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General	comments:	

The	manuscript	has	been	improved,	in	particular,	it	is	more	readable,	easier	to	follow	although	it	is	still	
very	technical.				

The	authors	are	not	alone	in	this	tendency	to	develop	more	and	more	sophisticated	algorithms	that	yield	
results	further	and	further	removed	from	the	original	physical	problem.		These	methods	are	not	wrong,	the	
problem	is	more	with	the	interpretation	of	the	results.		Recall that even the (old) Fourier technique was sufficiently 
difficult to interpret that it led to the “missing quadrillion” in atmospheric variability that was only recently discovered 
(2015) and that is still widely ignored!  Therefore my point for discussion (below) is somewhat optional (I think it 
could potentially better situate the authors’ technique), but not essential for publication In other words, if	the	authors	
can	respond	to	the	minor	comments	below,	then	the	paper	could	be	published). 

	
Discussion	point:		

My	main	 issues	 are	 still	 associated	with	 the	 rather	 indirect	 and	difficult	 to	 interpret	method	 that	 is	
introduced.		For	example,	a	key	empirical	feature	of	macroweather	temperatures	is	their	temporal	scaling	over	
wide	ranges	(typically	≈	1	month	up	to	decades	and	longer)	that	involves		long	range	system	memory.		It	has	
recently	been	shown	that	such	memories	arise	as	classical	consequences	of	the	classical	heat	equation	when	
the	correct	radiative-conductive	boundary	conditions	are	used	[Lovejoy	et	al.,	2021],	[Lovejoy,	2021].		Both	the	
empirical	finding	itself	(that	can	be	used	for	example	for	monthly,	seasonal	forecasting,	land	and	ocean,	[Del	
Rio	Amador	and	Lovejoy,	2021a;	Del	Rio	Amador	and	Lovejoy,	2021b])	and	the	rather	general	(heat	storage)	
mechanism	(that	applies	to	both	land	and	ocean),	bring	into	question	the	strong	assertion	(line	26)	that	“low-
frequency variability (LFV) is strictly related to the ocean.”.   

Rather than investigating the scaling in a rather abstract phase space constructed with a complex sifting 
procedure, shouldn’t we first attempt to understand the rather fundamental real space scaling that has still not been 
satisfactorily explained by dynamical systems theory?   
 
Minor comments: 
 
1 Line 38: box-counting was proposed in the 1950’s, not by Ott 2002. 
 
2. Line 50 and several other places: the scaling exponents Dq characterized the statistics of the phase space scaling; 
calling them “geometric” is anachronistic (from Mandelbrot) and misleading.  Elsewhere Dq is even attributed 
“topological properties” even though the phase space is considered to be a set of isolated points (i.e. with topological 
dimension zero – or after interpolation, topological dimension=1). It is the phase space density of points whose density 
statistics are characterized by Dq. 
 
3. Line 50: there is a conceptual slippage.  It is stated (blue):

 
However, the Dq are exponents characterizing the rate at which the sparseness (D0), the information (D1), the 
correlations (D2) change with scale – i.e. NOT the values at any given scale.  There is then confusion because the next 
line: “without exploring how these properties  evolve at different scales” refers now to scales in real space rather in 
phase space. 
 
4. Line 110, one discusses scale invariant features over a wide range of scales and then refers to a recent review 
(Franzke et al 2020).  On the one hand, it would be of interest to see if the model has realistic real space scaling 



properties, and the slightly older monograph [Lovejoy and Schertzer, 2013] covers far more relevant material 
since it includes spatial scaling (the main source of temporal scaling) as well as the shorter (weather) time scales 
covered by the authors’ model. 
 
5.  Line 123: The authors mention: “nonlinearity and  non-stationarity properties of signals”.  We should be clear that 
signals are simply signals, they are neither nonlinear nor nonstationary.  The latter are properties of processes or of 
models or of infinite ensembles – i.e. of theoretical constructs.  In other words, the pertinence (or otherwise) of MEMD 
must be justified (or not) by the theoretical framework from which  the signal is assumed to issue.  Therefore the 
argument should be based on the characteristics of the 36 component dynamical system that is assumed to be a good 
model of the real world system. 
 
6. Eq. 11, the original exponent (q) was correct! 
 
7.  Line 369:  the effect of sample size and its implications for spurious scaling may be due either to first order 
multifractal phase transitions (from the probability tail as indicated here), or from second order phase transitions (see 
ch. 5, section 5.3, [Lovejoy and Schertzer, 2013]. 
 
8. Line 380: The “multifractal width” is in fact an ad hoc way of quantifying multifractality.   It is not optimal since it 
is generally not a characteristic of the process, since it is sensitive to the sample size (this is due to multifractal phase 
transitions either the first order transitions  mentioned on line 369 or to second order transitions c.f. above reference).  
That is why a better alternative is simply to use the co-dimension of the mean (= d-D1 where d is the dimension of the 
phase space).   
 
9.  Although there is much discussion about scaling properties in phase space, there is no mention of the fundamentally 
important scaling properties in real space..  It would be valuable if the authors could discuss how their results help us 
understand (or not), this basic feature of temperature and other fields.  
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