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Abstract. Fluxes from deforestation, changes in land-cover, land-use and management practices (FLUC for simplicity) 

contributed to circa 14% of anthropogenic CO2 emissions in 2009-2018. Estimating FLUC accurately in space and in time 

remains, however, challenging, due to multiple sources of uncertainty in the calculation of these fluxes. This uncertainty, in 

turn, is propagated to global and regional carbon budget estimates, hindering the compilation of a consistent carbon budget 

and preventing us from constraining other terms, such as the natural land sink. Uncertainties in FLUC estimates arise from many 15 

different sources, including differences in model structure (e.g., process- based vs. bookkeeping) and model parameterization. 

Quantifying the uncertainties from each source requires controlled simulations to separate their effects.   

Here we analyze differences between the two bookkeeping models used regularly in the global carbon budget estimates since 

2017: the model by Hansis et al. (Hansis et al., 2015) (BLUE) and that by Houghton and Nassikas (Houghton and Nassikas, 

2017) (HN2017). The two models have a very similar structure and philosophy, but differ significantly both with respect to 20 

FLUC intensity and spatio-temporal variability. This is due to differences in the land-use forcing, but also in the model 

parameterization.  

We find that the larger emissions in BLUE compared to HN2017 are largely due to differences in C densities between natural 

and managed vegetation or primary and secondary vegetation, and higher allocation of cleared and harvested material to fast 

turnover pools in BLUE than in HN2017. Besides parameterization and the use of different forcing, other model assumptions 25 

cause differences, in particular that BLUE represents gross transitions which leads to overall higher carbon losses that are also 

more quickly realized than HN2017. 

1 Introduction 

Changes in land-use and management are estimated to have contributed to a global source of CO2 to the atmosphere from the 

pre-industrial period until the present, and to account for more than 10% of the total CO2 emissions over the past decade 30 

according to the Global Carbon Budget  2019 (Friedlingstein et al., 2019). Fluxes from land-use change and management 

(FLUC) result from changes in vegetation and soil carbon stocks and product pools due to human activities, such as 

Formatted: Not Superscript/ Subscript

Formatted: Superscript



deforestation, forest degradation, afforestation and reforestation, as well as management practices such as wood harvest and 

shifting cultivation (rotation cycle between forest and agriculture), and subsequent regrowth of natural vegetation following 

harvest or agricultural abandonment.  35 

Reconstructing these changes consistently over the globe for the past centuries let alone millennia is, however, challenging 

and associated with high uncertainties (Hurtt et al., 2020; Klein Goldewijk et al., 2017; Pongratz et al., 2014; Ramankutty and 

Foley, 1999). This uncertainty in forcing translates directly to uncertainties in FLUC  estimates (Gasser et al., 2020; Pongratz 

et al., 2009; Stocker et al., 2011). Moreover, differences in definitions, terminology and on how indirect environmental effects 

such as increasing atmospheric CO2 concentration are considered, lead to large differences in FLUC estimated by different 40 

methods (Gasser and Ciais, 2013; Grassi et al., 2018; Pongratz et al., 2014; Stocker and Joos, 2015). Grassi et al. (2018) have 

shown that by harmonizing definitions of managed land, estimates of FLUC by a bookkeeping (BK) model, dynamic global 

vegetation models (DGVMs) and national inventories can be in part reconciled. The indirect environmental effects (accounted 

for in DGVMs but not in BK models) can be calculated by factorial simulations, in order to compare estimates from these two 

methods (Bastos et al., 2020).  Whether and how these indirect effects are accounted for in FLUC creates large differences 45 

between estimates, but can be resolved by a consistent terminology (Grassi et al., 2018; Pongratz et al., 2014). Besides 

uncertainty in historical LUC areas and terminological issues, studies also differ with respect to which LUC practices are 

considered. Several studies have shown that including management practices such as shifting cultivation, crop or wood 

harvesting might increase FLUC by 70% or more in individual DGVM estimates (Arneth et al., 2017; Pugh et al., 2015) with 

management processes explaining some of the differences between biospheric fluxes from DGVMs and top-down estimates 50 

(Bastos et al., 2020). 

In the Global Carbon Budgets since 2017 (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a) FLUC estimates for recent 

decades are taken as the mean of the estimates of two BK models, the one from (Houghton and Nassikas, 2017) ) (HN2017) 

and the BLUE model described in (Hansis et al., 2015). However, even for these similar methods, estimates differ considerably 

(Bastos et al., 2020; Friedlingstein et al., 2019). Cumulative FLUC from 1850 until the present-day by these two BK models is 55 

205±60PgC in the Global Carbon Budget 2019 (Friedlingstein et al. (2019), GCB2019 in the following). The FLUC uncertainty 

after 1959 has been defined by best value judgement that there is a 68% likelihood that actual FLUC lies within ±0.7PgC.yr-1 

of the two models’ mean. For earlier and for earlier periods, the standard deviation of a group of DGVMs is was used. This 

uncertainty range should reflects uncertainties in parameterizations of the BK models, and in the applied land-use change 

forcings as well as definitions, processes considered, and isand is generally large enough to encompass the two models’ 60 

estimates. 

Besides differences in cumulative numbers for FLUC, BLUE and HN2017 also show very different temporal behaviors 

(Friedlingstein et al. (2019) and see Fig. 2 below). Notable areeworthy is an increase in FLUC in BLUE but decrease in HN2017 

in the 1950s, which is likely attributable to the change in methodology in HYDE (Klein Goldewijk et al., 2017) from using 

FAOSTAT (FAOSTAT, 2015) estimates to population-based extrapolation in the past (Bastos et al., 2016). This comes on top 65 

of a generally steeper increase in FLUC in BLUE in 1870-1950. A second notable difference in temporal dynamics can be 



observed in the 2000s, as has been noted shown by Bastos et al. (2020). Here, BLUE shows a strong increasing trend starting 

2000, while HN2017 estimates start decreasing after the late 1990s.  

Such differences led to theThe estimated uncertainty of FLUC in the Global Carbon Budgets is, thus,  ofca. 0.7 PgC.yr-1 or 

approximately +-50% of the average value. The relative uncertainty of FLUC is thus, substantially larger than that from of fossil 70 

fuel emissions. This uncertainty, in turn, is propagated to global and regional carbon budget estimates, and  affects the land 

sink term, which has often been quantified as residual depending on FLUC. Houghton (2020) further noted that while net FLUC 

can be constrained by the global carbon budgets, the component gross fluxes (sources e.g. fromsuch as deforestation and sinks, 

e.g. by afforestation) are even more uncertain.  

Differences in initial land-cover distribution and transitions across different forcing datasets can also lead to substantial 75 

differences in estimated FLUC (Vittorio et al., 2020; Li et al., 2018; Gasser et al., 2020). A detailed analysis of the impact of the 

forcing datasets on LUC estimated by the OSCAR BK model has been performed by Gasser et al. (2020), and (Hartung et al., 

(2021)Hartung et al. (submitted to ESD) analyzed the effect of the different LUC from LUH2v2.1 (Hurtt et al., 2020) and of 

various internal model assumptions in BLUE on FLUC.  

Despite the relevance of the BLUE and HN2017 estimates for the global carbon budget analyses, stark discrepancies between 80 

these two models (Friedlingstein et al., 2019) and the long-standing appreciation of various factors contributing to such 

differences (Hansis et al., 2015; Houghton et al., 2012), no quantitative analysis on the contribution of model differences to 

this discrepancy has so far been performed. Both models rely on observation-based estimates for their parameterizations and 

forcing datasets and the choices on spatial and plant-functional type representation, starting year and other aspects are well 

justified in both models. However, these multiple differences add to uncertainty in FLUC estimates and make it difficult to 85 

attribute differences in FLUC and their trends to specific aspects of the FLUC calculation.  

In this study, we fill this gap and assess to which extent the different parameterizations in BLUE and HN affect global and 

regional FLUC estimates and their trends. We further investigate the effect of the different parameter choices on the gross LUC 

fluxes. 

2 Data and Methods 90 

2.1 Model characteristics and datasets used  

In this study we focus on the two BK models used in the GBC2019 as well as in the Intergovernmental Panel on Climate 

Change’s Special Report on Climate Change and Land (Shukla et al., 2019) to estimate FLUC: the Bookkeeping of Land-Use 

change Emissions model, BLUE (Hansis et al., 2015) and the model from Houghton and Nassikas (2017), which is referred 

to as HN2017.  95 

The two models differ in several aspects, the most relevant ones summarized in Table 1. An important difference, which we 

will account for in this study, is that BLUE estimates FLUC from gross LUC transitions, while HN2017 uses net transitions. 

Gross transitions resolve that within a unit (grid-cell for BLUE, country/region for HN2017) there may be concurrent back- 
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and forth-transitions between a pair of land-use types, for example 30% of the unit area may be transformed from forest to 

cropland, while on 20% cropland is abandoned and forest regrows. Net transitions would represent this as a 10% forest to 100 

cropland transition. These sub-unit changes are particularly important for large units (large grid-cells or country-level, 

(Wilkenskjeld et al., 2014)) and in regions where shifting cultivation prevails (in particular in the tropics; (Heinimann et al., 

2017)) or with small-scale dynamics such as in Europe (Fuchs et al., 2015). HN2017 implicitly includes shifting-cultivation 

effects if these are captured by FAO (2015) data and allows degraded lands start to accumulate carbon again after 10 years of 

no change. The two models are also forced by distinct LUC datasets: HN2017 calculated FLUC at country-level based on 105 

statistics of changes in croplands and pastures extent since 1961 and harvest data and changes in forests and other land since 

1990 (FAO, 2015; FAOSTAT, 2015), with extrapolations to earlier time periods. BLUE, on the other hand, is forced by 

spatially explicit transitions and harvest at 0.25x0.25 degree resolution from the Land-Use Harmonization dataset (LUH2v2.1) 

(Friedlingstein et al., 2019; Hurtt et al., 2020). LUH2v2.1 calculates cropland, pasture, urban, and ice/water fractions between 

850 and 2018 based on the HYDE3.1 dataset (Klein Goldewijk et al., 2017). HYDE3.1 in turn, also used FAOSTAT (2015) 110 

data for country-level agricultural areas (cropland, pasture, rangelands) data after 1961, extrapolated backwards in time using 

total population and agricultural area per-capita ratios for each country. The cropland and forest area estimates from these two 

different datasets (LUH2v2.1vs. FAO) differ considerably in several key LUC areas, for example South America and SE Asia 

(Li et al., 2018), which possibly explains thecan lead to large differences in FLUC and their trends found in those regions (Bastos 

et al., 2020; Vittorio et al., 2020).  115 

The two models further differ in several other characteristics, such as the plant functional number and types (Table A1) and 

their spatial distribution (per country in HN2017 and spatially explicit in BLUE), the starting year, the type of response curves, 

as well as on several parameter values and their spatial representation (Table 1). Following a transition, C stocks in the different 

pools will decay following response curves with characteristic decay times (fast for biomass pools and slow for soil pools). To 

estimate changes in C stocks, the models rely on values of C density in above and below-ground pools which are PFT-specific 120 

and based on measurements (Table A2). However, the models differ in the number of plant functional types (Table A1) and 

their spatial distribution (per country in HN2017 and spatially explicit in BLUE).  

For harvest and clearing, the dislocated C is distributed between a dead soil pool and three product pools of different lifetimes, 

1-, 10- and 100-yr (Table A3). In the case of BLUE these fractions are fixed and PFT-specific, while HN2017 distinguishes 

between harvested wood use over time (fuel, 1-yr, industrial, 10 and 100-yr time-scales), so that the fraction allocated to each 125 

pool changes over time.  

Parameters in BLUE and HN2017 are defined on a PFT basis, but HN2017 distinguishes 20 PFTs (3 of them desert PFTs), 

while BLUE distinguishes 11 PFTs. In order to compare the parameterizations, the different PFTs need to be mapped. Most 

HN2017 PFTs can be aggregated into the often more broadly-defined BLUE PFTs but some of the PFTs in BLUE do not 

correspond to HN2017 PFTs (e.g., summer-green shrubs) (Table A1). A map of the PFT distribution from HN2017 is not 130 

available, as the PFT fractions are defined on a per country basis. When aggregated globally, the values of BLUE and HN2017 
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show good agreement in the global extent of croplands (15.3Mkm2 and 13.8Mkm2 for HN2017 and BLUE, respectively, in 

2015) and forests (39.9Mkm2 and 40.9Mkm2 for HN2017 and BLUE, respectively, in 2015)  . 

When more than one PFT class from HN2017 is aggregated to one PFT in BLUE, we therefore estimate the corresponding 

parameter value as the average value weighted by the HN2017 PFT fractions within that country. We use therefore spatially 135 

explicit values in the model simulations (as in Fig. A1), but they are summarized as spatially-averaged values in Table A1 as 

spatially-averaged values.  

Both models rely on observation-based estimates for their parameterizations and forcing datasets and the choices on spatial 

and plant-functional type (PFT) representation, starting year and other aspects are well justified in both models. However, 

these multiple differences add to uncertainty in FLUC estimates and make it difficult to attribute differences in FLUC and their 140 

trends to specific aspects of the FLUC calculation (Table 1). In this study, we will assess the influence of the model 

parameterization. 

Parameters in BLUE and HN2017 are defined on a PFT basis, but HN2017 distinguishes 20 PFTs (3 of them desert PFTs), 

while BLUE distinguishes 11 PFTs. In order to compare the parameterizations, the different PFTs need to be mapped. Most 

HN2017 PFTs can be aggregated into the often more broadly-defined BLUE PFTs but some of the PFTs in BLUE do not 145 

correspond to HN2017 PFTs (e.g., summer-green shrubs) (Table A1). A map of the PFT distribution from HN2017 is not 

available, as the PFT fractions are defined on a per country basis. When more than one PFT class from HN2017 is aggregated 

to one PFT in BLUE, we therefore estimate the corresponding parameter value as the average value weighted by the HN2017 

PFT fractions within that country. We use spatially explicit values, but they are summarized in Table A1 as spatially-averaged 

values.  150 
Table 1 – Summary of the most important characteristics of the two FLUC estimates from the two BK models used in the GCB2019 
(BLUE and HN2017), including how FLUC is calculated in the standard version and configuration of each model, the processes 
represented and how they are parameterized. The model assumptions and parameterizations investigated in this study (see Table 2) 
are highlighted in bold. 

  BLUE HN2017 

FLUC calculation 

Spatial representation Grid scale (0.25°x0.25°) Country/region level 

PFTs  11 spatially-explicit 20 per country 

LUC transitions Gross Net 

Starting year 850 1700 

Last year 2018 2015  

Response curves Exponential LinearExponential 

LUC transitions LUH2v2h (Hurtt et al., 

2020) 

(FAO, 2015; FAOSTAT, 

2015) 
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Processes 

Shifting cultivation Included explicitly Indirectly included (if FRA 

forest loss is larger than FAO 

agricultural expansion) 

Harvest 3 Pools (1, 10, 100 years)  3 Pools (1, 10, 100 years) 

Clearing 3 Pools (1, 10, 100 years) 

plus slash 

3 Pools (1, 10, 100 years) 

plus slash 

Parameters 

Carbon densities 

(Cdens) 

For each of the 11 PFTs 

(vegetation and soil) based 

on (Houghton et al., 1983) 

Per country and for each of 

the 20 PFTs (vegetation); 

only per PFT (soil) 

Decay times for the 

response curves (RCt) 

For each of the 11 PFTs For each of the 20 PFTs 

Pool allocation fractions 

(Alloc) 

Different allocation 

fractions for each of the 11 

PFTs 

Different allocation fractions 

per country and for each of 

the 20 PFTs 

 155 

 

2.2 Factorial Simulations 

In order to attribute differences in FLUC between the two models to specific aspects from Table 1, we perform a set of factorial 

simulations with BLUE (see Table 2), in which we progressively approachreplace the BLUE parameters with those from 

HN2017 characteristics (see also schematic in Figure 1). We then compare these simulations with the fluxes estimated by 160 

HN2017, published in (Houghton and Nassikas, 2017; Friedlingstein et al., 2019). 
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Figure 1. Schematic description of the BLUE model set up and of the changes made in each of the factorial simulations (highlighted 
in blue boxes and summarized in Table 2). The model is forced by a map of gridcell-level land-use transitions occurring at time  t 
(gross vs net). These are then combined with a potential vegetation map of 11 natural vegetation types (Table A1), each having 165 
specific carbon densities in vegetation and soil pools (Cdens), to calculate the carbon dislocated by each transition. The mass of 
dislocated carbon is then distributed among different slash and product pools (Alloc), with specific response curves with different 
decay times (t).  

The different simulations performed, and their justification are as follows (summarized in Table 2): 

• SBL:  the BLUE simulation performed for GCB2019, following the set up described in Table 1, i.e., the standard 170 

BLUE configuration 

• SBL-Net (reference simulation):  the BLUE simulation as SBL but starting in 1700 and using net transitions rather than 

gross transitions. The difference to SBL provides an estimate of the impact of the core setup of HN2017 (net transitions 

and starting in 1700). In this simulation, net land conversion is taken first from primary land, i.e. abandonment (to 

secondary land) is allowed to cancel clearing from preferentially primary land in addition to secondary land, which 175 

reduces emission estimates more than if abandonment were allowed to cancel clearing only of secondary land (Hansis 

et al., 2015). The choice for net transition implementation aims to make FLUC estimates more comparable to the 

approach in HN2017, albeit keeping the different original forcing (LUH2v2.1 in BLUE as compared to FAO in 

HN2017). All subsequent simulations are run with this setup, but with different parameterizations (Table 2). 

• SHNCdens:  in this simulation, BLUE is run using the parameter values from HN2017 for the C densities in vegetation 180 

and soil parameters from HN2017. Although C density parameters in HN2017 are defined on a per country and per 

PFT basis, only vegetation C densities differ between countries for a given PFT, while soil C densities only differ per 

PFT (example for tropical evergreen broadleaved forest in Figure A1). The global average values per PFT for BLUE 

and HN2017 are given in Table A2.  BLUE has generally higher vegetation and soil C densities in the tropics and 



most temperate PFTs, and lower vegetation and soil C densities in pastures, and lower soil C densities in croplands, 185 

compared to the average values of HN2017.  

• SHNAlloc:  in this simulation, BLUE is run using the harvest and clearing allocation rulesfractions, and the slash 

fractions following clearing from HN2017 but the C densities in vegetation and soil from BLUE. The global average 

values for BLUE and HN2017 are given in Table A3. In the actual HN2017 model run (Houghton and Nassikas, 

2017), the allocations vary over time. Since BLUE uses temporally static fractions, we used an average over the full 190 

period (1850-2015). Harvest slash fractions in BLUE (with time-scales of 5-15 years in BLUE) are larger in BLUE 

than in HN2017 for all PFTs. HN2017 allocates more harvest product to the long-lived pool over the period 1850-

2015 than BLUE (Table A3). For clearing, the short and long-lived pools are relatively similar between the models 

but the medium-lived pool is mostly larger in BLUE, depending however on the PFT considered. The slash fractions 

following clearing from HN2017 are also used instead of those in BLUE. 195 

• SHNt:  the decay times from HN2017 are used in BLUE. It should be noted however, that BLUE has exponential 

response curves while HN2017 has linear ones (see Hansis et al. (2015) for a mathematical description).  

• SHNFull:  BLUE is run using all the parameters as well as the core setup from HN2017 described above.net LUC 

transitions, starting in 1700 and using HN2017 parameters for C densities, harvest and clearing allocation fractions 

and decay times (i.e., a combination of SHNCdens, SHNAlloc and SHNt). 200 

 
Table 2: Selected settings in the simulations conducted with BLUE. The row in bold highlights the reference simulation. 

 Starting year Transitions C densities 

(Cdens)  

Carbon 

allocation (Alloc)  

Response curves 

decay times (t) 

SBL 850 Gross BLUE BLUE BLUE 

SBL-Net  1700 Net BLUE BLUE BLUE 

SHNCdens 1700 Net HN2017 BLUE BLUE 

SHNAlloc 1700 Net BLUE HN2017 BLUE 

SHNt 1700 Net BLUE BLUE HN2017 

SHNFull 1700 Net HN2017 HN2017 HN2017 

 

In those simulations where BLUE is run with all or a sub-set of HN2017 parameters (SHNCdens, SHNAlloc, SHNt), instead of global 

values per PFT, the values per PFT from HN2017 are translated into BLUE PFTs and organized into parameter maps that can 205 

be read by BLUE. The difference between these simulations and SBL-NET provides an estimate of FLUC differences each 

including one set of parameters from HN2017 in BLUE. For SHNFull, the difference with SBL-NET is not expected to be simply 

the sum of the corresponding SHNCdens, SHNAlloc, SHNt differences because of interactions between C densities, allocation 

fractions and response times, with differences in model structure and LUC forcing, as described in Figure 1.    
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2.3 Model comparison 

We calculate FLUC from the different simulations between 1850 and 2015 (the period common to both datasets) for the globe 

and for the 18 regions used in (Bastos et al., 2020) to evaluate sources of uncertainty in land carbon budgets: Canada (CAN), 

USA, central America (CAM), northern South America (NAM), Brazil (BRA), southern South America (SSA), Europe (EU), 

northern Africa (NAF), equatorial Africa (EQAF), southern Africa (SAF), middle east (MIDE), Russia (RUS), Korea and 215 

Japan (KAJ), central Asia (CAS), China (CHN), southern Asia (SAS), SE Asia (SEAS) and  Oceania (OCE). We then evaluate 

separately the contribution of running BLUE with the reference HN2017 setup i.e., with net instead of gross transitions and 

starting in 1700s (SBL-Net - SBL). SBL-Net is then used as the baseline for comparison with other simulations, which follow the 

same setup (net emissions in simulations starting in 1700).  

Both BLUE and HN2017 add emissions from peat burning (Van Der Werf et al., 2017) and drainage (Hooijer et al., 2010) in 220 

a postprocessing step.  For easier comparison of direct model output, we do not include these post-processing steps.   

For all simulations, we compare both the interannual variability in FLUC and the resulting cumulative emissions between 1850 

and 2015. The discrepancies in interannual variability of estimated FLUC between HN2017 and each simulation from BLUE 

(Si) are assessed by the root mean square difference of annual FLUC from each simulation, calculated as: 

𝑅𝑀𝑆𝐷!"#$%&'#( = &
∑ (!"+,-.!#/!)"#
!

"
	                                         Eq. (1) 225 

 from each simulation with the FLUC estimate from HN2017 (RMSDHN-BLUE) can be further calculated to assess how each 

parameter affects the agreement between BLUE and HN2017 estimates in GCB2019where N is the number of years. In 

addition, we compare the effect of the different parameterizations on the gross LUC fluxes: fluxes from clearing of primary or 

secondary natural vegetation, wood harvest (net of decay and regrowth), abandonment of agricultural land (cropland and 

pasture) and transitions between cropland and pasture. 230 

3 Results 

3.1 Global FLUC 

We analyze annual FLUC from 1850 until 2015 (Figure 2, left panel). The BLUE simulation for GCB2019 (SBL, dark blue line) 

estimates higher emissions from LUC than HN2017 (black line). The cumulative emissions between 1850-2015 (Figure 2, 

right panel) are 139PgC for HN2017 and 245PgC for SBL. SBL-Net shows lower FLUC, but results in cumulative emissions only 235 

ca. 13% lower (214PgC) than when using gross transitions. As in previous BLUE estimates, both SBL and SBL-Net show an 

increase in FLUC from 1850 until the mid-20th century, peaking at around 1960 and then decreasing sharply until the 1990s, 

while HN2017 shows less variability. The two datasets further show contrasting trends from around 1975 until 2015, with 

BLUE increasing sharply after the late 1990s, when HN2017 shows a decrease.  
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All BLUE simulations show similar interannual variability patterns, which is strongly driven byconsistent with the use of the 240 

LUH2v2.1 forcing, but these variations are dampened when the parameters for C densities, allocation fractions and time 

constants from HN are used. However, Tthe BLUE simulation using the full set of HN2017 parameters (SHNFull) shows FLUC 

close to those of HN2017 until the 1980s and with a weak peak in emissions in 1960s and relatively stable FLUC rather than an 

increasing trend in 2000-2015. The resulting cumulative FLUC for SHNFull is 10497PgC, 525% lower than SBL-NET, at the very 

low end of previous estimates (Hansis et al., 2015; Houghton et al., 2012). This value is substantially outside the cumulative 245 

budget range of the GCB2019 (205 ± 60 PgC 1850-2018), but where the mean is the average of BLUE and HN2017 and the 

range the standard deviation from 15 DGVMs). However, it is still consistent with the uncertainty range of ±0.7 PgC.yr-1 

provided by GCB2019 after 1959. 

  

Figure 2. Global FLUC between 1850 and 2015 (A) from the two bookkeeping model estimates in GCB2019 (HN2017 in black and SBL 250 
for BLUE in dark blue), the BLUE simulations with net LUC transitions and standard BLUE parameterization (light blue, SBL-Net, 
used as reference for all subsequent BLUE runs) and using all tested HN2017 parameterizations together (cyan, SHNFull). The factorial 
simulations with only one set of parameters changed are shown in thin lines (SHNCdens in dark red, SHNt in red, SHNAlloc in yellow). The 
corresponding cumulative totals between 1850 and 2015 are shown in the panel B, and values relative to SBL-Net are shown by the 
numbers above bars. 255 

The parameters that lead to larger differences in global FLUC are the C densities (SHNCdens, Figure 2 dark red) and the allocation 

rules (SHNAlloc, yellow), while changing the decay times have small effect. Both SHNCdens and SHNAlloc result in lower FLUC over 

the 1850-2015 period, and weaker increasing trends between 2000 and 2015, which indicates that the trends in this period are 

not only due to forcing differences (Bastos et al., 2020), but in part from model parameterization. The cumulative FLUC in 

1850-2015 is 164 PgC and 142PgC for SHNCdens and SHNAlloc respectively i.e., 24% and 349% lower than SBL-Net, and closer to 260 

the HN2017 estimate on global scale. The lower FLUC with HN2017 C densities can be explained by the HN2017 lower C 

densities in both vegetation and soil for most PFTs and the smaller difference between primary and secondary forest C stocks 

(Table A2) compared to BLUE. In particular, BLUE often features higher vegetation carbon in broadleaf forests and higher 

soil carbon in most other ecosystems than HN2017, which, together with lower soil carbon assumed for cropland and pasture, 



leads to substantially larger carbon losses in BLUE for many transitions (Table A2). Even though SHNt results in a small positive 265 

difference in cumulative FLUC relative to SBL-NET (221 PgC), effect of response curve times is multiplicative (Figure 1), 

therefore the FLUC trends are amplified (Figure 2, left panel).  

 3.2 Regional patterns  

The global differences between simulations result from interactions between the different factors and in the types of LUC 

occurring in a given point in space and time. We first analyze the temporal evolution of regional FLUC for each simulation 270 

(Figure 3).   

 



Figure 3. Regional FLUC between 1850 and 2015 from the two BK model estimates in GCB2019 (HN2017 in black and SBL for BLUE 
in dark blue), the BLUE simulations with net LUC transitions and standard parameterization (light blue, SBL-Net) and using HN2017 
parameterizations (cyan, SHNFull). The factorial simulations with only one set of parameters changed are shown in thin lines (SHNCdens 275 
in dark red, SHNt in red, SHNAlloc in yellow). 

The factorial analysis sheds light on the underlying reasons of the diverging trends in the 2000s, where BLUE showed an 

upward trend, opposing downward trend in FLUC from HN2017. In absolute terms, the upward trend in BLUE stems foremost 

from BRA (a peak of about 0.45 PgC.yr-1 in the early 2000s, then a decline; similar in HN2017, but peaking at about 0.3 

PgC.yr-1), SSA (also captured by HN2017, but accelerating from the 2000s to the 2010s in BLUE, decelerating in HN2017), 280 

NAF (by comparison more stable in HN2017), EQAF (similar values as in HN2017, but with 0.15 PgC.yr-1 FLUC in BLUE in 

the 1970s-2000s is only about half that of HN2017) and SEAS (where HN2017 has a peak in the 1990s, then a steep drop of 

0.3 PgC.yr-1 to 2015, while BLUE FLUC picks up by about 0.2 PgC.yr-1 over the 2000s). Additionally, BLUE shows an increase 

in FLUC in CHN for the 2010s, while HN2017 estimates a sink due to afforestation. In all of these regions, adjusting BLUE 

partly or fully to HN2017 parameters does not obviously bring trends closer together, because a lowering of the 2000s FLUC 285 

in BLUE, which results from several of the factorial experiments, would lead to lower FLUC in earlier time periods as well. 

 

To summarize these patterns, we calculate the relative average differences in regional cumulative FLUC from SBL-Net and SHNFull 

with SBL (top panel of Figure 4 A, values in % change) and the root mean square difference to HN2017 (Eq. 1, RMSDHN-BLUE), 

which reflects differences in interannual variability (top panel of Figure 4B, in TgC.yr-1).  290 

Even though SBL-Net results in a small (-13%) decrease in global FLUC compared to SBL as discussed above, regional differences 

show stronger decreases, especially in regions with intensive shifting cultivation practices, such as SEAS (-40%), CAM (-

22%), SAF and EQAF (-23% in both).  SBL-Net additionally leads to higher agreement in interannual variability with HN2017 

(given by RMSDHN-BLUE, numbers in the grid cells) at global scale, but also for most regions (i.e., lower RMSDHN-BLUE, Figure 

4B). Europe shows 7% higher cumulative FLUC for SBL-Net than SBL, likely because of the importance of sub-pixel post-295 

abandonment recovery and re-/afforestation dynamics in Europe (Bayer et al., 2017; Fuchs et al., 2015). However, this 

increases only the RMSDHN-BLUE by only 23TgC.yr-1. 

As seen for global FLUC, the simulation using HN parameter values (SHNFull) leads to a reduction of FLUC by 50% or more 

compared to SBL in many regions (dark blue colors, see values in the center of grid cells in Figure 4A), except for central Asia 

(CAS), where an increase of 47% is estimated, mainly due to differences in C density parametersies. The reductions reach 300 

75% or more inin cumulative FLUC differences in CAM, BRA, EU and SEAS. These reductions result in significant Ddecreases 

also in the RMSDHN-BLUE between SHNFull the two modelsand SBL-Net globally and forin 112 of the 18 regions (Figure 4B), with 

small increases elsewhere. , with strongest reductions in BRA, RUS, SAS, CHN. However, applying HN2017 setup and 

parameters in BLUE increases RMSDHN-BLUE in 5 other regions (USA, SSA, CAS, KAJ, SEAS). This shows that differences 

in setup and parameterization cancel differences arising from the different land-use forcing in BLUE and HN2017 in some 305 

regions. In addition, the reductions in RMSDHN-BLUE in SHNFull compared to SBL are stronger than for SBL-Net, indicating that 

parameterization differences have stronger contribution to RMSDHN-BLUE than the impact of simulation net/gross transitions.  
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Figure 4. (A) Relative changes in cumulative simulated FLUC between 1850-2015 for each region for SBL-Net and SHNFull compared to 310 
SBL (top two rows) and the relative effect of each parameter change, compared to SBL-NET (bottom three rows) indicated by the colors 
and numbers in the center of cells. (B) The difference between RMSDHN-BLUE for each simulation and SBL (top two rows) and SBL-

NET (bottom three rows) indicated by the colors and numbers in the center of cells. All panels show results for the period 1850–2015. 

 

The differences between SBL-Net and each of the factorial simulations (bottom panel of Fig. 4A) shows that C densities and 315 

allocation rules are the dominant factors not just for global FLUC, but also in most regions, and lead to, and explain most of the 

lower RMSDHN-BLUE , compared to SBL-Net reduction (bottom panel of Figure 4B). Using HN2017 allocation fractions to pools 

for harvest and clearing results in lower cumulative FLUC everywhere (SHNAlloc) and decreases  or maintains the RMSDHN-BLUE 



at global scale and in all regions but SSA NSA and KAJSSA. By contrast, aAltering C densities (SHNCdens) has opposing 

contrasting effects in cumulative FLUC between regions, and increasinges RMSDHN-BLUE  cumulative FLUC in 34 out of 18 320 

regions. The strong Strong reductions in RMSDHN-BLUE for SHNFull are found in in BRA, RUS, CHN and SAS (top panel Figure 

4B), explained by RMSDHN-BLUE reductions by changing  are more affected by the choices in allocation fractions (SHNAlloc), 

while in RUS and CHN, the C densities in vegetation and soil pools (SHNCdens) and allocation fractions. contribute about equally 

to the RMSDHN-BLUE. In SEAS, C densities contribute more than allocation to the differences in cumulative FLUC is reduced 

when using HN2017 parameters (SHNFull), but the with a higher RMSDHN-BLUE.  In this region C density parameters contribute 325 

the most to the reduction of bias, compared to SBL-Net, and both C density parameters and allocation fractions contribute to the 

increase in RMSDHN-BLUE for SHNFull cannot be explained by one of these parameters, since each individual simulation shows 

reductions in RMSDHN-BLUE. This highlights the importance of interactions between different parameters to the overall FLUC 

variability.  The decay times generally contribute to small increases in cumulative FLUC compared to SBL-Net, except NAF where 

they increase FLUC by 22%, and would slightly amplify RMSDHN-BLUE globally and in 131 of the 18 regions.  330 

3.3 Effects on gross FLUC component fluxes 

To better understand the effects of the different parameterizations on FLUC, we analyze the spatial distribution of the differences 

between SHNFull, SHNCdens, SHNAlloc, SHNt and SBL-Net decomposed into gross FLUC: fluxes from harvest, clearing, 

abandonment/regrowth and transitions between crop and pasture (Figure 5).  

 335 
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Figure 5. Spatial distribution of relative differences in average cumulative FLUC between 1850-2018 for each of the four simulations 
with HN2017 parameters (SHNFull, SHNCdens, SHNAlloc, SHNt,), compared to SBL-Net for different FLUC components: wood-harvest, 
abandonment, clearing and crop-pasture transitions. Regions with average low values of FLUC (e.g. deserts) are masked.  

In most grid cells, the difference between SHNFull and SBL-Net is dominated by the effects of the parameterization of C -densities 

in most gross fluxes. For abandonment fluxes  and aallocation rules also lead to large differencesfor abandonment fluxes. For 340 

FLUC from abandonment and clearing to agriculture (crop and pasture) the differences are mostly negative (i.e., higher uptake 

from recovery and lower emissions from clearing to agriculture using HN2017 parameterization), while for the fluxes from 

transitions between crop and pastures and harvest, sharp regional contrasts between positive and negative differences are found. 

The lower FLUC from clearing to agriculture for SHNFull in most grid cells is linked with the lower vegetation and soil C densities 

for most forest PFTs (Table A2).  Higher FLUC from wood harvest are simulated by SHNFull in eastern and northern North 345 

America, central Europe and Scandinavia and China, due to higher vegetation C densities for temperate and boreal PFTs (Table 

A2) and the higher fraction allocated to short-lived pools in HN2017 compared to BLUEmostly related with response curve 

time-constants (Table A3). Other transitions (crop to pasture or pasture to crop) result in higher FLUC for SHNFull in most semi-

arid regions, which is explained to a larger extent by differences in C densities and time-constants between the two models 

(SHNCdens, SHNt) than by allocation rules (SHNAlloc) (Table A2). The time-constants also lead to differences, generally of lower 350 

magnitude than the other two parameters . However, time-constants dominate the differences for SHNFull in Europe and northern 

North America for wood-harvest and also show important differences for clearing fluxes in semi-arid regions in Africa and 

Australia. 

4 Discussion 

Fluxes from land-use change and management are one of the most uncertain and least constrained components of the global 355 

carbon cycle (Bastos et al., 2020; Friedlingstein et al., 2019; Houghton, 2020). Several sources of uncertainty in FLUC have 

been previously analyzed, such as the choice of gross versus net LUC transitions (Bayer et al., 2017; Fuchs et al., 2015; Gasser 

et al., 2020; Wilkenskjeld et al., 2014) the definitions and terminology used (Grassi et al., 2018; Pongratz et al., 2014), or the 

management processes considered (Arneth et al., 2017; Pugh et al., 2015).  Here we evaluate how different parameterizations 

in tThe two bookkeeping models used in the Global Carbon Budgets affect may differ in their FLUC estimates due to differences 360 

in the forcing data(Bastos et al., 2020; Gasser et al., 2020; Hartung et al., 2021) and differences in model structure, 

parameterization and in how certain processes are represented. , The impact of the LUC forcing on FLUC has been extensively 

investigated in previous studies (Bastos et al., 2020; Gasser et al., 2020; Hartung et al., 2021). Both models have a similar 

structure (Table 2) and both models use parameters from different sources that have been calibrated are based on observations 

which are, however, uncertain.. Here we evaluate how the different model parameterizations impact FLUC estimates and 365 

whether they can explain differences in global and regional average FLUC and on variability between the two models since 

1850. Both models have a similar structure and have been calibrated based on observations.  
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 The simulation with net transition (SBL-Net) reduces differences in the average and inter-annual variability of FLUC estimates 

from BLUE and HN2017. The contribution of gross to FLUC  is smaller than previous estimates (15-38%, (Arneth et al., 2017; 

Fuchs et al., 2015; Hansis et al., 2015)) and also lower than in earlier BLUE simulations that used the same rule.  (cCanceling 370 

of primary and secondary land clearing, with primary first, gave 24% lower emissions in Hansis et al. (2015)). The differences 

are likely explained by the substantial changes that came in with the change from LUH1 to LUH2 versions, in particular the 

change to Heinimann et al. (2017) shifting cultivation maps.  

Based on observation-based constraints by atmospheric inversions Bastos et al. (2020) pointed out that FLUC estimated by 

DGVMs and BLUE in BRA, SEAS, EU and EQAF were probably too high. Our analysis shows that FLUC estimates for these 375 

regions except EU would be lower if the setup of HN2017 were used i.e., starting in 1700 instead of AD 850 and using net 

transitions, and all four regions would show even larger reductions in FLUC if the parameterization of HN2017 were used in 

BLUE.  However, these changes would also bring down FLUC estimates in many regions that were not deemed too high in 

FLUC based on the constraint by observations. This suggests that neither BLUE nor HN2017 setup and parameterization can 

be judged as being superior to the other for all regions of the world and all time periods. 380 

The rules for allocation of displaced carbon to different pools have the strongest effect on average FLUC, as well as their 

variability, but they appear to affect mainly recovery fluxesfollowed by C density parameters. Contrary to C densities 

(Section 4.1), at the moment no global dataset of allocation parameters exists that could be compared to the allocation 

fractions used here. That global FLUC curves 1850-2015 of BLUE and HN2017 FLUC in 1850-2015 show better agreement in 

temporal variability, mostly because is a consequence not of making temporal dynamics in highly dynamic regions more 385 

similar, but of the fact that the C density and allocation parameterizations of HN2017 dampen the effect of differences in land-

use change dynamicstransitions.  

This elimination of the 2000s trend difference in some regions comes at the cost of larger divergences in earlier times. With 

high LUC dynamics in the 20th century in some regions, which is more strongly captured by BLUE with its representation of 

gross transitions, slightly larger C density losses with the transformation of natural vegetation to agriculture or degradation by 390 

wood harvesting and rangelands may lead to an increase in FLUC beyond what would be expected from net land-use areas 

alone. On top comes a distribution of cleared and harvested material to faster pools (more slash in BLUE, more long-lived 

products in HN2017), which also emphasizes the effects of LUC dynamics. The differences between BLUE and HN2017 are 

thus a combination of higher LUC dynamics in BLUE (by using LUH2v2.1 and accounting for gross transitions), and of faster 

material decay than in HN2017. The different trends of BLUE and HN2017 in the 1950s and after 1990 are instead largely 395 

attributable to the different LUC forcing (Gasser et al., 2020).  

4.1 Constraining C densities constraints 

The parameterization of C densities of vegetation and soil pools is the second most relevant parameter, but one that affects all 

flux components. Even though both models were parameterized based on observation-based C densities, these parameters are 

highly uncertain, as they are derived from sparse plot-level data with high variance across datasets  (Brown and Lugo, 1982; 400 



Post et al., 1982; Schlesinger, 1984; Zinke et al., 1986). Remote-sensing based estimates of potential vegetation C stocks in 

undisturbed lands and well as present-day C stocks have been produced by Erb et al. (Erb et al., 2018), including their 

uncertainty. The values of Erb et al. (2018) can, therefore, be compared to the potential C stocks simulated by HN2017 and 

by BLUE using the different configurations ofin this study (circles in Figure 6), as well as of simulated present-day carbon 

stocks (small circles, end of arrows). In addition, we compare simulated C stocks with those of Anav et al. (2013) for the 405 

present day.  

 
Figure 6. Carbon stocks in vegetation (yy-axis) and soils (xx-axis) simulated by BLUE for the pre-industrial period (1850, big circles) 
and present time (2018, small circles, end of arrows). These values are compared to two observation-based reference datasets: that 
of Anav et al. (2013) for both vegetation and soil carbon stocks (black square) and the upper and lower values of potential (solid 410 
lines) and present-day (dashed lines) carbon stocks in vegetation from Erb et al. (2018). 

All BLUE simulations, as well as HN2017, have 4-6% lower potential C stocks in vegetation than estimates in Erb et al. (2018) 

(Figure 6). Since the values of potential biomass in their Erb et al. study were estimated for present day, they include the effect 

of environmental changes such as CO2 fertilization, and are expected to be up to 10% higher than they would be without these 

effects (Pongratz et al., 2014). Therefore, these four simulationsthe C stocks in vegetation simulated both by BLUE and 415 

HN2017 can be considered are consistent with these remote-sensing based estimates, if environmental effects are excluded. 

The methodology of using highest percentiles in a moving window as potential value in Erb et al. (2018) could overestimate 

biomass because it has a bias towards capturing oldest rather than average forests in a cycle of natural disturbances. 

Additionally, these simulations result in present-day C stocks in vegetation that are within the range provided by Erb et al. 

(2018), or close to its upper limit, and are also consistent with the reference value from Anav et al. (2013). All simulations 420 

estimate lower C stocks in the soil, compared to Anav et al. (2013). HN2017 has higher C stocks in soil both for the pre-

industrial period and present-day, compared to BLUE simulations, which are closed to the values estimated by Anav et al. 
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(2013). The two simulations using HN2017 carbon densities (SHNFull, and SHNCdens) result in too low C stocks in soils, compared 

to Anav et al. (2013), and much lower potential vegetation C stocks than Erb et al. (2018). However, present-day vegetation 

C stocks for SHNFull, and SHNCdens are consistent with their values.  425 

 

5. Conclusions 
We conclude that differences between BLUE and HN2017 arise from the higher allocation of cleared and harvested material 

to quickly decomposing pools in BLUE, compared to HN2017, combined with higher emissions in BLUE due to often larger 

differences in soil and vegetation C densities between natural and managed vegetation or primary and secondary vegetation. 430 

It should be noted however that specific transitions and prevalence of specific PFTs in certain regions prohibits generalizing 

this statement. Together with the larger land-use dynamics which stem from BLUE representing gross transitions and its usage 

of LUH2v2.1 as LUC forcing, these changes lead to overall higher carbon losses that have a faster decay.  

The two reference datasets of global C stocks seem to support the choice of C densities used in the default BLUE configuration 

and, therefore, the higher estimates of FLUC by BLUE. However, it should be noted that both models have limited representation 435 

of spatial variability in C densities: BLUE ignores spatial variability in vegetation and soil C within each PFT distribution, for 

example due to less favorable climate in some regions; HN2017 includes country-specific C densities for vegetation but not 

for soil, and no spatial variability within each country.  

The large contribution of the C densities to the differences between the FLUC estimates of the two BK models found in our 

results highlights the importance to derive spatially explicit maps of vegetation and soil C densities discriminated per 440 

vegetation type would be required. Producing such maps is challenging, especially for the estimates of C densities in 

undisturbed land, as most of the land surface has been directly or indirectly impacted by human activity.  However, 

observation-based maps of vegetation and soil C densities in both disturbed and undisturbed land would be highly valuable, 

as they could be used in BK models to reduce uncertainties in FLUC. 

Similarly, improvements in allocation can be performed. Bookkeeping models, and many DGVMs, follow very simple 445 

assumptions of the fate of cleared or harvested material, often along the lines of the "Grand Slam Protocol" (McGuire et al., 

2001), but developed for bookkeeping models earlier (Houghton et al., 1983), which distinguishes only three product pools 

(fast, medium, slow), with timescales defined rather ad-hoc as 1, 10, 100 years. The fractions going into these and into slash 

are compiled from individual studies for specific regions (Houghton et al., 1983; Hurtt et al., 2020), but are hard to quantify 

on the global level throughout several centuries. Such long timescales are needed, however, to capture the slow dynamics of 450 

decay and regrowth and thus to capture legacy fluxes accurately. For the last decades, however, more detailed data has become 

available than that currently used in the models of the Global Carbon Budgets, such as global sets of dynamic carbon-storage 

factors (Earles et al., 2012) that define a larger number of product pools and time-varying fractions of allocation. 
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Table A1 – Plant functional types in HN2017 and in BLUE, and the correspondence used in this study.  

Formatted: Normal
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HN2017 BLUE 

Tropical Rainforest Tropical evergreen forest 

Tropical Moist Deciduous Tropical deciduous forest 

Tropical Dry Forest   

Tropical Shrub Raingreen shrubs 

Tropical Desert   

Tropical Mountain  Tropical evergreen forest 

Subtropical Humid Forest Temperate evergreen broadleaf forest 

Subtropical Dry Forest Temperate/boreal deciduous broadleaf forest 

Subtropical Steppe C4 natural grasses 

Subtropical Desert   

Subtropical Mountain Temperate/boreal evergreen conifers 

Temperate Oceanic Temperate/boreal evergreen conifers 

Temperate continental Temperate/boreal deciduous broadleaf forest 

Temperate steppe C3 natural grasses 

Temperate Desert   

Temperate Mountain Temperate/boreal deciduous broadleaf forest 

Boreal Coniferous Temperate/boreal evergreen conifers 

Boreal Tundra Tundra 

Boreal Mountain   

Polar Tundra 
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Table A2 – Global median value across countries per PFT for vegetation C densities and PFT-dependent soil C densities from BLUE, 
and from HN2017 converted to BLUE PFT classes as used for the simulations with parameters from HN2017. Units are tC/ha.  

  

Primary  

 Veg C 

Secondary 

Veg C 

Pasture 

Veg C 

Crop  

 Veg C 

Primary  

 Soil C 

Secondary  

 Soil C 

Pasture  

 Soil C 

Crop 

 Soil C 

  BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 

Tropical 

evergreen forest 
200 152 150 114 18 10 5 5 117 98 88 88 88 98 58 73 

Tropical 

deciduous forest 
160 92 120 69 18 10 5 5 117 100 88 90 88 100 58 75 

Temperate 

evergreen 

broadleaf forest 

160 138 120 103 7 10 5 5 134 120 120 108 101 120 67 90 

Temperate/boreal 

deciduous 

broadleaf forest 

135 86 100 64 7 10 5 5 134 143 120 129 101 143 67 108 

Temperate/boreal 

evergreen 

conifers 

90 110 68 83 7 10 5 5 206 182 185 164 155 182 103 137 

Temperate/boreal 

deciduous 

conifers 

90 110 68 83 7 10 5 5 206 182 185 164 155 182 103 137 

Raingreen shrubs 27 37 27 28 18 10 5 5 69 35 69 32 69 35 34 26 

Summergreen 

shrubs 
27 37 27 28 7 10 5 5 69 35 69 32 69 35 34 26 

C3 natural 

grasses 
7 23 7 17 7 10 5 3 189 80 189 72 189 80 94 60 

C4 natural 

grasses 
18 23 18 17 18 10 5 5 42 50 42 45 42 50 21 38 

Tundra 3 14 0 11 7 7 1 5 204 178 204 160 204 178 101 134 
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Table A3 – Global median values of harvest and clearing allocation rules to the short-, medium- and long-lived pools (1, 10 and 100 
years) for BLUE PFTs, from the standard BLUE setup and used for the simulations with parameters from HN2017 (converted to 
BLUE PFT classes). The slash fraction from clearing is calculated as the 1 minus the sum of the 1-, 10- and 100-year pools.  

 
Slash Primary 

Forest 

Slash 

Secondary 

Forest 

Harvest        

Pool 1 

Harvest        

Pool 10 

Harvest        

Pool 100 

Clearing      

Pool 1 

Clearing      

Pool 10 

Clearing      

Pool 100 

  BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 BLUE HN2017 

Tropical 

evergreen forest 
0.79 0.5 0.71 0.5 0.90 0.0049 0.04 0.240.11  0.06 0.4075 0.4 0.42 0.27 0.01 0 0.08 

Tropical 

deciduous forest 
0.86 0.5 0.81 0.5 0.90 0.490.00 0.04 0.110.24 0.06 0.4075 0.4 0.42 0.27 0.01 0 0.08 

Temperate 

evergreen 

broadleaf forest 

0.81 0.5 0.75 0.5 0.40 0.490.00 0.24 0.110.24 0.36 0.4075 0.4 0.42 0.2 0.01 0.07 0.08 

Temperate/boreal 

deciduous 

broadleaf forest 

0.78 0.5 0.7 0.5 0.40 0.490.00 0.24 0.110.24 0.36 0.4075 0.4 0.42 0.2 0.01 0.07 0.08 

Temperate/boreal 

evergreen 

conifers 

0.87 0.5 0.82 0.5 0.40 0.490.00 0.24 0.110.24 0.36 0.4075 0.4 0.42 0.2 0.01 0.07 0.08 

Temperate/boreal 

deciduous 

conifers 

0.87 0.5 0.82 0.5 0.40 0.490.00 0.24 0.110.24 0.36 0.4075 0.4 0.42 0.2 0.01 0.07 0.08 

Raingreen shrubs 0.86 0.5 0.81 0.5 1.00 0.490.00 0.00 0.110.24 0.00 0.4075 0.4 0.42 0.1 0.01 0 0.08 

Summergreen 

shrubs 
0.78 0.5 0.7 0.5 1.00 0.490.00 0.00 0.110.24 0.00 0.4075 0.4 0.42 0.1 0.01 0 0.08 

C3 natural 

grasses 
0.78 0.5 0.7 0.5 1.00 0.490.00 0.00 0.110.24 0.00 0.4075 0.5 0.42 0 0.01 0 0.08 

C4 natural 

grasses 
0.86 0.5 0.81 0.5 1.00 0.490.00 0.00 0.110.24 0.00 0.4075 0.5 0.42 0 0.01 0 0.08 

Tundra 0.87 0.5 0.82 0.5 1.00 0.490.00 0.00 0.110.24 0.00 0.4075 0.42 0.4 0.01 0.1 0.08 0 
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Figure A1 – Carbon densities in vegetation (left) and soil (right) for Tropical Broadleaved Evergreen forests for BLUE (top) 

and HN2017 (bottom) in tC.ha-1 . It should be noted that even though C density values are assigned on a per-country basis in 615 

HN2017, they do not differ between countries for soil C. Note that C densities are assigned to all countries, even if evergreen 

broadleaved forest is not present in a given country.  
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