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Abstract. So far scientific analyses have mainly focused on the pros and cons of solar geoengineering or solar radiation man-

agement (SRM) as a climate policy option in mere isolation. Here we put SRM into the context of mitigation by a strictly

temperature-target based approach. As a main innovation, we present a scheme by which the applicability regime of tem-

perature targets is extended from mitigation-only to SRM-mitigation analyses. Hereby we explicitly account for a risk-risk

comparison of SRM and global warming, while minimizing economic costs for complying with the 2°C temperature target.5

To do so, we suggest precipitation guardrails that are compatible with the 2°C target. Our analysis shows that the value system

enshrined in the 2°C target would be almost prohibitive for SRM, while still about half to nearly two-third of mitigation costs

could be saved, depending on the choice of extra room for precipitation. In addition, assuming a climate sensitivity of 3°C or

more, in case of a delayed enough policy, a modest admixture of SRM to the policy portfolio might provide debatable trade-

offs compared to a mitigation-only future. In addition, in our analysis for climate sensitivities higher than 4°C, SRM will be an10

unavoidable policy tool to comply with the temperature targets.

1 Introduction

Since Paul Crutzen has highlighted solar radiation management (SRM) as a potential climate policy option in addition to

adaptation and mitigation (Crutzen (2006)), there is and increasing research on this technique as a measure to counteract

anthropogenically caused global warming (Barrett et al. (2014); Bellamy et al. (2013); Goes et al. (2011); Irvine et al. (2012);15

Kravitz et al. (2013); MacMartin et al. (2014); Moreno-Cruz and Keith (2013); Schmidt et al. (2012); Shepherd (2009); Wigley

(2006)). The bulk of analyses focuses on the pros and cons of SRM as such, i.e. in mere isolation. However, this research needs

to be complemented by integrated analyses to reflect that the society might take decisions on SRM in view of alternative policy

options such as adaption or mitigation. In a non-welfare-optimal setting, Smith and Rasch (2013) studied the role of SRM in

conjunction with mitigation for a limited set of pre-defined Representative Concentration Pathways (RCP)-inspired mitigation20
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scenarios in order to meet a pre-defined temperature target. A few studies have performed an integrative analysis comprising

both SRM and a stylized representation of mitigation in a Cost Benefit Approach (CBA) as the most prominent welfare-optimal

approach (Bahn et al. (2015); Emmerling and Tavoni (2018); Goes et al. (2011); Heutel et al. (2016); Heutel et al. (2018);

Moreno-Cruz and Keith (2013)). However, because the economic costs of SRM are presently assumed relatively low compared

to mitigation, any meaningful assessment must include a risk-risk trade-off between impacts from SRM against impacts from5

global warming as the dominant effect. The earlier studies presented trade-off results for stylized impact assumptions within

the standard economic paradigm of cost benefit analysis. This is as much as possible in-line with standard economic axioms.

But, at the same time, some studies suggest that it is challenging to directly recommend climate policy through only cost benefit

analysis, due to the presence of deep uncertainty about impact functions (Ekholm (2018); Kolstad et al. (2014); Kunreuther

et al. (2014)). They would suggest a target-based approach, known as Cost Effectiveness Analysis (CEA), as long as no better10

data is available (Kunreuther et al. (2014); Neubersch et al. (2014)).

Although Arino et al. (2016), Ekholm and Korhonen (2016), and Emmerling and Tavoni (2018) evaluated SRM together

with mitigation applying CEA, for a true risk-risk consideration, one needs to define an explicit guardrail over side-effects of

SRM.

To the best of our knowledge here for the first time we introduce and apply a concept for an integrated analysis of SRM15

and mitigation in-line with the ‘2°C temperature target’.1 The 2°C target is the cornerstone of the Paris agreement (UNFCCC,

2015 [UNFCCC (2015): Adoption of the Paris Agreement. FCCC/CP/2015/L.9/Rev.1.]). The 2°C target encapsulates society’s

informal risk evaluation of deeply uncertain global warming impacts (Neubersch et al. (2014); Schellnhuber (2010)). Driven by

the expectation that in fact costs of transforming the energy system are much more robustly to project than the aggregate impacts

of global warming (Stern (2007)), a plethora of economic mitigation analyses has derived cost-minimal energy scenarios which20

are in compliance with this target (Edenhofer et al. (2014)).

However, when SRM comes into play, global mean temperature is no longer a good proxy for regional climate impacts

because SRM imprints patterns of regional precipitation and temperature change that would differ from those induced by

greenhouse gas forcing (Kravitz et al. (2013); Oschlies et al. (2017)). Accordingly, and as a key innovation of this article, we

suggest extending the regime of applicability of the 2°C target from mitigation only to joint SRM-mitigation portfolios when25

temperature and precipitation are simultaneously considered. For our joint SRM-mitigation analysis we utilize the integrated

energy-economy-climate model MIND (Edenhofer et al. (2005)) which provides one of the simplest possible options to distin-

guish the renewable sector from the fossil-fuel sector under induced technological change. We then further extend the model

to include a spatially-explicit resolution in terms of ‘Giorgi regions’ (Giorgi and Bi (2005)) and run specific policy scenarios

showing the trade-offs between mitigation and SRM. We also highlight the most important factors that derive our results.30

The rest of the paper is organized as follows. Section 2 details on the innovated guardrails, data, and the numerical model

employed. Section 3 presents the results. In Sect. 4, some sensitivity analyses are presented. And, Sect. 5 concludes the paper.

1Based on the previous version of this article (Stankoweit et al. (2015)), Roshan et al. (2019) applied a Cost Risk Analysis and evaluated the optimal SRM

in conjunction with mitigation, considering regional disparities in the precipitation risks.
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2 Methods

2.1 Precipitation guardrails

We define a corridor for admissible (Bruckner et al. (2008)) regional precipitation values, diagnosed from a global mean

temperature change of at maximum 2°C and at minimum 0°C in the absence of SRM. In the following we focus on a subset of

regional climate guardrails in terms of terrestrial precipitation changes that have been highlighted as a key drawback of SRM5

(Shepherd (2009); Bala et al. (2008); Robock et al. (2008)). Thereby, we add a necessary condition, while keeping the 2°C

target in order to reflect those impacts which are not yet formulated in an equivalently explicit manner. Here we ask: ‘How

much regional precipitation change, as an example of a climatic change other than temperature, would someone, who has

already accepted up to 2°C of global warming, accept?’ If we were able to confine regional climate change to the intervals of

climate variables that would be spanned by ramping the global mean temperature anomaly (as against its pre-industrial value)10

up from zero to 2°C, we could augment the 2°C target by this exact set of intervals as the more fundamental target. Note that

here we suggest that the intervals would be generated in the absence of SRM because the 2°C target has emerged from a line

of argument excluding SRM (Schellnhuber (2010)). This region-based, hence more fundamental, target would then be valid

also for portfolios of SRM and mitigation. Analogous to the original global target, this target also allows for bypassing the

criticized monetarization of climate impacts on which a cost benefit analysis is based.15

Figure 1 shows our suggested guardrails for two hypothetical regions r1 and r2. r1 is characterized by a positive CO2

(Greenhouse-gas-driven) scaling coefficient (C(r1,co2)> 0) which denotes a positive change in precipitation (P ) when the

global mean temperature (T ) rises. r2 is, however, characterized by a negative CO2 scaling coefficient (C(r2,co2)< 0). The

green bands in panel a) and panel b) define the regular admissible area for precipitation change which is compatible with the

2°C target. As noted earlier, SRM imprints patterns of regional precipitation and temperature change that would differ from20

those induced by greenhouse gas forcing (Kravitz et al. (2013)). Therefore, the regular admissible area would totally prohibit

SRM use in the regions whose SRM scaling coefficients have the same sign as their CO2 scaling coefficients. Therefore, an

extra area of admissibility is required for any SRM use. For the extra admissible area, we pragmatically suggest adding a frac-

tion of regional standard deviation, derived from inter-annual variability, on both ends. These areas are demonstrated in blue.

In this paper, we consider 5% and 10% of inter-annual variability. In Sect. 4.1, we conduct a sensitivity analysis by changing25

the extra room added to the upper and lower bounds of the guardrails.

2.2 Regional scaling coefficients and natural variability

For the regional resolution, we decide on a spatial resolution in terms of ‘Giorgi regions’ (Giorgi and Bi (2005)) (see Table 1

and Fig. 2) which brings about a markedly different image from a global average in the sign and magnitude of effects in the

climatic variables under scrutiny, and at the same time, it avoids a larger number of simultaneous regional targets that might be30
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perceived as too restrictive.2 However, we stress that the choice of the resolution is ultimately a normative decision to be taken

by society.

For the scaling coefficients, we diagnose annual mean regional precipitation changes from linear pattern scaling (Ricke

et al. (2010)) which are driven as a linear superposition (Ban-Weiss and Caldeira (2010)) of greenhouse-gas-induced and

SRM-induced changes in global mean temperature. We use the outputs of nine atmosphere–ocean general circulation models5

(AOGCMs).3 The average greenhouse-gas-induced scaling coefficients and their sample standard deviation (cCO2 [%/K] and

σcCO2
) and the average SRM-induced scaling coefficients and their sample standard deviation (cSRM [%/K] and σSRM) from

the nine AOGCMs are shown in Table 1. Figure A1 in the Appendix also shows the variations of scaling coefficients for each

region from nine AOGCMs. Obviously, for some regions, the scaling coefficients may switch the sign if a specific AOGCM

is considered. Table 1 also shows the ratio Rr = cSRM/cCO2 which is used as an indication for co-effects of SRM and CO210

that link temperature effects to precipitation effects. All regions are characterized with SRM and CO2 coefficients that increase

or decrease precipitation in opposite directions, and hence Rr is negative in all regions. In regions where 0>Rr >−1, SRM

under-compensates CO2-induced precipitation changes. However, in regions where −1>Rr, SRM over-compensates CO2-

induced precipitation changes.

An important note here is that, from the average scaling coefficients and their sample standard deviation, one can read15

that with a normal distribution of scaling coefficients, there are chances that the signs of scaling coefficients in some regions

switch. Therefore, it is also likely that for some regions Rr becomes positive which means SRM and CO2 both either increase

or decrease precipitation. In Sect. 4.2, we conduct a Monte Carlo analysis by randomly choosing the scaling coefficients from

the above distributions.

We determine the standard deviation of natural variability in precipitation the following way. We use three data sets of annual20

precipitation, aggregated to Giorgi regions resolution, based on GPCC_WATCH (1901-2001) (Weedon et al. (2010)), PGFV2

(1901-2012) (Sheffield et al. (2006)), and GPCC_WFDEI (1979-2010) (Weedon et al. (2014)). Then for any region r and data

set s we determine the precipitation means µr,s. To also obtain the standard deviation of natural variability as distinct from

global warming, for any r, s we subtract a parabolic fit of the time evolution from the time series. From the thereby detrended

data we determine the inter-annual precipitation time variances (σ2
r,s). For each region r we average means and variances across25

all data sets s to obtain σ2
r and µr. Finally the standard deviation of natural variability in percent is obtained by 100 (σr/µr).

The last column in Table 1 expresses the derived regional natural variability.

2.3 Model

For our joint SRM-mitigation analysis we utilize the integrated energy-economy-climate model MIND (Edenhofer et al.

(2005)) which provides one of the simplest possible options to distinguish a renewable from a fossil sector and to include30

induced technological change. Results derived from the model MIND co-shaped the mitigation chapter of the Stern Report

2The time and resource needed for reaching a converged solution may exceedingly increase with the number of regions.
3The AOGCMs are BNU-ESM, CanESM, CSIRO-Mk3L-1-2, HadCM3, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM, MPI-ESM-LR, and NorESM1-

M.
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(Stern (2007)) and turned out to deliver centered results in comparison to other models of that category. Compared to more

advanced models that would distinguish an electricity, a household, and a transport sector, it tends to underestimate mitiga-

tion costs by a factor of two (see, e.g., Edenhofer et al. (2014)). However, it serves as one of the simplest possible models to

project mitigation costs in a realistic manner and to a great deal can serve as a pedagogic model to mimic the most important

economic-climatic aspects that are under investigation. We further extend the model to include a spatially-explicit resolution in5

terms of ‘Giorgi regions’ (Giorgi and Bi (2005)). In addition, we upgrade the model to include SRM as a control. We assume

a reduction of the solar constant as a good approximation (Kalidindi et al. (2015)) of sulfur aerosol injection that is currently

discussed as the most feasible SRM scheme. As cost of SRM we took the joint upper end of the costs reported in The Royal

Society’s Report on Geoengineering the Climate (Shepherd (2009) and Klepper and Rickels (2011)): 0.02% gross world prod-

uct as of 2010 per W/m2. This is at least an order of magnitude smaller number than the cost of mitigation (Edenhofer et al.10

(2014)).

Climate sensitivity is a crucial uncertain parameter and some studies considered a log-normal probability density distribution

(Lorenz et al. (2012); Neubersch et al. (2014); Roshan et al. (2019); Wigley and Raper (2001)). In this study, the model MIND

is used in its deterministic setting with a climate sensitivity of 3°C when the time scale of the climate module has a strict rela-

tionship with the climate sensitivity suggested by Lorenz et al. (2012). MIND employs the simplest climate module (one-box15

climate model) (Petschel-Held et al. (1999)). Nonetheless, Khabbazan and Held (2019) tested the validity of a one-box climate

model as an emulator for fourteen AOGCMs and showed that it is a good emulator of these AOGCMs (accurate to within

0.1°C for Representative Concentration Pathways, RCPs), provided the one-box climate model being trained according to the

AOGCM’s equilibrium and trasient climate sensitivity and a certain time horizon (on the order of the time to peak radiative

forcing) is not exceeded (see Khabbazan and Held (2019) for a detailed discussion). Therefore, according to Khabbazan and20

Held (2019), the results in this article can be interpreted as being influenced by a slightly larger climate response to forcing than

intended. Hence, for the sake of completeness, in Sect. 4.3 we conduct a sensitivity analyses by altering the climate sensitivity.4

3 Results

Figure 3 shows normalized precipitation change for the 26 Giorgi regions for a): no-policy case (business as usual scenario

(‘BAU’) where neither SRM nor mitigation is applied); b): 2°C target activated and unlimited admissible SRM level (‘REF’);25

c): precipitation changes when all regional constraints are binding and the extra admissible area is 5% of the standard deviation

(‘G0 5%’); d) similar to c) but with 10% of standard deviation (‘G0 10%’). Note that there are no extra admissible area for

BAU and REF. We normalize precipitation such that ‘1’ is the constraint which corresponds to the precipitation levels of a

temperature anomaly of 2°C and ‘0’ equals the other constraint, which is determined by the preindustrial precipitation levels

(see Sect. 2.1 for more details on the guardrails). Note that in the calculation of the normalized precipitation for G0 5% and G030

10% the extra admissible areas are taken into account. We indicate this corridor as grey band in Fig. 3. Figure 4 displays the

resulting effects on global mean temperature for temperature response to ‘CO2-forcing’ (dotted lines), SRM-forcing (dashed

4Roshan et al. (2019) employed the MIND model developed here in its probabilistic version.
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lines), and the sum of both (solid lines) for a): no policy (‘BAU’); b): 2°C target activated and unlimited usage of SRM (‘REF’);

c) all Giorgi regions’ precipitation guardrails being activated when the extra admissible area is 5% of the standard deviation

(‘G0 5%’); d) similar to c) but with 10% of the standard deviation (‘G0 10%’). In BAU, for most regions, regional precipitation

would surpass this corridor, indicating the need for an active policy if a 2°C framing is of interest (see Fig. 3 (a)).

As a first policy scenario we simply add SRM to the option folder without activating the regional precipitation guardrails5

while keeping the global 2°C target (REF scenario). As expected, SRM almost completely crowds out mitigation. As shown in

Fig. 4 (b), with unrestricted SRM usage, the CO2-contribution would mimic BAU, and SRM would totally compensate for an

overshoot of 2°C. However, for about half of the regions, precipitation transgresses the 2°C-compatible precipitation corridor

(see Fig. 3 (b)).

Now we activate the precipitation corridor for any of the regions (G0 scenarios). By construction, for any of the regions the10

precipitation trajectories stay confined to the grey band (see Fig. 3 (c) and (d)). Comparing G0 5% with G0 10%, one notices

that the upper and lower bounds in G0 5% is touched 15 years earlier, which is due to the slimmer admissible area in G0 5% as

against G0 10%. Compared to REF, with regional precipitation constraints being activated in G0 5% and G0 10%, SRM usage

is restricted to about 1/6 and 1/3 respectively in the G0 5% and G0 10% scenarios. Hereby temperature anomaly peaks at 2°C

and then declines, for example to 1.5°C in G0 10%, which means SRM partly overcompensates the CO2-effects (see Fig. 4 (c)15

and (d)).

This overcompensation can be explained from the panels c) and d) in Fig. 3 in which the following four phases along

the time axes can be identified. (i) No guardrail is active, the paths mimic a BAU development (compare to panel a)). (ii)

The 2°C guardrail is active and SRM is utilized (as in the case depicted in Fig. 4 (b)), and for most regions, normalized

precipitation declines. (iii) For one region, either the upper (‘1’) or lower (‘0’) normalized precipitation guardrail is touched20

and activated. In the course of time, for several regions normalized precipitation evolves towards the guardrails (either ‘0’ or

‘1’) and simultaneously global mean temperature decreases. (iv) For a different region, the normalized precipitation guardrail

is touched and the system becomes quasi-stationary.

The first binding region is ‘AMZ’ (Amazonia, see Fig. 2). Here it is characterized by a negative cCO2 and positive cSRM

with comparatively small modulus. Although the CO2- and the SRM-effects on precipitation levels in ‘AMZ’ work in opposite25

directions, the regional SRM-effect cannot significantly compensate for the CO2-effect that in phase 2 activates to compensate

for any overshooting of 2°C. Therefore ‘AMZ’ appears a likely candidate to touch the upper bound and start phase 3. However,

once precipitation in ‘AMZ’ reaches the upper boundary of regional normalized precipitation levels (phase 3), any CO2-induced

change in AMZ’s precipitation needs to be compensated for by an SRM-induced contribution. As AMZ’s scaling coefficient

has a small modulus, more SRM forcing needs to be applied per unit of CO2-induced radiative forcing than in phase 2, to30

stop AMZ’s normalized precipitation trajectory from growing any further. Therefore, in phase 3 SRM overcompensates CO2 in

terms of their effects on global mean temperature. Finally, one of the regions with larger, yet negative scaling coefficient ratios

(in this case ‘SQF’ (South Equatorial Africa)) would hit the lower bound, triggering phase 4. Therefore, the ‘G0’ scenario is

characterized by the interplay of scaling coefficients and precipitation standard deviations of two regions.
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What are the economic effects of allowing for G0 (i.e. restricted SRM) instead of mitigation only? Figure 5 displays mit-

igation costs for a step-wise omission of regional precipitation guardrails with Balanced Growth Equivalent (BGE) values

attributed to a region are the loss in comparison to the BAU scenario, if the analysis is henceforth not constrained by the pre-

cipitation guardrails of the respective region. The acronyms of regions are defined in Fig. 6. The economic losses (disregarding

impacts) induced by a 2°C policy without SRM usage is displayed by the leftmost bar (hereafter we call it ‘TradCEA’), then5

for SRM included when all regional precipitation guardrails are active (G0), and continued with scenarios when the guardrails

of binding regions are disregarded one by one. Hereby ‘BGE’ losses (y-axis of Fig. 5) can be approximately interpreted as

consumption losses, or in other words the loss in Global World Production (GWP) (for details see Anthoff and Tol (2009) and

Lorenz et al. (2012)). From the graph we read that 2/5 and 3/5 of mitigation costs could be saved respectively in G0 5% and

G0 10%. For someone who interprets mitigation costs as large, this could be an argument for employing SRM. For someone10

who perceives the scale of 1% GWP loss as small, the cost of mitigation would not provide a reason to become interested in

SRM.

If saving 2/5 to 3/5 of mitigation costs were of interest, however, instead of utilizing SRM, one could also imagine relaxing

the 2°C target instead. What would be the equivalent additional global warming? From Fig. 4 we read: about 0.1°C and 0.3°C

respectively in G0 5% and G0 10%. If one interprets the 2°C target as an (academically informed) political target that does not15

represent a singular global threshold (Neubersch et al. (2014)), society might want to discuss whether a modest transgression

of the target to extents of, for examples, 0.1°C and 0.3°C, could be seen as acceptable in view of the risk of potential further

side-effects of SRM such as stratospheric ozone depletion (Tilmes et al. (2008)). In that sense the extrapolation of SRM impacts

to regional precipitation corridors has proven almost prohibitive for SRM.

However, if the society is willing to successively disregard the step-wise (economically) most binding corridor boundary,20

and hence to ‘sacrifice’ the region that would induce the largest economic welfare gain, the picture can gradually change.

Progressively, more economic gain could be harvested (see Fig. 5, further right bars). From one bar to the next, the guardrail

of that very region is omitted that would deliver the largest economic welfare gain. Figure 6 indicates the economic gain per

region when precipitation is allowed to leave the respective corridor. Similar for both G0 5% and G0 10%, the order of the first

four regions whose guardrail should be omitted to gain the most are AMZ, SQF, CAM, and WAF. However, while for G0 10%25

these four regions are followed by CNA, MED, and CAS, in G0 5% CAS, CNA, and SAH follow. Note that the precipitation

change in other regions are already within the guardrails in the REF scenario, and hence, there is no need for omission of their

guardrail to gain more welfare (see Fig. 3). Notably, even not so significant for the analysis regarding the welfare gains, the

order of regions depends on the decision about the extra room for guardrails, as shown in panel a) and b). The reason behind

this observation is that with a tighter guardrail, while SRM is used less and at the same time mitigation must be employed30

more, the interplay of different scaling coefficients would likely cause different ordering. In addition, if such extra room is

tighter, then the economic gain from its omission is higher. The same rule applies to the G0 scenarios, too. For example, the

BGE loss in G0 5% is almost 60% higher than the BGE loss in G0 10%, and the BGE loss when the extra room is 5% of

natural variability and AMZ is omitted is nearly double the cost for the same scenario when the extra room is 10% of natural

variability.35
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4 Sensitivity analysis

The results in the previous section were derived based on some specific assumptions. Here we pick up some of the most

important assumptions and investigate the likely alternative scenarios.

4.1 Extra room as a fraction of natural variability

Figure 7 depicts the BGE loss (%) for G0 scenario when the the share of natural variability as the extra room varies from 0.055

(5%) to 0.5 (50%). Note that the first two bars on the left, 0.05 and 0.1, are the same as the G0 scenarios in Fig. 5 (a) and (b),

respectively. Expectedly, with the higher extra rooms, the BGE loss decreases such that when extra room is 50% of the natural

variability (the rightmost bar), the BGE loss is negligible (about -0.01% of BAU). However, such a decrease in BGE loss is

not linear with respect to the increase in the extra room, but it is convex. That is, for example, while the decrease in BGE loss

is about 0.25% when the extra room changes from 0.05 to 0.1, the decrease in the BGE loss will amount only to nearly 0.15%10

when the extra room changes from 0.1 to 0.15. Note that, according to the argument presented in Sect. 3, there is a chance that

the order or regions change.

4.2 Scaling coefficients

As discussed earlier, the SRM and CO2 scaling coefficients determine the order of regions as well as when to hit the guardrails

in the G0 scenario. However, the scaling coefficient may vary based on which AOGCM data they are derived from. The results15

in Sect. 3 were derived from the average value of scaling coefficients from nine AOGCM. These data can be also used to derive

specific standard deviations for each scaling coefficient. Figure 8 shows the box plots for a Monte Carlo study on 1000 random,

simultaneous variations in scaling coefficients and measures the BGE loss in the G0 scenario. In addition, the extra room in

guardrails can increase in each scenario from 10% of natural variability to 100% of natural variability. In each G0 scenario, the

sign of some scaling coefficients as well as the binding regions in the four phases can be different.520

According to the Monte Carlo study, it is more likely that the random variation of scaling coefficient results in a higher

BGE loss in G0 scenarios. For example, while in the deterministic results for an extra room for guardrail equal to 10% of

natural variability the BGE loss is about 0.45%, the median of BGE loss in the Monte Carlo study can reach to about 0.85%.

In addition, with the higher extra rooms, the median of the BGE loss decrease. However, similar to its deterministic case, a

decrease in median of the BGE loss is convex. Therefore, although for an extra room for guardrail equal to 50% of natural25

variability, the BGE loss is negligible in the deterministic case, in the Monte Carlo study the BGE loss is about 0.4%. In other

words, if the precipitation guardrails are considered, the likelihood that SRM being used may still be low if no region’s guardrail

is about to be omitted. Note that the decision about SRM being used may involve many more factors than just an economic

study. However, our results at least call for attempts to better estimate the sensitivities of regional precipitation changes to SRM

and global tmeperature increase.30

5Here we do not go further into the discussion about the order of regions.
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4.3 Climate sensitivity

Figure 9 shows the BGE loss in Traditional CEA (TradCEA, where the temperature target is active without SRM use) and the

G0 5% and G0 10% scenarios with the climate sensitivity varying between 1.5°C to 5°C. As expected, with a higher climate

sensitivity, BGE loss for the G0 5%, G0 10%, and TradCEA scenarios increase rapidly. The 2°C target is not attainable without

the use of SRM when the climate sensitivity is equal and higher than 3.75°C. Yet, by using SRM, the 2°C target is reachable5

with higher climate sensitivities. Nonetheless, the feasibility space depends on the extra room in the guardrails. If the extra

room is 10% of the natural variability, the 2°C target is still reachable when the climate sensitivity is below 5°C (not reachable

at 5°C). However, if the extra room is 5% of the natural variability, the 2°C target is only reachable when the climate sensitivity

is below 4.25°C (not reachable at 4.25°C).

5 Conclusion10

We have performed a CEA study where SRM and mitigation act as substitutes in idealized policy scenarios of immediate

action. Without risk-risk accounting, SRM would crowd out mitigation due to comparatively low costs, thereby lowering the

costs of achieving the 2°C target to a negligible value (compared to the original mitigation costs). However, if only one single

regional climate variable (in our case ‘precipitation’) is confined to regional bounds compatible with 2°C of global warming

2/5 and 3/5 of mitigation costs could be saved respectively within an accuracy of 5% and 10% of the standard deviation of15

natural variability. Furthermore, the additional amount of carbon dioxide that could be released to the atmosphere corresponds

to only about 0.1°C to nearly 0.3°C of further global warming. Society might debate whether for that rather small amount of

allowed additional carbon emissions, the risks of SRM should be taken. However, a significantly larger role for SRM would be

possible in case the guardrails of a few regions were relaxed. The ordering of regions presented in this article might provide

a way to support the then necessary trade-off to what extent relaxing global versus regional targets. Nonetheless, the order of20

regions whose omission brings about the most economic welfare gain depends on the magnitude of CO2- and SRM-induced

effects on precipitation as well as the normative decision on the extra rooms on the upper and lower bounds of the precipitation

guardrails.

We also see SRM and mitigation as complements if a global climate policy were put in action only within decades. The

results showed that in our model the 2°C target is not attainable without the use of SRM when the climate sensitivity is equal25

and higher than 3.75°C. Then we would necessarily need some sort of climate engineering in order to comply with the 2°C

target. If the potential for carbon dioxide removal was exhausted, some amount of SRM would become indispensable if the 2°C

target still should be complied to. Nonetheless, the feasibility space depends on the extra room in the guardrails. The tighter

the extra rooms on the upper and lower bounds of the precipitation guardrails, the earlier the use of SRM become useless to

comply with the targets.30

We need to point to a series of caveats of the analysis. The assumptions made in the construction of regional scaling patterns

for precipitation may be oversimplifying the complex hydrological effects of greenhouse gases and SRM. Hence we need to

emphasize that regional precipitation guardrails can only be interpreted as necessary, not as sufficient conditions for a decision
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about SRM use. Yet, by employing a Monte Carlo study, we showed that it is more likely that the random variation of scaling

coefficients results in larger economic losses when all temperature and precipitation targets are active. Furthermore, annual

mean precipitation is only one possible driver of regional impacts in addition to temperature or evaporation, or intra-annual

changes. Finally, our model does not include carbon dioxide removal options yet. Hence above-mentioned economic gains

through SRM must be interpreted as upper limits of costs savings.5

Here we demonstrate that someone who pushes for SRM in view of the 2°C target should carefully consider the consequences

this target would have when extended to SRM. Already a single climate variable (such as precipitation) when explicated

regionally almost completely bans SRM from a joint SRM-mitigation portfolio.

DATA

The output of nine AOGCMs were supplied by the scientists from GCESS, Beijing Normal University (John Moore’s Group).10

Three data sets of annual Giorgi regions precipitation are supplied by M. Büchner and K. Frieler from the Potsdam Institute

of Climate Impact Research (PIK).

Authors’ contributions

M.M.K. and M.S. performed the numerical analyses, wrote most of the code, and integrated SRM into MIND, M.M.K. opti-

mized the GAMS code, wrote the code for ordering regions, designed and conducted the sensitivity analysis, and prepared most15

of the visualization, M.S. and E.R derived spatially resolved SRM-coefficients, E.R. calculates natural variability of precipi-

tation, H.S. provided the system-analytic link between SRM experiments and integrated assessment, H.H. and E.R. explained

the non-monotonic temperature response of Fig. 4, H.H. triggered this work and supplied the concept of extending temperature

targets to SRM climate risks, H.H and M.M.K wrote most of this report.

Competing interests20

The authors declare that they have no conflicts of interest.

Acknowledgments

E.R. has been supported by the DFG grant HE 555812-1 within the DFG priority programme ‘Climate engineering – Risks,

Challenges, Opportunities? (SPP1689). H.S. acknowledges support under the DFG grant SCHM 2158/4-1. We are thankful to

scientists from GCESS, Beijing Normal University (John Moore’s Group) for supplying the output nine of AOGCMs. Also we25

are thankful to M. Büchner and K. Frieler from the Potsdam Institute of Climate Impact Research (PIK) for supplying data sets

of annual Giorgi regions precipitation.

10

https://doi.org/10.5194/esd-2020-95
Preprint. Discussion started: 18 December 2020
c© Author(s) 2020. CC BY 4.0 License.



References

Anthoff, D. and Tol, R. S. J.: The Impact of Climate Change on the Balanced Growth Equivalent: An Application of FUND, Environ Resource

Econ, 43, 351–367, https://doi.org/10.1007/s10640-009-9269-5, 2009.

Arino, Y., Akimoto, K., Sano, F., Homma, T., Oda, J., and Tomoda, T.: Estimating option values of solar radiation management assuming

that climate sensitivity is uncertain, Proceedings of the National Academy of Sciences, 113, 5886–5891, 2016.5

Bahn, O., Chesney, M., Gheyssens, J., Knutti, R., and Pana, A. C.: Is there room for geoengineering in the optimal climate policy mix?,

Environmental Science & Policy, 48, 67–76, 2015.

Bala, G., Duffy, P., and Taylor, K.: Impact of geoengineering schemes on the global hydrological cycle, Proceedings of the National Academy

of Sciences, 105, 7664–7669, 2008.

Ban-Weiss, G. A. and Caldeira, K.: Geoengineering as an optimization problem, Environmental Research Letters, 5, 034 009, 2010.10

Barrett, S., Lenton, T. M., Millner, A., Tavoni, A., Carpenter, S., Anderies, J. M., Chapin III, F. S., Crépin, A.-S., Daily, G., Ehrlich, P., et al.:

Climate engineering reconsidered, Nature Climate Change, 4, 527, 2014.

Bellamy, R., Chilvers, J., Vaughan, N. E., and Lenton, T. M.: ’Opening up’ geoengineering appraisal: Multi-Criteria Mapping of options for

tackling climate change, Global Environmental Change, 23, 926–937, 2013.

Bruckner, T., Zickfeld, K., et al.: Inverse integrated assessment of climate change: the guard-rail approach, in: International Conference on15

Policy Modeling (EcoMod2008), Berlin, Citeseer, 2008.

Crutzen, P. J.: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Climatic change, 77, 211,

2006.

Edenhofer, O., Bauer, N., and Kriegler, E.: The impact of technological change on climate protection and welfare: Insights from the model

MIND, Ecological Economics, 54, 277–292, 2005.20

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Agrawala, S., Bashmakov, I., Blanco, G., Broome, J., Bruckner, T., Brunner, S., Bustamante,

M., et al.: Summary for policymakers, in: Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to

AR5, Cambridge University Press, 2014.

Ekholm, T.: Climatic cost-benefit analysis under uncertainty and learning on climate sensitivity and damages, Ecological Economics, 154,

99–106, 2018.25

Ekholm, T. and Korhonen, H.: Climate change mitigation strategy under an uncertain Solar Radiation Management possibility, Climatic

Change, 139, 503–515, 2016.

Emmerling, J. and Tavoni, M.: Climate engineering and abatement: A ‘flat’relationship under uncertainty, Environmental and resource

economics, 69, 395–415, 2018.

Giorgi, F. and Bi, X.: Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM30

simulations, Geophysical Research Letters, 32, 2005.

Goes, M., Tuana, N., and Keller, K.: The economics (or lack thereof) of aerosol geoengineering, Climatic change, 109, 719–744, 2011.

Heutel, G., Moreno-Cruz, J., and Shayegh, S.: Climate tipping points and solar geoengineering, Journal of Economic Behavior & Organiza-

tion, 132, 19–45, 2016.

Heutel, G., Moreno-Cruz, J., and Shayegh, S.: Solar geoengineering, uncertainty, and the price of carbon, Journal of Environmental Eco-35

nomics and Management, 87, 24–41, 2018.

11

https://doi.org/10.5194/esd-2020-95
Preprint. Discussion started: 18 December 2020
c© Author(s) 2020. CC BY 4.0 License.



Irvine, P., Sriver, R., and Keller, K.: Strong tension between the objectives to reduce sea-level rise and rates of temperature change through

solar radiation management, Nat. Clim. Change, 2, 97–100, 2012.

Kalidindi, S., Bala, G., Modak, A., and Caldeira, K.: Modeling of solar radiation management: a comparison of simulations using reduced

solar constant and stratospheric sulphate aerosols, Climate Dynamics, 44, 2909–2925, 2015.

Khabbazan, M. M. and Held, H.: On the future role of the most parsimonious climate module in integrated assessment, Earth System5

Dynamics, 10, 135–155, https://doi.org/10.5194/esd-10-135-2019, https://esd.copernicus.org/articles/10/135/2019/, 2019.

Klepper, G. and Rickels, W.: Climate Engineering: Economic Aspects: Prepared on behalf of the Federal Ministry for Education and Research

(BMBF), Kiel Earth Institute, Kiel. Online: http: // www. Kiel Earth Institutes. de / exploratory study-climate-engineering. html, 2011.

Kolstad, C. et al.: Social, economic and ethical concepts and methods Climate Change 2014: Mitigation of Climate Change: Working Group

III Contribution to the IPCC Fifth Assessment Report, 2014.10

Kravitz, B., Rasch, P. J., Forster, P. M., Andrews, T., Cole, J. N., Irvine, P. J., Ji, D., Kristjánsson, J. E., Moore, J. C., Muri, H., et al.:

An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project, Journal of Geophysical

Research: Atmospheres, 118, 13–087, 2013.

Kunreuther, H., Gupta, S., Bosetti, V., Cooke, R., Dutt, V., Ha-Duong, M., Held, H., Llanes-Regueiro, J., Patt, A., Shittu, E., et al.: Integrated

risk and uncertainty assessment of climate change response policies, in: Climate Change 2014: Mitigation of Climate Change: Working15

Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 151–206, Cambridge

University Press, 2014.

Lorenz, A., Schmidt, M. G., Kriegler, E., and Held, H.: Anticipating climate threshold damages, Environmental Modeling & Assessment,

17, 163–175, 2012.

MacMartin, D. G., Kravitz, B., and Keith, D. W.: Geoengineering: The world’s largest control problem, in: 2014 American Control Confer-20

ence, pp. 2401–2406, IEEE, 2014.

Moreno-Cruz, J. B. and Keith, D. W.: Climate policy under uncertainty: a case for solar geoengineering, Climatic Change, 121, 431–444,

2013.

Neubersch, D., Held, H., and Otto, A.: Operationalizing climate targets under learning: An application of cost-risk analysis, Climatic Change,

126, 305–318, 2014.25

Oschlies, A., Held, H., Keller, D., Keller, K., Mengis, N., Quaas, M., Rickels, W., and Schmidt, H.: Indicators and metrics for the assessment

of climate engineering, Earth’s Future, 5, 49–58, 2017.

Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Toth, F. L., and Hasselmann, K.: The tolerable windows approach: theoretical and

methodological foundations, Climatic Change, 41, 303–331, 1999.

Ricke, K. L., Morgan, M. G., and Allen, M. R.: Regional climate response to solar-radiation management, Nature Geoscience, 3, 537–541,30

2010.

Robock, A., Oman, L., and Stenchikov, G. L.: Regional climate responses to geoengineering with tropical and Arctic SO2 injections, Journal

of Geophysical Research: Atmospheres, 113, 2008.

Roshan, E., Khabbazan, M. M., and Held, H.: Cost-Risk Trade-Off of Mitigation and Solar Geoengineering: Considering Regional Disparities

Under Probabilistic Climate Sensitivity, Environmental and Resource Economics, pp. 1–17, 2019.35

Schellnhuber, H. J.: Tragic triumph, Climatic Change, 100, 229, 2010.

12

https://doi.org/10.5194/esd-2020-95
Preprint. Discussion started: 18 December 2020
c© Author(s) 2020. CC BY 4.0 License.



Schmidt, H., Alterskjær, K., Bou Karam, D., Boucher, O., Jones, A., Kristjánsson, J., Niemeier, U., Schulz, M., Aaheim, A., Benduhn, F.,

et al.: Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four Earth

system models, Earth System Dynamics, 3, 63–78, 2012.

Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface

modeling, Journal of climate, 19, 3088–3111, 2006.5

Shepherd, J. G.: Geoengineering the climate: science, governance and uncertainty, Royal Society, 2009.

Smith, S. J. and Rasch, P. J.: The long-term policy context for solar radiation management, Climatic Change, 121, 487–497, 2013.

Stankoweit, M., Schmidt, H., Roshan, E., Pieper, P., and Held, H.: Integrated mitigation and solar radiation management scenarios under

combined climate guardrails, EGUGA, p. 7152, 2015.

Stern, N.: The economics of climate change: the Stern review, cambridge University press, 2007.10

Tilmes, S., Müller, R., and Salawitch, R.: The sensitivity of polar ozone depletion to proposed geoengineering schemes, Science, 320, 1201–

1204, 2008.

Weedon, G., Gomes, S., Viterbo, P., Öesterle, H., Adam, J., Bellouin, N., Boucher, O., and Best, M.: THE WATCH FORCING DATA

1958-2001: A METEOROLOGICAL FORCING DATASET FOR LAND SURFACE-AND HYDROLOGICAL-MODELS., Tech. rep.,

WATCH technical report, 2010.15

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI meteorological forcing data set: WATCH

Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resources Research, 50, 7505–7514, 2014.

Wigley, T. M.: A combined mitigation/geoengineering approach to climate stabilization, Science, 314, 452–454, 2006.

Wigley, T. M. and Raper, S. C.: Interpretation of high projections for global-mean warming., Science, 293, 451–4,

https://doi.org/10.1126/science.1061604, 2001.20

13

https://doi.org/10.5194/esd-2020-95
Preprint. Discussion started: 18 December 2020
c© Author(s) 2020. CC BY 4.0 License.



+Δ𝑃𝑃𝑟𝑟𝑟 +Δ𝑃𝑃𝑟𝑟𝑟

+Δ𝑇𝑇 +Δ𝑇𝑇𝑟𝑟
𝐶𝐶(𝑟𝑟𝑟, co𝑟)

𝐶𝐶(𝑟𝑟𝑟, co𝑟)

a) b)

Figure 1. Schematic of precipitation guardrails for two hypothetical regions r1 and r2. r1 is characterized by a positive CO2 (Greenhouse-

gas-driven) scaling coefficient (C(r1,co2) > 0), and r2 is characterized by a negative CO2 scaling coefficient (C(r2,co2) < 0). The green

bands in panel a) and panel b) define the regular admissible area for precipitation change. The extra admissible areas are demonstrated in

blue.
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Giorgi region cCO2 [%/K] σcCO2
[%/K] cSRM[%/K] σcSRM [%/K] Rr = cSRM/cCO2 σprecip[%]

ALA Alaska 5.51 1.12 -6.38 1.09 -1.16 4.84

AMZ Amazonia -1.35 2.39 0.18 2.43 -0.14 4.42

CAM Central America -4.11 1.87 2.54 1.32 -0.62 7.19

CNA Central North-America -0.37 3.27 0.04 3.18 -0.11 8.75

CAS Central Asia 1.02 2.02 -2.31 1.52 -2.25 8.93

CSA Central South-America 1.01 0.84 -1.84 1.01 -1.83 8.66

EAF East Africa 4.78 2.86 -5.71 3.17 -1.20 6.45

EAS East Asia 1.81 1.34 -2.36 1.26 -1.30 5.65

ENA East North-America 1.10 1.10 -1.75 1.13 -1.59 5.85

EQF Equatorial Africa 4.52 3.49 -6.15 4.07 -1.36 11.36

GRL Greenland 4.66 1.08 -5.37 1.00 -1.15 5.50

MED Mediterranean -4.01 1.34 3.54 1.18 -0.88 7.28

NAS North Asia 5.26 1.14 -6.06 1.10 -1.15 3.71

NAU North Australia -0.31 3.47 0.02 3.37 -0.07 17.83

NEE North-East Europe 3.08 1.27 -4.68 1.44 -1.52 6.57

NEU Northern Europe 2.19 0.77 -3.47 1.01 -1.59 6.14

SAF South Africa -1.78 1.20 1.74 1.12 -0.98 15.79

SAH Sahara 2.99 10.07 -2.15 10.71 -0.72 21.80

SAS South Asia 1.66 1.28 -2.43 1.25 -1.46 5.47

SAU South Australia -2.16 1.44 1.76 1.72 -0.81 15.19

SEA South-East Asia 1.74 1.60 -2.46 1.55 -1.41 8.43

SQF South Equatorial Africa 0.04 1.63 -0.91 1.78 -22.28 5.74

SSA South South-America 0.93 0.75 -1.63 0.77 -1.74 7.84

TIB Tibetan Plateau 4.13 1.56 -5.17 1.86 -1.25 14.62

WAF West Africa 0.11 1.39 -0.57 1.17 -4.99 6.29

WNA West North-America 1.93 2.96 -2.41 2.77 -1.25 11.64
Table 1. Scaling characteristics of Giorgi regions.
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Figure 2. Spatial resolution of our analysis. ‘Giorgi regions’ Giorgi and Bi (2005).
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Figure 3. Normalized precipitation change. For the 26 Giorgi regions and different policy scenarios, precipitation change is normalized

such that ‘1’ is the constraint which corresponds to the precipitation levels of a temperature anomaly of 2°C (induced by CO2 plus a

fraction of standard deviation), and ‘0’ equals the constraint which is determined by the preindustrial precipitation levels (minus a fraction of

standard deviation). a): No policy (‘BAU’); b): 2°C target activated and unlimited usage of SRM (‘REF’); c) all Giorgi regions’ precipitation

guardrails being activated when the extra admissible area is 5% of the standard deviation (‘G0 5%’); d) similar to c) but with 10% of the

standard deviation (‘G0 10%’)
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Figure 4. Global mean temperature response to SRM and carbon dioxide forcing. Dotted lines are the resulting effects on global mean

temperature for temperature response to CO2-forcing; The dashed lines are the resulting effects on global mean temperature for temperature

response to SRM-forcing; the solid lines are the sum of both dotted lines and dashed lines. a): No policy (‘BAU’); b): 2°C target activated

and unlimited usage of SRM (‘REF’); c) all Giorgi regions’ precipitation guardrails being activated when the extra admissible area is 5% of

the standard deviation (‘G0 5%’); d) similar to c) but with 10% of the standard deviation (‘G0 10%’)
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Figure 5. Mitigation costs for a step-wise omission of regional precipitation guardrails. ‘TradCEA’ is a 2°C policy without SRM usage;

‘G0’ is a 2°C policy when SRM is included and all regional precipitation guardrails are active; BGE values attributed to a region are the loss

in comparison to a no policy (BAU – business as usual) scenario, if the analysis is henceforth not constrained by the precipitation guardrails

of the respective region. The acronyms of regions are defined in Table 1.
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(a) G0 5%

(b) G0 10%

Figure 6. Economic gains from omission on regional guardrails.
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Figure 7. Sensitivity analysis on fraction of standard deviation of natural variability added to the admitted precipitation corridor.
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Figure 8. Monte Carlo study of SRM and CO2 scaling coefficients. The minimum, first quartile, median, third quartile, and maximum are

shown in the box and whisker plots. The boxes are drawn from the first quartiles to the third quartiles. The horizontal lines go through the

boxes at the medians. The whiskers go from each quartile to the minimums or maximums.

22

https://doi.org/10.5194/esd-2020-95
Preprint. Discussion started: 18 December 2020
c© Author(s) 2020. CC BY 4.0 License.



-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

ΔB
GE

 [%
 o

f B
AU

 B
GE

]

Climate Sensitivity

Sensitivity analysis on climate sensitivity 

G0 10%

G0 5%

TradCEA

Fe
as

ib
le

Fe
as

ib
le

In
fe

as
ib

le
Fe

as
ib

le

Fe
as

ib
le

Fe
as

ib
le

In
fe

as
ib

le

In
fe

as
ib

le

In
fe

as
ib

le

In
fe

as
ib

le

In
fe

as
ib

le

Figure 9. Sensitivity analysis on climate sensitivity. The grey bars show the BGE losses for the G0 10% scenarios. The blue bars show the

BGE losses for the G0 5% scenarios. The red bars show the BGE losses for the TradCEA scenarios.
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Appendix

Figure A1. Variation of scaling coefficients for regions from nine AOGCMs. The boxes are drawn from the first quartiles to the third

quartiles. The horizontal lines go through the boxes at the medians. The crosses show the averages. The whiskers go from each quartile to

the minimums or maximums. The dots represent the outliers.
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