
General comments: 


The authors propose combining two apparently contradictory analysis techniques to the outputs of a 
low (36) dimensional dynamical ocean - atmosphere model. The first, makes a nontrivial 
decomposition of the 36 dimensional signal into series with well-defined time scales, the second 
analyses the phase spaces assuming the existence of scale invariant properties. The justification and 
interpretation of this is opaque.  
While the authors question the utility of conventional analysis techniques, at least the latter can be 
interpreted in straightforward manners. The interpretation of their results is nontrivial. 


We thank the Referee for raising some points that can be helpful for improving the presentation and 
clarity of our findings. Most of all, we do not question the utility of conventional analysis 
techniques, but acknowledge their intrinsic limitations and attempt to explore the potentials of a 
combination of two “non-conventional” techniques to provide additional information.

We also want to stress that the two methods should not be seen as “apparently contradictory” as 
emphasized by the reviewer. The modes extracted in the first analysis step have no well-defined time 
scales but are instead characterized by scales that are time-dependent. This is one of the main 
novelties of the Empirical Mode Decomposition and its multivariate extension we used here (i.e., 
the MEMD) as compared to fixed-scale decomposition methods like wavelets. The extracted modes 
can be seen as representative of fluctuations at a typical scale that is the average of the 
instantaneous scales derived from a given mode via the Hilbert Transform. Moreover, the second 
analysis step, i.e., the generalized fractal dimensions, requires to have scale invariant properties in 
the phase-space of a given system, thus working (essentially) on measuring the geometrical 
properties of the system trajectory and information on how to reconstruct it by measuring the 
information dimension D1 and q-tuplet correlations Dq>1. This means that there are no a priori 
constraints on understanding a system using Dq. Thus, the two methods are not contradictory but 
rather complementary.


In the following we provide replies (in italics, labelled by “A”) to the Referee’s detailed comments 
(in normal font, labelled by “C”) that will be also thoroughly considered in a revised version of our 
manuscript.


Detailed comments: 
C1. The notation is not easy to follow. Please explain the curly bracket notation used throughout: 


 

On the left, a bold symbol “s” is used which is standard for indicating a vector. Why do the authors 
(apparently needlessly) add curly brackets and then an explicit restriction as a subscript? 

Further, there is the bizarre looking symbol  that is also not adequately explained. 


A1. We thank the Referee for this suggestion. Indeed, we agree that the notation using curly 
brackets has been partly misleading, since the left-hand side of the equation was originally intended 
to represent a sequence of vectors, while the right-hand side was supposed to clarify the structure of 
each of those vectors composed of k scalar properties, the latter of which however was lacking 
clarity in our notation. This aspect will be clarified in our revised manuscript. Moreover,  the 
“bizarre looking” symbol can be safely changed to Dq,  following the notation used in Alberti et al. τ



(Chaos, 2020). We will modify the corresponding parts of our manuscript also with a general 
attempt to be more precise when introducing notations in a revised version of our manuscript.


C2. When discussing the mathematical properties of the usual decompositions (“completeness, 
convergence, linearity, and stationarity”) it is stated that “these conditions are not usually met when 
real-world geophysical data are analyzed”. This is confusing since the mathematical properties of 
Fourier or other decompositions are valid irrespective of any application. I think the authors meant 
to question the appropriateness of such decompositions for their specific application? However, this 
is a mathematical question that cannot be answered without reference to a specific assumed 
mathematical framework. In the paper the authors do not analyze empirical data at all but rather 
model outputs. Contrary to real empirical series, their series are therefore taken from a well-defined 
mathematical framework given by dynamical systems theory. Please explain why standard 
decompositions are not adequate for studying such model outputs and why there is a need for them 
to be replaced by decompositions with quite nontrivial interpretations and properties. 


A2. We thank the Referee for this important suggestion. As also highlighted in our reply to Referee 
#1 we need to clarify the sentence on properties met by real-world data (note that our manuscript 
does not exclusively utilize low-order model output, but also reanalysis data, which in our opinion 
would qualify as “empirical”) for which linearity and stationarity assumptions are often not met. 
Indeed, we fully agree that mathematical properties of the decomposition methods themselves are 
surely valid irrespective of any application. As suggested by the Referee, we referred to the use of 
adaptive methods that can be justified to overcome some limitations of fixed-basis methods such as 
linearity and stationarity assumptions. Moreover, adaptive methods (as the MEMD) could be more 
suitable for reducing some mathematical assumptions and a priori constraints.  
Although we use the MEMD on a well-defined framework derived from dynamical systems theory, 
the reduced a priori constraints and the limited number of intrinsic components that can be visually 
inspected could be an advantage with respect to standard decompositions. Another advantage 
concerns the combination with generalized fractal dimensions: if we, for example, use Fourier 
decomposition we will have a large number of (harmonic) oscillating components at different fixed 
frequencies that should be summed up for exploiting our proposed procedure. Furthermore, if we, 
for example, use wavelets we will deal with some a priori assumptions on the decomposition basis 
onto which we are projecting our data that could produce misleading results in our procedure of 
evaluating fractal measures on a priori fixed scales. Thus, we do not question the appropriateness 
of conventional analysis techniques, but rather acknowledge that they (as well as any other) have 
intrinsic limitations in what we can learn from them.


C3. Also in the Methods section, it is stated that the authors “put forward a novel approach based 
on combining two different data analysis methods for Multivariate Empirical Mode Decomposition 
and generalized fractal dimensions”. What is confusing is that while the MEMD analyzes time 
series in real space, in their application, the generalized fractal dimensions analysis is carried out in 
a quite different space - the phase space of each series. The result is that for each time series with 
characteristic time scale t, that the corresponding phase spaces are assumed to be scaling. In other 
words, while there are essentially no scaling properties in real space, it is assumed that there will be 
nontrivial scaling properties in the corresponding phase space. The approach is presumably justified 
if the characterizing these scaling properties via generalized fractal dimensions will help understand 
the system. At this point one wonders whether the conventional Fourier spectrum of each t scale 
series might have been easier to interpret, to understand. All this needs explanation, clarification. 




A3. We really appreciate this comment since it allows us to better underline our main aim. We are 
interested in investigating how phase-space properties (geometry, correlations) change when 
dynamical components at different mean scales with different dynamics are considered. In other 
words, we are interested in looking at the role of scale-dependent phenomena in defining the whole 
properties of a system. Global measures proposed in the past only allow us to investigate the 
statistical, topological, geometrical, scaling, properties of the whole system; conversely, our 
proposed approach allows us to investigate how the different scales contribute to the global 
properties of a system. Moreover, our framework also provides consistency with established 
measures for characterizing time series from an integral (not scale-resolved) perspective, since the 
scale-dependent measures we evaluate converge to the associated global measures as all scales are 
considered, i.e., when the full system dynamics, composed by all accessible scales, is reached, 
Within this framework, our approach could be promising for investigating scale-dependent 
properties, as measured by fractal dimensions, of the system. We are indeed interested in nonlinear 
variability characteristics at different time scales, thus employing for example Fourier 
decomposition would leave us with perfectly linear and stationary harmonic functions as 
components, which do not carry any information on nonlinear dynamics, unless when studying their 
mutual phase relationships, leaving out the high-order statistical properties and only focusing on 
the autocorrelation function (i.e., the second-order moment). Otherwise, by looking at the behavior 
of fractal dimensions we can explore how the different scales contribute to change the phase-space 
properties that cannot be highlighted by using the conventional Fourier spectrum.


C4. In particular, when the generalized fractal dimensions are estimated, the authors need to show 
that there are indeed some phase space scaling properties. Using mathematical definitions such as 
eqs. 1-3 - where the small scale limits are taken - has only a formal validity when the definitions are 
applied to numerical model outputs, especially when the latter has been subjected to cubic spline 
interpolation which makes the small scales artificially smooth. In practice, one needs to display 
scaling behaviour over at least an order of magnitude or so in scale in order for any fractal 
dimension estimates to be convincing. The authors must therefore display some of their scaling 
plots - not just logarithmic slopes that have already been interpreted in terms of dimensions. 


A4. We agree with this comment. To be clearer and more convincing, we display in Figs. 1 and 2 of 
this response letter (which will also be included in a revised version of our manuscript) the scaling 
behavior for the correlation integral for the two cases C=0.008 and C=0.015 at different 
timescales. We choose to show here only the correlation integral since it can be faster evaluated 
than other moments (cfr. Grassberger and Procaccia, 1983). We show here that there exists at least 
an order of magnitude in scale over which a scaling behavior is observed. A similar behavior is 
also observed when considering the reanalysis data as shown in Fig. 3 of this response letter for the 
different regions. Taking also into consideration a comment by Referee #1, we consider adding 
Supplementary Materials with more details on the computation of fractal dimensions and scaling 
plots to a revised version of our manuscript. 


We would further like to remark that the cubic spline interpolation does not produce artificially 
smoothed small scales since it does not act on the data themselves but only on local extreme values 
of the data to extract intrinsic oscillating components from the data. Thus, the shape of the raw data 
is not changed and generally the (M)EMD extracts scale-dependent components that are smoother 
as the largest scales are approached.




Fig. 1 The log-log scaling plots of the correlation integral C(r) as a function of r (normalized 
with the respect to the largest possible separation between points in the phase-space 

represented by r0) at different scales represented by colors for the case C=0.008. 

The lines refer to the power law fit in the limit r 0.→

Fig. 2 The log-log scaling plots of the correlation integral C(r) as a function r (normalized with 
the respect to the largest possible separation between points in the phase-space represented by 

r0) at different scales represented by colors for the case C=0.015. 

The lines refer to the power law fit in the limit r 0.→



C5. In this regard, I could also add that figs. 9 and 11 are almost certainly largely spurious. This is 
because typically for moments of order q≈>3-4, the moments are completely dominated by a single 
hypercube (a “second order multifractal phase transition”) so that for larger q, the values will 
depend sensitively on the exact details of the input series. Similarly for q<0 most if not all the 
values will likely be spurious essentially due to the statistics of the very sparsely populated regions 
of phase space (the very low probability regions, see e.g. the discussion in ch. 5 of [Lovejoy and 
Schertzer, 2013]). In other words over most of the range of moments given in the figure 
(-20<q<20), the dimensions are likely to be spurious.


A5. We thank the Referee for raising this important point on the statistical significance of higher-
order moments. We are aware that this is a crucial point, especially when working with scale 
invariant features measured via structure functions, detrended fluctuation analysis, and spectral 
methods (as for wavelets). To deal with this problem and to support the statistical significance of 
our results we have followed the approach also described in Ch. 5 of Lovejoy and Schertzer (2013) 
to evaluate the maximum moments as those derived from the tail of the cumulative distribution 
function of the data. Since we deal with the investigation of scale-dependent fractal dimensions, we 
evaluate the cumulative statistics at different scales and as shown in Figs. 4-6 in this response letter 
we observe that extreme fluctuations follow a power law decay leading to the divergence of the 6th-
order moment and the 4th-order moment for C=0.008 and C=0.015, respectively. Thus we fix our 
range of moments -6<q<6 and -4<q<4 for C=0.008 and C=0.015, respectively, and we will modify 
accordingly Figs. 9-11 in a revised version of our manuscript. Similar results are also obtained for 
the reanalysis data (see Figs. 7-8 in this response letter), thus we fix here our range of moments to 
-3<q<3.


Fig. 3 The log-log scaling plots of the correlation integral C(r) as a function r (normalized with 
the respect to the largest possible separation between points in the phase-space represented by r0) 

at different scales represented by colors for the reanalysis data. 

The lines refer to the power law fit in the limit r 0.→






Fig. 4 The cumulative distribution function at different scales as reported by different colors for 
the case C=0.008. The lines refer to the power law fit of the tail.

Fig. 5 The cumulative distribution function at different scales as reported by different colors for 
the case C=0.015. The lines refer to the power law fit of the tail.






Fig. 6 The power-law scaling exponent qD as a function of the different scales for the case 
C=0.008 (black asterisks) and C=0.015 (red diamonds). The minimum qD has been chosen to set 

the range of statistically significant moments.

Fig. 7 The cumulative distribution function at different scales as reported by different colors for 
the reanalysis data. The lines refer to the power law fit of the tail.






C6. Finally, the interpretation of the key figures 5-8 is not at all obvious. Calling these 
characterizations “topological, geometric” is unhelpful and/or misleading since they are actually 
statistical exponents without any straightforward relationship to the phenomenon under study. The 
authors could note that whereas a white noise signal would give a correlation dimension equal to 
the dimension of the phase space itself (it is space filling), that a Brownian motion in a space d≥2 
has a constant dimension = 2. 


A6. We thank the Referee for this comment. We will work on further improving the clarity of our 
manuscript, especially when introducing some key concepts and/or describing key features. We are 
referring to topological and geometrical since some measures are able to give us information on 
phase-space properties. For example, D0 is a measure of the filling of the phase-space, thus 
providing a measure on the coverage of the phase-space by the studied system’s dynamics, D1 

provides a measure of the information gained on the phase-space with a given accuracy , and the 
Dq>1 provide measures of q-tuplet correlations, i.e., mutual dependence, between phase-space 
points. This explains why we used the terms topological and geometrical in our manuscript. 


Reference: 


Lovejoy, S., and Schertzer, D., The Weather and Climate: Emergent Laws and Multifractal 
Cascades, 496 pp., Cambridge University Press, 2013. 


Thanks a lot for this reference that we will consider in a revised version of the manuscript.

ε

Fig. 8 The power-law scaling exponent qD as a function of the different scales for the reanalysis 
data. The minimum qD has been chosen to set the range of statistically significant moments.


