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Abstract. The energy imbalance at the top of the atmosphere over the last century has caused an accumulation of heat within

the ocean, the continental subsurface, the atmosphere and the cryosphere. Although ∼90% of the energy gained by the climate

system has been stored in the ocean, the other components of the Earth heat inventory cannot be neglected due to their influence

on associated climate processes dependent on heat storage, such as sea level rise and permafrost stability. However, there has

not been a comprehensive assessment of the heat inventory within global climate simulations yet. Here, we explore the ability5

of thirty advanced General Circulation Models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project

(CMIP5) to simulate the distribution of heat within the Earth’s energy reservoirs for the period 1972-2005 of the Common

Era. CMIP5 GCMs simulate an average heat storage of 247± 172 ZJ (96± 4 % of total heat content) in the ocean, 5± 9 ZJ

(2± 3 %) in the continental subsurface, 2± 3 ZJ (1± 1 %) in the cryosphere, and 2± 2 ZJ (1± 1 %) in the atmosphere.

However, the CMIP5 ensemble overestimates the ocean heat content by 83 ZJ and underestimates the continental heat storage10

by 9 ZJ and the cryosphere heat content by 5 ZJ, in comparison with recent observations. The representation of terrestrial ice

masses and the continental subsurface, as well as the response of each model to the external forcing, should be improved in

order to obtain better representations of the Earth heat inventory and the partition of heat among climate subsystems in global

transient climate simulations.

1 Introduction15

Sustained net radiative imbalance at the top of the atmosphere is increasing the heat stored within the climate subsystems –the

ocean, the continental subsurface, the atmosphere and the cryosphere (Hansen et al., 2011; von Schuckmann et al., 2020). The

ocean is the largest component of the Earth Heat Inventory (EHI), accounting for around 90% of the total heat in the climate

system (Rhein et al., 2013; Gleckler et al., 2016; von Schuckmann et al., 2020). Nonetheless, it is imperative to measure the

distribution of heat storage within the four components of the climate system, since the evolution of several physical processes20

critical to understand climate change and quantify future impacts of climate change on society are strongly dependent on the

partition of heat among all climate components.
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The evolution of ocean heat content determines the thermosteric component of sea level rise (Church et al., 2011; Kuhlbrodt

and Gregory, 2012; Levitus et al., 2012), affects the total precipitation and intensity of hurricanes (Mainelli et al., 2008;

Wada and Chan, 2008; Lin et al., 2013; Trenberth et al., 2018), and influences regional cyclonic activity (Bhowmick et al.,25

2016). The increase in ground heat content leads to the warming of the continental subsurface and to permafrost thawing in the

Northern Hemisphere (Koven et al., 2013; Cuesta-Valero et al., 2016; Soong et al., 2020). Thus, the increase in continental heat

storage threatens the stability of the global soil carbon pool, potentially facilitating the release of large amounts of greenhouse

gasses from the decomposition of soil organic matter in northern soils (Koven et al., 2011; MacDougall et al., 2012; Schädel

et al., 2014; Schuur et al., 2015; Hicks Pries et al., 2017). Melting of ice sheets in Greenland and Antarctica as well as glacier30

degradation at all latitudes contribute to sea level rise (Jacob et al., 2012; Hanna et al., 2013; Vaughan et al., 2013; Dutton et al.,

2015), and together with changes in the extension and volume of sea ice may disturb deep water formation zones and alter ocean

circulation and large scale heat distribution (Hu et al., 2013; Jahn and Holland, 2013; Ferrari et al., 2014). The evolution of the

atmosphere heat content constrains the projected change in total global precipitation due to atmospheric warming (Pendergrass

and Hartmann, 2014a; Hegerl et al., 2015), and the additional moisture in a warmer atmosphere increases the frequency of35

extreme precipitation events (Pendergrass and Hartmann, 2014b). The intensity of cyclones and hurricanes is also expected to

increase in the future due to the higher energy available in the atmosphere (Pan et al., 2017).

Therefore, the partition of heat within these subsystems have long-term impacts on society, as the heat content of each

subsystem is related to processes altering near-surface conditions. Higher surface temperatures together with changes in pre-

cipitation regimes and sea level rise threaten global food security (Lloyd et al., 2011; Rosenzweig et al., 2014; Phalkey et al.,40

2015; Campbell et al., 2016), and may result in an increase in the frequency of floods and storm surges (McGranahan et al.,

2007; Lin et al., 2013; Kundzewicz et al., 2014). The combination of high temperature, high levels of moisture, and changes

in precipitation patterns also affect human health, particularly for the populations least responsible for climate change (Patz

et al., 2007). These changes in near-surface conditions increase the risk of high levels of heat stress (Sherwood and Huber,

2010; Matthews et al., 2017) and the spread of infectious diseases (Levy et al., 2016; Wu et al., 2016; McPherson et al., 2017),45

among others risks for human health (McMichael et al., 2006).

General Circulation Model (GCM) simulations are the main source of information about the possible evolution of the climate

system, which is critical for society’s adaptation to future risks posed by climate change. Modeling experiments performed for

the fifth phase of the Coupled Model Intercomparison Project (CMIP5) have provided several insights into the long-term

evolution of the net radiative imbalance at the top of the atmosphere (Allan et al., 2014; Smith et al., 2015), the evolution of50

ocean heat content since preindustrial times (Gleckler et al., 2016), and the relationship between these two magnitudes (Palmer

et al., 2011; Palmer and McNeall, 2014; Smith et al., 2015). The same GCM simulations, nevertheless, do not simulate other

aspects of the Earth heat inventory successfully. CMIP5 simulations are unable to accurately represent heat storage within the

continental subsurface over the second half of the 20th century (Cuesta-Valero et al., 2016), many do not conserve atmospheric

water (Liepert and Lo, 2013) nor subsurface water (Krakauer et al., 2013; Trenberth et al., 2016), and do not conserve the total55

heat in the system (Hobbs et al., 2016). Furthermore, there has not yet been an assessment of the ability of CMIP5 GCMs to

2

https://doi.org/10.5194/esd-2020-88
Preprint. Discussion started: 28 December 2020
c© Author(s) 2020. CC BY 4.0 License.



reproduce heat storage within the atmosphere and the cryosphere, despite their impact on a variety of phenomena of critical

interest to both society and the scientific community.

Here, we assess the ability of thirty CMIP5 GCM Historical simulations to reproduce the Earth heat inventory and the

partition of heat within the ocean, continental subsurface, atmosphere and cryosphere. Results are compared with observations60

for the period 1972-2005 of the Common Era (CE). Our analysis reveals the importance of the simulated terrestrial ice masses

and the represented continental subsurface volume for achieving a realistic distribution of the total Earth heat content within

GCM simulations, and reinforces the need to reduce the spread in model responses to external forcing.

2 Data and Methods

Thirty Historical simulations performed with advanced general circulation models were retrieved from the fifth phase of the65

Coupled Model Intercomparison Project (CMIP5) archive (Taylor et al., 2011). Historical simulations attempt to represent

the evolution of global climate from the Industrial Revolution to the present (1850-2005 CE) using estimates of natural and

anthropogenic emissions of greenhouse gases and aerosols, as well as changes in land cover and land use (Mieville et al.,

2010; Hurtt et al., 2011). We analyzed the simulated evolution of heat storage in the entire climate system and in the different

subsystems (the ocean, continental subsurface, atmosphere and cryosphere) for the period 1972-2005 CE, consistently with70

observations.

Estimates of the Earth heat inventory from observations are retrieved from Church et al. (2011) and von Schuckmann

et al. (2020). Results in Church et al. (2011) are provided for the period 1972-2008 CE, thus we proportionally scale those

estimates to cover the period 1972-2005 CE. Both datasets employ similar measurements from mechanical and expendable

bathythermographs to estimate the heat content within the ocean. Differences in the reported heat storage are caused by the75

statistical treatment of data gaps, the choice of the climatology, the approach to account for instrumental biases, and the higher

number of recent measurements included in von Schuckmann et al. (2020). Church et al. (2011) extrapolates the continental

heat storage estimated in Huang (2006) from meteorological observations of surface air temperature at 2 m. Otherwise, von

Schuckmann et al. (2020) includes ground heat content estimates from an updated database of borehole temperature profile

measurements (Cuesta-Valero et al., 2020). This method contrasts to the one included in Church et al. (2011), since estimates of80

continental heat storage are retrieved from direct measurements of subsurface temperatures. There are substantial differences

between both datasets in the methods employed to obtain the heat storage in the atmosphere. Church et al. (2011) estimates

heat storage as proportional to the change in surface air temperature, while von Schuckmann et al. (2020) integrates the

entire atmospheric profile from several reanalysis products, taking into account temperature, water content and wind intensity.

Estimates of ice melting from glaciers and ice sheets are considered in both datasets, with more recent analyses included in85

von Schuckmann et al. (2020). Changes in sea ice volume in Church et al. (2011) are obtained from Levitus et al. (2005), and

from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and Rothrock (2003); Schweiger et al.

(2019)) in the case of von Schuckmann et al. (2020). All changes in ice mass are multiplied by the latent heat of fusion in order

to obtain the corresponding estimate of cryosphere heat content.
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Global averages of Ocean Heat Content (OHC), the heat content within the continental subsurface (ground heat content,90

GHC), Atmosphere Heat Content (AHC) and heat uptake by ice masses (cryosphere heat content, CHC) were derived from

the CMIP5 Historical experiments. The OHC values were estimated using the formulation for potential enthalpy described in

McDougall (2003) and Griffies (2004) from simulated seawater potential temperature and salinity profiles (Table 1 contains

the list of variables employed for estimating each term of the EHI). Once the potential enthalpy has been determined, estimates

of seawater density (McDougall et al., 2003) and pressure profiles (Smith et al., 2010) allowed simulated heat content in the95

ocean to be calculated as:

QOcean =
zf∑

i=z0

ρi (S,θ,p(zi)) ·H◦i (S,θ) , ·∆zi, (1)

where QOcean is the ocean heat per surface unit (in Jm−2), S is salinity (in psu), θ is potential temperature (in ◦C), p is

pressure (in bar), and zi, ρi,H◦i and ∆zi are depth (in m), density (in kgm−3, potential enthalpy (in Jkg−1) and thickness (in

m) of the i-th ocean layer, respectively.100

The GHC series were estimated as in Cuesta-Valero et al. (2016) for all terrestrial grid cells. Subsurface thermal properties

were computed taking into account spatial variations in soil composition (% of sand, clay and bedrock) and simulated subsur-

face water and ice amounts (Van Wijk et al., 1963; Oleson et al., 2010). The subsurface temperature profile was then integrated

following

QGround =
zf∑

i=z0

ρCi ·Ti ·∆zi, (2)105

whereQGround is the subsurface heat storage per surface unit (in Jm−2), and ρCi, Ti and ∆zi are the volumetric heat capacity

(in Jm−3 K−1), the temperature (in K) and the thickness (in m) of the i-th soil layer, respectively. All CMIP5 GCMs present

outputs for subsurface temperature, but not all models provide outputs for subsurface water and ice content in the same format

(Table 1), hampering the estimate of thermal properties (ρC) in Equation 2. Indeed, two thirds of the GCMs provide the joint

content of water and ice for each soil layer (mrlsl variable in CMIP5 notation), while the remaining third provide the total110

water and ice content in the entire soil column (mrso variable). As in Cuesta-Valero et al. (2016), we considered water to be

frozen in layers with temperatures below 0 ◦C and liquid water otherwise for models providing the mrlsl variable. For models

providing the mrso variable, we distributed the water and ice content among the soil layers proportionally with layer thickness,

considering ice in soil layers with temperature below 0 ◦C and liquid water otherwise.

The AHC series were estimated as in Trenberth (1997), Previdi et al. (2015) and von Schuckmann et al. (2020). The simulated115

air temperature profile was integrated for all atmospheric grid cells together with estimates of wind kinetic energy, latent heat of

vaporization and surface geopotential, which was determined as in Dutton (2002). Vertical atmospheric profiles were integrated

in pressure coordinates as:

QAtmosphere =
1
g

ps∑

i=0

(cp ·Ti + ki +L · qi + Φs)∆pi, (3)
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where QAtmosphere is atmospheric heat per surface unit (in Jm−2), g is apparent acceleration due to gravity (in ms−2), ps is120

surface pressure (in Pa), cp = 1000 Jkg−1 K−1 is the specific heat of air at constant pressure, L= 2260 Jkg−1 is the latent

heat of vaporization, Φs is the surface geopotential estimated from orography (in m2 s−2), and Ti, ki, qi and ∆pi are the air

temperature (in K), specific kinetic energy (in Jkg), specific humidity (in kgkg−1) and thickness (in Pa) of the i-th atmospheric

layer, respectively.

For estimating the CHC series, the simulated cryosphere was divided into three terms: sea ice, subsurface ice and glaciers.125

Variations in the mass of simulated sea ice and subsurface ice were multiplied by the latent heat of fusion (Lf = 3.34×
105 Jkg−1, Rhein et al., 2013) to obtain the heat absorbed in the melting process. The same method was applied to the

change in snow mass in grid cells containing land ice within each CMIP5 GCM (glaciers or ice sheets, sftgif variable in the

CMIP5 archive). Although this is not a satisfactory approach given the differences between snow and land ice, it is the only

available approximation since CMIP5 GCMs do not typically represent terrestrial ice masses (Flato et al., 2013). Therefore,130

the cryosphere heat content was estimated as

QCryosphere = Lf · (∆ω+ ρ ·∆p ·∆z+ ∆Ω) , (4)

where QCryosphere is absorbed heat per surface unit (in Jm−2), ρ= 920 kgm−3 is ice density (Rhein et al., 2013), ∆ω is the

change in subsurface ice mass per surface unit (in kgm−2), ∆p is the change in the proportion of sea ice at each ocean grid

cell, ∆z is the change in thickness of sea ice at each ocean grid cell (in m), and ∆Ω is the change in snow amount at each cell135

containing land ice (in kgm−2). It is important to note that nine of the CMIP5 GCMs did not provide outputs for the subsurface

ice amount (mrfso variable) and that three of the models did not provide outputs for snow amount (snw variable, see Table 1),

and thus these terms are missing in the CHC estimates from those models. We were unable to retrieve the file indicating the

cells containing land ice (sftgif file) for the HADGEM2-CC GCM, thus we used the CMCC-CMS sftgif file interpolated to the

HADGEM2-CC grid, since the grid for both models have a similar spatial resolution (1.25 ◦× 1.875 ◦ for HADGEM2-CC;140

1.875 ◦× 1.875 ◦ for CMCC-CMS).

Estimates of total heat in the climate system from each CMIP5 model are required to determine the simulated partition of

heat among each climate subsystem. The total heat content can be determined as the sum of the heat storage within the different

climate subsystems (Earth heat content, EHC) or as the integration of the radiative imbalance at the top of the atmosphere (N)

during the period of interest. Both approximations have been used in the literature and are considered equivalent (Rhein et al.,145

2013; Palmer and McNeall, 2014; Trenberth et al., 2014; von Schuckmann et al., 2016). That is, if a model does not produce

artificial sources or leakages of energy or mass (i.e., if the model conserves the total heat content in the system), the change in N

and in EHC should be almost identical (Hobbs et al., 2016). Nevertheless, CMIP5 GCM simulations are prone to drift, particu-

larly the ocean component due to incomplete model spin-up procedures (Sen Gupta et al., 2013; Séférian et al., 2016). For this

reason, potential drifts in estimates of heat content and the components of the radiative budget at the top of the atmosphere were150

removed by subtracting the trend of the corresponding preindustrial control simulation from the Historical simulations, which

should correct artificial drifts in the simulated heat content within each climate subsystem (Hobbs et al., 2016). N estimates

from the CESM1-CAM5 GCM constitute a particular case, since an unrealistic trend remained in the Historical experiment in
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comparison with other CMIP5 GCMs after removing the drift using data from the corresponding control simulation (Figure

S1). The rest of variables from this GCM were dedrifted using the trend estimated from the preindustrial control simulation as155

in the other CMIP5 simulations, but the drift in the outgoing shortwave radiation and the outgoing longwave radiation at the

top of the atmosphere could not be removed. Therefore, we used the trend estimated from the first five decades of the Historical

simulation (1861-1911 CE) to remove the drift in N estimates, achieving a better comparison with the other CMIP5 GCMs

(Figure S1).

As a complement to the estimates of the EHI detailed above, we also estimated the partition of the simulated total heat content160

among the ocean, the continental subsurface, the atmosphere and the cryosphere. A linear regression analysis was performed

between the evolution of the simulated heat storage within each climate subsystem and the estimates of total heat content in the

entire climate system to determine the partition of heat within the four climate subsystems (Figure 1). The slope of the linear fit

was assumed to represent the simulated proportion of heat in the corresponding subsystem, thus providing estimates of OHC/N

and OHC/EHC for the simulated proportion of heat in the ocean, GHC/N and GHC/EHC for the simulated proportion of heat165

in the continental subsurface, AHC/N and AHC/EHC for the simulated proportion of heat in the atmosphere, and CHC/N and

CHC/EHC for the simulated proportion of heat absorbed by the cryosphere.

3 Results

3.1 Earth Heat Inventory

The CMIP5 ensemble mean overestimates the observed ocean heat content for the period 1972-2005 CE and underestimates170

the observations for the continental subsurface and the cryosphere (Figure 2). Additionally, the multimodel mean yields higher

total heat in the climate system than observations, as expected due to the high OHC values reached by these simulations (Fig-

ure 2a). Indeed, the CMIP5 multimodel mean yields an OHC increase of 247± 172 ZJ (mean ± two standard deviations,

1 ZJ = 1× 1021 J) for 1972-2005 CE, higher than the observational estimates in Church et al. (2011) (∼ 199 ZJ) and von

Schuckmann et al. (2020) (164± 17 ZJ, Table 2). These high OHC estimates are the cause of the large Earth heat content175

displayed by the CMIP5 ensemble, since the EHC estimates result from the cumulative heat storage in the four climate sub-

systems, and the ocean accounts for around 90% of the total heat storage (Church et al., 2011; Hansen et al., 2011; Rhein

et al., 2013; Gleckler et al., 2016; von Schuckmann et al., 2020). The integration of the radiative imbalance at the top of the

atmosphere for the period 1972-2005 CE should yield similar values to those of EHC and OHC over the same period, as the

radiative imbalance causes the heat storage within the different climate subsystems. Indeed, EHC and OHC estimates are gen-180

erally similar within each model, while N values diverge from those for the Earth heat content in some models, which may

suggest that those models have biases in their represented energy budget. Furthermore, the inter-model spread obtained for

these three magnitudes is excessively large, given that all Historical simulations were forced using the same boundary con-

ditions –i.e., the same external forcing. Further details about the large spread among the CMIP5 simulations, as well as the

discrepancies in N, EHC and OHC can be found in the Discussion section.185
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A different situation is found for the magnitude of the simulated heat storage within the continental subsurface, with the

CMIP5 ensemble mean yielding generally lower estimates of GHC than the observations (Figure 2b). The multimodel mean

achieves a GHC change of 5± 9 ZJ for 1972-2005 CE, which is lower than the 14± 3 ZJ in von Schuckmann et al. (2020) but

similar to the ∼ 4 ZJ in Church et al. (2011) (Table 2). However, the difference between the GHC estimates in Church et al.

(2011) and in von Schuckmann et al. (2020) is large (Figure 2), probably caused by the different source of data used in both190

products. That is, results from Church et al. (2011) are based on surface air temperatures while results from von Schuckmann

et al. (2020) are based on subsurface temperatures (see Huang, 2006; Cuesta-Valero et al., 2020, and the Data and Methods

section for more details). Therefore, the estimate of 14± 3 ZJ from von Schuckmann et al. (2020) constitutes a more robust

reference for evaluating the simulated ground heat content by the CMIP5 ensemble, indicating that models underestimate

observations of continental heat storage. Additionally, the representation of GHC in the CMIP5 GCMs is markedly limited by195

the simulated subsurface volume, which is determined by the depth of the Land Surface Model (LSM) component (Stevens

et al., 2007; MacDougall et al., 2008; Cuesta-Valero et al., 2016). Indeed, five of seven GCMs using LSM components deeper

than 40 m yield GHC estimates in agreement with the 95% confidence interval of observations from von Schuckmann et al.

(2020), suggesting that the underestimated continental heat storage and the large spread in the CMIP5 ensemble are direct

consequences of the different bottom boundary depths used by each model (see Cuesta-Valero et al., 2016, for a complete list200

of bottom boundary depths). The negative GHC estimates for both MRI simulations in Figure 2b are caused by an unrealistic

and sharp decrease of the total water content in the subsurface along these Historical simulations (see Cuesta-Valero et al.,

2016, for more details).

The CMIP5 ensemble mean constantly underestimates the cryosphere heat content in comparison with observations (Figure

2b). The multimodel average estimates a 2± 3 ZJ change in the cryosphere heat content for the period 1972-2005 CE, which205

is much lower than the observed CHC in Church et al. (2011) (7 ZJ) and in von Schuckmann et al. (2020) (7± 1 ZJ, Table 2).

Figure 3 examines the three components contributing to the cryosphere heat content in this analysis for each CMIP5 model (i.e,

sea ice, subsurface ice and glaciers), in order to understand the reason for the disagreement between simulated and observed

CHC estimates. The simulated heat uptake to reduce sea ice volume is in agreement with observations, with a multimodel

mean of 2± 2 ZJ while observations reach∼ 2 ZJ and 2.5± 0.2 ZJ in Church et al. (2011) and von Schuckmann et al. (2020),210

respectively (Figure 3, Table 2). However, the spread in the CMIP5 results is still large, with the difference between the highest

and the lowest estimates of heat storage due to sea ice melting being more than double the value of the ensemble mean (5 ZJ).

Heat uptake by subsurface ice is the second contributor to the cryosphere heat content in all models after sea ice melting.

Nevertheless, neither Church et al. (2011) nor von Schuckmann et al. (2020) include observations of the change in terrestrial

subsurface ice, and not all CMIP5 GCMs include a representation of the subsurface ice masses, thus we cannot assess the ability215

of the CMIP5 GCMs to reproduce this term of the cryosphere heat content. Furthermore, the approximation used in this study

to estimate the simulated heat absorbed by glaciers yields a much smaller value from models than from observations (∼ 2.8 ZJ

in Church et al. (2011) and ∼ 1.4 ZJ in von Schuckmann et al. (2020)), indicating that a comprehensive representation of

terrestrial ice masses is necessary to reproduce observations.
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The heat storage within the atmosphere yields the best results for the CMIP5 GCMs in comparison with observations220

(Figure 2b). The CMIP5 ensemble mean achieves an atmosphere heat content of 2± 2 ZJ, in agreement with observations

from Church et al. (2011) (2 ZJ) and von Schuckmann et al. (2020) (2.2± 0.3 ZJ). Additionally, one third of the models

displays AHC estimates within the 95% confidence interval of the observed atmosphere heat content. Despite the similarity

between the multimodel mean and observations, the inter-model spread is large, with the difference between the maximum and

minimum AHC from CMIP5 models reaching 5 ZJ, more than double the value of the observational estimate.225

3.2 Heat Partition Within Climate Subsystems

The simulated heat storage within each climate subsystem has been assessed in the previous section, displaying a large inter-

model spread among CMIP5 GCMs. This wide range of results hampers the assessment of the simulated Earth heat inventory,

particularly the evaluation of the represented ocean heat content and total heat in the climate system. Nevertheless, models

may be distributing the total heat content among the four climate subsystems similarly. This section evaluates the partition of230

heat among climate subsystems within each CMIP5 GCM, testing whether models simulating higher values of N and EHC

distribute this energy in the same proportion among climate subsystems as models simulating lower values of total heat content.

The simulated heat partitions by the thirty CMIP5 GCMs achieve a lower inter-model spread in comparison with the simu-

lated EHI, particularly for the ocean component (Figures 4 and 5, Table 2). Nevertheless, the ensemble mean presents a partition

of heat in each climate subsystem similar to the results for the EHI. That is, the simulated proportion of energy in the ocean is235

larger than observations, the proportion of heat in the continental subsurface and in the cryosphere is lower than observations,

and the proportion of heat in the atmosphere is in agreement with observations. Additionally, results vary depending on the

metric used to characterize total heat content in the system, particularly for the ocean.

All thirty CMIP5 GCM simulations represent a proportion of heat stored in the ocean within the 95% confidence interval

of the observations considering EHC as metric for total energy in the climate system (OHC/EHC, blue dots in Figure 4a),240

achieving a multimodel mean just 2% higher than Church et al. (2011) and 8% higher than von Schuckmann et al. (2020) (Table

2). The spread of OHC/EHC estimates is small, with values ranging from 91± 2 % (MIROC5) to 100± 1 % (MRI-CGCM3).

Nevertheless, the simulated proportion of heat in the ocean presents different results for some models when considering the

integration of the radiative imbalance at the top of the atmosphere as metric for total heat in the climate system (OHC/N,

black dots in Figure 4a). The model spread is much larger for OHC/N estimates than for OHC/EHC estimates, ranging from245

56± 2 % (CMCC-CM) to 122± 4 % (NOR-ESM1-M). These different estimates are related to the differences between N and

EHC values displayed in Figure 2. That is, some CMIP5 models yield excessively different values of N and EHC, suggesting

the presence of non-conservation terms in the simulated energy budget (see Discussion section). Six models obtain OHC/N

estimates above 100%, which indicates that the simulated N in those models is much lower than EHC estimates (Figure 4a).

The opposite behavior occurs in other five models that simulate OHC/N values below 80%, which is probably a excessively250

small proportion of heat stored in the ocean in comparison with observations (Hansen et al., 2011; Palmer et al., 2011; Rhein

et al., 2013; Palmer and McNeall, 2014; Trenberth et al., 2014; Hobbs et al., 2016; von Schuckmann et al., 2016, 2020).
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Estimates of the proportion of heat in the ground from CMIP5 GCMs show smaller differences between GHC/N and

GHC/EHC than the retrieved proportion of heat in the ocean (Figure 4b). Both GHC/N and GHC/EHC estimates have a

multimodel mean and 95% confidence interval of 2± 3 %, which is in agreement with estimates derived from Church et al.255

(2011) (∼ 2 %), but excessively low in comparison with results from von Schuckmann et al. (2020) (7± 2 %). As in the case

of the simulated ground heat content, the relatively large inter-model spread in the simulated proportion of heat stored in the

continental subsurface is caused by the depth of the LSM component. Indeed, deeper models reach higher proportions of heat

in the ground than shallower models using either EHC or N as metric for total heat in the climate system. This marked depen-

dence on the depth of the represented subsurface is apparent in a covariance analysis, with significant correlation coefficients260

between the depth of the LSM component and the GHC/N and GHC/EHC estimates (Figure S2).

As in the case of the continental subsurface, CMIP5 GCMs consistently underestimate the observed proportion of heat

absorbed by the cryosphere. Both metrics of total heat content in the system yield similar ratios (CHC/N and CHC/EHC),

with only one model (the HADGEM2-CC) reaching the 95% confidence interval from von Schuckmann et al. (2020) (Figure

5). This disagreement between observations and CMIP5 simulations is expected given the large differences in the simulated265

and observed cryosphere heat content (Figure 2b), while the partial agreement between the HADGEM2-CC estimates and

the observations is likely the result of the low EHC and N values simulated by this model (Figure 2a). Nevertheless, CMIP5

models and observations agree if considering only the heat allocated for sea ice melting (Table 2), with the multimodel average

yielding an average of 1± 1 % in comparison with 1 % from Church et al. (2011) and 1.2± 0.2 % from von Schuckmann et al.

(2020).270

The CMIP5 GCMs also show similar estimates for the proportion of heat in the atmosphere using both EHC and N metrics. A

large proportion of the models achieve AHC/N and AHC/EHC ratios within the 95% confidence interval from von Schuckmann

et al. (2020), and contain the observational estimates from Church et al. (2011) within the limits of their individual confidence

intervals (Figure 5). The ensemble average yields a proportion of heat in the atmosphere of around 1± 1 %, with observations

reporting 0.9% (Church et al., 2011) and 1.1± 0.2 %, which is a reassuring result for the CMIP5 models (von Schuckmann275

et al. (2020), Table 2).

4 Discussion

The thirty CMIP5 GCMs analyzed here simulate markedly different total heat contents within the climate system, indepen-

dently of the analyzed metric (N, EHC and OHC values in Figure 2a), which may be caused by the different response from

each model to the common Historical forcing. That is, different models simulate distinct responses to the common external280

forcing, as seen in the broad range of simulated equilibrium climate sensitivities in the literature (e.g. Knutti et al., 2017).

Indeed, Forster et al. (2013) assessed the response to the common forcing of a large ensemble of CMIP5 GCMs in terms of

climate sensitivity, feedbacks and adjusted radiative forcing, showing that these models yielded a broad range of responses.

To test the potential relationship between total heat storage and model response, we performed a covariance analysis between

some of the metrics used by Forster et al. (2013) to characterize the response of CMIP5 models and the estimated Earth heat285
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inventory here (Figure 6). The eighteen CMIP5 models in common with those analyzed in Forster et al. (2013) do not show

covariance between the heat storage within the different climate subsystems and equilibrium climate sensitivity nor with the

transient climate response. However, the adjusted forcing during the last part of the Historical experiment (2001-2005 CE)

presents significant correlation coefficients with N, EHC and OHC (red triangles in Figure 6). This is a reasonable result, as

different adjusted forcings result from a spread of radiative imbalances at the top of the atmosphere and climate sensitivities,290

from which different N values arise –and therefore distinct heat storage within the ocean (Palmer and McNeall, 2014). The

relationship between adjusted forcing and heat storage, nevertheless, should be considered just as a potential line of research,

since the estimates of radiative forcing from transient climate simulations depend on the method employed in the analysis

(Forster et al., 2016), meaning that further work is needed to evaluate the robustness of this relationship.

The simulated proportion of heat in the ocean for some models shows markedly different results depending on the used295

metric for total heat content in the climate system (Figure 4a). The different heat partition is caused by the discrepancies

between estimates of N and EHC within each GCM simulation (Figure 2a), which are probably related to non-conservation

terms in the simulated energy budget by each GCM as discussed in Hobbs et al. (2016). That is, small numerical inconsistencies,

insufficient spin up time, or the amount of water leaving the LSM component at the bottom of the soil column, among others,

may prevent the conservation of energy in GCM simulations (Sen Gupta et al., 2013; Hobbs et al., 2016; Séférian et al.,300

2016; Trenberth et al., 2016). We applied a simple drift-removal technique to each variable considered in this study in order to

minimize the effect of possible non-conservation terms in our results (see Section 2). This method has shown good results in

previous analyses including several CMIP5 experiments, although no perfect solution is available yet (Hobbs et al., 2016).

The low ground heat content achieved by the shallow LSM components (Figure 2b) alters the distribution of heat within

models, mainly causing a higher proportion of heat stored in the ocean if considering EHC as metric for total heat content.305

This can be seen in a covariance analysis between OHC/EHC estimates and the depth of the LSM components in the CMIP5

ensemble (Figure S2). The shallow depth of the LSM components included in the CMIP5 GCMs limits the represented amount

of continental heat storage within each simulation (Stevens et al., 2007; MacDougall et al., 2008; Cuesta-Valero et al., 2016;

Hermoso de Mendoza et al., 2020), altering the GHC estimates and the obtained GHC/EHC and GHC/N ratios from the thirty

CMIP5 GCMs analyzed here (Figures 2b, 4b and S2). Simulated OHC/N values, nevertheless, do not present such covariance310

with the depth of the LSM component, nor the simulated proportion of heat in the atmosphere and the cryosphere (Figure S2

and S3). Surprisingly, the simulated CHC indicates significant covariance with the depth of the employed LSM component

(red diamond in Figure 6), although this should be the result of the different subsurface volume within CMIP5 models. That

is, deeper models tend to simulate more subsurface ice and GHC than shallower models, and therefore more heat can be used

to thaw the larger mass of subsurface ice. This result suggests another limit to the representation of the EHI within GCM315

simulations, as the lack of a sufficient continental subsurface volume alters the simulated heat uptake by the subsurface ice

masses. Nevertheless, further work is required to clarify this point.

The simulated cryosphere heat content is in better agreement with observations when omitting the heat absorbed by terrestrial

ice masses from the assessment (Figure 3 and Table 2), and the same can be said about the simulated proportion of heat in

the ocean (Table 2). Furthermore, the observed proportion of heat in the ocean yields different results if considering the whole320
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cryosphere for estimating EHC or if considering only the change in sea ice volume (Table 2). Therefore, heat uptake by

terrestrial ice sheets and glaciers is important to improve the simulated EHI and the partition of heat within the four climate

subsystems. CMIP5 GCMs currently include modules representing glaciers and ice sheets, but such model components were

not activated for generating the CMIP5 simulations analyzed here, probably due to issues with computational resources and

technical challenges of coupling the ice sheet grids with the rest of subsystems (Flato et al., 2013). New experiments are325

planned to assess the ability of the latest generation of GCMs to reproduce the ice sheets of Greenland and Antarctica within

the sixth phase of the Coupled Model Intercomparison Project (CMIP6, Nowicki et al., 2016), which could be also useful to

test if including land ice masses enhances the representation of the Earth heat inventory within GCM simulations.

5 Conclusions

The ensemble of CMIP5 GCMs analyzed here overestimates the amount of heat stored in the ocean and underestimates the heat330

uptake by the cryosphere and the continental subsurface. Models present a large inter-model spread of ocean heat content and

total heat content in the system, probably related to the wide range of simulated responses to external forcing in these GCMs.

The lack of an adequate representation of terrestrial ice masses and continental subsurface volume within CMIP5 models

limits the amount of heat allocated within the cryosphere and the continental subsurface. The issue of heat conservation within

complex numerical simulations also affects the represented Earth heat inventory in the CMIP5 ensemble. Nevertheless, there335

is good agreement between simulated and observed atmosphere heat storage and heat uptake by changes in sea ice volume.

Future generations of coupled general circulation models should include deeper continental subsurfaces and a representation

of terrestrial ice masses in order to improve the simulated Earth heat inventory, as well as the associated phenomena relevant

to society such as sea level rise or extreme heat stress events.
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Table 1. Variables from the CMIP5 archive employed to estimate the heat content within each climate subsystem by each GCM (Section

2). References for each GCM Historical experiment are also provided. All variables correspond with the r1i1p1 realization of the Historical

experiment. A description of all listed variables can be found at the dedicated webpage of the Lawrence Livermore National Laboratory

(LLNL, 2010).
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Table 2. Earth heat inventory and proportion of heat allocated in each climate subsystem from the thirty CMIP5 GCMs analyzed here

(MMM), and observations from Church et al. (2011) (Ch11) and von Schuckmann et al. (2020) (vS20). Heat storage in ZJ, heat proportion

in %.

Magnitude MMM Ch11 vS20

N 264± 171 – –

EHC 256± 177 212 188± 17

OHC 247± 172 199 164± 17

GHC 5± 9 4 14± 3

AHC 2± 2 2 2.2± 0.3

CHC 2± 3 7 7± 1

CHC (only sea ice) 2± 2 2 2.5± 0.2

OHC/N 93± 24 – –

OHC/EHC 96± 4 94 88± 12

OHC/EHC (only sea ice) 96± 4 96 90± 12

GHC/N 2± 3 – –

GHC/EHC 2± 3 2 7± 2

GHC/EHC (only sea ice) 2± 3 2 7± 2

AHC/N 1.0± 0.9 – –

AHC/EHC 1± 1 0.9 1.1± 0.2

AHC/EHC (only sea ice) 1± 1 0.9 1.1± 0.2

CHC/N 1± 1 – –

CHC/EHC 1± 1 3 3.6± 0.7

CHC/EHC (only sea ice) 1± 1 1 1.2± 0.2
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Figure 1. Example to illustrate the process to estimate heat proportions using data from the CCSM4 Historical simulation. In this case,

the proportion of heat within the continental subsurface (GHC/N) is estimated as the slope from the linear regression analysis (solid line)

between the simulated GHC and N anomalies (dots) for the period 1972-2005 CE multiplied by 100. The proportion of heat in the rest of

climate subsystems is estimated replacing the GHC anomaly with the corresponding heat content anomaly. The EHC anomaly is also used

as metric for the total heat content in the system by replacing the N anomaly in the regression analysis.

24

https://doi.org/10.5194/esd-2020-88
Preprint. Discussion started: 28 December 2020
c© Author(s) 2020. CC BY 4.0 License.



C
C

SM
4

C
E

SM
1−

B
G

C

C
E

SM
1−

C
A

M
5

C
E

SM
1−

FA
ST

C
H

E
M

C
E

SM
1−

W
A

C
C

M

N
O

R
−

E
SM

1−
M

N
O

R
−

E
SM

1−
M

E

IN
M

−
C

M
4

M
IR

O
C

−
E

SM

M
IR

O
C

−
E

SM
−

C
H

E
M

M
IR

O
C

5

G
FD

L
−

C
M

3

G
FD

L
−

E
SM

2G

G
FD

L
−

E
SM

2M

M
R

I−
C

G
C

M
3

M
R

I−
E

SM
1

M
PI

−
E

SM
−

L
R

M
PI

−
E

SM
−

M
R

M
PI

−
E

SM
−

P

C
M

C
C

−
C

M

C
M

C
C

−
C

M
S

C
A

N
E

SM
2

IP
SL

−
C

M
5A

−
L

R

IP
SL

−
C

M
5A

−
M

R

IP
SL

−
C

M
5B

−
L

R

G
IS

S−
E

2−
H

G
IS

S−
E

2−
R

B
C

C
−

C
SM

1.
1

B
C

C
−

C
SM

1.
1−

M

H
A

D
G

E
M

2−
C

C

M
M

M

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440

H
ea

t (
10

21
 J)

N
EHC
OHC

a)

C
C

SM
4

C
E

SM
1−

B
G

C

C
E

SM
1−

C
A

M
5

C
E

SM
1−

FA
ST

C
H

E
M

C
E

SM
1−

W
A

C
C

M

N
O

R
−

E
SM

1−
M

N
O

R
−

E
SM

1−
M

E

IN
M

−
C

M
4

M
IR

O
C

−
E

SM

M
IR

O
C

−
E

SM
−

C
H

E
M

M
IR

O
C

5

G
FD

L
−

C
M

3

G
FD

L
−

E
SM

2G

G
FD

L
−

E
SM

2M

M
R

I−
C

G
C

M
3

M
R

I−
E

SM
1

M
PI

−
E

SM
−

L
R

M
PI

−
E

SM
−

M
R

M
PI

−
E

SM
−

P

C
M

C
C

−
C

M

C
M

C
C

−
C

M
S

C
A

N
E

SM
2

IP
SL

−
C

M
5A

−
L

R

IP
SL

−
C

M
5A

−
M

R

IP
SL

−
C

M
5B

−
L

R

G
IS

S−
E

2−
H

G
IS

S−
E

2−
R

B
C

C
−

C
SM

1.
1

B
C

C
−

C
SM

1.
1−

M

H
A

D
G

E
M

2−
C

C

M
M

M

−5
−4
−3
−2
−1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

H
ea

t (
10

21
 J)

GHC
AHC
CHC

b)

Figure 2. Simulated heat storage for 1972-2005 CE from thirty CMIP5 GCM Historical simulations. (upper panel) Results for N (dark blue

bars), EHC (blue bars) and OHC (light blue bars). (bottom panel) Results for GHC (brown bars), AHC, (orange bars) and CHC (gray bars).

Vertical black lines at the top of the bars indicate the 95% confidence interval for each model. Observations from von Schuckmann et al.

(2020) are shown as solid horizontal lines and shadows (mean and 95% confidence intervals), and observations from Church et al. (2011) are

displayed as dashed horizontal lines. Multimodel means and 95% confidence intervals are indicated in the right side of the panel (MMM).

25

https://doi.org/10.5194/esd-2020-88
Preprint. Discussion started: 28 December 2020
c© Author(s) 2020. CC BY 4.0 License.



C
C

SM
4

C
E

SM
1−

B
G

C

C
E

SM
1−

C
A

M
5

C
E

SM
1−

FA
ST

C
H

E
M

C
E

SM
1−

W
A

C
C

M

N
O

R
−

E
SM

1−
M

N
O

R
−

E
SM

1−
M

E

IN
M

−
C

M
4

M
IR

O
C

−
E

SM

M
IR

O
C

−
E

SM
−

C
H

E
M

M
IR

O
C

5

G
FD

L
−

C
M

3

G
FD

L
−

E
SM

2G

G
FD

L
−

E
SM

2M

M
R

I−
C

G
C

M
3

M
R

I−
E

SM
1

M
PI

−
E

SM
−

L
R

M
PI

−
E

SM
−

M
R

M
PI

−
E

SM
−

P

C
M

C
C

−
C

M

C
M

C
C

−
C

M
S

C
A

N
E

SM
2

IP
SL

−
C

M
5A

−
L

R

IP
SL

−
C

M
5A

−
M

R

IP
SL

−
C

M
5B

−
L

R

G
IS

S−
E

2−
H

G
IS

S−
E

2−
R

B
C

C
−

C
SM

1.
1

B
C

C
−

C
SM

1.
1−

M

H
A

D
G

E
M

2−
C

C

M
M

M

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

H
ea

t (
10

21
 J)

Total CHC
Land
Glaciers
Sea

Figure 3. Simulated CHC for 1972-2005 CE. Dark blue bars indicate the heat uptake due to changes in subsurface ice mass, blue bars indicate

the heat uptake due to changes in glacier mass, and purple bars indicate the heat uptake due to changes in sea ice volume (see Section 2

for details). Vertical black lines at the top of the bars indicate the 95% confidence interval for each model. The multimodel mean and 95%

confidence interval for the heat uptake due to changes in sea ice volume are indicated in the right side of the panel (MMM). Observations

from von Schuckmann et al. (2020) are shown as solid horizontal lines and shadows (means and 95% confidence intervals), and observations

from Church et al. (2011) are displayed as dashed horizontal lines.
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Figure 4. (a) Simulated proportion of heat within the ocean for the period 1972-2005 CE using EHC (blue dots) and N (black dots) as

estimates of total heat content in the climate system. (b) Simulated proportion of heat within the continental subsurface for the period 1972-

2005 CE using EHC (red dots) and N (black dots) as estimates of total heat content in the climate system. Observations from von Schuckmann

et al. (2020) are shown as solid horizontal lines and shadows (means and 95% confidence intervals), and observations from Church et al.

(2011) are displayed as dashed horizontal lines. Multimodel means and 95% confidence intervals are indicated in the right side of the panels

(MMM). Black dashed lines indicate the 0% and 100% values.
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Figure 5. (a) Simulated proportion of heat within the atmosphere for the period 1972-2005 CE using EHC (orange dots) and N (black dots)

as estimates of total heat content in the climate system. (b) Simulated proportion of heat within the continental subsurface for the period

1972-2005 CE using EHC (light blue dots) and N (black dots) as estimates of total heat content within the climate system. Observations from

von Schuckmann et al. (2020) are shown as solid horizontal lines and shadows (means and 95% confidence intervals), and observations from

Church et al. (2011) are displayed as dashed horizontal lines. Multimodel means and 95% confidence intervals are indicated in the right side

of the panels (MMM). The black dashed line indicate the 0% value.
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Figure 6. Correlation coefficients between the simulated Equilibrium Climate Sensitivity (ECS, squares), Transient Climate Response (TCR,

circles), Adjusted Forcing (AF, triangles), depth of the LSM component (LSM Depth, diamonds) and the components of the Earth heat

inventory. Results obtained by analyzing the eighteen models presenting estimates of ECS, TCR and AF in Forster et al. (2013). Red symbols

indicate statistically significant results at the 95% confidence level using a Student’s t-test. The dashed black horizontal line indicates zero

values.
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