

∑
i 6=jΘ(`− |xi−xj |)

log`
, (3)
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with Θ(· · ·) being the Heaviside function. More specifically, D0 is a measure of the sparseness of the phase-space by the

studied system’s dynamics, D1 is an information measure giving us a measure of the information gained on the phase-space55

with a given accuracy, while D2 is a measure of correlations, i.e., mutual dependence, between phase-space points. All these

fractal dimension measures, as well as their higher order extensions Dq measuring q−th order correlations between points in

the phase-space, have been used to characterize the statistics of the phase-space scaling of a given system (Hentschel and Pro-

caccia, 1983). More details on the estimation of generalized fractal dimensions are provided in the Supplementary Information.

However, the above concepts only give us a global view on the phase-space system’s properties, without exploring how these60

evolve at different scales in the real space (Alberti et al., 2020a). More recently, by means of a suitable combination between

a state of the art time series decomposition method (the Empirical Mode Decomposition) and the concept of generalized frac-

tal dimensions, Alberti et al. (2020a) introduced a multiscale approach to deal with the investigation of the evolution of the

statistics of the phase-space scaling in dynamical systems.

Here, we extend for the first time the concept of multiscale generalized fractal dimensions in a multivariate framework by65

means of the Multivariate Empirical Mode Decomposition (MEMD), allowing us to investigate the multiscale and multivariate

properties of a reduced order model of the ocean-atmosphere coupled dynamics. By using the oscillating patterns forming the

decomposition basis of the MEMD algorithm, usually named Multivariate Intrinsic Mode Functions (MIMFs), we define the

new concept of multiscale/multivariate generalized fractal dimensions. The MEMD results allow us to capture the essential

dynamics of the phase-space trajectory that can be used for reconstructing the skeleton of the phase-space dynamics, while the70

evaluation of the fractal dimensions at different timescales provides a quantitative characterization of the intrinsic complexity

of oscillating patterns that can be related to the attractor properties. Our results also allow for associating the statistics of

the phase-space scaling to the dynamical regimes at different timescales of the coupled ocean–atmosphere system. Finally,

our findings for the reduced order model well reconcile with corresponding results for reanalysis data, thus supporting and

encouraging the use of reduced order models for investigating the essential aspects of the coupled ocean–atmosphere system75

in terms of the statistics of the phase-space scaling.

2 The reduced order ocean-atmosphere model

Reduced order coupled ocean-atmosphere models are key tools in the hierarchy of climate models, allowing for an extensive

analysis of the features of the coupled dynamics that would otherwise be impossible to evaluate (Lorenz, 1984; Nese and Dut-

ton, 1993; Roebber, 1995; Jin, 1996; Timmermann et al., 2003; Van Veen, 2003; De Cruz et al., 2016; Vannitsem, 2017). These80

models allow for obtaining key insights into the role of coupling for the development of LFV in the atmosphere associated with

the presence of the ocean.

Recently, dynamical analysis has been conducted by means of the development of a suitable reduced order model of the

coupled ocean-atmosphere system. This model has been developed starting from the quasi-geostrophic equations describing

the interaction between a two-layer atmosphere and a one-layer ocean over an infinitely deep quiescent ocean layer (Vannitsem85

et al., 2015; Vannitsem, 2015; De Cruz et al., 2016; Vannitsem, 2017; De Cruz et al., 2018). The ocean flow passively advects
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the temperature within the ocean, while momentum, radiative, and heat transfer mechanisms realize the coupling between

the atmosphere and the ocean. By expanding the solutions of these equations into Fourier series, by truncating them at low

wavenumbers, and by projecting onto the Fourier modes retained, a set of ordinary differential equations is derived. The fields

are defined over a rectangular domain with 0≤ x≤ 2πL/n and 0≤ y ≤ πL, with n denoting the aspect ratio between the90

meridional and the zonal extents of the domain and L the characteristic spatial scale. Moreover, periodic boundaries along the

zonal direction and free-slip along the meridional direction are chosen for the atmosphere, while a closed basin with no flux

through the boundaries is imposed for the ocean.

In the reduced order coupled model version proposed in Vannitsem et al. (2015), a long-periodic attracting orbit combining

atmospheric and oceanic variables emerges from a Hopf bifurcation for large values of the meridional gradient of radiative95

input and frictional coupling. Beyond a certain value of the meridional gradient for the radiative input, a chaotic behavior

appears, which is still dominated by LFV on decadal and multi-decadal time-scales.

Here we use the original version of the model (Vannitsem et al., 2015) where the four relevant fields, i.e., the barotropic and

baroclinic atmospheric streamfunctions, the ocean streamfunction and the ocean temperature, are given by ψa =
∑10
i=1ψa,iFi,

θa =
∑10
i=1 θa,iFi, Ψo =

∑8
i=1 Ψo,iφi and To =

∑8
i=1To,iφi, where Fi and φi are simplified notations for the sets of modes100

used, compatible with the boundary conditions of both the atmosphere and the ocean. The parameter values used are the ones

given in Figs. 8 and 9 of Vannitsem (2017). Depending on the choice of the surface friction coefficient C, different solutions

are found with a highly chaotic dynamics without marked LFV in the atmosphere for small values of C, but a more moderately

chaotic dynamics with stronger LFV in both the ocean and the atmosphere (related to the development of a coupled mode) for

larger values of C.105

3 Methods

Traditional multivariate and/or spatiotemporal data analysis methods are commonly based on fixing an orthogonal decompo-

sition basis, satisfying certain mathematical properties such as linearity and/or stationarity (Chatfield, 2016). However, these

conditions are not usually met when real-world geophysical data are analyzed, which calls for more adaptive methods (Huang

et al., 1998). Indeed, adaptive methods can be helpful for overcoming some limitations of fixed-basis methods, implicitly110

assuming that a given natural phenomenon or a superposition of physical processes can be represented in terms of a priori

defined mathematical functions like sine and/or cosine or some other kinds of wave functions (Chatfield, 2016). Since this

cannot be assured, adaptive methods (as the MEMD) could be more suitable for reducing some mathematical assumptions and

a priori constraints (Huang et al., 1998; Huang and Wu, 2008; Rehman and Mandic, 2010). Moreover, geophysical data are

usually also characterized by scale-invariant features over a wide range of scales with different complexity and show a scale-115

dependent behavior due to several factors like forcings, coupling, intrinsic variability, and so on (e.g., Lovejoy and Schertzer,

2013; Franzke et al., 2020). For the above reasons, in this work we put forward a novel approach based on combining two

different data analysis methods for investigating the multiscale fractal behavior of the coupled ocean-atmosphere system: Mul-

tivariate Empirical Mode Decomposition (MEMD; Rehman and Mandic, 2010) and generalized fractal dimensions (Hentschel
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and Procaccia, 1983). One of the main advantages of combining the MEMD with generalized fractal dimensions instead of120

classical approaches deals with the limited number of intrinsic components that can be also visually inspected. Indeed, if we,

for example, use Fourier decomposition we will have a large number of (harmonic) oscillating components at different fixed

frequencies that should be summed up for exploiting our proposed procedure. Furthermore, if we, for example, use wavelets we

will deal with some a priori assumptions on the decomposition basis onto which we are projecting our data that could produce

misleading results in our procedure of evaluating fractal measures on a priori fixed scales. Another advantage is that MEMD125

allows to preserve some intrinsic properties of signals related to the nonlinear and/or non-stationary nature of processes they are

associated with, since the decomposition is based on the local characteristic scale of the data in deriving intrinsic components

with time-dependent amplitudes and phases (Huang et al., 1998; Huang and Wu, 2008; Rehman and Mandic, 2010). However,

we do not question the appropriateness of conventional analysis techniques, but rather acknowledge that other approaches can

provide a new perspective on what we can learn from the respective system under study (Alberti et al., 2020a).130

3.1 Multivariate Empirical Mode Decomposition (MEMD)

The Multivariate Empirical Mode Decomposition (MEMD) is the "natural" multivariate extension of the univariate Empirical

Mode Decomposition (EMD) (Huang et al., 1998; Rehman and Mandic, 2010). MEMD directly works on the data domain,

instead of defining a conjugate space as for Fourier or Wavelet transforms, with the aim of being as adaptive as possible to

minimize mathematical assumptions and definitions (Huang et al., 1998) in extracting embedded structures in the form of135

so-called Multivariate Intrinsic Mode Functions (MIMFs) (Rehman and Mandic, 2010). Each MIMF is an oscillatory pattern

of the multivariate coordinates having the same number (or differing at most by one) of local extremes and zero crossings, and

whose upper and lower envelopes are symmetric (Huang et al., 1998; Rehman and Mandic, 2010). MIMFs are derived through

the sifting process (Huang et al., 1998). This process is easily realized for univariate signals (Huang et al., 1998), while needs

to be carefully implemented for multivariate processes (Rehman and Mandic, 2010), since it is based on the cubic spline140

interpolation of local extremes that cannot easily be defined on a k-dimensional space (Rehman and Mandic, 2010). Rehman

and Mandic (2010) proposed an alternative definition of local extremes for multivariate signals by considering the k-variate

data as composed by k-dimensional signals projected onto appropriate directions in this k-dimensional space. This allows us

to perform cubic spline interpolation in each direction, with the suitable directions chosen by means of a combination of a

quasi-Monte Carlo-based low-discrepancy sequences and a uniform angular sampling method (Rehman and Mandic, 2010).145

These allow to provide a more uniform set of direction vectors over which to compute the local mean of envelopes, without

introducing any smoother dynamics in the data, via the following procedure:

1. given a k-dimensional space we need to find the direction vectors by considering that these reduce to points in a (k-1)-

dimensional space;

2. the simplest choice is to employ uniform angular sampling on a k-dimensional hypersphere but this will lead to a non-150

uniform filling of the k-dimensional space (a higher density of points would be observed near the poles);

3. a quasi-Monte Carlo method is used to provide a more uniform distribution of direction vectors;
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4. once the direction vectors are chosen, the signal is projected onto these vectors, the extrema of the resulting projected

signals are evaluated and interpolated component-wise to yield multidimensional envelopes that are then averaged to

obtain the multivariate mean.155

This means that the quasi-Monte Carlo method is needed only for selecting a uniform sampling of direction vectors, thus to

avoid implicitly preferred directions that could be more dominant with respect to the others, which could introduce a source of

errors in evaluating signal projections (Rehman and Mandic, 2010).

Having now defined the procedure needed to compute envelopes over each direction, the main steps of the sifting process

acting on a k-variate signal s(t) = [s1(t),s2(t), . . . ,sk(t)] can be summarized as below:160

1. identify local extremes (i.e., data points where abrupt changes in the local tendency of the series under study are ob-

served);

2. interpolate local extremes separately by cubic splines (i.e., produce continuous functions with smaller error than other

polynomial interpolation);

3. derive the upper and lower envelopes u(t) and l(t), respectively;165

4. derive the mean envelope m(t) as m(t) = u(t)+l(t)
2 ;

5. evaluate the resulting candidate MIMF as h(t) = s(t)−m(t).

The previous steps are iteratively repeated until the obtained candidate MIMF h(t) can be identified as a Multivariate Intrinsic

Mode Function (also called multivariate empirical mode) (Huang et al., 1998; Rehman and Mandic, 2010), while the full sifting

process ends when no more MIMFs cj(t) can be filtered out from the data. Hence, we can write170

s(t) =

Nj∑
j=1

cj(t) + r(t). (4)

In this way a multivariate signal is decomposed into Nj k-dimensional functions, each containing the same frequency distri-

bution, e.g., into a set of k-dimensional embedded oscillating patterns cj(t) which form the multivariate decomposition basis,

plus a multivariate residue r(t).

For each MIMF we can define a k?−variate mean timescale as175

τj,k? =
1

T

T∫
0

t′cj,k?(t′)dt′, (5)

representing the typical oscillation scale of the j−th mode for the k?-th univariate component cj,k? extracted from the mul-

tivariate signal sk?(t) for k? ∈ [1,k]. Similarly, by ensemble averaging over the k-dimensional space we can introduce the

concept of a multivariate mean timescale as

τj =
1

T

T∫
0

t′〈cj(t′)〉kdt′, (6)180
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with 〈· · · 〉k denoting an ensemble average over the k-dimensional space. Thus, the k?−variate timescale τj,k? is evaluated

for each mode and for each k?−dimensional data, while the multivariate mean timescale τj is the mean over all k? ∈ [1,k].

Moreover, as for univariate EMD (Huang et al., 1998), we can introduce the concepts of instantaneous amplitudes aj(t)

and phases φj(t) of each MEMD mode via the Hilbert Transform along the different directions of the k-dimensional space.

The instantaneous energy content is then derived as Ej(t) = aj(t)
2. Thereby, we can characterize the spectral content by185

introducing an alternative yet equivalent definition of the power spectral density (PSD) as

S(τ) =
1

T 2

T∫
0

〈Ej(t′)〉kdt′ ·
T∫

0

t′〈cj(t′)〉kdt′
.
= σ2(τ) · τ, (7)

with σ2(τ) being the k−variate variance of MIMFs and τ the mean timescale defined as in Eq. (6). Moreover, from the

instantaneous energy content Ej(t) the relative contribution ej can be derived as

ej =
1
T

∫ T
0
〈Ej(t′)〉kdt′∑Nj

j=1
1
T

∫ T
0
〈Ej(t′)〉kdt′

. (8)190

Finally, as for the univariate decomposition (Huang et al., 1998), also the MIMFs are empirically and locally orthogonal with

respect to each other, the decomposition basis is a complete set (Rehman and Mandic, 2010) and partial sums of Eq. (4) can be

obtained (Alberti, 2018; Alberti et al., 2020b).

3.2 Multivariate and multiscale generalized fractal dimensions

The dynamics of complex systems is usually characterized by a multitude of scales whose dynamical features determine their195

collective behavior. Nevertheless, vast efforts have been made to determine collective properties of systems (e.g., Hentschel

and Procaccia, 1983), instead of considering to measure scale-dependent features. Recently, Alberti et al. (2020a) introduced

a new formalism allowing measuring information at different scales by combining a data-adaptive decomposition method and

the classical concept of generalized fractal dimensions. The starting point is that a multivariate signal manifesting a multiscale

behavior can be written as200

s(t) = 〈s〉+
∑
τ

δsτ (t) = s0 + s1(t), (9)

with 〈· · · 〉 representing a steady-state average operation and δ indicating a fluctuation at scale τ . For any given τ we can

introduce a local natural probability measure dµτ such that the probability pi of visiting the i−th hypercube Bs∗,τ (`) of size `

centered at the point s∗ on the considered (d−dimensional) phase-space of s1(t) can be defined as

pi
.
=

∫
s1∈Bs∗,τ (`)

dµτ . (10)205

By defining a q−th order partition function

Γq(µτ ,Bs∗,τ (`)) =
∑
i

pqi =

∫
dµτ (s)µτ (Bs∗,τ (`))q (11)
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and taking the limit `→ 0, the multiscale generalized fractal dimensions are derived as

Dq,τ =
1

q− 1
lim
`→0

logΓq(µτ ,Bs∗,τ (`))

log `
. (12)

Here we identify the intrinsic oscillations by using the MEMD and then we investigate the phase-space properties at different210

scales by deriving the generalized dimensions (Alberti et al., 2020a). Summarizing:

1. we extract multiscale components from s(t) by using the MEMD;

2. we evaluate the intrinsic scale τj of each MIMF;

3. we evaluate reconstructions of modes by means of Eq. (4)

∑
τ

δsτ (t)→ Fj?(t) =

j?∑
j=1

cj(t) (13)215

with j? = 1, . . . ,Nj (by construction, MIMFs are ordered from short to long scales, i.e., τj < τj′ if j < j′);

4. we evaluate the generalized dimensions Dq,τ from Fj?(t) for each j? (i.e., for each scale τj? ),;

5. we evaluate the singularities and singularity spectrum

ατ =
d

dq
[(q− 1)Dq,τ ] (14)

fτ = f(ατ ) = qατ − [(q− 1)Dq,τ ] . (15)220

From Eq. (13) we can inspect the local properties of fluctuations in terms of the geometry of the phase-space, thus providing a

characterization of dynamical features of different regimes and disentangling the different dynamical components of (possibly)

different origin.

Our proposed formalism provides a novel way to investigate how phase-space properties (geometry, correlations) change

when dynamical components at different mean scales with different dynamics are considered. In other words, we can highlight225

the role of scale-dependent phenomena in defining the global properties of a system. Indeed, global measures proposed in

the past (e.g., Grassberger, 1983; Hentschel and Procaccia, 1983) only allow us to investigate the statistics of the phase-space

scaling properties of the whole system; conversely, our proposed approach allows us to investigate how the different scales

contribute to the global properties of a system (Alberti et al., 2020a). Moreover, our framework also provides consistency with

established measures for characterizing time series from an integral (not scale-resolved) perspective, since the scale-dependent230

measures we evaluate converge to the associated global measures as all scales are considered, i.e., when the full system dy-

namics, composed by all accessible scales, is reached (Hentschel and Procaccia, 1983). Within this framework, our approach

is promising for investigating scale-dependent properties, as measured by fractal dimensions, of the system. Furthermore,

since we are indeed interested in nonlinear variability characteristics at different time scales, employing perfectly linear and/or

stationary (harmonic) functions as components would leave out any information on nonlinear dynamics. Moreover, simply235
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looking at the behavior of spectral densities would leave out any higher-order statistical properties, only focusing on the auto-

correlation function (i.e., the second-order moment). By looking at the behavior of fractal dimensions we can explore how the

different scales contribute to change the phase-space properties for higher-order statistics (i.e., for different values of q).

4 Results

4.1 Multivariate Empirical Mode Decomposition240

Figure 1 reports the 3-D projection of the full system attractor in the subspace (To,2,Ψo,2,ψa,1) for two representative values

of the friction coefficient C (0.008 and 0.015 kg m−2 s−1 as indicated by red and black points, respectively). In the following,

we will omit the physical units of this parameter for the sake of brevity. The considered subspace characterizes the dynamics of

the system as represented by the dominant mode of the meridional temperature gradient in the ocean (To,2), by the double-gyre

transport within the ocean (Ψo,2), and by the vertically averaged zonal flow within the atmosphere (ψa,1), respectively.245

Figure 1. 3-D projection of the full system attractor in the subspace (To,2,Ψo,2,ψa,1) for C = 0.008 (red) and C = 0.015 (black), respec-

tively.

The behavior of the system is clearly dependent on the friction coefficient, with both the location and the topology of the

attractor changing as C is increased from 0.008 (red points in Fig. 1) to 0.015 (black points in Fig. 1). This behavior has also

been previously reported by Vannitsem et al. (2015) and Vannitsem (2015), indicating a drastic qualitative change of the nature

of the dynamics at about C = 0.011 above which substantial LFV emerges (Vannitsem et al., 2015; Vannitsem, 2015, 2017).

However, all model components are clearly characterized by multiscale variability, spanning a wide range of timescales that250
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can contribute to the dynamics in different ways, depending on the values of the friction coefficient and the intrinsic variability

of the coupled ocean-atmosphere system.

Figure 2 displays the behavior of the spectral energy content S(τ) of the different MIMFs as a function of their mean

timescales τ as in Eq. (7) for the full system (atmosphere+ocean) and for the two subsystems separately (i.e., the atmosphere

and the ocean, respectively). First of all, it is important to underline that a different number of MIMFs has been identified
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Figure 2. Spectral energy content S(τ) of the different MIMFs as a function of their mean timescales τ as in Eq. (7) for the full system

(atmosphere+ocean, blue circles), only for the atmosphere (orange asterisks), and only for the ocean (yellow diamonds). Left and right

panels refer to the two values of the friction coefficient, C = 0.008 and C = 0.015, respectively.

255

for the two different cases: Nj = 17 for C = 0.008 and Nj = 22 for C = 0.015. This underlines that the respective dynamical

behavior of the system is different, being characterized by different sets of empirical modes and consequently by a different

number of relevant timescales. Moreover, by keeping in mind that for pure noise the expected number of MIMFs is log2N

with N being the number of data points, both situations cannot be related with a purely stochastic dynamics. Indeed, in both

cases we have used N = 105 data points, thus the expected number of MIMFs is N noise
j = 16 (Flandrin et al., 2004). However,260

an interesting feature is that for the lower C value a number of MIMFs closer to that expected for noisy data is found, possibly

related to the more irregular dynamics in this low friction coefficient case. Conversely, a marked departure from Nj = 16 is

found for the higher C case, corresponding to a more regular dynamics characterized by significant LFV.

Furthermore, from Fig. 2 it is easy to note that the behavior of S(τ) depends on both the friction coefficient C and the dif-

ferent components of the model. For the full system (i.e., atmosphere+ocean) S(τ) decreases as τ increases for both values of265

C, while it is characterized by increasing spectral energy content at larger scales (i.e., at lower frequencies). By discriminating

between the atmospheric and the oceanic contribution we are able to see that (as expected), the short-term variability of the

full system can be attributed to the atmosphere, while the long-term one is a reflection of the ocean dynamics. Moreover, when

C increases we note an increase of the spectral energy content at all timescales, together with a flattening of the atmospheric

spectral behavior, while the ocean dynamics seems to preserve its spectral features. These behaviors can be related to the exis-270
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tence of multiscale variability of the full system that can be linked to the different components operating at different timescales

and to the different dynamics of the system as the friction coefficient C is changed.
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Figure 3. Relative contribution (in percentage) Eχ,τ of each variable χ= {ψa,i,θa,i,Ψo,i,To,i} in dependence on the mean timescale τ .

Left and right panels refer to the two values of the friction coefficient C = 0.008 and C = 0.015, respectively. The white line separates the

atmospheric variables from the oceanic ones.

To further clarify the latter aspect, we evaluate the relative contribution (in percentage) Eχ,τ of the different MIMFs (i.e., at

different timescales τ ) for each variable χ= {ψa,i,θa,i,Ψo,i,To,i} as reported in Fig. 3. It can be clearly noted that the oceanic

variability mainly contributes to the low-frequency dynamics (Eχ,τ > 95% for χ= {Ψo,i, To,i} and τ & 104 days), while the275

atmosphere is mainly characterized by short-term variability forC = 0.008 (Eχ,τ > 95% for χ= {ψa,i, θa,i} and τ . 10 days)

and by both short- and long-term dynamics for C = 0.015. This points towards the C-dependent behavior of the atmospheric

dynamics, with the ocean multiscale variability being less affected by changes in the values of the friction coefficient, and to

the role of the ocean in developing LFV in the atmosphere as C increases.

Thanks to the completeness property of the MEMD we can explore the dynamics of the system as reproduced by the most280

energetic empirical modes via partial sums of Eq. (4). By using the information coming from the energy percentage distribution

across the different timescales for each variable χ we can provide MIMF reconstructions accounting for a certain percentage of

energy with respect to the total spectral energy content. By ordering the empirical modes with decreasing relative contribution

ej and summing up those contributing at least 95% of the total spectral content, we are able to investigate the 3-D projection

of the full system attractor onto the subspace (To,2,Ψo,2,ψa,1) and compare it with the projection obtained by considering all285

timescales (as in Figure 1). Thus, for each variable χ= {ψa,i,θa,i,Ψo,i,To,i}we can define a reconstruction based on empirical

modes, Rχ,95%, as

Rχ,95%(t)
.
=

∑
j′|ej′≥95%

cχ,j′(t) (16)
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with cχ,j′(t) being the j′−th multivariate empirical mode extracted via the MEMD of the variables χ. The 3-D projection onto

the subspace (To,2,Ψo,2,ψa,1) of Rχ,95% is shown in Fig. 4, while Tab. 1 summarizes the mode indices j′ and corresponding290

k?−variate timescales τj′,k? (see Eq. (5)) used for the reconstruction.

Table 1. Mode indices j′ and corresponding k?−variate timescales τj′,k? (see Eq. (5)) used for the reconstruction based on empirical modes

Rχ,95%.

C χ j′ τj′,k? [days]

ψa,1 1, 2 3, 5

0.008 Ψo,2 14, 15, 16 631, 1333, 2086

To,2 14, 15, 16 599, 1132, 1913

ψa,1 21 2690

0.015 Ψo,2 19, 20, 21 829, 1469, 2449

To,2 19, 20, 21 735, 1506, 2598

Figure 4. 3-D projection of the full system attractor in the subspace (To,2,Ψo,2,ψa,1) for C = 0.008 (red) and C = 0.015 (black), respec-

tively, as obtained from reconstructions based on the multivariate empirical modes Rχ,95%(t) accounting for 95% of the total variance of the

model dynamics.

By comparing Figs. 1 and 4 it can be easily noted that the underlying structure of the 3-D projection of the full attractor is

essentially the same, thus suggesting that the subspace statistics of the phase-space scaling information can be recovered by a

subset of multivariate empirical modes. This underlines that the dynamics of the full system can be reproduced by only few

relevant timescales without too much loss of information, thus reducing the complexity of the low order model itself. These295
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results appear relevant if put into the wider context of coupled ocean-atmosphere dynamics, allowing us to recover the main

features by only considering the most relevant (in terms of energy) timescale dynamical components.

4.2 Multiscale generalized fractal dimensions

Under general conditions, the complexity of a dynamical system can be conveniently investigated by means of the nonlinear

properties of its phase-space trajectory (e.g., its attractor or repellor in case of dissipative dynamics) (Ott, 2002). One of the most300

common ways to characterize the topology of an attractor is to compute its spectrum of generalized fractal dimensions, allowing

us to statistically characterize important properties of the dynamics as reflected by its phase-space geometry, including its

information content, complexity, and underlying fractal structure (Grassberger, 1983; Hentschel and Procaccia, 1983; Donner

et al., 2011). However, classical approaches can only provide global information on the phase-space topology (Hentschel and

Procaccia, 1983; Ott, 2002), while multiscale dynamical systems can be characterized by the statistics of the phase-space305

scaling changing as different real-space scales are considered (Alberti et al., 2020a). For this purpose, we investigate the

statistics of the phase-space scaling of the coupled ocean-atmosphere model by evaluating the multiscale generalized fractal

dimensions described in Section 3.2. Figures 5 and 6 report the behavior of the correlation dimension D2 for both values of

the friction coefficient and for three different cases: (a) for each MIMF individually (Dj
2), (b) for reconstructions of MIMFs

(D2,τ ), and (c) for reconstructions of MIMFs performed separately for each variable χ= {ψa,i,θa,i,Ψo,i,To,i}.310

As expected, the multiscale correlation dimension for each MIMF decreases with increasing timescale, being representative

of a more regular, less stochastic/chaotic, behavior of large-scale MIMFs as compared with the short-term ones (Alberti et al.,

2020a). Particularly, when approaching the largest timescales, D2,τ → 1 suggesting the existence of fixed-scale MIMFs, i.e.,

with the instantaneous frequencies being almost constant (as expected, e.g., Rehman and Mandic, 2010). Conversely, when

the multiscale correlation dimensions are evaluated by summing up the different MIMFs, starting from the shortest up to the315

largest scale, a clearly scale-independent behavior of D2,τ is highlighted for both values of the friction coefficient C. This

suggests that the short-term variability mostly defines the correlations between pairs of points in the phase-space, thus setting

the minimum number of variables needed to describe the dynamics of the system, i.e., its degrees of freedom. However, the role

of C clearly emerges in determining the values of D2,τ , being lower for the larger C value. Indeed, D2,τ ∼ 8 for C = 0.008,

while D2,τ ∼ 1.5 for C = 0.015. This reflects the different statistics of the attractor scaling of the full system associated with a320

different dynamical behavior of the model variables (Faranda et al., 2019), also suggesting a less chaotic nature of the system

as C increases, together with a reduced number of degrees of freedom. This points towards the possibility of recovering the

main features of the model with a reduced number of variables and scales. However, the most interesting features emerge when

the different variables of both atmosphere and ocean are separately investigated by means of the multiscale generalized fractal

dimensions. It is indeed evident that a scale-independent behavior is found for the atmosphere for both values of C, while a325

scale-dependent behavior is observed for the ocean. The former can be easily related to the dominant role of the short-term

variability for the atmosphere, while the latter is a reflection of the long-term dynamics of the ocean. Moreover, it is also

particularly interesting to note that higher (lower) D2,τ values are found for the atmosphere with respect to the ocean for

C = 0.008 (C = 0.015). This reflects the role of the ocean in developing LFV in the atmosphere as C increases, although the
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Figure 5. Multiscale correlation dimensionD2,τ for C = 0.008 at different timescales τj for different cases: (a) for each MIMF individually

(Dj
2), (b) for reconstructions of MIMFs as in Eq. (12) (D2,τ ), and (c) for reconstructions of MIMFs separately for each variable (barotropic

modes - blue circles, baroclinic modes - orange asterisks, transport modes - yellow diamonds, and temperature modes - violet symbol). Each

panel also shows the 95% confidence intervals as error bars.

complexity of the full system seems to be determined by the atmosphere for both C values, being indeed characterized by a330

scale-independent behavior of D2,τ .

The described findings are not only valid for the multiscale correlation dimension D2,τ but are also observed for both the

multiscale capacity dimension D0,τ and the multiscale information dimension D1,τ as reported in Figs. 7 and 8, together with

the multiscale correlation dimension D2,τ , for both values of C.

Our formalism reveals the expected property that for q < q′, Dq,τ >Dq′,τ ∀τ (Hentschel and Procaccia, 1983; Alberti et al.,335

2020a). Moreover, when evaluating the multiscale generalized fractal dimensions for each MIMF separately (e.g., Figs. 7(a)

and 8(a)) a decreasing value for Dj
q is found as τ increases, with all Dj

q converging towards the same value of 1 at large

timescales. As for Dj
2 this behavior can be easily interpreted in terms of more chaotic vs. more regular MIMFs when moving

from short to large scales. This indeed reflects the existence of large-scale MIMFs that are characterized by a linear phase, i.e.,

a constant timescale (e.g., Rehman and Mandic, 2010). Thus, this is a trivial result. Conversely, when theDq,τ are evaluated for340

reconstructions based on MIMFs a scale-independent behavior is found for the full system for both values of C (e.g., Figs. 7(b)
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Figure 6. Same as in Fig. 5, but for C = 0.015.

and 8(b)). However, the key role of the friction coefficient clearly emerges by looking at the larger values ofDq,τ forC = 0.008

with respect to the lower values found for C = 0.015. This clearly indicates the existence of a completely different dynamics

between the two values of C, where the coupled ocean-atmosphere dynamics can be interpreted as a higher-dimensional

chaotic system for reduced ocean-atmosphere coupling (i.e., C = 0.008) as opposed to a lower-dimensional one for a strong345

ocean-atmosphere coupling (i.e., C = 0.015). Although C acts as a control parameter for the dimensionality of the system, it

is not able to change the underlying fractal nature of the full system. Indeed, for both C values we clearly observe different

Dq,τ for different q, thus suggesting the existence of a multifractal nature of the ocean-atmosphere dynamics at all timescales.

Furthermore, by separately looking at the two subsystems (i.e., the ocean and the atmosphere) a completely different behavior

emerges (e.g., Figs. 7(c)-(f) and 8(c)-(f)). In this case, the atmospheric variables are characterized by scale-independent Dq,τ ,350

being representative of a high-dimensional system whose prime dynamics occurs at short timescales and with little effects of

large-scale processes on the collective dynamics of the atmosphere. By contrast, a clearly scale-dependent behavior is found

for the oceanic variables, with the multiscale generalized dimensions decreasing at larger timescales, reflecting the effects of

large-scale dynamics dominating with respect to the short-term one for the ocean variability. Again the friction coefficient C

controls the values of Dq,τ , decreasing as C increases, while both the atmosphere and the ocean are clearly characterized by355

multifractal features at all timescales.
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Figure 7. Multiscale capacity dimension D0,τ , multiscale information dimension D1,τ , and multiscale correlation dimension D2,τ for

C = 0.008 at different timescales τj for different cases: (a) for each MIMF individually (Dj
q), (b) for reconstructions of MIMFs as in Eq.

(12) (Dq,τ ), and (c)-(f) for reconstructions of MIMFs separately for each variable (barotropic modes - (c), baroclinic modes - (d), transport

modes - (e), and temperature modes - (f)).
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Figure 8. Same as in Fig. 7, but for C = 0.015.
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By estimating the Lyapunov spectra (cf. Fig. S11 in Supplementary Information) separately for the ocean and the atmosphere

we obtained that for C = 0.008 the instability is large for the atmosphere with a Lyapunov dimension DL ∼ 10, while for

C = 0.015 the instability is weaker for the atmosphere, and the Lyapunov dimension is slightly larger than 4. Following the

Kaplan-Yorke conjecture (Kaplan and Yorke, 1979), the Lyapunov dimension can be used as a proxy of D0. Hence, our results360

are clearly consistent with the dimension estimates for the atmosphere. For the ocean, however, there seems to be a less

good agreement, with DL ≈ 2 while we found that D0,τ ≈ 4. This quantitative disagreement could be related to the fact that

the ocean can be viewed as a relatively stable system perturbed by high-frequency "noise" provided the atmosphere. Deeper

investigations will be devoted to clarify this point in future research.

As a further step, we evaluate the full spectrum of generalized fractal dimensions for each MIMF by considering a wide range365

of statistical moments q. As suggested in Lovejoy and Schertzer (2013) the range of significant moments can be evaluated by

means of the tail of the cumulative distribution function of the data. Indeed, the effect of sample size and its implications

for spurious scaling may be due either to first or second order multifractal phase transitions (Lovejoy and Schertzer, 2013).

To mitigate these effects (cfr. Supplementary Information) since we deal with the investigation of scale-dependent fractal

dimensions, we evaluate the cumulative statistics at different scales and we observe that extreme fluctuations follow a power370

law decay leading to the divergence of the 6–th order and the 4–th order moment for C = 0.008 and C = 0.015, respectively.

Thus we fix our range of moments −6< q < 6 and −4< q < 4 for C = 0.008 and C = 0.015, respectively. This analysis

allows characterizing how the (multi)fractal properties of the system evolve with the timescale τ . Indeed, there are ongoing

discussions on the fractal structure of both, the atmosphere and the ocean, especially dealing with the short-term variability

and in terms of scaling-law behavior and statistics of increments (e.g., Lovejoy and Schertzer, 2013; Franzke et al., 2020).375
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Figure 9. Dq,τ spectra for the coupled ocean-atmosphere dynamics at different timescales τj (indicated by different line colors) for recon-

structions of MIMFs as in Eq. (12) (Dq,τ ) for (a) C = 0.008 and (b) C = 0.015.

The Dq,τ spectrum is reported in Fig. 9, where colored lines correspond to different timescales. It can be observed that for

both values of the friction coefficient C, different values of Dq,τ are obtained for different q, with being Dq,τ a nonlinear

decreasing function of q. This means that the full system exhibits signatures of multifractality at all timescales, especially at
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very short and very long timescales. A simple and direct measure of the degree of multifractality1 is the so-called multifractal

width ∆
.
=Dqmin,τ −Dqmax,τ . We observe (see Fig. 10(a,b), black circles) that ∆≈ 2 for τ ∈ [τS , τL] days, while ∆> 2 for380

both τ < τS and τ > τL, with τS ∼ 20 days and τL ∼ 1 year. This behavior could be the reflection of processes operating

at different timescales for both the atmosphere (at short timescales) and the ocean (at long timescales). In order to further

disentangle those processes, we also evaluated the full spectra of the generalized multifractal dimensions for each subsystem

(i.e., atmosphere and ocean) individually. For both values of C, the corresponding results are shown in Fig. 11.
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Figure 10. Multifractal width ∆ at different timescales τj for reconstructions of MIMFs as in Eq. (12) (Dq,τ ) for (a) C = 0.008 and (b)

C = 0.015. The different colors refer to the full system (atmosphere+ocean, black circles), only the atmosphere (red circles), and only the

ocean (green circles), respectively.

We clearly see that for the atmosphere, there is a scale-independent behavior of Dq,τ for all q, rendering the different curves385

almost invariant with respect to the scale. By contrast, a scale-dependent behavior emerges for the ocean for the lower value

of C. Indeed, it is evident that as the timescale increases the multiscale generalized dimensions tend to decrease for all values

of q, moving from Dq,τ1 ∈ [5,8] to Dq,τ17 ∈ [2,3] for C = 0.008. Conversely, although there is an overall reduction in the

Dq,τ values for C = 0.0015 with respect to those evaluated for C = 0.008, the decrease with the timescale is less evident for

this higher C value, although it is still present for τ > 1 year (see orange and red curves in comparison with the blue ones in390

Fig. 11(d)). This clearly suggests that the presence of strong multifractality in the full system can be essentially attributed to

the atmosphere, with only a marginal role of the ocean variability in determining the fractal structure of the full system. By

evaluating the difference betweenDqmin,τ andDqmax,τ we can clearly see that larger values, of the order of 3, are found for the

atmosphere, at almost all timescales (and especially at shorter timescales), for both values of C. Conversely, larger values are

found at shorter timescales for both values of C for the ocean. As the timescale increases, this difference tends to be reduced395

1Another direct measure is the so-called co-dimension of the mean c= d−D0 where d is the dimension of the phase space (e.g., Lovejoy and Schertzer,

2013). For the sake of simplicity we prefer to use here only the multifractal width since it can be easily derived from Dq,τ and not to introduce an additional

alternative concept.
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Figure 11. Dq,τ spectra for the dynamics of atmosphere and ocean individually at different timescales τj (indicated by different line colors)

for reconstructions of MIMFs as in Eq. (12) (Dq,τ ) for (a,c) C = 0.008 and (b,d) C = 0.015. Panels (a,b) refer to the atmosphere, (c,d) to

the ocean.

to values close to 1, suggesting a reduced multifractality of the ocean with respect to the atmosphere, especially for the lower

value of C at larger timescales when the role of the ocean becomes dominant as compared to the atmosphere (see Fig. 2).

4.3 Comparison with regional averages from reanalysis data

As a final step we compare our previous results for the reduced order coupled ocean-atmosphere model with those obtained

from reanalysis data (Poli, 2015). More specifically, we use three different sets of regional time series based on the European400

Centre for Medium-range Weather Forecasts (ECMWF) ORA-20C project (De Boisséson and Balmaseda, 2016; De Boisséson

et al., 2017) that is a 10-member ensemble of ocean reanalyses covering the complete 20th century using atmospheric forcing

from the ERA-20C reanalysis (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c). Here, we focus on

data from January 1958 to December 2009 at monthly resolution in terms of different monthly-averaged time series, the set of

data also used previously in Vannitsem and Ekelmans (2018). This period has been chosen in the latter study because of the405

ocean reanalysis dataset showing here smaller uncertainties than during the first half of the 20th century (De Boisséson and

Balmaseda, 2016).

Three different representative regions are chosen: the North Atlantic region, corresponding to the domain defined by λ ∈
[55◦W,15◦W] and φ ∈ [25◦N,60◦N], the North Pacific region, i.e., a spherical-rectangle domain with λ ∈ [165◦E,225◦E] and
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φ ∈ [25◦N,60◦N], and the Tropical Pacific region, corresponding to λ ∈ [165◦E,225◦E] and φ ∈ [25◦S,25◦N] (Vannitsem and410

Ekelmans, 2018). The individual series for the two extratropical regions have been derived by projecting the reanalysis fields on

two dominant Fourier modes: (i) F1 =
√

2cos(πy/Ly), and (ii) φ2 = 2sin(πx/Lx)sin(2πy/Ly) (Vannitsem and Ekelmans,

2018). For the Tropical Pacific region, the series are formed by spatial averages. In this way, we obtain two sets of three time

series each for both the North Atlantic and the North Pacific (i.e., one for the atmosphere and two for the ocean), and a third

set of three time series for the Tropical Pacific (two for the atmosphere at two different pressure levels and one for the ocean).415

This allows us to build a 3-D projection of the local atmosphere-ocean coupled dynamics for each region (see Vannitsem and

Ekelmans, 2018, for more details).

By using the MEMD analysis to investigate the multivariate patterns of reanalysis data we found the same number ofNj = 9

MIMFs for each region, whose mean timescales range from∼ 2 months up to∼ 20 years, suggesting the existence of multiscale

variability over a wide range of scales. As for the reduced order model, we first investigate the behavior of the spectral energy420

content S(τ) of the different MIMFs as a function of their mean timescales τ as in Eq. (7) for the three different regions as

shown in Fig. 12. We clearly observe an increase of the spectral energy content up to a timescale τ ∼ 1 year for all regions,
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Figure 12. Spectral energy content S(τ) of the different MIMFs as a function of their mean timescales τ as in Eq. (7) for the North Atlantic

(blue circles), the North Pacific (orange asterisks), and the Tropical Pacific (yellow diamonds).

then declining for both the North Atlantic and the North Pacific. Conversely, the Tropical Pacific is characterized by larger

spectral content also for timescales larger than 1 year, up to τ ∼ 5 years, which coincide with the typical timescales of the El

Niño–Southern Oscillation (ENSO). Furthermore, for all regions a decreasing spectral energy content is found at the largest425

timescales (i.e., τ > 5 years).
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To further compare our above model results with those obtained for the reanalysis data, we evaluate the multiscale general-

ized fractal dimensions for the three different regions. For each region, we derive both the multifractal width ∆
.
=Dqmin,τ −

Dqmax,τ and the full multiscale multifractal spectrum at different timescales τj for reconstructions of MIMFs as in Eq. (12)

(Dq,τ ). Figure 13 shows the corresponding results for the North Atlantic region, the North Pacific region, and the Tropical430

Pacific region, respectively.
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Figure 13. (a)-(c) Multifractal width ∆ and (d)-(f)Dq,τ spectra at different timescales τj for reconstructions of MIMFs as in Eq. (12) (Dq,τ )

for (a,d) the North Atlantic, (b,e) the North Pacific, and (c,f) the Tropical Pacific, respectively.

First of all, it is important to underline that the multiscale generalized fractal dimensions are clearly different with respect to

those obtained from the ocean-atmosphere model. This directly follows from the different numbers of variables (time series)

in the model, being a 36-dimensional dynamical system, with respect to the reanalysis data, being a 3-dimensional projection

of the regional ocean-atmosphere dynamics. Nevertheless, although different in terms of absolute values, both the model and435

the reanalysis data show a similar qualitative behavior with varying scale τ , although some differences are found between the

different regions.

On one hand, both the North Atlantic and the North Pacific regions (see Fig. 13(d,e)) are characterized by a scale-dependent

behavior, with decreasing Dq,τ as τ increases. Moreover, by looking at the multifractal width as a function of the scale

(Fig. 13(a,b)) we find evidence for a decreasing ∆ as τ increases, being representative of a transition from a short-term multi-440
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fractal nature to a long-term monofractal one. These features can be interpreted in terms of the different multiscale dynamical

processes affecting the atmosphere on short scales and the ocean on larger scales.

On the other hand, by looking at the Tropical Pacific region we clearly see an enhancement of ∆, i.e., the emergence of

multifractal features (see Fig. 13(c)), at annual/multi-annual timescales (i.e., τ ∼ 1− 8 years), being also characterized by the

largest values of the multiscale generalized fractal dimensions (see Fig. 13(f)). This could be related to the role of the El Niño–445

Southern Oscillation (ENSO) cycle manifesting at these timescales (between 2 and 7 years), which is likely responsible for the

different scale-dependent behavior of Dq,τ as compared to the two other extratropical regions.

In summary, by means of the reanalysis data, we have been able to demonstrate that i) the reduced order coupled ocean-

atmosphere model and the reanalysis data show some qualitatively similar behavior of the multiscale generalized fractal di-

mensions, although characterized by different absolute values due to the different numbers of variables considered in the450

model and the projections on a few modes of the reanalysis data, and that ii) interesting features emerge when looking at

the scale-dependency of the statistics of the phase-space scaling for different regions, being the reflection of different driving

mechanisms and processes operating at different timescales in the coupled ocean-atmosphere system. However, further inves-

tigations are needed to characterize the role of the different processes as well as their intrinsic dimensionality, occurrence, and

spatial dependency in more detail. Such an in-depth investigation is outlined as a part of our future work.455

5 Conclusions

We have provided a first time systematic investigation of the multiscale dynamics of a reduced order coupled ocean-atmosphere

model (Vannitsem et al., 2015) as described by means of the statistics of the phase-space scaling (Alberti et al., 2020a).

First, by means of the Multivariate Empirical Mode Decomposition (MEMD) we have been able to detect oscillating patterns

with time-dependent amplitude and phase that are directly linked to a rich variety of features of the coupled ocean-atmosphere460

system. We have found that the underlying structure of the 3-D projection of the full attractor is essentially reproduced by a

subset of Multivariate Intrinsic Mode Functions (MIMFs) corresponding to the most relevant timescales without too much loss

of information, thus further reducing the complexity of the reduced order model itself. These results appear relevant if put into

the wider context of coupled ocean-atmosphere dynamics, allowing us to recover the main features by only considering the

most relevant (in terms of energy) timescale dynamical components.465

Second, by exploiting the novel concept of multiscale/multivariate generalized fractal dimensions we have investigated

the different multifractal properties for the ocean and the atmosphere at different timescales. We have demonstrated that for

weak ocean-atmosphere coupling (i.e., for low values of the friction coefficient C), the resulting dimensions of the two model

components are very different, while for strong coupling (larger C) at which coupled modes develop at low frequencies, the

scaling properties are more similar especially at longer time scales. These results suggest that as C increases, we observe the470

development of a coherent coupled dynamics, primarily at large timescales. In terms of the underlying fractal structure, we

have found that for both considered values of the friction coefficient C, the full system exhibits signatures of multifractality at

all timescales, especially pronounced at short and long as compared to intermediate timescales. By means of the full spectrum
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of generalized fractal dimensions, we have clearly evidenced that for the atmosphere, there is a scale-independent behavior of

Dq,τ for all q, rendering the multifractal spectra almost invariant with respect to the timescale. By contrast, a scale-dependent475

behavior emerges for the ocean for the lower value of C. This clearly suggests that the presence of strong multifractality in the

full system can be attributed to the atmosphere, with only a marginal role of the ocean variability in determining the fractal

structure of the full system.

Finally, we have compared our results for the reduced order coupled ocean-atmosphere model with those derived from

reanalysis data (Poli, 2015) by using three sets of different regional time series from the ORA-20C project (De Boisséson and480

Balmaseda, 2016; De Boisséson et al., 2017). Although the resulting multiscale generalized fractal dimensions clearly differ

quantitatively from those obtained from the ocean-atmosphere model – which can be easily understood by considering the

different dimensions of the model (a 36-dimensional dynamical system) and the reanalysis data (3-dimensional projections

of the local ocean-atmosphere dynamics) – we observed a similar qualitative behavior with changing scale τ . Interestingly,

the multiscale multifractal features of different regions show different scale-dependent behaviors. Specifically, both the North485

Atlantic and the North Pacific regions are characterized by a scale-dependent behavior, with decreasing Dq,τ as τ increases,

with a transition from a short-term multifractal nature to long-term monofractal one. These features can be interpreted in

terms of the different multiscale dynamical processes affecting the atmosphere at short timescales and the ocean at longer

timescales. Conversely, the Tropical Pacific region is characterized by the emergence of multifractal features at annual/multi-

annual timescales (i.e., τ ∼ 1− 8 years), being also characterized by the largest values of the multiscale generalized fractal490

dimensions. This behavior can be seen as a manifestation of the El Niño–Southern Oscillation (ENSO) cycle that typically acts

at these timescales and can be considered the key driving factor of a different scale-dependent behavior of Dq,τ as compared

to the two extratropical regions.

Our findings for both the model and the reanalysis data suggest that our approach can be used to diagnose the strength

of coupling in the ocean-atmosphere system and to investigate the statistics of the phase-space scaling of the system. We495

have demonstrated that the model and the reanalysis data show a qualitatively similar behavior of the multiscale generalized

fractal dimensions. However, the different scale-dependency of the statistics of the phase-space scaling for different regions can

contribute to a better understanding of the different driving mechanisms and processes operating at different timescales in the

coupled ocean-atmosphere system. Indeed, our results highlight that the complexity of the coupled ocean-atmosphere system

significantly depends not only on model parameters, that can be helpful for reproducing different features of the dynamics,500

but also on the particular scale we are looking at that can be related to different phenomena and source mechanisms, of both

intrinsic and external origin to the ocean-atmosphere system. This means that our results could be also helpful for understanding

the dimensionality of the system at different time scales, thus being useful for forecasting the dynamics at different scales and

for building empirical models based on dynamical system approaches in a similar fashion to models developed considering real

space scaling behavior (e.g., Del Rio Amador and Lovejoy, 2021a, b). These observations suggest that further investigations505

are needed to better characterize the role of the different processes as well as their intrinsic dimensionality, occurrence, and

spatial dependency, which shall be further addressed in our future work.
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