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ABSTRACT 15 

Studies of ‘emergent constraints’ have frequently proposed that a single metric can constrain future responses of the 
Earth system to anthropogenic emissions. Here, we illustrate that strong relationships between observables and future 
climate across an ensemble can arise from common structural model assumptions with few degrees of freedom. Such 
cases have the potential to produce strong, yet overconfident constraints when processes are represented in a common, 
oversimplified fashion throughout the ensemble. We consider these issues in the context of a collection of published 20 
constraints; and argue that although emergent constraints are potentially powerful tools for understanding ensemble 
response variation and relevant observables,  their naïve application to reduce uncertainties in unknown climate 
responses could lead to bias and overconfidence in constrained projections. The prevalence of this thinking has led to 
literature which made statements on the probability bounds of key climate variables that were confident yet 
inconsistent between studies.  Together with statistical robustness and a mechanism, assessments of climate responses 25 
must include multiple lines of evidence to identify biases that can arise from shared, oversimplified modeling 
assumptions which impact both present and future climate simulations in order to mitigate against the influence of 
shared structural biases. 

1 INTRODUCTION 
Models of the climate system face a particular challenge: their primary purpose is to project the future response of the 30 
Earth system to forcings which have yet to be realized.  Confidence in models’ future projections cannot come from 
iterative verification and improvement, but instead must be grounded in a combination of an understanding of the 
adequacy of simulation of relevant Earth System feedback processes, together with an assessment of the degree to 
which the models can represent historical behaviour. The latter can potentially provide metrics or constraints that can 
inform which configurations of each model are most defensible as tools to project future climates. 35 

In climate model development and calibration, these types of constraints are utilised in an extended expert assessment 
where biases in climatology and historical trends are iteratively reduced and addressed through improved process 
representation and parameter adjustment (Hourdin et al., 2017; Mauritsen et al., 2012; Schmidt et al., 2017), or 
systematically through the use of perturbed ensembles and  formal inference (Tett et al., 2017; Williamson et al., 2013; 
Zhang et al., 2018).  Adequate performance on a subset of metrics is generally accepted as necessary for consideration 40 
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as a member of the collection of climate models (Eyring et al., 2016) used to assess future change in IPCC assessment 
reports (Pachauri et al., 2014) - for example, the need for models to conserve energy or to broadly reproduce the 
observed global mean temperature evolution of the 20th Century.  Other performance metrics may be of particular 
interest to specific modeling centers - for example, reducing biases in the simulation of a particular regional climate 
or for a particular application (for example, for simulating climate features relevant for energy infrastructure (Golaz 45 
et al., 2019) or optimizing model performance at high latitudes (Tjiputra et al., 2020). 

Recent literature (Bretherton and Caldwell, 2020; Brient, 2019; Cox, 2019; Eyring et al., 2019; Hall et al., 2019; Klein 
and Hall, 2015) has also focused on a class of “emergent” constraints which differs conceptually in that the relevance 
of the metric is defended by the existence of a correlation between a potentially observable metric and a projected 
future climate response, within an ensemble of ESM simulations.  Emergent constraints are generally applied in a 50 
regression framework, where the ensemble is used to define a predictive relationship which can be combined with 
observations to produce an estimate of constrained projected values.   Examples include constraints of Equilibrium 
Climate Sensitivity (hereafter ECS) from aspects of natural variability (Cox et al., 2018b) and cloud properties (Brient 
and Schneider, 2016; Sherwood et al., 2014), Transient Climate Response (TCR) from observed warming trends 
(Nijsse et al., 2020; Tokarska et al., 2020), and future carbon cycle (Cox, 2019) and ice-albedo feedbacks (Cox, 2019; 55 
Qu and Hall, 2007; Thackeray and Hall, 2019) from their observed seasonal variations. 

There are a number of factors that have been recognized which might lead to overconfidence in the projections from 
emergent constraints.  The first is that, because of the relatively small sample size in CMIP ensembles (or small 
effective sample size due to model interdependencies (Knutti et al., 2013; Masson and Knutti, 2011; Sanderson et al., 
2015)) and the large number of outputs, it is inevitable that some variables will be correlated with climate response 60 
metrics by chance (Caldwell et al., 2014).  This means that our confidence in a constraint cannot arise from correlation 
across the ensemble alone, but must also include the plausibility of the proposed mechanism which relates the predictor 
to the future climate response (Caldwell et al., 2018).  However, although many published emergent constraints 
propose a physical explanation for an underlying process which might jointly control the predictor and predictand, 
robust demonstration of a mechanism often requires tools which are not available, such as systematic sampling of 65 
parameters and process representations in models (Hall et al., 2019; Klein and Hall, 2015) 

At least some emergent constraints can be shown to be overconfident using existing data, by considering new models 
which are outliers in previously proposed relationships (Klein and Hall, 2015; Schlund et al., 2020) or lack of 
agreement of different constraints on the same quantity in the literature (Brient, 2019).  Such disagreement might arise 
due to inconsistency in the definition of a climate response: for example, if ECS is in fact dependent on the climate 70 
state then the value inferred from cooling during the last glacial maximum would differ from that inferred from recent 
decades.    But overconfidence could also arise from overly strong statistical assumptions on the robustness of 
ensemble-derived relationships (Williamson and Sansom, 2019).  The standard regression model uses an ensemble-
derived regression relationship between predictor (the potentially measurable variable) and predictand (the unknown 
climate response) to make a calibrated projection,  implicitly assuming the real world is exchangeable with models in 75 
the ensemble, which is to say that the relationship is equally likely to apply to the real world as to members of the 
model ensemble.    

It is generally understood that Earth System Models, like any model, contain errors and approximations which mean 
we would not expect this assumption of exchangeability to hold.  We know that the models which populate our 
ensembles are subject to limits of resolution and complexity. This means that they can be considered only as 80 
approximations of the real world, likely with more in common with each other than reality (an issue which can be 
compounded by replicated assumptions and components within the ensemble; (Caldwell et al., 2014; Sanderson et al., 
2015)).   

However, although the mean and variance of ensemble projections may be subject to biases, the standard regression 
model used in ECs makes a strong additional assumption of exchangeability that intra-ensemble relationships are 85 
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applicable to the real world, potentially leading to a confident yet incorrect constrained projection.   Even in the 
presence of a strong correlation and a plausible physical mechanism explaining the constraint in simulations (Caldwell 
et al., 2018), the correlation might only arise due to common simplifications throughout the ensemble.  Such concerns 
have led to debate as to whether emergent constraints should be included in integrative assessments of uncertainty in 
ECS (Sherwood et al., 2020), underlining the need for a robust framework in which to consider emergent constraints 90 
as lines of evidence. 

A first step towards more robust use of emergent constraints is to combine different lines of evidence (Bretherton and 
Caldwell, 2020; Brient, 2019), effectively relaxing the assumption that a single constraint is reliable (but maintaining 
that constraints have some potential value, even if they disagree).  However, enacting this approach requires 
considering additional factors: the degree to which each component constraint has a plausible mechanism (Caldwell 95 
et al., 2018) and the degree of independence assumed between different constraints (Bretherton and Caldwell, 2020). 

Uncertainties in the relationship and in the source ensemble can at least be represented by framing the problem in a 
Bayesian framework (Hargreaves et al., 2012; Renoult et al., 2020) or using information theory approaches (Brient 
and Schneider, 2016).  These frameworks can naturally allow the integration of multiple constraints by effectively 
weighting the climate responses of different models in the ensemble by likelihood informed by a set of constraints – 100 
however these approaches do not test the fundamental implicit assumptions of the regression framework used in most 
published ECs.  Critically, they can also be expanded to represent the likelihood that ensemble members are 
exchangeable with reality (Williamson and Sansom, 2019), which is effectively assumed in most studies published to 
date.  But even in an ideal case, elements of the calibration of the statistical model parameters would remain somewhat 
subjective, conditional on prior assumptions about climate responses and chosen metrics of model adequacy and 105 
interdependency. 

In the following section, we discuss how emergent constraints could hypothetically arise due to structural deficiencies 
in how processes are represented in the model - a predictor-predictand relationship could exist within the common 
simplified framework of model parameterizations, which would be overly confident if applied to the real world.  To 
illustrate this, we consider a situation where we know that our ensemble explores only a single model structure which 110 
is oversimplified compared to the real world. 

2 A LESSON FROM PARAMETER PERTURBATION EXPERIMENTS 
Although the concept of emergent constraints as applied to multi-model ensembles has become popular in the last 
decade, the general formulation was used previously in the perturbed parameter literature.  (Piani et al., 2005) used a 
statistical formulation which might today be classified as an emergent constraint, identifying statistical modes of 115 
variability which were correlated with climate sensitivity in a large ensemble of perturbed parameter experiments 
(PPEs), then using observations to produce constrained estimates of ECS.  The ensemble used in this case was 
sufficiently large (Stainforth et al., 2005) that the relationships were statistically robust in sample, but were found to 
be inaccurate when applied to an out of sample set of simulations (in this case, predicting the climate sensitivity of 
members of the CMIP ensemble (Sanderson, 2013)).  120 

To understand why this is the case, we must consider the conceptual differences between perturbed-parameter and 
multi-model ensembles.  In PPEs, a single model structure is used, and both predictors and predictands are functions 
of the parameters which are perturbed in the experiment.  Emergent constraints in a PPE are generally easy to find 
(Knutti et al., 2006; Piani et al., 2005; Sanderson, 2011; Yokohata et al., 2010) because there is a low-dimensional 
functional relationship between predictors and future response in the ensemble - both are, by construction, functions 125 
of the perturbed input parameters.  Feedback variation in a PPE is a function of a subset of the parameters which have 
been perturbed; thus, if any potentially observable quantities are also functions of those same parameters, an emergent 
constraint is automatically present.   Due to this underlying parametric structure, many emergent constraints can be 
found in a PPE; but they are not individually useful, because there are no model versions which satisfy all constraints 
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simultaneously due to the structural component of model error which cannot be tuned (Sanderson et al., 2008), and 130 
their predictions are generally not applicable to other models (Sanderson, 2011, 2013; Yokohata et al., 2010) (an effect 
which has been observed in multi-structure PPEs(Kamae et al., 2016)). 

In model calibration exercises, structural errors in a single model manifest through differences in optimal parameter 
configurations which arise from prioritizing different observations in the cost function.  For example, different optimal 
parameter configurations minimize errors in the Amazon and Indonesian rainforests (McNeall et al., 2016), implying 135 
an underlying structural error in the model which requires that a global calibration must be a trade-off in biases in the 
two regions, leaving an irreducible error which cannot be eliminated by parameter adjustment alone.   

It is understood that probabilistic predictions of future changes made from a PPE must be robust in the face of this 
irreducible error (Rougier, 2007).  In some cases, the MME has been used as an out of sample test to assess 
overconfidence in predictions made from relationships within the PPE (Sanderson, 2013; Sexton and Murphy, 2012).  140 
The correspondence between model errors and the model parameter space also allows for the conceptualization and 
quantification of error trade-offs through ‘history matching’ (McNeall et al., 2016; Williamson et al., 2013) 
(approaches which rule out parts of parameter space that perform poorly in multiple metrics).  Such approaches can 
retain a subset of model variants with comparable net errors but with different tradeoffs (in the simple example above, 
including model versions which minimize errors in either the Amazon or Indonesian rainforests). 145 

Such strategies seek to incorporate model performance in reproducing a range of observables using a model which is 
imperfect, where it is understood that placing all emphasis on a single observable (as in an emergent constraint) would 
lead to overconfidence.  In a PPE, this is demonstrable because we have a wider structural sample (the MME) in which 
predictions can be tested, and because model errors can be represented as a function of model parameters which helps 
us both conceptualize and quantify systematic errors.   150 

In a MME, we do not have similar out-of-sample estimates to illustrate the limitations of ensemble-derived 
correlations, and there is not necessarily a simple underlying parametric structure which allows us to quantify how 
assumptions map onto errors. Our experience with PPEs has shown that emergent constraints can arise due to an 
underlying parametric structure - which is present by construction in a PPE, but may also be effectively present in an 
MME if the same parameterizations are used throughout the ensemble.  This is a potential source of overconfidence 155 
in existing ECs which is not generally accounted for. 

If a MME includes subsets of models with common structural assumptions, it is also possible that ECs may exist 
within a given subset. In such cases, confidence in the emergent constraint should be conditioned on the degree to 
which the models in the subset are plausible.    Underlying these uncertainties is a requirement for independently 
assessing the likelihood or plausibility of model structures.   160 

In short, we cannot easily quantify the impacts of structural error in MME-derived ECs, but equally, it is not justifiable 
to assume that the MME is interchangeable with reality or that common structural errors are absent.  Indeed, the very 
presence of an EC for a given process in an MME might be indicative of a lack of diversity of process representation 
because constraints are more likely to emerge if there are limited effective degrees of freedom represented in the 
ensemble.  Robust multi-metric approaches which are a demonstrable necessity in a PPE are equally advisable in an 165 
MME. 

3 THE NATURE OF MULTI-MODEL EMERGENT CONSTRAINTS 
How then do we assess whether an ensemble is sufficiently structurally diverse that an emergent constraint arising 
from it could be applicable to the real world?    In a PPE, constraints can be tested to some extent by testing 
relationships in the MME, which we can assume contains a larger structural sample; but for a MME, we have no such 170 
superset. If an emergent constraint has been found in a MME (providing it has not been demonstrated to be statistically 
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spurious by, for example, additional models which significantly weaken the correlation (Klein and Hall, 2015)), it 
then remains to assess the degree to which that emergent constraint can be applied to reality (Williamson and Sansom, 
2019).   

Here, we propose that ECs can be categorised conceptually, and by doing so, the nature of their potential structural 175 
errors can be better evaluated.  We consider three ‘kinds’ of EC: 

3.1 CONSTRAINTS OF THE FIRST KIND: BIAS PERSISTENCE/SIGNAL EMERGENCE 
The first kind of constraint includes cases where the measured quantity and the unknown quantity are of the same 
nature, such that both are expressions of a system’s response to a forcing with comparable spatial and temporal 
features. For example, if the observed historical warming in a MME is used to constrain the warming in a future 180 
scenario (Jiménez-de-la-Cuesta and Mauritsen, 2019), both predictor and predictand are expressions of global mean 
warming in response to a gradually increasing greenhouse gas forcing (constraining Transient Climate Response 
through observed warming (Nijsse et al., 2020) could be argued to fall into this category).  Other examples include 
the conditioning of future sea-ice extent trends on historical trends (Boé et al., 2009; Knutti et al., 2017; Mahlstein 
and Knutti, 2012),  constraining the range of future soil moisture with its observed transient historical trends (Douville 185 
and Plazzotta, 2017) and the persistence of carbon dioxide concentration biases in emissions-driven simulations 
(Hoffman et al., 2014).  Similarly, (Kessler and Tjiputra, 2016) show a relationship between the present day and 
future uptake of carbon in the Southern Ocean, while (Goris et al., 2018) show that similar bias persistence 
exists for deep ocean carbon uptake in the north Atlantic. 

These examples all broadly concern an emergent transient signal in response to a gradual increase in anthropogenic 190 
forcing over time, so they are effectively statements that a bias in transient response is likely to persist if forcing 
continues to increase at the same rate.  Because these constraints directly measure the trend itself, they are relatively 
insensitive to model assumptions in how and why a trend is simulated, provided there exists a robust relationship 
between the given aspect of future behaviour and its historical trend. 

This assumption is valid if it can be defended that both predictor and projected quantity are describable as functions 195 
of the same emerging trend.  The resulting EC is effectively a (potentially nonlinear) extrapolation, where the strength 
of the relationship is conditional on the degree to which models represent similar nonlinearities.  The relationship is 
not strongly conditional on underlying structural assumptions because biases are manifested similarly in the historical 
and future trends.  The strength of the correlation in the EC reflects the degree to which models agree on the form of 
the extrapolation, and thus the only concern for overconfidence is if the relationship between past and future trends is  200 
similarly biased in many models (through the common omission of a state-dependent nonlinearity, for example, or a 
missing forcing in one period in most models).     

Constraints of this type are similar to  the classical detection problem (Hegerl and Zwiers, 2011; Ribes et al., 2017) 
where the amplitude of an emerging signal in response to a forcing is estimated in the presence of noise arising from 
internal variability and other confounding forcers. There exists a large literature in performing such detection of a 205 
signal response to a forcing in the context of noise, model errors and other confounding forcings (Hegerl and Zwiers, 
2011). 

3.2 CONSTRAINTS OF THE SECOND KIND: PROCESS ISOLATION 
The second kind of EC involves the identification of a primary mechanism which governs the future response, and the 
subsequent proposal of an observable quantity which constrains the strength of that feedback within the ensemble.  210 
There are a large number of ECs which fall into this category for ECS (Brient et al., 2016; Lipat et al., 2017; Sherwood 
et al., 2014; Siler et al., 2018; Su et al., 2014; Tian, 2015; Trenberth and Fasullo, 2010; Volodin, 2008; Zhai et al., 
2015b), in most cases involving mechanistic constraints on the response of shallow convective clouds to warming 
(considered to be the primary source of uncertainty in ECS in CMIP5 (Andrews et al., 2012) and CMIP6 (Zelinka et 
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al., 2020)).  Other studies propose to directly constrain individual cloud feedbacks (Brient et al., 2016; Gordon and 215 
Klein, 2014; Qu et al., 2014; Siler et al., 2018) or future precipitation changes (Allen and Ingram, 2002; Watanabe et 
al., 2018).  In the ocean, similar process-based constraints were propsed in (Terhaar et al., 2020), which found a 
relationship between ocean acidification and Arctic deepwater formation, which was in turn related to present day 
Arctic surface water densities. 

Emergent constraints obtained by statistical data-mining (either transparently or otherwise) (Caldwell et al., 2014) can 220 
potentially fit into this category, though in order to be defensible, such constraints must be demonstrated to be 
statistically robust (Caldwell et al., 2014) and also provide a plausible mechanism to explain why the candidate process 
is the dominant factor in explaining ensemble variance in future response, and why the proposed observable is an 
expected metric of that process (Caldwell et al., 2018; Hall et al., 2019).   

However, unlike constraints of the first kind, a process-based constraint does not describe uncertainty in future 225 
response in a general sense - at best, it describes the leading order process which explains variability in future response 
across the ensemble.  A plausible, robust, process-based EC is still conditional on the plausibility of the relevant 
process as it is represented in the class of models used in the ensemble.   However, confidence in process representation 
can be assessed and potentially increased through consideration of the plausbility of common model assumptions 
(Klein and Hall, 2015) or identification of independent observables which can be used to assess the degree to which 230 
models represent relevant processes (Terhaar et al., 2020). 

3.3 CONSTRAINTS OF THE THIRD KIND: FREQUENCY SUBSTITUTION 
The third kind of constraint proposes that the future response to a given forcing A can be constrained using the response 
of the system to a different forcing B, the response to which is potentially observable.  Unlike constraints of the second 
kind, this logic does not require a specific feedback mechanism.  Unlike constraints of the first kind (a special case), 235 
it is also not a priori true that the response of the system to one forcing B is controlled by the same processes which 
control the future response A.  There are thus a larger number of potential sources of structural error compared to the 
first kind of constraint, as the simulation of responses to both A and B may have ensemble-wide biases and missing 
components.  In this case, those potential biases may arise only in the simulation of the predictor or only the predictand, 
and so errors have the potential to weaken the constraint. 240 

In such cases, the forcing associated with B differs from A in terms of its timescale or mechanism.   Examples of this 
third kind of constraint have taken B as the seasonal cycle (Covey et al., 2000; Knutti et al., 2006; Zhai et al., 2015b), 
the inter-annual variability simulated by the models (Cox et al., 2018b; Masson and Knutti, 2013a) (though it is 
arguable whether such unforced variability is in-fact measurable (Rypdal et al., 2018)) or the response to paleoclimate 
forcings (Hargreaves et al., 2012; Hegerl et al., 2006; Royer et al., 2007; Schmidt et al., 2014)  or volcanic events 245 
(Boer et al., 2007; Plazzotta et al., 2018; Wigley, 2005).  Similar approaches have used the seasonal cycle in snow 
albedo to constrain sea ice trends (Qu and Hall, 2014), future extreme precipitation (O’Gorman, 2012) and vegetation 
carbon responses to warming (Cox et al., 2013; Wang et al., 2014; Wenzel et al., 2014).  (Kwiatkowski et al., 2017) 
found that the sensitivity of tropical ocean productivity to internal variability driven temperature change was related 
to future changes in productivity under anthropogenic global warming.  The concept can be taken  further - using 250 
tendencies of forecasts on a timescale of hours to constrain long term responses to climate change (Palmer, 2020; 
Rodwell and Palmer, 2007). 

Because our confidence in the EC arises partly from the existence of the correlation within the ensemble itself, we 
must carefully assess the possibility that the emergent relationship arises due to common assumptions which are 
deployed throughout the ensemble.  Furthermore, it is more likely that a relationship will emerge if the common 255 
assumptions are simple, with a small number of effective degrees of freedom in calibration (see Figure 1, in the simple-
model example which follows).  
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For example, many CMIP-class models use similar temperature-scaling assumptions for soil respiration (Shao et al., 
2013). There is evidence that the majority of soil carbon stocks in the CMIP5 archive can be explained by a reduced 
order function of soil temperature and plant productivity which notably fails to reproduce observed carbon stocks 260 
(Todd-Brown et al., 2013) - implying a common structural bias.  A constraint on the future temperature response in 
CMIP (Cox et al., 2013) could be argued to effectively be a calibration of a low-order soil respiration model. 

In such a situation, where the CMIP models have a common and/or low-order structure, differing only in their 
calibration - the MME is in fact a PPE in disguise.  Our assumption that the ensemble represents a complete set of 
plausible structural variants interchangeable with reality is far from the truth, and worse, an ensemble with such 265 
structural limitations is more likely to produce constraints of the third kind (as we see in the simple example which 
follows) because the response to any forcing is effectively governed by a small number of degrees of freedom.  
Although there may be a robust intra-ensemble relationship between the response to a short-timescale forcing and a 
long-timescale forcing, this relationship may be the direct product of a simple common structural framework.  In order 
to have confidence in the constrained projection, it is then necessary to assess whether that common framework is 270 
both adequate and also the only plausible mechanistic model for the process.   

It should also be noted that these ‘kinds’ of constraint might be potentially useful in an illustrative sense, but they are 
not absolute.  Some published constraints undoubtedly have elements of more than one type.  For example, (Zhai et 
al., 2015b) has elements of both 2nd- and 3rd-kind constraints, in that it isolates a primary long term feedback process 
and constrains it using the response to short term forcing (seasonal variability, in this case).  Another example is  275 
constraining transient climate response from observed warming (Knutti and Tomassini, 2008; Nijsse et al., 2020; 
Schurer et al., 2018; Tokarska et al., 2020), which has elements of 1st- and 3rd-kind constraints. The transient warming 
response to an idealized forcing is constrained with its response to historical emissions, which is a 1st-kind constraint 
But there are also conceptual differences between these forcing pathways (most notably the presence of transient 
aerosol forcing in the real world) and the resulting dominant feedback processes, which introduce elements of a third-280 
kind constraint.  Ultimately, the greater the differences between the forced response considered in the constraint and 
that measured in the predictand, the more the constraint itself depends on the structural assumptions present in the 
ensemble. 

4 A SIMPLE EXAMPLE 
We can illustrate these concepts using ensembles created from two different classes of simple climate model.  285 

4.1 HEURISTIC MODEL STRUCTURES 
4.1.1 SINGLE-LAYER MODEL 
The first model uses a single timescale of response, corresponding conceptually to an ocean represented by a single 
thermodynamic slab: 

𝐶
𝑑𝑇ᇱ

𝑑𝑡
ൌ 𝐹ሺ𝑡ሻ െ 𝜆𝑇ᇱ ሺ1ሻ 290 

where C is the heat capacity of the Earth system, T’ is the global mean temperature anomaly, F is the time-dependent 
climate forcing and 𝜆 is the climate sensitivity parameter.   
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Figure	1.	An	illustration	of	the	three	kinds	of	emergent	constraint	in	two	structurally‐different	ensembles.		(a)	an	
idealised	forcing	timeseries	used	for	each	of	the	simulations	‐	a	(noisy)	linear	ramping	of	radiative	forcing	from	295 
years	0‐140	 followed	by	 (noisy)	 constant	 forcing	 from	years	140‐280.	 (b)	 shows	 the	 response	 in	 	50‐member	
perturbed	parameter	 ensembles	of	 two	 energy	balance	models,	with	one	 	 (red)	 and	 two	 (blue)	 timescales	of	
response.	(c)	a	constraint	of	the	first	kind,	showing	TCR	(warming	after	70	years	of	1	percent	annual	increase	in	
CO2	 concentrations)	 as	 a	 predictor	 of	 T140	 (warming	 at	 time	 of	 CO2	 quadrupling,	 140	 years	 in	 the	 same	
experiment).		(d)	warming	after	a	further	140	years	of	constant	(quadrupled)	CO2	concentrations.	(e,f)	constraints	300 
of	 the	 second	 kind,	 using	 the	 feedback	 parameter	 ‘lambda’	 to	 predict	warming	 after	 (140,	 280)	 years.	 (g,h)	
constraints	of	the	third	kind,	using	a	variability	metric	(Cox	et	al.,	2018b)	derived	from	detrended	temperature	
timeseries	in	years	1‐70	as	a	predictor	warming	after	(140,	280)	years.		In	each	case,	colored	points	show	members	
of	the	model	ensemble,	lines	show	bootstrap	regression	estimates,	grey	vertical	bars	show	the	10th,	50th	and	90th	
percentile	of	the	(hypothetical)	observed	uncertainty	distribution.	 	Colored	box/whisker	plots	show	the	5/95th	305 
and	 25/75th	 percentiles	 illustrating	 the	 prediction	 interval	 from	 each	 ensemble.	 	 Variance	 explained	 by	 the	
predictor	for	one	and	two	layer	models	is	printed	in	red	and	blue	text	respectively.	

4.1.2 TWO-LAYER MODEL 
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The second model is slightly more complex, with the addition of a deep ocean (Geoffroy et al., 2013): 

𝐶
𝑑𝑇ᇱ

𝑑𝑡
ൌ 𝐹ሺ𝑡ሻ െ 𝜆𝑇ᇱ െ 𝜀𝛾ሺ𝑇ᇱ െ 𝑇

ᇱሻ ሺ2ሻ 310 

 

𝐶
𝑑𝑇′
𝑑𝑡

ൌ 𝛾ሺ𝑇ᇱ െ 𝑇
ᇱሻ ሺ3ሻ 

, 

Where 𝐶is the heat capacity and 𝑇′ is the temperature anomaly of a deep ocean layer, 𝛾is the thermal diffusion 
coefficient of heat exchange between the two layers, and 𝜀 is the efficacy of heat transfer to the deep ocean (see 315 
(Geoffroy et al., 2013)). 

4.2 IDEALIZED EXPERIMENTS 
We conduct an idealised climate change experiment where for the first 140 years, CO2 concentrations are increased 
by 1 percent each year resulting in a gradual linear increase in forcing over time, followed by an equilibration period: 

𝐹ሺ𝑡ሻ ൌ 𝑎𝑡  𝑏𝜂ሺ𝑡ሻ, 𝑡 ൏ 140. ሺ4ሻ 320 

A transient component of the forcing is provided by the first term, where a=0.05 (corresponding approximately to the 
1 percent CO2 ramping experiment), and a random component is provided by the second term, where 𝜂ሺ𝑡ሻis white 
Gaussian noise, scaled by the factor b=0.5.  In the second 140 years, the transient component of the forcing is held 
constant: 

𝐹ሺ𝑡ሻ ൌ 140 𝑎  𝑏𝜂ሺ𝑡ሻ, 𝑡  140, ሺ5ሻ 325 

With each model, we produce a range of responses by creating an ensemble with parameters sampled in latin 
hypercube - in the first case ሾ𝐶, 𝜆ሿ and in the second case, ሾ𝐶,𝐶, 𝜆, 𝜀, 𝛾ሿ. Finally, we consider how different types of 
artificial ‘observation’ would constrain the projected response.  Parameter ranges for the two-layer model are informed 
by (Geoffroy et al., 2013)., and manually adjusted in the one-layer model to produce a comparable range of transient 
warming after 140 years (T140 herein, see Table 1). 330 

Parameter Symbol (Units) Minimum (l 
layer model) 

Maximum (1 
layer model) 

Minimum (2 
layer model) 

Maximum (2 
layer model) 

Upper ocean heat 
capacity 

C (Wm-2K-1yr) 10 
 

20 2 10 

Feedback parameter 𝜆 (Wm-2K-1) 0.5 2 0.5 5 

Deep ocean heat 
capacity 

C0  (Wm-2K-1yr) - - 50 500 

Deep ocean diffusion 
coefficient 

𝛾(Wm-2K-1) - - 0.5 3 

Deep ocean efficacy 𝜀(unitless) - - 0.8 2.5 

Table	1.	Parameters	used	 in	the	one‐	and	two‐layer	models	 in	the	 idealized	example,	and	the	upper	and	 lower	
bounds	of	the	sampling	range	used	in	the	ensemble	construction.	



10 

In these simple models, we can test constraints of different types and illustrate their sensitivity to common structural 
differences between the two ensembles.  We consider three constraints for future response in each of these models, 
and then interpret their relative skill. 335 

A 1st-kind constraint can be created by using the transient warming observed after 70 years (T70) to predict T140. In 
this example, the EC exists in both ensembles (though its slope differs a little between the two ensemble types):  
transient warming is near-linear in time in both cases, and so behaviour at year 140 can be extrapolated from years 1-
70. However, for the case of warming at 280 years (T280, i.e. an additional 140 years after forcing is stabilized), we 
see a strong relationship between T70 and T280 only in the single layer model (Figure 1d).  In the two layer model, 340 
the temperature response in the first 140 years of linear forcing increase is a combination of both slow (deep) and fast 
(shallow) timescale components, and transient warming at year 70 can be extrapolated (even if we don’t know the 
relative contribution of the slow and fast components of the warming).  However, when the forcing stabilizes at year 
140, the shallow component quickly saturates and remaining warming is due to deep ocean equilibration alone.  Thus, 
this additional degree of freedom (shallow vs deep contribution to transient warming) is unconstrained, and T70 is a 345 
worse constraint on T280.  The one layer model does not have this additional degree of freedom, and thus T70 is a 
good constraint on T280 - but only because of the structural simplifications present in the model.  Because the nature 
of the forcing differs between the transient and equilibrium stages of the experiment, the constraint of T280 using T70 
is a 3rd-kind constraint in our classification system. 

We can consider a constraint of the 2nd kind by assessing how independent data constraining a parameter in the 350 
models would constrain its projections.  In Figures 1(e,f) we illustrate how knowledge of the 𝜆 parameter would act 
as a constraint in two ensembles (as a proxy for information about physical processes in CMIP-class models).  In the 
single-timescale model, 𝜆 acts as a near-perfect predictor of warming after 140 and 280 years, and constraining 
ensemble spread using that parameter would have a large effect.  In contrast, in the two-timescale model, the 
correlation is weak.  Although the lambda parameter controls feedbacks (and equilibrium response) in both models, 355 
transient response in the two layer model is strongly governed by deep ocean heat uptake. We know that heat uptake 
by the deep ocean is an important mechanism for Earth’s warming in transient scenarios (Geoffroy et al., 2013a), so 
we have introduced a common structural flaw in models that do not account for the role of the deep ocean.  That flaw 
allows for an apparently strong EC in the single-timescale model ensemble which is not present in the more realistic 
ensemble.   360 

The one-layer model ensemble samples a similar range of transient warming as the two-layer model in the first 140 
years. For some applications, the one-layer model may be sufficient to model further transient warming, but the 
strength of an EC based on 𝜆 depends on the over-simplistic structure of the one layer model, which leads to a 
demonstrably overconfident result in this case. 

 365 

We can also construct a 3rd kind constraint such as the 𝜓 variability metric similar to that used by (Cox et al., 2018b), 
where the variance and lag-covariance of temperature variability is used as a predictor of climate sensitivity (though 
there are conceptual differences to Cox 2018, given our model here does not have an internal source of noise).   In this 
case in Figure 1(g,h), we consider the 𝜓 metric as a predictor of T140 and T280 in our two ensembles.  Once again, 
the metric is a strong predictor for both T140 and T280 in the one-layer ensemble.  Meanwhile, in the two layer 370 
ensemble, the correlation with T140 is weaker (with a different slope to the one-layer case).  There is little to no 
correlation between T280 and 𝜓.  As with the first-kind constraint, both the EC relationship slope and its strength as 
a predictor depend on common structural assumptions, with a stronger apparent relationship in the ensemble with 
fewer degrees of freedom. 

In these simple examples, we can understand EC behavior in the context of the model assumptions.  Both model types 375 
can produce similar transient evolution until forcing is fixed, but then the responses diverge, revealing very different 



11 

equilibration behaviour (see Figure 1b).  The single-layer model equilibrates to a change in forcing over 1-2 decades 
(depending on the exact choices of C and 𝜆), so that after 140 years, most of the response to the forcing experienced 
to date has already been realized in the model temperature response, and little additional warming is subsequently 
seen.  T70, T140 and T280 are all (to first order) controlled by the 𝜆 parameter. On the other hand, the-two layer model 380 
does not fully equilibrate to a step change in forcing for centuries - so the transient response to forcing which define 
T70 and T140 is controlled by both 𝜆 and the deep ocean heat uptake parameters (Co, 𝜀, 𝛾).  In this model, neither T70 
nor 𝜆 are singularly informative about how the model equilibrates.   

This illustrates a key issue with the emergent constraint framework: if one has access only to the one-layer model 
ensemble, one would conclude that 𝜆  or T70 are strong emergent constraints on T280, and the strength of the 385 
relationship might be used as evidence for the physical plausibility of the EC.  But instead, in this case, the strength 
of the relationship is indicative that the single layer model is lacking (in this case a deep ocean), and the parameters 
of the shallow ocean have been adjusted to compensate for this bias in reproducing observed transient behavior.  
Furthermore, if independent data on the real-world value of 𝜆 was available and was used to constrain the response of 
the single-layer model (and the real world was in fact more appropriately modeled by including the deep ocean), the 390 
resulting constrained prediction would be precise but inaccurate because that prediction would be conditional on a 
common structural assumption that is incorrect. 

More generally, the strength of an emergent relationship must be considered in the context of the degrees of freedom 
which are varied in the ensemble being considered.  In the simple example considered here, the historical forced 
response can act as a constraint on the future response because the forcing term is held constant across the ensemble.  395 
In CMIP, the presence of uncertainty in the forcing timeseries due, in a large part, to uncertain aerosol effects render 
historical warming as a poor constraint on future warming (Forest et al., 2002; Knutti et al., 2002) due to compensating  
forcing and feedback terms in ensemble members (Kiehl, 2007; Knutti, 2008), except in cases where the aerosol 
forcing term is relatively constant over the time period considered (Nijsse et al., 2020; Tokarska et al., 2020), or 
additional information is included to disambiguate the responses to different forcings (Allen and Stott, 2003; Hegerl 400 
et al., 2000; Kettleborough et al., 2007).  In effect, this suggests that the long term historical warming in CMIP is not 
a useful constraint because it has already been ‘used’ by model developers who consider reproducing historical 
warming to be a necessary condition for acceptability of a released model, leading to an ensemble which is converged 
on the observed global mean historical temperature record, but with a range of trade-offs in forcing and net feedback. 

5 ASSESSING STRUCTURAL ROBUSTNESS IN CMIP EMERGENT 405 

CONSTRAINTS 
Clearly, the models in the example above are vastly simpler than those used in CMIP, but these examples illustrate 
relationships which could emerge in those more complex models, and how they might be incorrectly utilized. Such 
errors could occur in CMIP-derived ECs if there are processes that are parameterised in a common, overly-simplistic 
fashion across the ensemble.  Furthermore, irrespective of increasing model complexity, it is likely that this argument 410 
could always be made - one could always imagine a more complex or complete model than the standard at any given 
time.  In this context, a single EC will continue to be at best a conditional statement which could be proved inaccurate 
or overconfident by the following generation of models.  

But for the increasing body of ECs which have been published using CMIP data, how concerned should we be about 
overconfidence due to common structural errors?  This question does not replace those credibility tests which have 415 
already been proposed in the literature (Caldwell et al., 2018; Hall et al., 2019): robustness to change in ensemble 
samples, plausibility of mechanism and evidence of the mechanism and feedback variability from supporting model 
diagnostics.  But for ECs which appear to pass these tests, an assessment of the underlying model assumptions is then 
necessary.  Here we assess a small number of ECs as case studies, and how their applicability is to some degree 
conditional. 420 
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5.1 PERSISTENT BIAS OF CO2 CONCENTRATIONS 
We consider first an example of an EC of the ‘first kind’ (Hoffman et al., 2014)  which uses the present day carbon 
dioxide concentration to constrain future carbon dioxide concentrations.  Their primary finding is that a historical bias 
persists into the future in a transient emissions scenario.  This exploitation of bias-persistence might be overconfident 
if the CMIP5 models were missing or misrepresenting key land surface or ocean processes which might differently 425 
alter future and historical CO2 concentrations.   

The net carbon uptake by the Earth system represents the combined contributions of land and ocean components, with 
greater agreement in models on the net effects than the consituents (Friedlingstein et al., 2014).  In the ocean, there is 
evidence of common biases in CMIP5, for example in mixing and  the uptake of carbon in the Southern Ocean (Sallée 
et al., 2013).  If such biases are compensated through other parameters in order to improve global estimates of net 430 
ocean carbon uptake – then ensemble-derived relationships between past and present carbon uptake have the potential 
to be biased by common errors in the Southern Ocean (Terhaar et al., 2021). 

In the land surface representation, there are a number of processes missing from a subset or the entirety of the CMIP5 
ensemble.  For example, nitrogen limitation was implemented in only one model in the CMIP5 generation of models 
(Zaehle et al., 2015), where it was found to have the capacity to significantly alter land carbon uptake.  For an emergent 435 
constraint exploiting the persistence of a CO2 concentration bias, this is potentially an issue if nitrogen availability is 
not currently limiting, but becomes a limiting factor in a future state.  A larger fraction of CMIP6 models include 
nitrogen limitation with diverse implementations.  Nitrogen was not found to strongly influence historical carbon 
uptake - but a future effect has not been explicitly ruled out by studies to date (Davies-Barnard et al., 2020), so a repeat 
of the Hoffman study would be a useful test of the robustness of the EC to a significant structural change between the 440 
CMIP5 and CMIP6 generation of land surface models. 

There remain a number of additional processes which could potentially influence future carbon uptake that are not 
comprehensively implemented.  Phosphorus limitation has potentially large impacts on the future Amazonian carbon 
sink (Fleischer et al., 2019), and is absent from CMIP5 models, but present in a small subset of CMIP6 models (Arora 
et al., 2020).  The impact on the carbon sink of potential changes in tree mortality in response to CO2 and forest 445 
productivity. is both critical and absent from CMIP6 class models (Brienen et al., 2020; Needham et al., 2020), as are 
complex fire-vegetation feedback processes (Teckentrup et al., 2019), diversity in responses to drought (Fisher et al., 
2010; Levine et al., 2016; Longo et al., 2018; Sakschewski et al., 2016) vegetation damage under unprecedented heat 
extremes (Teskey et al., 2015), wind events and pathogen damage (McDowell et al., 2018).  These all have the 
potential to introduce climate-vegetation feedbacks which are currently not represented in the CMIP6 ensemble.   450 

 Thus our confidence in the persistence of the models’ present day CO2 bias persisting into the future is reduced 
because there are processes which are potentially highly significant and are broadly absent from current generation 
models. However, the nature of a first-kind constraint means that the integrative carbon cycle response is used as both 
predictor and predictand, and so this kind of constraint could remain robust as long as structural omissions had similar 
effects on CO2 concentrations in the past and the future.  In short,  it is a filter on models which have been accurate 455 
thus far in simulating the quantity we are ultimately interested in measuring - an arguably necessary (but not sufficient) 
condition for projecting that quantity into the future.  Because the net carbon feedback is being constrained directly, 
the method is (somewhat) insensitive to the representation of processes which make up that feedback. 

5.2 HISTORICAL CONSTRAINTS ON SOIL-CARBON TEMPERATURE RELATIONSHIPS 
We next consider the study by (Cox et al., 2013), which relates tropical land carbon uptake-temperature feedback and 460 
the historical relationship between growth rate of atmospheric CO2 and tropical temperature anomalies. Other studies 
(Chadburn et al., 2017; Varney et al., 2020) have considered similar relationships using spatial variability as a 
predictor.  In CMIP5 models, this constraint (of the ‘third-kind’ ) was very strong (Cox et al., 2013).  In this case, the 
focus on the carbon-temperature component of the total carbon feedback isolated the effect of soil respiration 
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temperature response - which in CMIP5 dominates both the predictor and the predictand for the EC.  Our confidence 465 
in the EC thus firstly depends on whether soil respiration is represented in a common, oversimplified fashion in the 
CMIP5 ensemble.  Independent studies have found that inter-model differences in soil carbon uptake are dominated 
by the parameterisation choices for soil heterotrophic respiration rather than structural differences (Todd-Brown et 
al., 2013), and that a lack of ability to represent grid-scale variation in soil carbon levels indicates the potential missing 
processes.  Non-coupled models representing higher levels of microbial complexity and vertical resolution suggest 470 
that CMIP-class models may be underestimating the range of potential future soil carbon uptake (Shi et al., 2018). 

In CMIP6 models, there remains indication that spatial variability continues to provide predictive information on 
future soil carbon dynamics (Varney et al., 2020), but the role of soil respiration in the total carbon-temperature 
feedback is less dominant (Arora et al., 2020), with vegetation productivity responses also playing a role in the 
ensemble variance.  This increases the structural diversity of the relevant model components, and has the potential to 475 
weaken the strength of the CMIP5 correlation.  A repeated analysis of the method of (Cox et al., 2013) for the CMIP6 
ensemble would be therefore of interest for testing whether the correlation remains equally strong in CMIP6.   

5.3 CONSTRAINTS ON FUTURE OCEAN CARBON UPTAKE 
There exist a number of studies which have considered relationships between aspects of present day and future 
ocean circulation.  (Kessler and Tjiputra, 2016) propose a constraint between the contemporary and future 480 
uptake of carbon in the Southern Ocean, which in the framework laid out here would be regognised as a first-
kind constraint: a trend or rate observed today persists into the future.  The southern ocean carbon uptake is 
conditional on both physical and biological model assumptions, and there are potential common CMIP biases 
in Southern Ocean mixed layer depths (Sallée et al., 2013) and seasonal SST cycle and models with 
compensating biases  in productivity (Mongwe et al., 2016),  However, as discussed in Section 3.1, such trend 485 
extrapolation constraints can remain robust to such compensating biases in the absence of nonlinearities. 

(Goris et al., 2018) also constrains future oceanic carbon uptake, identifying that models which more efficiently 
mix carbon down into deeper layers in historical climate continue to do so in the future (a first kind constraint), 
and that such models show a larger seasonal cycle in North Atlantic shallow ocean carbon concentrations due 
to summer productivity and winter mixing of carbon into the deep ocean (a third kind constraint).  The process 490 
identification, and multi-metric constraint potentially add robustness to this approach – but the constraints 
remain subject to potential common mis-representation of ocean biota in the ensemble, such as the common 
underrepresentation of winter North Atlantic productivity in all CMIP models shown by (Goris et al., 2018), 
and common underestimation of Atlantic Meridional Overturning Cirulation variability (Yan et al., 2018), both 
of which have the potential to bias the simulated seasonal carbon concentration anomalies, as well as the 495 
derived emergent relationship slope. 

(Kwiatkowski et al., 2017) identify a strong relationship between the long-term sensitivity of tropical ocean 
primary production to rising equatorial sea surface temperatures and the interannual sensitivity of primary 
production to El Niño/Southern Oscillation (ENSO)-driven SST anomalies – a classical second kind constraint 
where the sensitivity of ocean biota temperature variation arising from natural variability is used to infer 500 
knowledge about the repsonse to future warming.  Such a relationship identifies that the parametric 
dependencies of tropical producivity are similar for long term warming and internal variability, but once again, 
conclusions are subject to potential errors in assessing observed productivity (Stock, 2019), as well as common 
biases in the effect of resolved scale on productivity (McKiver et al., 2015). 

 505 

5.4 CONSTRAINING TRANSIENT CLIMATE RESPONSE WITH OBSERVED WARMING 
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The constraint of TCR detailed  by (Nijsse et al., 2020) (and also (Tokarska et al., 2020)) use observed transient 
warming as a predictor of future warming.  In this case, the EC falls into the ‘first kind’ category - the predictor and 
predictand are conceptually similar in that they both represent the transient global mean warming response to a CO2 
forcing which is monotonically increasing at broadly comparable rates - but there are differences in terms of the 510 
forcing magnitude (present day CO2 levels are less than the double pre-industrial level used in the formal TCR 
definition), and also due to other forcing terms due to, for example, aerosols and land use change.   The authors 
minimise the role of aerosol forcing changes by considering a time period (1975 to 2013) in which there is relatively 
constant global mean aerosol forcing - leaving a time period in which greenhouse gas forcing changes are dominant. 

The strong correlation in CMIP6, if used as a constraint, tends to rule our the upper end of the CMIP6 TCR range 515 
(values of 2.3K and above).  Unlike equilibrium response (where models show rather diverse equilibrium warming 
trajectories (Rugenstein et al., 2020)), CMIP models tend to uniformly exhibit near-linear warming trajectories in 
response to transient forcing (Gregory et al., 2015), differing only in the temperature growth rate - thus making a 
strong constraint with effectively one degree of freedom. However, the CMIP5 ensemble indicates a weaker and more 
noisy relationship between observed warming and TCR, and combining the two ensembles leads to a weaker overall 520 
correlation in (Tokarska et al., 2020).  Until the origins of these differences are better understood, the application of 
the CMIP6 EC to rule out higher values should be treated with caution.   

The TCR metric is, by construction, insensitive to carbon cycle dynamics and aerosol forcing plus potential ‘tipping 
points’ (Lenton et al., 2019) if they are unrepresented in current generation models.  TCR is also a combined function 
of climate feedbacks and ocean heat uptake dynamics, and models which share the same value of TCR can have 525 
different warming trajectories long after forcing levels stabilise (Sanderson, 2020).  As such, inter-timescale 
relationships (such as those between TCR and warming in the last 30 years), are conditioned on the breakdown of 
composite feedback timescales in the ensemble.  If the ensemble variance in TCR is attributable to varying fast 
timescale processes, this may result in a different slope than if slow timescale processes were varied. 

 530 

As such,  observed warming does not itself constrain equilibrium or post-2100 warming under mitigation (Sherwood 
et al., 2020), where large uncertainties in the interplay between ocean circulation dynamical responses to warming 
(Rose and Rayborn, 2016), nonstationary climate feedbacks (Proistosescu and Huybers, 2017; Zelinka et al., 2020) 
and long term carbon feedbacks (Koven et al., 2021) are areas of active research. 

 535 

 
5.5 PROCESS-BASED CONSTRAINTS ON CLIMATE SENSITIVITY  
Here, we consider an example of a 2nd kind process constraint (Sherwood et al., 2014) on equilibrium climate 
sensitivity in CMIP5 - though the arguments would be equally applicable to other plausible process-based constraints 
(Brient et al., 2016; Brient and Schneider, 2016; Zhai et al., 2015a).  Sherwood proposes two indirect metrics of lower 540 
tropospheric mixing which are related to future reductions in boundary layer clouds (the cloud feedback which is itself 
the largest component of inter-model spread in ECS (Pincus et al., 2018)).  The postulated physical mechanism is that 
models with larger boundary layer mixing will experience stronger ventilation of moisture from the lower troposphere 
as the atmosphere warms and humidity increases, so these models ultimately experience the most extreme loss of 
boundary layer clouds.  Independent studies have assessed the Sherwood constraints to have a plausible mechanism, 545 
with correlated warming patterns occurring in regions which are consistent with the constraint (Brient, 2019; Caldwell 
et al., 2018).  Together with the relatively strong correlation porposed by Sherwood, this makes the study one of the 
more compelling examples of a physical constraint on ECS in a multi-model ensemble. 



15 

If indeed the constraint proposed by Sherwood et al. is a robust predictor of ECS within CMIP5, the structural 
robustness of the constraint concerns the degree to which CMIP5 is a representative sample for comparison with 550 
reality.  This question can itself be divided into three questions: (1) is the process itself sufficiently well represented 
in CMIP5 to be informative, (2) are there other processes which are absent, undersampled or commonly 
misrepresented in CMIP5 models which might bias ECS and (3) are there common structural biases which might 
impact the predictors - the mixing proxies in this case, thus biasing the conclusion of the constraint. 

For the first question of boundary layer process accuracy, there is a structurally rich selection of boundary layer 555 
schemes in CMIP5 (Edwards et al., 2020) which reduces the chance that the EC is a product of structural homogeneity 
in the ensemble.  There is, however, some evidence that there exist ensemble-wide climatological biases in the current 
generation of models which can be attributed to common boundary layer mixing structural errors in CMIP5 (Wei et 
al., 2017). Most CMIP5 generation models rely on low-order turbulence closure schemes which assume, to some 
degree, a representative length scale for temperature and wind gradients based on Monin-Obukhov similarity theory 560 
(Monin and Obukhov, 1957), often complemented by bulk convection schemes or energy closure arguments to resolve 
remaining boundary layer mixing.  The testing of the persistence of the EC in CMIP6, which includes models with 
higher order closure schemes which do not make this explicit assumption (Bogenschutz et al., 2018), thus broadening 
the diversity of representation of boundary layer mixing in the ensemble and creating a useful test of structural 
robustness for the CMIP5 era constraints. 565 

The second question relates less to the representation of the process in question (shallow convection and boundary 
layer processes), and more to everything else in the model which could potentially influence ECS in CMIP5, but might 
be undersampled (or not represented at all). To put this another way, are boundary layer processes responsible for 
ECS variation in CMIP5 because they are the most uncertain in an absolute sense, or because we have failed to 
adequately explore uncertainty in other feedback processes?  For example, the transition from CMIP5 to CMIP6 saw 570 
many models shift in their representation of mixed-phase clouds which are thought to explain high ECS values in a 
number of CMIP6 models (Zelinka et al., 2020), so it is unclear Sherwood’s constraint would represent that shift given 
the process responsible differs from the primary axis of CMIP5 variability. 

Perturbed parameter experiments have reported ranges in ECS which have been dominated by deep convective 
(Sanderson et al., 2010) or mid-layer cloud response (Shiogama et al., 2012), and hence it is not surprising that 575 
Sherwood’s constraint on low cloud feedbacks has proven less effective at constraining ECS in a PPE (Kamae et al., 
2016).  If the range of deep convective and mid-layer cloud feedbacks seen in these PPEs cannot be otherwise ruled 
out, this raises a concern for the degree to which CMIP5 has sampled the climate feedback space, and thus structural 
robustness of Sherwood’s constraint used in isolation. 

The final question for process-based constraints on ECS is the degree to which predictive metrics in the ensemble 580 
could be biased by the omission or misrepresentation of other processes.  For boundary layer measurements in CMIP5, 
biases in the land surface scheme are known to project onto boundary layer climatologies (Holtslag et al., 2007), which 
in the case of CMIP5 was responsible for ensemble-wide systematic biases due to common soil moisture biases 
(Svensson and Lindvall, 2015) - but given that the Sherwood constraint is focussed on ocean, it seems unlikely that 
these effects are highly influential.  However, biases in boundary layer simulation have been attributed to cloud 585 
morphology (Bony et al., 2020), large scale flow, gravity wave and surface drag parameterizations (Sandu et al., 2013), 
so there remains the possibility of an ensemble-wide bias in the predictor if any of these processes are commonly 
misrepresented. 

 

5.6 CONSTRAINING CLIMATE SENSITIVITY WITH FLUCTUATION-DISSIPATION 590 

RELATIONSHIPS 
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We finally consider a third-kind constraint on ECS (Cox et al., 2018b) which relates a metric of internal variability 
(Psi, a function of the lag-covariance structure of the global mean temperature timeseries) to the models’ ECS.  The 
constraint exploits the fluctuation-dissipation theorem (Kubo, 1966; Leith, 1975), which relates the linear response of 
a dynamical system to its noise characteristics.  The result is somewhat dependent on subjective choices in the 595 
derivation of the unforced lag-covariance term (Brown et al., 2018), the length of sample used (Rypdal et al., 2018), 
the subset of CMIP5 models used in the ensemble (Po-Chedley et al., 2018) - which together might imply that there 
are uncertainties involved in the practical application of the constraint using the historical record which were not 
represented in the original study. 

Setting aside for a moment these practical issues associated with measuring unforced variability in reality - there is 600 
reasonable evidence that there might exist a relationship between control model variability and climate sensitivity in 
the CMIP5 ensemble (Cox et al., 2018a) (whether that unforced variability is measurable in practice is a different 
question).  The fact that this idealised relationship exists both in simple models (Williamson et al., 2019), and in the 
CMIP5 ensemble (where both internal variability and ECS are emergent properties of a large number of interacting 
processes which are diversely sampled within the ensemble) provide some additional confidence, but newer studies 605 
suggest a significantly weaker relationship in CMIP6 (Schlund et al., 2020), even though the CMIP6 models exhibit 
a wider range of ECS (Meehl et al., 2020). 

Understanding the disagreement between a number of plausible (Caldwell et al., 2018) process-based ECs which 
constrain ECS to higher values (Brient and Schneider, 2016; Sherwood et al., 2014; Zhai et al., 2015b) and fluctuation-
dissipation arguments which suggest lower values (Cox et al., 2018b) may thus require a joint consideration of 610 
structural and implementation errors.  The process constraints are strongly conditional on the sampling of feedback 
processes in the CMIP ensemble itself. If the CMIP5 ensemble is under-sampling other types of radiative feedback 
(e.g. deep convection, mid-level cloud response), then this uncertainty is not represented within the constrained 
distribution obtained from using an EC on boundary layer processes.  Such structural uncertainty might be expected 
to be less applicable to the fluctuation-dissipation constraint because the variability of global mean temperature is an 615 
integrative property of all feedbacks in the system, it is less conditional on any single feedback type being well sampled 
in the ensemble. 

However, the practical limitations of the short historical record confounded by other climate forcers may prevent its 
useful application in practice because the unforced variability of the system is not sufficiently knowable to form a 
strong constraint on ECS. The results may also be sensitive to the metric and the set of models used; an earlier study 620 
using a similar idea found no constraint (Masson and Knutti, 2013b), and in some cases reversed signs of correlations 
between CMIP and PPEs, thus questioning the robustness of the approach.  Other studies (Annan et al., 2020)  have 
performed objective Bayesian constraint of ECS through climate variability in simple models, finding a wider 
constrained range than suggested by Cox et al. (2018).  The large discrepancy between the strength of the relationship 
in CMIP5 and CMIP6 further lowers our confidence in the constraint – implying either the fluctuation-dissipation 625 
relationship in CMIP5 was a sampling artifact or that the additional degrees of freedom in feedback variance in CMIP6 
(Zelinka et al., 2020) compared with CMIP5 complicate the fluctutation-dissipation relationship which would be 
expected from simple models with a single feedback parameter. 

6 CONCLUSIONS 
We have highlighted here that common structural assumptions in the CMIP multi-model ensemble may lead to strong 630 
EC relationships, especially if assumptions have only a small number of degrees of freedom - and that such situations 
may arise from  a lack of ensemble structural diversity.  In such cases, ECs can play a powerful role in identifying 
dominant ensemble feedback variation and mechanism – potentially illuminating the strengths and limitations of 
ensemble process representation and highlighting relevant observables.  However, the direct application of ECs to 
constrain the range of projected outcomes relative to the original ensemble distribution may lead to significant 635 
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overconfidence in these cases, where the presence of the EC itself may indicate a lack of structural diversity in process 
representation in the original ensemble. 

It remains to consider how an assessment of potential structural errors in an emergent constraint should be used.  The 
focus of published papers and their use in, e.g., IPCC assessments, has often been on the constrained result itself (Cox 
et al., 2013, 2018b), but these constraints may be overconfident in the face of a potential or demonstrated structural 640 
error. A more robust interpretation of an EC is that it provides potentially observable information related to aspects of 
ensemble response variation, but not necessarily that the projection can be accurately constrained directly with that 
information.  In our simple example, given the presence of a relationship between 𝜆 and T280 in the single-layer 
ensemble, it might be accurate to interpret  that the processes represented within 𝜆 could be relevant to long term 
temperature evolution, but unjustified to actually constrain T280 directly. 645 

If this logic is applied to the more complex models which are used in climate assessments, such information could 
potentially highlight which processes control ensemble spread in projections, where model development needs to 
assess whether current process representations are adequate and appropriately diverse, whether there are alternative 
process models which could be incorporated into CMIP-class models, and where available observations have not been 
fully exploited to calibrate models.   650 

This information could also motivate more focus on the simulation of the predictor variable - are there processes which 
are missing in the current generation of models which could be implemented in future versions?   The presence of an 
emergent constraint should also act as a warning sign that a process in the ensemble may be represented in a 
structurally homogeneous fashion.  Such an effect could be compounded if there are only a small number of effective 
degrees of freedom sampled in the ensemble.   It is thus critical to assess whether common simplifications in the 655 
ensemble are creating or influencing emergent relationships. 

The use of an EC as the sole constraint of a projected quantity is effectively a weighting of model projected outcomes 
which considers only a subset  of potential performance metrics included within the EC itself, and disregarding other 
aspects of model performance even though that one metric may characterize many aspects of the climate, or itself be 
a sum of different metrics).  This should give us pause, because studies of model weighting have demonstrated that 660 
using a single metric that only captures specific aspects of climate is likely to result in an overconfident result (Knutti 
et al., 2017; Lorenz et al., 2018).  As such, care must be taken to recognise that even if an EC exists, structural biases 
may preclude a simple assessment that those models closest to the observed value have the most trustworthy response.  
For example, if calibration trade-offs prevent models from being tuned to match observations in two locations 
simultaneously, this may complicate the application of an emergent constraint which uses simulated climate in one of 665 
those locations as a predictor of response. 

Persistence of ECs in successive generations of models should increase to some degree confidence that emergent 
constraints are not statistical artifacts (Caldwell et al., 2014; Schlund et al., 2020), but it remains possible that common 
structural simplifications could persist for multiple ensemble generations.  The development of multi-metric 
approaches (Bretherton and Caldwell, 2020; Brient, 2019; Brunner et al., 2020; Huber et al., 2011; Karpechko et al., 670 
2013; Schlund et al., 2020) could provide greater robustness to structural errors, given that a lesser reliance is placed 
on any single axis of inter-model variability.  Even if two constraints are identified for the same physical process, and 
the metrics are highly correlated within the ensemble (Caldwell et al., 2018), there may be some advantage in 
combining their results, given the potential for differing and potentially independent biases in observations of the two 
quantities (Lorenz et al., 2018).  Though uncertainty in observational products themselves must still be sampled where 675 
possible, multi-metric approaches have the potential to reduce observational uncertainty on constraints (Brunner et 
al., 2019).  The idea of multi-variate metrics of model performance is not new, and generic multi-variate metrics of 
model climatological errors are perhaps the default approach for assessing the skill and plausibility of different models 
during assessment (Baker and Taylor, 2016; Gleckler et al., 2008; Wilde et al., 2011).  But, weighting models based 
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on general climatological performance over a large number of variables has little effect (Sanderson et al., 2017) which 680 
does not tend to significantly decrease the projection uncertainty in the unweighted ensemble. 

There is also a growing potential to improve structural robustness by moving from ‘top-down’ emergent constraints 
which use the ensemble to identify correlations between net system responses (such as climate sensitivity) and 
observables, and ‘bottom-up’ constraints which identify and constrain single identifiable processes.  The former 
approach (as applied, for example in (Sherwood et al., 2014)) might exploit the fact that ensemble variance in net 685 
response is dominated by one process (ECS variance dominated by lower tropospheric mixing, in this case) – but the 
resulting constraint ignores potential uncertainty in other feedbacks which might be inadequately sampled in the 
ensemble.  Bottom-up approaches such as the process decomposition of factors controlling carbon uptake in the 
Southern Ocean (Terhaar et al., 2021) or the ‘cloud controlling factors’ for individual types of cloud feedback  (Klein 
et al., 2017) have the  potential to isolate and quantify structural assumptions in composite elements of a net response, 690 
allowing the individual assessment of constraints in each component, and the isolation of ensemble structural 
assumptions in the associated processes.  

ECs could play a useful role by defining reduced-space metrics which consider only those aspects of model 
performance that are relevant to a particular future response. Multi-metric emergent constraints may provide a useful 
‘third way’: they are less sensitive to structural errors than single-metric emergent constraints, and can be targeted 695 
toward processes that may drive future responses more accurately than generic performance metrics which do not 
explicitly account for the relevance of an observable to a given response (Baker and Taylor, 2016; Collier et al., 2018).   

There is undoubtedly also rich information to be gained from ECs which disagree - a rare quantitative indicator of 
projection-relevant structural error in climate model simulations.  If inconsistent constraints are proven to be 
statistically robust, these inconsistencies could provide guidance in future development cycles - highlighting key 700 
biases shared among models related to missing or misrepresented processes which might be important in properly 
representing feedbacks of interest. 

The collection of simulations and projections available in CMIP represents a formidable amount of data (Williams et 
al., 2016), but its scale does not justify considering CMIP to be a comprehensive sample of possible representations 
of the Earth System.  Parametric uncertainties and computational limitations on resolution and ensemble size limit the 705 
degree to which our current ensembles represent the tails of the distribution of possible future change, and any 
statement of uncertainty of the future evolution of the climate system can only be made robustly in the context of these 
uncertainties.  Emergent constraints, if used less literally, could play a powerful role in understanding the ensemble 
we have; a combination of more robust statistical frameworks, better understanding of the ensemble’s nature and 
multi-metric techniques could provide new opportunities for understanding how the Earth might respond to climate 710 
forcing. 
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