
Dear Editor,  

first of all, we would like to express our sincere thanks for your overall positive evaluation of our 
manuscript and the highly valuable comments of the two reviewers who have evaluated our work. 
With this letter, we are submitting a revised version of our manuscript entitled “Multiscale fractal 
dimension analysis of a reduced order model of coupled ocean-atmosphere dynamics”. We carefully 
considered and addressed all Referees’ comments and suggestions to improve our manuscript.  

We are confident that the revised version allows us to present our results in a more detailed and 
appropriate way, improving the clarity and the readability of our manuscript. In the following, we 
provide a point-by-point reply (in italics) to all comments (in normal font) of both Referees.  

Sincerely,  
Tommaso Alberti, Reik Donner, and Stéphane Vannitsem 

Referee #1 

C1. The work by Alberti et al. is a very intensive and information paper. It shows how to model 
Atmosphere and ocean dynamics within the scope of ESD. The authors extended the concept of 
multiscale generalized fractal dimensions employing Multivariate Empirical Mode Decomposition 
to analyze multiscale and multivariate behavior of the ocean-atmosphere coupled dynamics. 
Although the concept is not new to the scientific community, it is interesting to know how such a 
process is applicable for elucidating atmospheric behavior. The one important thing is that they tried 
to give more credits to the relevant works as much as possible. 

The paper is well written with proper usage of English and scientific jargon. However, for the 
general audience, some of the terminologies need to be explained simpler. For example,  the readers 
may not necessarily need to know about the Hausdorff dimension.  

A1. We really appreciate the positive evaluation of our manuscript both in terms of scientific/
methodological and formal points of view. To address some of the Referees’ comments we decided to 
add Supplementary Material in which we introduce more precisely some relevant concepts and 
terms around the notion of generalized fractal dimensions. This is done at lines 50-60 where the 
supplementary material is also referenced. 

C2. Although they are making some valid assumptions in the methodology,  some statements are a 
bit confusing. For instance, the authors mentioned that mathematical properties of completeness, 
convergence, linearity, and stationarity are usually not met when real-world geophysical data are 
analyzed. But it is not clear the reason behind this and what makes the use of adaptive methods. 
How is the complexity of data suitable for such methods?. Likewise, while the shifting process 
needs careful implementation for multivariate techniques, Mandic (2010) proposed an alternative 
way to cubic spline interpolation in each direction with a quasi-Monte Carlo-based approach. But 
the reviewer does not fully agree with it as such interpolation may lose the data's intrinsic properties 
since this approach produces smoother dynamics that do not exist in the data. 

A2. We really appreciate this comment that allows us to make more clear some statements, trying to 
reduce some possible confusion.  



First of all, we thank the Reviewer for highlighting an imprecise sentence that we wrote in our 
manuscript. Indeed, the mentioned properties that are usually not met in real-world geophysical 
data should only include linearity and stationarity, and of course not convergence and completeness 
issues. For this reason, we have corrected this sentence accordingly.  

Furthermore, adaptive methods can be helpful for overcoming some limitations of fixed-basis 
methods that are generally characterized by linearity and stationarity assumptions (as for Fourier 
analysis, for example). In addition, fixed-basis methods implicitly assume that a given natural 
phenomenon or a superposition of physical processes can be represented in terms of a priori 
defined mathematical functions like sine and/or cosine or some other kinds of wave functions. This 
cannot be assured, thus adaptive methods (as the MEMD) could be more suitable for reducing some 
mathematical assumptions and  a priori constraints.  

Finally, concerning the quasi-Monte Carlo-based approach it is used only to provide a more 
uniform set of direction vectors over which to compute the local mean of envelopes, and not to 
interpolate maxima and minima and/or to manipulate the data introducing a smoother dynamics. 
Indeed the core of the MEMD algorithm proposed by Rehman and Mandic (2010) consists on the 
following procedures: 
1. given a n-dimensional space we need to find the direction vectors by considering that these 

vectors reduce to points in a (n-1)-dimensional space; 
2. the simplest choice is to employ uniform angular sampling on an n-dimensional hypersphere 

but this will lead to a non-uniform filling of the n-dimensional space (there would be a higher 
density of points near the poles of the n-dimensional hypersphere; 

3. a quasi-Monte Carlo method is then used to provide a more uniform distribution of direction 
vectors; 

4. once the direction vectors are chosen, the signal is projected onto these vectors, the extrema of 
the resulting projected signals are evaluated and interpolated component-wise to yield 
multidimensional envelopes that are then averaged to obtain the multivariate mean. 

The quasi-Monte Carlo method is needed only for selecting a uniform sampling of direction vectors, 
thus to avoid implicitly preferred directions that could be more dominant with respect to the others, 
which could introduce a source of errors in evaluating signal projections.  

We have modified both Section 3 “Methods” and Section 3.1 “Multivariate Empirical Mode 
Decomposition (MEMD)” to add all these details and corrections.  

C3. The authors tried to interpret most of the results efficiently. However, some of the interpretation 
is very unclear and hard to follow. For example, the authors did not mention what is the physical 
meaning behind the correlation dimension. It is just a kind of statistics of the data. Without 
understanding the physical meaning, it is not clear why it is a function of time. Another issue is that 
some of the figures are not interpreted well. e.g., the description of Figures 5 and 6  are not 
marched. They are not clear, as seen in the figures. For the general audience, they are confusing. 
Even though the multiscale correlation dimension for each MIMF decreases with an increasing 
timescale, as seen in panel (a), the other two panels are not well elaborated. 

A3. We thank the Referee for this comment. D0, D1, and D2 are strictly related to different properties 
of physical systems: (i) one purely geometric measure (D0) providing us information on the 
coverage of the phase-space by the studied system’s dynamics, (ii) one information measure (D1) 



giving us a measure of the information gained on the phase-space with a given accuracy , and (iii) 
one measure of correlations, i.e., mutual dependence, between phase-space points (D2). Since the 
collective behavior of a system is given by physical processes operating at different scales, it is 
straightforward to look how they contribute to the topology of the phase-space, not only singularly 
(as in panel (a) of Figs. 5-6) but especially when considering all processes occurring below a 
selected scale (as in panel (b) of Figs. 5-6) and by looking separately at the atmosphere and ocean 
(as in panel (c) of Figs. 5-6). 

We modified both the “Introduction” and Section 4.2 “Multiscale generalized fractal dimensions” 
to take care of this comment, introducing more details on the fractal dimensions in terms of their 
physical meaning (at least for D0, D1, and D2), together with a more detailed description of Figures 
5-6. 

C4. The authors cleverly described the experiments. To reproduce the work, one needs to 
understand all the mathematical formulas. In the scientific method, some time calculation and 
mathematical expression do not match as most of the calculation procedure follow fundamental 
statistical programming. It needs a concise explanation of calculating all these quantities like 
system attractors, phase space, and correlation dimensions. The description of these quantities 
introduced in the manuscript is very dubious and complex to replicate. The reviewer is thankful for 
providing data sets. But it becomes worthy if it includes an explanation of how to reanalyze these 
data sets.  

A4. We thank the Referee for this suggestion. Our full system consists of 36 variables, thus we are 
working on a 36-D space. For visual purposes, we reduced our 36-D space to a 3-D subspace by 
looking at the behavior of the three selected dynamical variables (i.e., To,2, Ψo,2, and ψa,1) in a 3D 
plot. This allows us to investigate the 3D projection of the full system phase-space attractor, i.e., the 
set of values toward which our system tends to evolve. 

Concerning the calculation of the generalized fractal dimensions, we used the approach proposed 
by Hentschel and Procaccia (1983) consisting of partitioning the phase-space into hypercubes and 
then measuring the probability of finding a given hypercube filled by points and/or its 
generalization to a statistical order q (as also described at lines 40-52 of the submitted version). 
  
This comment has been addressed by adding more information and details as Supplementary 
Material.  

C5. Finally, the reviewer appreciates the work of the authors. Still, it needs a bit more simplification 
and incorporating the issues mentioned above.  

A5. We really thank the Referee for his/her nice words on our manuscript and we have done our 
best to be more precise and more clear in the revised version of the manuscript. 



Referee #2 

General comments:  

The authors propose combining two apparently contradictory analysis techniques to the outputs of a 
low (36) dimensional dynamical ocean - atmosphere model. The first, makes a nontrivial 
decomposition of the 36 dimensional signal into series with well-defined time scales, the second 
analyses the phase spaces assuming the existence of scale invariant properties. The justification and 
interpretation of this is opaque. 

While the authors question the utility of conventional analysis techniques, at least the latter can be 
interpreted in straightforward manners. The interpretation of their results is nontrivial.  

We thank the Referee for raising some points that can be helpful for improving the presentation and 
clarity of our findings. Most of all, we did not mean to question the utility of conventional analysis 
techniques, but rather acknowledge their intrinsic limitations and attempt to explore the potentials 
of a combination of two “non-conventional” techniques to provide additional information. 

We also want to stress that the two methods should not be seen as “apparently contradictory” as 
emphasized by the reviewer. The modes extracted in the first analysis step have no well-defined time 
scales but are instead characterized by scales that are time-dependent. This is one of the main 
novelties of the Empirical Mode Decomposition and its multivariate extension we used here (i.e., 
the MEMD) as compared to fixed-scale decomposition methods like wavelets. The extracted modes 
can be seen as representative of fluctuations at a typical scale that is the average of the 
instantaneous scales derived from a given mode via the Hilbert Transform. Moreover, the second 
analysis step, i.e., the generalized fractal dimensions, requires to have scale invariant properties in 
the phase-space of a given system, thus working (essentially) on measuring the geometric properties 
of the system trajectory and information on how to reconstruct it by measuring the information 
dimension D1 and q-tuplet correlations Dq>1. This means that there are no a priori constraints on 
understanding a system using Dq. Thus, the two methods are not contradictory but rather 
complementary. 

Detailed comments: 

C1. The notation is not easy to follow. Please explain the curly bracket notation used throughout:  

  
On the left, a bold symbol “s” is used which is standard for indicating a vector. Why do the authors 
(apparently needlessly) add curly brackets and then an explicit restriction as a subscript? 
Further, there is the bizarre looking symbol that is also not adequately explained.  

A1. We thank the Referee for this suggestion. Indeed, we agree that the notation using curly 
brackets has been partly misleading, since the left-hand side of the equation was originally intended 
to represent a sequence of multivariate observation vectors, while the right-hand side was supposed 



to clarify the structure of each of those vectors composed of k scalar properties, the latter of which 
however was lacking clarity in our notation. This aspect has been clarified in our revised 
manuscript by removing the additional sequence notation. Moreover,  the “bizarre looking” symbol 
has been changed to Dq, following the notation used in Alberti et al. (Chaos, 2020). We modified 
Section 3.1 “Multivariate Empirical Mode Decomposition MEMD)” accordingly as well as we took 
care of modifying other parts through the manuscript. 

C2. When discussing the mathematical properties of the usual decompositions (“completeness, 
convergence, linearity, and stationarity”) it is stated that “these conditions are not usually met when 
real-world geophysical data are analyzed”. This is confusing since the mathematical properties of 
Fourier or other decompositions are valid irrespective of any application. I think the authors meant 
to question the appropriateness of such decompositions for their specific application? However, this 
is a mathematical question that cannot be answered without reference to a specific assumed 
mathematical framework. In the paper the authors do not analyze empirical data at all but rather 
model outputs. Contrary to real empirical series, their series are therefore taken from a well-defined 
mathematical framework given by dynamical systems theory. Please explain why standard 
decompositions are not adequate for studying such model outputs and why there is a need for them 
to be replaced by decompositions with quite nontrivial interpretations and properties.  

A2. We thank the Referee for this important suggestion. As also highlighted in our reply to Referee 
#1 we actually had to clarify the sentence on properties met by real-world data (note that our 
manuscript does not exclusively utilize low-order model output, but also reanalysis data, which in 
our opinion would qualify as “empirical”) for which linearity and stationarity assumptions are 
often not met. Indeed, we fully agree that mathematical properties of the decomposition methods 
themselves are surely valid irrespective of any application. As also suggested by the Referee, we 
referred to the use of adaptive methods that can be justified to overcome some limitations of fixed-
basis methods such as linearity and stationarity assumptions. Moreover, adaptive methods (as the 
MEMD) could be more suitable for reducing some mathematical assumptions and a priori 
constraints. 

Although we use the MEMD on a well-defined framework derived from dynamical systems theory, 
the reduced a priori constraints and the limited number of intrinsic components that can be visually 
inspected could be an advantage with respect to standard decompositions. Another advantage 
concerns the combination with generalized fractal dimensions: if we, for example, use Fourier 
decomposition we would have a large number of (harmonic) oscillating components at different 
fixed frequencies that should be summed up for exploiting our proposed procedure. Furthermore, if 
we, for example, use wavelets we would deal with some a priori assumptions on the decomposition 
basis onto which we are projecting our data that could produce misleading results in our procedure 
of evaluating fractal measures on a priori fixed scales. Thus, we do not question the 
appropriateness of conventional analysis techniques, but rather acknowledge that they (as well as 
any other) have intrinsic limitations in what we can learn from them. We modified accordingly 
Section 3 “Methods”. 



C3. Also in the Methods section, it is stated that the authors “put forward a novel approach based 
on combining two different data analysis methods for Multivariate Empirical Mode Decomposition 
and generalized fractal dimensions”. What is confusing is that while the MEMD analyzes time 
series in real space, in their application, the generalized fractal dimensions analysis is carried out in 
a quite different space - the phase space of each series. The result is that for each time series with 
characteristic time scale t, that the corresponding phase spaces are assumed to be scaling. In other 
words, while there are essentially no scaling properties in real space, it is assumed that there will be 
nontrivial scaling properties in the corresponding phase space. The approach is presumably justified 
if the characterizing these scaling properties via generalized fractal dimensions will help understand 
the system. At this point one wonders whether the conventional Fourier spectrum of each t scale 
series might have been easier to interpret, to understand. All this needs explanation, clarification.  

A3. We really appreciate this comment since it allows us to better underline our main aim. We have 
been interested in investigating how phase-space properties (geometry, correlations) change when 
dynamical components at different mean scales with different dynamics are considered. In other 
words, we have been interested in looking at the role of scale-dependent phenomena in defining the 
whole properties of a system. Global measures proposed in the past only allow us to investigate the 
statistical, topological, or geometric scaling properties of the whole system; conversely, our 
proposed approach allows us to investigate how the different scales contribute to the global 
properties of a system. Moreover, our framework also provides consistency with established 
measures for characterizing time series from a global (not scale-resolved) perspective, since the 
scale-dependent measures we evaluate converge to the associated global measures as all scales are 
considered, i.e., when the full system dynamics, composed by all accessible scales, is reached, 
Within this framework, our approach could be promising for investigating scale-dependent 
properties, as measured by fractal dimensions, of the system. We are indeed interested in nonlinear 
variability characteristics at different time scales, thus employing for example Fourier 
decomposition would leave us with perfectly linear and stationary harmonic functions as 
components, which do not carry any information on nonlinear dynamics, unless when studying their 
mutual phase relationships, leaving out the high-order statistical properties and only focusing on 
the autocorrelation function (i.e., the second-order moment). Otherwise, by looking at the behavior 
of fractal dimensions we can explore how the different scales contribute to change the phase-space 
properties that cannot be highlighted by using the conventional Fourier spectrum.  

We have added more explanations and clarifications on those aspects at the end of Section 3.2 
“Multivariate and multiscale generalized fractal dimensions” (lines 220-234). 

C4. In particular, when the generalized fractal dimensions are estimated, the authors need to show 
that there are indeed some phase space scaling properties. Using mathematical definitions such as 
eqs. 1-3 - where the small scale limits are taken - has only a formal validity when the definitions are 
applied to numerical model outputs, especially when the latter has been subjected to cubic spline 
interpolation which makes the small scales artificially smooth. In practice, one needs to display 
scaling behaviour over at least an order of magnitude or so in scale in order for any fractal 
dimension estimates to be convincing. The authors must therefore display some of their scaling 
plots - not just logarithmic slopes that have already been interpreted in terms of dimensions.  



A4. We agree with this comment. To be clearer and more convincing, we display in Figs. 1 and 2 of 
this response letter the scaling behavior for the correlation integral for the two cases C=0.008 and 
C=0.015 at different timescales. We choose to show here only the correlation integral since it can 
be faster evaluated than other moments (cfr. Grassberger and Procaccia, 1983). We show here that 
there exists at least an order of magnitude in scale over which a scaling behavior is observed. A 
similar behavior is also observed when considering the reanalysis data as shown in Fig. 3 of this 
response letter for the different regions. Taking also into consideration a corresponding comment by 
Referee #1, we added Supplementary Material with more details on the computation of fractal 
dimensions and scaling plots to the revised version of our manuscript.  

We would further like to remark that the cubic spline interpolation does not produce artificially 
smoothed small scales since it does not act on the data themselves but only on local extreme values 
of the data to extract intrinsic oscillating components from the data. Thus, the shape of the raw data 
is not changed and generally the (M)EMD extracts scale-dependent components that are smoother 
as the largest scales are approached. We also fixed this point in Section 3.1 “Multivariate 
Empirical Mode Decomposition (MEMD)”. 

 



 

 



C5. In this regard, I could also add that figs. 9 and 11 are almost certainly largely spurious. This is  
because typically for moments of order q≈>3-4, the moments are completely dominated by a single 
hypercube (a “second order multifractal phase transition”) so that for larger q, the values will 
depend sensitively on the exact details of the input series. Similarly for q<0 most if not all the 
values will likely be spurious essentially due to the statistics of the very sparsely populated regions 
of phase space (the very low probability regions, see e.g. the discussion in ch. 5 of [Lovejoy and 
Schertzer, 2013]). In other words over most of the range of moments given in the figure 
(-20<q<20), the dimensions are likely to be spurious. 

A5. We thank the Referee for raising this important point on the statistical significance of higher-
order moments. We are aware that this is a crucial point, especially when working with scale 
invariant features measured via structure functions, detrended fluctuation analysis, and spectral 
methods (as for wavelets). To deal with this problem and to support the statistical significance of 
our results we have followed the approach described in Ch. 5 of Lovejoy and Schertzer (2013) to 
evaluate the maximum moments as those derived from the tail of the cumulative distribution 
function of the data. Since we deal with the investigation of scale-dependent fractal dimensions, we 
evaluate the cumulative statistics at different scales. As shown in Figs. 4-6 in this response letter, we 
observe that extreme fluctuations follow a power law decay leading to the divergence of the 6-th 
order moment and the 4-th order moment for C=0.008 and C=0.015, respectively. Thus we have 
now fixed our range of moments -6<q<6 and -4<q<4 for C=0.008 and C=0.015, respectively, and 
modified Figs. 9-11 accordingly, without changing the previously described results qualitatively. 
Similar results have also been obtained for the reanalysis data (see Figs. 7-8 in this response 
letter), thus we fix here our range of moments to -3<q<3.  

We also inserted Figs. 4-8 of this response letter as parts of our new Supplementary Material (see 
Figs. S6-S10). 
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Fig. 4 Complementary cumulative distribution functions at different scales as reported by 
different colors for the case C = 0.008. The lines refer to the power law fit of the tail.
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Fig. 5 Same as in Fig. 4, but for C = 0.015.
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Fig. 6 The power law scaling exponent qD as a function of the different scales for the case C = 
0.008 (black asterisks) and C = 0.015 (red diamonds). The minimum qD has been chosen to set the 

range of statistically significant moments.
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Fig. 7 Same as in Fig. 4, but for the reanalysis data.
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Fig. 8 Same as in Fig. 6, but for the reanalysis data.



C6. Finally, the interpretation of the key figures 5-8 is not at all obvious. Calling these 
characterizations “topological, geometric” is unhelpful and/or misleading since they are actually 
statistical exponents without any straightforward relationship to the phenomenon under study. The 
authors could note that whereas a white noise signal would give a correlation dimension equal to 
the dimension of the phase space itself (it is space filling), that a Brownian motion in a space d≥2 
has a constant dimension = 2.  

A6. We thank the Referee for this comment. We have attempted to further improve the clarity of our 
manuscript during the revision, especially in the paragraphs introducing some key concepts and/or 
describing key features. We are referring to topological and geometric since some measures are 
able to give us information on phase-space properties. For example, D0 is a measure of the filling of 
the phase-space, thus providing a measure on the coverage of the phase-space by the studied 
system’s dynamics, D1 provides a measure of the information gained on the phase-space with a 
given accuracy , and the Dq>1 provide measures of q-tuplet correlations, i.e., mutual dependence, 
between phase-space points. This explains why we used the terms topological and geometric in our 
manuscript. We modified accordingly our “Introduction” as well as we give a deeper description of 
our key figures 5-8 (see Section 4.2 “Multiscale generalized fractal dimensions”, lines 307-352). 

Reference:  

Lovejoy, S., and Schertzer, D., The Weather and Climate: Emergent Laws and Multifractal 
Cascades, 496 pp., Cambridge University Press, 2013.  

Thanks a lot for this reference that we have also cited in the revised version of our manuscript.


