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ABSTRACT:

Studies of ‘emergent constraints’ have frequently proposed that a s1ngle metrlc alene-can constram future responses
of the Earth system to anthropogemc emissions. 3 as ¢

4md-1e9—l-lere we 111ustrate that emngent—een%H—am&s—a%em@m:—hkely—m—eeemmem ong ememblerclatmmhmi

between varianee-across-an-ensemble-of-climate-models-of-both-observables and future climate across an ensemble
can arises from common structural assumptions withand few degrees of freedom. Such cases are-likelyhave the
potential te-eeeurto produce strong, yet overconfident constraints when processes are represented in a common,
oversimplified fashion throughout the ensemble;-abeutwhich-we have-the-least-where-we might have lowconfidenee
in-the behaviour of the process-in-a future climateperformance-out-of sample. We consider these issues in the context
of a number—collection of published constraints:; and argue that the application of emergent constraints alone to
estimate uncertainties in unknown climate responses ean—potentialycould lead to bias and overconfidence in
constrained projections. The prevalence of this thinking has led to literature which made statements on the probabilit;
bounds of key climate variables that were [confident] yet inconsistent between studies. Together with statistical
robustness and a ; pl-ausibi—lgﬁy—eﬂmechanismg{, assessments of climate responses must include multiple lines of
evidence to identify biases that can arise from eemmen-shared, oversimplified modeling assumptions which impact
both present and future climate simulations in order to mitigate against the influence of }eemmeﬂ—lmmructural
biases.

1 INTRODUCTION

Models of the climate system face a particular challenge: their primary purpose is to project the future response of the
Earth system to beundary-cenditionsforcings which have yet to be realized. Confidence in models’ future projections
cannot come from iterative verification and improvement, but instead must be grounded in a combination of an
understanding of the adequacy of simulation of relevant Earth System feedback processes, together with an assessment
of the degree to which the models can represent historical behaviour. The latter can potentially provide metrics or
constraints that can inform which configurations of each model are most defensible as tools to project future climates.
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In climate model development and calibration, these types of constraints are utilised in an extended expert assessment
where biases in climatology and historical trends are iteratively reduced and addressed through improved process

5 , or systematlcally through the use of perturbed
ensembles and formal mference ATett et al. 7270177 Wﬁlllﬁlzunﬁsgnﬁet aj . 2013: Zhang et al., 2018)P—Williamsen-etal:  _
2043: Tettet-al 2017 Zhanget-al-2018). Adequate performance on a subset of metrics is generally accepted as
necessary for consideration as a member of the collection of climate models (Eyring et al., 2016)(Eyringet-al-2016)
used to assess future change in IPCC assessment reports (Pachauri et al., 2014 )(Pachauri-et-al—2044) - for example,
the need for models to conserve energy or to broadly reproduce the observed global mean temperature evolution of
the 20th Century. Other performance metrics may be of particular interest to specific modeling centers - for example,

reducing biases in the simulation of a particular regional climate or for a particular application (for example for

model performance at high latitudes (Tjiputra et al., 2020)).

Recent literature (Bretherton and Caldwell, 2020; Brient, 2019; Cox, 2019; Eyring et al., 2019; Hall et al., 2019; Klein
and Hall, 2015) has also focused on a class of “emergent” constraints which differs conceptually in that the relevance
of the metric is defended by the existence of a correlations between a potentially observable metric and a projected
future climate response, within an ensemble of ESM simulations. Emergent constraints are generally applied in a
regression framework, where the ensemble is used to define a predictive relationship which can be combined used;
togetherwith observations; to produce an estimate of constrained projected values. Examples haveconsideredinclude
constraints of Equilibrium Climate Sensitivity (hereafter ECS) from aspects of natural variability (Cox et al.

OISbQGGex—e!—aJ—Z—GJ-&) er-and cloud properties (Brient and Schneider, 2016; Sherwood et al., 2014) Transient

and-Williamsen2020:Tokarskaet-al-—2020), and future carbon cycle (Cox, 2019) and ice- albedo feedbacks (Cox
2019; Qu and Hall, 2007; Thackeray and Hall, 2019) from their observed seasonal variations.

There are a number of factors that have been recognized which might lead to overconfidence in the eenstrained
projections arising-from theuseeﬁemergent constraints The ﬁrst is that, because of the relatively small sample size
,,,,,,, .. 2013; Masson and_
Knutti, 2011; Sanderson et al.. 2015)(Sanderson-et-al;2045)) and the large number of outputs, it is inevitable that
some variables will be correlated with climate response metrics by chance (Caldwell et al., 2014). This means that
our confidence in a constraint cannot arise from correlation across the ensemble alone, but must also fres-include the
plausibility of the proposed mechanism which relates the prepesed-predictor to the future climate response (Caldwell
et al., 2018). However, although many published emergent constraints propose a physical explanation for an
underlying process which might jointly control the predictor and predictand, robust demonstration of a mechanism
often requires tools which are might-not be-available, such as systematic sampling of parameters and process
representations in models (Hall et al., 2019; Klein and Hall, 2015)

At least some emergent constralnts can be shown to be overconﬁdent usmg existing data, by considering the
consistene > aints ¢ 5 > arisensnew models which are outliers in

or lack of

agreement of drfferent constraints on the same quantlty in the literature (Brlent 2019). Such dlsagreement might arise
due to inconsistency in the definition of a climate response: for example, if ECS is in fact dependent on the climate
state then the value inferred from cooling during the last glacial maximum would differ from that inferred from recent
decades.  But overconfidence could also arise from overly strong statistical assumptions on the robustness of
ensemble—-derived relationships (Williamson and Sansom, 2019). The standard regression model uses an ensemble-
derived regression relationship between predictor (the potentially measurable variable) and predictand (the unknown
climate response) to make a calibrated projection, implicitly assuming the real world is exchangeable with models in
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the ensemble, which is to say that the relationship is equally likely to apply to the real world as to members of the
model ensemble.

It is generally understood that Earth System Models, like any model, contain errors and approximations which mean

we would not- expect this assumption of exchangeability to hold. We know that the models which populate our
ensembles are subject to limits of resolution and complexity. This means that they can be considered only as
approximations of the real world, likely with more in common with each other than reality (an issue which can be

compounded by replicated assumptions and components within the ensemble; (Caldwell et al., 2014; Sanderson et al.

2015)).

However, although the simple-mean and variance of ensemble projections may be subject to biases, the standard
regression model used in ECs makes a strong additional assumption of exchangeability that intra-ensemble

relationships are applicable to the real world, potentially leading to a confident yet incorrect constrained projection.
Even in the presence of a strong correlation and a plausible physical mechanism explaining the constraint in

simulations (Caldwell et al., 2018), the correlation might only arise due to common simplifications throughout the
ensemble. Such concerns have led to debate as to whether emergent constraints should be included in integrative
assessments of uncertainty in ECS (Sherwood et al., 2020), underlining the need for a robust framework in which to
consider emergent constraints as lines of evidence.

A first step towards more robust use of emergent constraints is to combine different lines of evidence (Bretherton and
Caldwell, 2020; Brient, 2019), effectively relaxing the assumption that a single constraint is reliable (but maintaining
that constraints have some potential value, even if they disagree). However, enacting this approach requires
considering a-number-of-additional factors: the degree to which each component constraint has a plausible mechanism
(Caldwell et al., 2018) and the degree of independence assumed between different constraints (Bretherton and
Caldwell, 2020).

Uncertainties in the relationship and in the source ensemble can at least be represented by framing the problem in a
Bayesian framework (Hargreaves et al., 2012; Renoult et al., 2020) or using information theory approaches (Brient
and Schneider, 2016). These frameworks can naturally allow the integration of multiple constraints by effectively
weighting the climate responses of different models in the ensemble by likelihood informed by a set of constraints —
however these approaches do not test the fundamental implicit assumptions of the regression framework used in most

published ECs. Critically, they can also be expanded to represent the likelihood that ensemble members are
exchangeable with reality (Williamson and Sansom, 2019)-(, which is effectively assumed in most studies published
to date}. But even in an ideal case, elements of the calibration of the statistical model parameters would remain
somewhat subjective, conditional on prior assumptions about climate responses and chosen metrics of model adequacy
and interdependency.
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3——One-or-both-of the—eenstraints—eould-In _the following section, we discuss how emergent constraints ean+ — - { Formatted: No bullets or numbering

170 petentially-could hypothetically arise due to structural deficiencies in how processes are represented in the model - a
predictor-predictand relationship could exist within the common simplified framework of model parameterizations,
but-it-does-not-apply-to-the real-world (and-this-is-manifested by the disagreeme Feonstraints)which wouldil be

overly confident if applied to the real world.

Teo-understand-the latter-ease-better;_To illustrate this, we ean-consider a situation where we know that our ensemble
175 explores only a single model structure which is oversimplified compared to the real world.

2 A LESSON FROM PARAMETER PERTURBATION EXPERIMENTS

Although the concept of emergent constraints as applied to multi-model ensembles has become popular in the last
decade, the general formulation was used previously in the perturbed parameter literature. Piani et al., 2005¢Piani-et
ak2005) Jused| a statistical formulation which might today be classified as an emergent constraint, identifying
180 statistical modes of variability which were correlated with climate sensitivity in a large ensemble of perturbed
parameter experiments (PPEs), then using observations to produce constrained estimates of ECS. The ensemble used
in this case was sufficiently large (Stainforth et al., 2005) that the relationships were statistically robust in sample, but
were found to be inaccurate when applied to an out of sample set of simulations (in this case, predicting the climate

sensitivity of members of the CMIP ensemble (Sanderson. 2013 )(Sandersen;2613)).

185 To understand why this is the case, we must consider the conceptual differences between perturbed-parameter and
multi-model ensembles. In PPEs, a single model structure is used, and both predictors and predictands are functions
of the parameters which are perturbed in the experiment. Emergent constraints in a PPE are generally easy to find
(Knutti et al., 2006; Piani et al., 2005; Sanderson, 2011; Yokohata et al., 2010) because there is a low-dimensional
functional relationship between predictors and future response in the ensemble - both are, by construction, functions

190 of the perturbed input parameters. Feedback variation in a PPE is a function of a subset of the parameters which have
been perturbed,; thus, if any potentially observable quantities are also functions of those same parameters, an emergent
constraint is automatically present. Due to this underlying parametric structure, many emergent constraints can be
found in a PPE; but they are not individually useful, because there are no model versions which satisfy all constraints
simultaneously due to the structural component of model error which cannot be tuned_(Sanderson et al., 2008), and

195 their predictions are generally not applicable to other models (Sanderson, 2011, 2013; Yokohata et al., 2010) (an effect

which has been observed in multi-structure PPEs(Kamae et al., . B { Field Code Changed

In model calibration exercises, structural errors in a single model manifest through differences in optimal parameter
configurations which arise from prioritizing different observations in the cost function. For example, different optimal
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parameter configurations minimize errors in the Amazon and Indonesian rainforests (McNeall et al., 2016), implying
an underlying structural error in the model which requires that a global calibration must be a trade-off in biases in the
two regions, leaving an irreducible error which cannot be eliminated by parameter adjustment alone.

It is understood that probabilistic predictions of future changes made from a PPE must be robust in the face of this
irreducible error (Rougier, 2007). In some cases, the MME has been used as an out of sample test to assess
overconfidence in predictions made from relationships within the PPE (Sanderson, 2013; Sexton and Murphy, 2012).
The correspondence between model errors and the model parameter space also allows for the conceptualization and
quantification of error trade-offs through McNeall et al., 2016; Williamson et al., 2013)MeNealt
et-al2016:- D Williamsen-et-al-2013) (approaches which rule out parts of parameter space that perform poorly in
multiple metrics). Such approaches can retain a subset of model variants with comparable net errors but with different
tradeoffs (in the simple example above, including model versions which minimize errors in either the Amazon or

Indonesian rainforests).

Such strategies seek to incorporate model performance in reproducing a range of observables using a model which is
imperfect, where it is understood that placing all emphasis on a single observable (as in an emergent constraint) would
lead to overconfidence. In a PPE, this is demonstrable because we have a wider structural sample (the MME) in which
predictions can be tested, and because model errors can be represented as a function of model parameters which helps
us both conceptualize and quantify systematic errors.

In as] MME, we do not have similar out-of-sample estimates to illustrate the limitations of ensemble-derived

correlations, and there is not necessarlly a 51mple underlying parametrlc structure Wthh allows us to quantlfy how
assumptions map onto errors. 5 8 € g 5 5 fred:
Our experience with PPEs has shown that emergent constraints can arise due to an underlying parametric structure -
which is present by construction in a PPE, but may also be effectively present in an MME if the same parameterizations
are used throughout the ensemble. This is a potential source of overconfidence in existing ECs which is not generally

accounted for.

If an MME includes subsets of models with common structural assumptions, it is also possible that ECs may exist
within a given subset. In such cases, confidence in the emergent constraint should be conditioned on the degree to
which the models in the subset are plausible. ~ Underlying these uncertainties is a requirement for independently
assessing the likelihood or plausibility of model structures.

In short, we cannot easily quantify the impacts of structural error in MME-derived ECs, but equally, it is not justifiable
to assume that the MME is interchangeable with reality or that common structural errors are absent. Indeed, the very
presence of an EC for a given process in an MME might be indicative of a lack of diversity of process representation
because constraints are more likely to emerge if there are limited effective degrees of freedom represented in the
ensemble. Robust multi-metric approaches which are a demonstrable necessity in a PPE are equally advisable in an
MME.

3 THE NATURE OF MULTI-MODEL EMERGENT CONSTRAINTS

How then do we assess whether an ensemble is sufficiently structurally diverse that an emergent constraint arising
from it could be applicable to the real world?  In a PPE, constraints can be tested to some extent by testing
relationships in the MME, which we can assume contains a larger structural sample; but for ‘a ﬁ\»MME we have no
such superset. If an emergent constraint has been found in \aﬂ‘ MME (prov1dmg it has not been -demonstrated-#et to be

'S additional models which

statistically spurious by, for example, pess
significantly weaken the correlation (Klein and Hall, 2()]5)) it then (-
to assess the degree to which that emergent constraint can be applied to reallty (Wllhamson and Sansom 2019).
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Here, we propose that ECs can be categorised conceptually, and by doing so, the nature of their potential structural
errors can be better evaluated. We consider three ‘kinds’ of EC:

3.1 CONSTRAINTS OF THE FIRST KIND: BIAS PERSISTENCE/SIGNAL EMERGENCE

The first kind of constraint includes cases where the measured quantity and the unknown quantity are of the same
nature, such that both are expressions of a system’s response to a forcing with comparable spatial and temporal
features For example if the observed historical warming in \aﬁ‘ MME is used to constrain the warming in a future

predlctand are expressions of global mean warming in response to a gradually i 1ncreas1ng greenhouse gas forcmg
(constraining Tran51ent Climate Response through observed hivarrmng‘ N1 sse etal., 201 9 d : Could be

constraining the range of future soil moisture w1th its observed transient historical trends (Douville and Plazzotta
2017) and the persistence of carbon dioxide concentration biases in emissions-driven simulations_(Hoffman et al.,
2014). ISimilarly| Kessler and Tjiputra, 2016 show a relationship between the present day and future uptake of

carbon in the Southern Ocean, while (Goris et al., 2018) show that similar bias persistence exists for deep ocean

\

o { Field Code Changed

) ‘[ Field Code Changed

\
{ Field Code Changed

carbon uptake in the north Atlantic.

These examples all broadly concern an emergent transient signal in response to a gradual increase in anthropogenic
forcing over time, so they are effectively statements that a bias in transient response is likely to persist if forcing
continues to [increase at the same rate. Because these constraints directly measure the trend itself, they are relatively
insensitive to model assumptions in how and why a trend is simulated, provided there exists a robust relationship
between the given aspect of future behaviour and its historical trend.

This assumption is valid if it can be defended that both predictor and projected quantity are describable as functions
of the same emerging trend. The resulting EC is effectively a (potentially nonlinear) extrapolation, where the strength
of the relationship is conditional on the degree to which models represent similar nonlinearities. The relationship is
not strongly conditional on underlying structural assumptions because biases are manifested similarly in the historical
and future trends. The strength of the correlation in the EC reflects the degree to which models agree on the form of
the extrapolation, and thus the only concern for overconfidence is if the relationship between past and future trends is
similarly biased in many models (through the common omission of a state-dependent nonlinearity, for example, or a
missing forcing in one period in most models).

Constraints of this type are similar to the classical detection problem_(Hegerl and Zwiers, 2011; Ribes et al., 2017)
where the amplitude of an emerging signal in response to a forcing is estimated in the presence of noise arising from
internal variability and other confounding forcers. There exists a large literature in performing such detection of a
signal response to a forcing in the context of noise, model errors and other confounding forcings (Hegerl and Zwiers,
2011).

3.2 CONSTRAINTS OF THE SECOND KIND: FEEBBAEK-PROCESS ISOLATION

The second kind of EC involves the identification of a primary feedback-mechanism which governs the future
response, and the subsequent proposal of an observable quantity which constrains the strength of that feedback within
the ensemble. There are a large number of ECs which fall into this category for ECS (Brient et al., 2016; Lipat et al.

2017; Sherwood et al., 2014; Siler et al., 2018; Su et al., 2014; Tian, 2015; Trenberth and Fasullo, 2010; Volodin
2008; Zhai ctal.. 2013b)yBricnt-ctal 2016z Lipat-ctal 2017 Sherwood-ctal 2004 Siler-etal 2008 Swect-al

=

,in most cases involving mechamstlc
constraints on the response of shallow convective clouds to warming (c0n51dered to be the primary source of
uncertainty in ECS in CMIP5 (Andrews et al., 2012) and CMIP6 (Zelinka et al.. 2020)(Zelinka-et-al;2020)-). Other
studies propose to directly constrain individual cloud ‘feedbacks‘ (Brient et al., 2016; Gordon and Klein, 2014; Qu et
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al., 2014; Siler et al., 2018)
and-Park-2007) or future precipitation changes (Allen and Ingram, 2002 Watanabe etal. 2018) In the ocean, slmlldr
process-based constraints were propsed lml Terhaar et al., 2020, which found a relationship between ocean acidification
and Arctic deepwater formation, which was in turn related to present day Arctic surface water densities.

Emergent constraints obtained by statistical data-mining (either transparently or otherwise) (Caldwell et al., 2014) can
potentially fit into this category, though in order to be defensible, such constraints must be demonstrated to be
statistically robust (Caldwell et al., 2014) and also provide a plausible mechanism to explain why the candidate process
is the dominant factor in explaining ensemble variance in future response, and why the proposed observable is an
expected metric of that process_ (Caldwell et al., 2018; Hall et al., 2019).

However, unlike constraints of the first kind, a process-based constraint does not describe uncertainty in future
response in a general sense - at best, it describes the leading order process which explains variability in future response
across the ensemble. A plausible, robust, process-based EC is still conditional on the plausibility of the relevant
process as it is represented in the class of models used in the ensemble.

3.3 CONSTRAINTS OF THE THIRD KIND: FREQUENCY SUBSTITUTION

The third kind of constraint proposes that the future response to a given forcing A can be constrained using the response
of'the system to a different forcing B, the response to which is potentially observable. Unlike constraints of the second
kind, this logic does not require a specific feedback mechanism. Unlike constraints of the first kind (a special case),
it is also not a priori true that the response of the system to one forcing B is controlled by the same processes which
control the future response A. There are thus a larger number of potential sources of structural error compared to the
first kind of constraint, as the simulation of responses to both A and B may have ensemble-wide biases and missing
components. In this case, those potential biases may arise only in the simulation of the predictor or only the predictand,
and so errors have the potential to weaken the constraint.

In such cases, the forcing associated with B differs from A in terms of its timescale or mechanism Examples of this

Similar approaches have used the seasonal cycle in snow albedo to constram sea ice trends (Qu and Hall 2014), future\
\ \\ [ Field Code Changed

extreme precipitation (O’Gorman, 2012) and vegetation carbon responses to warming (Cox et al., 2013; Wang et al.,
2014; Wenzel et al., 2014). Kwiatkowski et al., 2017 ll‘oundl that the sensitivity of tropical ocean productivity to
internal variability driven temperature change was related to future changes in productivity under anthropogenic global
warming. The concept can be taken further - using tendencies of forecasts on a timescale of hours to constrain long
term responses to climate change (Palmer, 2020; Rodwell and Palmer, 2007)(Palmer;2020; Rodwell-and Palmer;
2007,

Because our confidence in the EC arises partly from the existence of the correlation within the ensemble itself, we
must carefully assess the possibility that the emergent relationship arises due to common assumptions which are
deployed throughout the ensemble. Furthermore, it is more likely that a relationship will emerge if the common
assumptions are simple, with a small number of effective degrees of freedom in calibration (see Figure 21, in the
simple-model example which follows).

For example, many CMIP-class models use similar temperature-scaling assumptions for soil respiration (Shao et al.,

2013). There is evidence that the majority of soil carbon stocks in the CMIPS arch1ve can be explamed by a reduced
order function of soil temperature and plant productivity ¢ ass
Nijsse-et-al-n-d-)-which notably fails to reproduce observed carbon stocks (Todd- Blovm et al. 2013) - 1mply1ng a
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common structural bias. A constraint on the future temperature response in CMIP (Cox et al., 2013) could be argued
to effectively be a calibration of a low-order soil respiration model.

In such a situation, where the CMIP models have a common and/or low-order structure, differing only in their
calibration - the MME is in fact a PPE in disguise. Our assumption that the ensemble represents a complete set of
plausible structural variants interchangeable with reality is far from the truth, and worse, an ensemble with such
structural limitations is more likely to produce constraints of the third kind (as we see in the simple example which
follows) because the response to any forcing is effectively governed by a small number of degrees of freedom.
Although there may be a robust intra-ensemble relationship between the response to a short-timescale forcing and a
long-timescale forcing, this relationship may be the direct product of a simple common structural framework. In order
to have confidence in the constrained projection, it is then necessary to assess whether that common framework is
both adequate and also the only plausible mechanistic model for the process.

It should also be noted that these ‘kinds’ of constraint might be potentially useful in an illustrative sense, but they are
not absolute. Some published constraints undoubtedly have elements of more than one type. For example, Zhai et
al., 201 5b{Zhai-etal;2045) thas\ elements of both 2nd- and 3rd-kind constraints, in that it isolates a primary long term
feedback process and constrains it using the response to short term forcing (seasonal Variability, in this case) Another

al., 2019; Schurer et al., 2018; Tokarska et al., 2020) Stht; N
20483, which has elements of 1st- and 3rd-kind constraints. The transient warming response to an 1deahzed forcmg is
constrained with its response to historical emissions, which is a Ist-kind constraint But there are also conceptual
differences between these forcing pathways (most notably the presence of transient aerosol forcing in the real world)
and the resulting dominant feedback processes, which introduce elements of a third-kind constraint. Ultimately, the
greater the differences between the forced response considered in the constraint and that measured in the predictand,
the more the constraint itself depends on the structural assumptions present in the ensemble.

4 A SIMPLE EXAMPLE

We can illustrate these concepts using ensembles created from two different classes of simple climate model.

4.1 SyMPLE HEURISTIC MODEL STRUCTURES

4.1.1 SINGLE-LAYER MODEL
The first model uses a single timescale of response, corresponding conceptually to an ocean represented by a single
thermodynamic slab:

'

CdT—F AT 1
- FO- @

where C is the heat capacity of the Earth system, T is the global mean temperature anomaly, F is the time-dependent
climate forcing and A _is the climate sensitivity parameter.
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Figure 21. An illustration of the three3 kinds of emergent constraint in two structurally-different ensembles. (a)
an idealised forcing timeseries used for each of the simulations - a (noisy) linear ramping of radiative forcing from
years 0-140 followed by (noisy) constant forcing from years 140-280. (b) shows the response in 50-member
perturbed parameter ensembles of two energy balance models, with one1 (red) and two2 (blue) timescales of
response. (c) a constraint of the first kind, showing TCR (warming after 70 years of 1 percent annual increase in

of the second kind, using the feedback parameter ‘lambda’ to predict warming after (140, 280) years. (g,h)
constraints of the third kind, using a variability metric (Cox et al., 2018b) derived from detrended temperature
timeseries in years 1-70 as a predictor warming after (140, 280) years. In each case, colored points show members
of the model ensemble, lines show bootstrap regression estimates, grey vertical bars show the 10th, 50th and 90th
percentile of the (hypothetical) observed uncertainty distribution. Colored box/whisker plots show the 5/95th
and 25/75th percentiles of the resulting constraint from each ensemble.

4.1.2 TWO-LAYER MODEL
The second model is slightly more complex, with the addition of a deep ocean (Geoffroy et al., 2013):
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Where |6 Cyis }the heat capacity and 77, is the temperature anomaly of a deep ocean layer, yis the thermal diffusion
coefficient of heat exchange between the two layers, and ¢ is the efficacy of heat transfer to the deep ocean dsee‘
{Geoffroy et al., 2013)).

4.2 IDEALIZED EXPERIMENTS
We conduct an idealised climate change experiment where for the first 140 years, CO; concentrations are increased
by 1 percent each year resulting in a gradual linear increase in forcing over time, followed by an equilibration period:

F(t) = at + by(t), t < 140. )

A transient component of the forcing is provided by the first term, where a=0.05 (corresponding approximately to the
1 percent CO, ramping experiment), and a random component is provided by the second term, where n(t)is white
Gaussian noise, scaled by the factor b=0.5. In the second 140 years, the transient component of the forcing is held
constant:

F(t) = 140 a + by(t), t = 140, ®)

With each model, we produce a range of responses by creating an ensemble with parameters sampled in latin
hypercube - in the first case [C, A] and in the second case, [C, C,, 4, €, y]. Finally, we consider how different types of
artificial ‘observation’ would constrain the projected response. Parameter ranges for the two-layer model are informed
by (Geoffroy et al., 2013)3., and manually adjusted in the one-layer model to produce a comparable range of transient
warming after 140 years (T140 herein, see Table 21).

Parameter Symbol (Units) Minimum (1 [ Maximum (1 [ Minimum (2 | Maximum (2
layer model) | layer model) | layer model) [ layer model)

Upper ocean heat | C (Wm?2Kyr) 10 20 2 10

capacity

Feedback parameter A (Wm?2K") 0.5 2 0.5 5

Deep ocean  heat | Co (Wm?ZKyr) - - 50 500

capacity

Deep ocean diffusion | y(Wm?2K") - - 0.5 3

coefficient

Deep ocean efficacy &(unitless) - - 0.8 2.5

Table 21. Parameters used in the one- and two-layer models in the idealized example, and the upper and lower
bounds of the sampling range used in the ensemble construction.
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In these simple models, we can test constraints of different types and illustrate their sensitivity to common structural
differences between the two ensembles. We consider three constraints for future response in each of these models,
and then interpret their relative skill.

A 1st-kind constraint can be created by using the transient warming observed after 70 years (T70) to predict T140. In
this example, the EC exists in both ensembles (though its slope differs a little between the two ensemble types):
transient warming is near-linear in time in both cases, and so behaviour at year 140 can be extrapolated from years 1-
70. However, for the case of warming at 280 years (T280, i.e. an additional 140 years after forcing is stabilized), we
see a-eaningful-constrainta strong relationship between T70 and T280 only in the single layer model (Figure 2b1d).
In the two layer model, the temperature response in the first 140 years of linear forcing increase is a combination of
both slow (deep) and fast (shallow) timescale components, and transient warming at year 70 can be extrapolated (even
if we don’t know the relative contribution of the slow and fast components of the warming). However, when the
forcing stabilizes at year 140, the shallow component quickly saturates and remaining warming is due to deep ocean
equilibration alone. Thus, this additional degree of freedom (shallow vs deep contribution to transient warming) is
unconstrained, and T70 is a worse constraint on T280. The one layer model does not have this additional degree of
freedom, and thus T70 is a good constraint on T280 - but only because of the structural simplifications present in the
model. Because the nature of the forcing differs between the transient and equilibrium stages of the experiment, the
constraint of T280 using T70 is a 3rd-kind constraint in our classification system.

We can consider a constraint of the 2nd kind by assessing how independent data constraining a parameter in the
models would constrain its projections. In Figures 21(e,f) we illustrate how knowledge of the A parameter would act
as a constraint in two ensembles (as a proxy for information about physical processes in CMIP-class models). In the
single-timescale model, A_acts as a near-perfect predictor of warming after 140 and 280 years, and constraining
ensemble spread using that parameter would have a large effect. In contrast, in the two-timescale model, the
correlation is weak. Although the lambda parameter controls feedbacks (and equilibrium response) in both models,
transient response in the two layer model is strongly governed by deep ocean heat uptake. We know that heat uptake
by the deep ocean is an important mechanism for Earth’s warming in transient scenarios (Geoffroy et al., 2013a), so
we have introduced a common structural flaw in models that do not account for the role of the deep ocean. That flaw
allows for an apparently strong EC in the single-timescale model ensemble which is not present in the more realistic
ensemble.

The one-layer model ensemble samples a similar range of transient warming as the two-layer model in the first 140
years. For some applications, the one-layer model may be sufficient to model further transient warming, but the
strength of an EC based on A depends on the over-simplistic structure of the one layer model, which leads to a
demonstrably overconfident result in this case.

We can also construct a 3rd kind constraint such as the 1 _variability metric similar to that used by (Cox et al.,
2018b)Cox—et-al;20+8), where the variance and lag-covariance of temperature variability is used as a predictor of
climate sensitivity (though there are conceptual differences to Cox 2018, given our model here does not have an
internal source of noise). In this case iln Figure 21(g,h), we consider the i metric as a predictor of T140 and T280
in our two ensembles. Once again, the metric is a strong predictor for both T140 and T280 in the one-layer ensemble.
Meanwhile, in the two layer ensemble, the correlation with T140 is weaker (with a different slope to the one-layer
case). There is little to no correlation between T280 and y. As with the first-kind constraint, both the EC relationship
slope and its strength as a predictor depend on common structural assumptions, with a stronger apparent relationship
in the ensemble with fewer degrees of freedom.

In these simple examples, we can understand EC behavior in the context of the model assumptions. Both model types
can produce similar transient evolution until forcing is fixed, but then the responses diverge, revealing very different
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equilibration behaviour (see Figure 2b1b). The single-layer model equilibrates to a change in forcing over 1-2 decades
(depending on the exact choices of C and A), so that after 140 years, most of the response to the forcing experienced
to date has already been realized in the model temperature response, and little additional warming is subsequently
seen. T70, T140 and T280 are all (to first order) controlled by the A parameter. On the other hand, the-two layer model
does not fully equilibrate to a step change in forcing for centuries - so the transient response to forcing which define
T70 and T140 is controlled by both A and the deep ocean heat uptake parameters (C,, €,¥). In this model, neither T70
nor A are singularly informative about how the model equilibrates.

This illustrates a key issue with the emergent constraint framework: if one has access only to the one-layer model
ensemble, one would conclude that A or T70 are strong emergent constraints on T280, and the strength of the
relationship might be used as evidence for the physical plausibility of the EC. But instead, in this case, the strength
of the relationship is indicative that the single layer model is lacking (in this case a deep ocean), and the parameters
of the shallow ocean have been adjusted to compensate for this bias in reproducing observed transient behavior.
Furthermore, if independent data on the real-world value of 1 was available and was used to constrain the response of
the single-layer model (and the real world was in fact more appropriately modeled by including the deep ocean), the
resulting constrained prediction would be precise but inaccurate because that prediction would be conditional on a
common structural assumption that is \incorrecd.

More generally, the strength of an emergent relationship must be considered in the context of the degrees of freedom
which are varied in the ensemble being considered. In the simple example considered here, the historical forced
response can act as a constraint on the future response because the forcing term is held constant across the ensemble.
In CMIP, the presence of uncertainty in the forcing timeseries due, in a large part, to uncertain aerosol effects render
historical warming as a poor constraint on future warming (Forest et al., 2002; Knutti et al., 2002) due to compensating

forcing and feedback terms in ensemble members (Kiehl, 2007; Knutti, 2008), except in cases where the aerosol

forcing term is relatively constant over the time period considered (Nijsse et al., 2019; Tokarska et al., 2020), or
additional information is included to disambiguate the responses to different forcings (Allen and Stott, 2003; Hegerl
et al., 2000; Kettleborough et al., 2007). In effect, this suggests that the long term historical warming in CMIP is not
a useful constraint because it has already been ‘used’ by model developers who consider reproducing historical

warming to be a necessary condition for acceptability of a released model, leading to an ensemble which is converged
on the observed global mean historical temperature record, but with a range of trade-offs in forcing and net feedback.

5 ASSESSING STRUCTURAL ROBUSTNESS IN CMIP EMERGENT
CONSTRAINTS

Clearly, the models in the example above are vastly simpler than those used in CMIP, but these examples illustrate
relationships which could emerge in those more complex models, and how they might be incorrectly utilized. Such
errors could occur in CMIP-derived ECs if there are processes that are parameterised in a common, overly-simplistic
fashion across the ensemble. Furthermore, irrespective of increasing model complexity, it is likely that this argument
could always be made - one could always imagine a more complex or complete model than the standard at any given
time-. (e-gtur c¢ closure). Similarly. ; s whi simpli

~In this context,
a single EC will continue to be at best a conditional statement which could be proved inaccurate or overconfident by
the following generation of models.

But for the increasing body of ECs which have been published using CMIP data, how concerned should we be about
overconfidence due to common structural errors? This question does not replace those credibility tests which have
already been proposed in the literature (Caldwell et al., 2018; Hall et al., 2019): robustness to change in ensemble
samples, plausibility of mechanism and evidence of the mechanism and feedback variability from supporting model
diagnostics. But for ECs which appear to pass these tests, an assessment of the underlying model assumptions is then
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necessary. Here we assess a small number of ECs as case studies, and how their applicability is to some degree
conditional.

5.1 PERSISTENT BIAS OF CO2 CONCENTRATIONS

We consider first an example of an EC of the “first kind” (Hoffman et al., 2014) which uses the present day carbon
dioxide concentration to constrain future carbon dioxide concentrations. Thelr prlmary ﬁndmg is that a historical blas
per51sts into the future in a tran51ent emissions scenario. Fi

= isThis exploitation of blas -persistence might be b%overconﬁdent if
the CMIP5 models were missing or misrepresentmg key land surface or ocean processes which might differently alter

The net carbon uptake by the Earth system represents the combined contributions of land and ocean components, with

greater agreement in models on the net effects than the consituents (Friedlingstein et al., 2014). In the ocean, there is

evidence of common biases in CMIPS5, for example in mixing and the uptake of carbon in the Southern Ocean (Sallée

et al., 2013). If such biases are compensated through other parameters in order to improve global estimates of net

ocean carbon uptake — then ensemble-derived relationships between past and present carbon uptake have the potential
ar et al., 2021).

to be biased by common errors in the Southern

There-are-a-number-ofsuchln the land surface representation, there are a number of processes missing from a subset
or the entirety of the CMIPS ensemble. For example, nitrogen limitation was implemented in only one model in the
CMIPS generation of models (Zaehle et al., 2015), where it was found to have the capacity to significantly alter land

carbon uptake. For an emergent constraint exploiting the persistence of a CO, concentration bias, this is potentially
an issue if nitrogen availability is not currently limiting, but becomes a limiting factor in a future state. A larger
fraction of CMIP6 models include nitrogen limitation with diverse implementations. Nitrogen was not found to
strongly influence historical carbon uptake - but a future effect has not been explicitly ruled out by studies to date
(Davies-Barnard et al., 2020), so a repeat of the Hoffman study would be a useful test of the robustness of the EC to
a significant structural change between the CMIP5 and CMIP6 generation of land surface models.

There remain a number of additional processes which could potentially influence future carbon uptake that are not
comprehensively implemented. Phosphorus limitation has botentialﬂy large impacts on the future Amazonian carbon
sink (Fleischer et al ,2019), and is absent from CMIP5 models but present ina small subset of CMIP6 models (Arora
product1v1ty. is both critical and absent from CMIP6 class models (Brienen et al., 2020; Needham et al., 2020), as are
complex fire-vegetation feedback processes (Teckentrup et al., 2019), diversity in responses to drought (Fisher et al.,
2010; Levine et al., 2016; Longo et al., 2018; Sakschewski et al., 2016) vegetation damage under unprecedented heat
extremes (Teskey et al., 2015), wind events and pathogen damage (McDowell et al., 2018). These all have the
potential to introduce climate-vegetation feedbacks which are currently not represented in the CMIP6 ensemble.

Thus our confidence in the persistence of the models’ present day CO, bias persisting into the future is reduced
because there are processes which are potentially highly significant and are broadly absent from current generation
models. However, the nature of a first-kind constraint means that the integrative carbon cycle response is used as both
predictor and predictand, and so this kind of constraint could remain robust as long as structural omissions had similar
effects on CO; concentrations in the past and the future. In short, it is a filter on models which have been accurate
thus far in simulating the quantity we are ultimately interested in measuring - an arguably necessary (but not sufficient)
condition for projecting that quantity into the future. Because the net carbon feedback is being constrained directly,
the method is (somewhat) insensitive to the representation of processes which make up that feedback.

5.2 HISTORICAL CONSTRAINTS ON SOIL-CARBON TEMPERATURE RELATIONSHIPS
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We nextﬁ{consideﬂ the study by (Cox et al., 2013), which relates tropical land carbon uptake-temperature feedback and
the historical relationship between growth rate of atmospheric CO, and tropical temperature anomalies. ~eOther
studies_ (Chadburn et al., 2017; Varney et al., 2020) have considered similar relationships using spatial variability as a
predictor). In CMIP5 models, this constraint (of the ‘third-kind’ ) -was very strong (Cox et al., 2013). In this case,
the focus on the carbon-temperature component of the total carbon feedback isolated the effect of soil respiration
temperature response - which in CMIP5 dominates both the predictor and the predictand for the EC. Our confidence
in the EC thus firstly depends on whether soil respiration is represented in a common, oversimplified fashion in the
CMIPS ensemble. Independent studies have found that inter-model differences in soil carbon uptake are dominated
by the parameterisation choices for soil heterotrophic respiration rather than structural differences (Todd-Brown et
al., 2013)(Fedd-Brown-etal; 20133, and that a lack of ability to represent grid-scale variation in soil carbon levels
indicates the potential missing processes. Non-coupled models representing higher levels of microbial complexity
and vertical resolution suggest that CMIP-class models may be underestimating the range of potential future soil
carbon uptake (Shi et al., 2018).

In CMIP6 models, there remains indication that spatial variability continues to provide predictive information on
future soil carbon dynamics (Varney et al., 2020), but the role of soil respiration in the total carbon-temperature
feedback is less dominant (Arora et al., 2020), with vegetation productivity responses also playing a role in the
ensemble variance. This increases the structural diversity of the relevant model components, and has the potential to
weaken the strength of the CMIP5 correlation. A repeated analysis ‘oﬂ the method of (Cox et al., 2013) for the CMIP6
ensemble would be therefore of interest for testing whether the correlation remains equally strong in CMIP6-

5.3 CONSTRAINTS ON FUTURE OCEAN CARBON UPTAKE
There exist a number of studies which have considered relationships between aspects of present day and future

uptake of carbon in the Southern Ocean, which in the framework laid out here would be regognised as a first-

kind constraint: a trend or rate observed today persists into the future. The southern ocean carbon uptake is
conditional on both physical and biological model assumptions, and there are potential common CMIP biases
in_Southern Ocean mixed layer depths (Sallée et al., 2013) and seasonal SST cycle and models with
compensating biases in productivity (Mongwe et al.,, 2016), However, as discussed in Section 3.1, such trend
extrapolation constraints can remain robust to such compensating biases in the absence of nonlinearities.

Goris et al.,, 2018 also| constrains future oceanic carbon uptake, identifying that models which more efficiently

mix carbon down into deeper layers in historical climate continue to do so in the future (a first kind constraint)

and that such models show a larger seasonal cycle in North Atlantic shallow ocean carbon concentrations due

to summer productivity and winter mixing of carbon into the deep ocean (a third kind constraint). The process

identification, and multi-metric constraint potentially add robustness to this approach - but the constraints

remain subject to potential common mis-representation of ocean biota in the ensemble, {flsuch as the common

underrepresentation of winter North Atlantic productivity in all CMIP models shown by] Goris et al,, 2018, and

common underestimation of Atlantic Meridional Overturning Cirulation variability (Yan et al., 2018), both of
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which have the potential to bias the simulated seasonal carbon concentration anomalies, as well as the derived
emergent relationship slope.

Kwiatkowski et al., 2017 lidentify| a strong relationship between the long-term sensitivity of tropical ocean

primary production to rising equatorial sea surface temperatures and the interannual sensitivity of primary
production to El Nifio/Southern Oscillation (ENSO)-driven SST anomalies - a classical second kind constraint
where the sensitivity te-of ocean biota temperature variation arising from natural variability is used to infer
knowledge about the repsonse to future warming. Such a relationship identifies that the parametric

dependencies of tropical producivity are similar for long term warming and internal variability, but once again
conclusions are subject to potential errors in assessing observed productivity (Stock, 2019), as well as common

biases in the effect of resolved scale on productivity (McKiver et al., 2015).

5.43 CONSTRAINING TRANSIENT CLIMATE RESPONSE WITH OBSERVED WARMING

The constraint of TCR detailed J* by apNi - ) (and

al., 2020)) use observed transient warming as a predlctor of future warming. In th1s case, the EC falls into the ‘first
kind’ category - the predictor and predlctand are conceptually s1m11ar in that they both represent the transient global

are differences in terms of the forcing magnitude (present day CO; levels are less than the double pre-mdustrlal level
used in the formal TCR definition), and also due to other forcing terms due to, for example, aerosols and land use
change. The authors minimise the role of aerosol forcing changes by considering a time period (1975 to 2013) in
which there is relatively constant global mean aerosol forcing - leaving a time period in which greenhouse gas forcing
changes are dominant.

The presence of a strong correlation in CMIP6 indicates that, at least in this ensemble, transient warming remains
broadly constant in response to linearly increasing forcing, and uncertainties in the extrapolation of transient warming
are sufficiently small that the inter-model spread of TCR can be constrained. Unlike equilibrium response (where
models show rather diverse equilibrium warming trajectories (Rugenstein et al., 2020)), CMIP models tend to
uniformly exhibit near-linear warming trajectories in response to transient forcing, differing only in the temperature
growth rate - thus making a strong constraint with effectively one degree of freedom.

These constraints suggest that historical transient warming well explains future transient warming response to linearly
increasing forcing. Our simple model example in Section 4.1 highlights how a given transient warming rate can be
explained with a range of combinations of climate feedback, ocean heat storage and heat distribution parameters, and
that in the event of forcing stabilization, lack of knowledge of these individual parameters will make equilibration
behaviour (ECS, as an example) less strongly constrained by historical transient warming. As such, the constraint of
TCR from observed warming in a period where primarily only greenhouse gas forcing is changing is likely to be quite
robust, leaving the primary question of the utility of TCR itself as a metric of response in future projections.

The TCR metric is insensitive to carbon cycle dynamics and aerosol forcing plus potential ‘tipping points’ (Lenton et
al., 2019) if they are unrepresented in current generation models. TCR is also a combined function of climate
feedbacks and ocean heat uptake dynamics, and models which share the same value of TCR can have different
warming trajectories long after forcing levels stabilise_(Sanderson, 2020). As—such—it-seems—that-aAs such, thea
emergent constraint on TCR and warming until 2100 in realistic scenarios might-beis likely to be robusﬂ, but may not
constrain post-2100 warming -under mitigation, where large uncertainties in the interplay between ocean circulation
dyanamical responses to warming (Rose and Rayborn, 2016), climate feedbacks (Zelinka et al., 2020) and long term
carbon feedbacks (Koven et al., 2021) are areas of active research.
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5.54 PROCESS-BASED CONSTRAINTS ON CLIMATE SENSITIVITY

Here, we consider an example of a 2nd kind process constraint (Sherwood et al., 2014) on equilibrium climate
sensitivity in CMIPS - though the arguments would be equally appllcable to other plausible process based constraints
(Brient et al., 2016; Brient and Schneider, 2016; Zhai et al., 2015a) : : :
Zhai-etal52045). )—I—heSherwoodﬁdf)er broposes two indirect metrics of lower tropospherlc mixing which are related
to future reductions in boundary layer clouds (the cloud feedback which is itself the largest component of inter-model
spread in ECS (Pincus et al., 2018)). The postulated physical mechanism is that models with larger boundary layer
mixing will experience stronger ventilation of moisture from the lower troposphere as the atmosphere warms and
humidity increases, so these models ultimately experience the most extreme loss of boundary layer clouds.

Independent studies have assessed the Sherwood constraints to have a plausible mechanism, with correlated warming
patterns occurring in regions which are consnstent w1th the constraint (Brlent 2019; Caldwell et al., 2018). Together
with the relatively strong correlation whieh-is-—s : tseHporposed by Sherwood, this makes the
study one of the more compelling examples of a physical constraint on ECS in a multi-model ensemble.

If indeed the Sherweed-constraint proposed by Sherwood et al. is a robust predictor of ECS within CMIP3, the
structural robustness of the constraint concerns the degree to which CMIPS is a representative sample for comparison
with reality. This question can itself be divided into three questions: (1) is the process itself sufficiently well
represented in CMIP5 to be informative, (2) are there other processes which are absent, undersampled or commonly
misrepresented in CMIPS models which might bias ECS and (3) are there common structural biases which might
impact the predictors - the mixing proxies in this case, thus biasing the conclusion of the constraint.

For the first question of boundary layer process accuracy, there is a structurally rich selection of boundary layer
schemes in CMIP5 (Edwards et al., 2020) which reduces the chance that the EC is a product of structural homogeneity
in the ensemble. There is, however, some evidence that there exist ensemble-wide climatological biases in the current
generation of models which can be attributed to common boundary layer mixing structural errors in CMIP5 (Wei et
al., 2017). M-and-most CMIP5 generation models rely on low-order turbulence closure schemes which assume, to
some degree, a representative length scale for temperature and wind gradients based on Monin-Obukhov similarity
theory (Monin and Obukhov, 1957), often complemented by bulk convection schemes or energy closure arguments
to resolve remaining boundary layer mixing}. The testing of the persistence of the EC in CMIP6, which includes
models with higher order closure schemes which do not make this explicit ‘assumption\ Bogenschutz et al.,
2018)Begenschutz—et-al—n-d), thus broadening the diversity of representation of boundary layer mixing in the
ensemble and creating a useful test of structural robustness for the CMIP5 era constraints.

The second question relates less to the representation of the process in question (shallow convection and boundary
layer processes), and more to everything else in the model which could potentially influence ECS in CMIP5, but might
be undersampled (or not represented at all). To put this another way, are boundary layer processes responsible for
ECS variation in CMIP5 because they are the most uncertain in an absolute sense, or because we have failed to
adequately explore uncertainty in other feedback processes? For example, the transition from CMIP5 to CMIP6 saw
many models shift in their representation of mixed-phase clouds which are thought to explaln high ECS values in a
number of CMIP6 models (Zelinka et al., 2020)(Zelinka-et-al-2020), so it is unclear w ;
2044)Sherwood’s constraint would represent that shift given the process responsible differs from the primary axis of
CMIPS variability.

Perturbed parameter experiments have reported ranges in ECS which have been dominated by deep convective

(Sanderson et al., 2010) or mid-layer cloud response (Shiogama et al., 2012), and hence it is not surprising that #he
SherweodSherwood’s constraind on low cloud feedbacks has proven less effective at constraining ECS in a PPE

18

‘porposed by Sherwood, this makes the

o { Commented [RK42]: See above

) { Field Code Changed

- { Commented [RK44]: See above




670

‘675

680

685

690

695

700

Kamae et al., 2016

PPEs cannot be otherwise ruled out, th1s raises a concern for the degree to which CMIPS has sampled the climate

feedback space, and thus structural robustness of w%heﬁveed%constraim )used in isolation.

The final question for process-based constraints is the degree to which predictive metrics in the ensemble could be
biased by the omission or misrepresentation of other processes. For boundary layer measurements in CMIP5, biases
in the land surface scheme are known to project onto boundary layer climatologies (Holtslag et al., 2007), which in
the case of CMIP5 was responsible for ensemble-wide systematic biases due to common soil moisture biases
(Svensson and Lindvall, 2015) - but given that the Sherwood constraint is focussed on ocean, it seems unlikely that
these effects are highly influential. However, biases in boundary layer simulation have been attributed to cloud
morphology (Bony et al., 2020), large scale flow, gravity wave and surface drag parameterizations (Sandu et al., 2013),
so there remains the possibility of an ensemble-wide bias in the predictor if any of these processes are commonly
misrepresented.

5.65 CONSTRAINING CLIMATE SENSITIVITY WITH FLUCTUATION-DISSIPATION

RELATIONSHIPS

We finally consider a secendthird-kind constraint on ECS (Cox et al., 2018b) which relates a metric of internal
variability (Psi, a function of the lag-covariance structure of the global mean temperature timeseries) to the models’
ECS. The constraint exploits the fluctuation-dissipation theorem_(Kubo, 1966; Leith, 1975), which relates the linear
response of a dynamical system to its noise characteristics. The result is somewhat dependent on subjective choices
in the derivation of the unforced lag-covariance term (Brown et al., 2018), the length of sample used (Rypdal et al.,
2018), the subset of CMIP5 models used in the ensemble (Po-Chedley et al., 2018) - which together might imply that
there are uncertainties involved in the practical application of the constraint using the historical record which were not
represented in the original study.

Setting aside for a moment these practical issues associated with measuring unforced variability in reality - there is
reasonable evidence that there might exist a relationship between control model variability and climate sensitivity in
the CMIP5 ensemble (Cox et al., 2018a){Cox—et-al;—2018a) (whether that unforced variability is measurable in
h)racticse] is a different question). The fact that this idealised relationship exists both in simple models (Williamson et
al., 2019), and in the CMIP5 ensemble (where both internal variability and ECS are emergent properties of a large
number of 1nteractmg processes which are dlversely sampled within the ensemble) mdk%s—Hedseﬂﬂbl—y—Hﬂhk%l—yLﬂ%ﬁ%

Si8: prO\ldc some dddltl()ndl confidence, but newer
studies suggest a significantly w L.IlkC]” 1chtmnsh1p in ( MIP6 (Schlund et al., 2020), even though the CMIP6 models
exhibit a wider range of ECS (Meehl et al., 2020).

Understanding the disagreement between a number of plausible (Caldwell et al., 2018) process-based ECs which
constrain ECS to hlgher values (Bucnt and Schncndcr 2016; Sherwood et al., 2014; Zhai et al., 2015b)(Brient-and
and fluctuation-dissipation arguments which suggest lower
values (Cox et al., 2018b) may thus require a joint consideration of structural and implementation errors. The process
constraints are strongly conditional on the sampling of feedback processes in the CMIP ensemble itself. If the CMIPS
ensemble is under-sampling other types of radiative feedback (e.g. deep convection, mid-level cloud response), then
this uncertainty is not represented within the constrained distribution obtained from using an EC on boundary layer
processes. Such structural uncertainty is-less-applieablemight be expected to be less applicable to the fluctuation-
dissipation constraint because the variability of global mean temperature is an integrative property of all feedbacks in
the system, it is less conditional on any single feedback type being well sampled in the ensemble.
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However, the practical limitations of the short historical record confounded by other climate forcers may prevent its
useful application in ipractigse‘ because the unforced variability of the system is not sufficiently knowable to form a
strong constraint on ECS. The results may also be sensitive to the metric and the set of models used; an earlier study
using a similar idea found no constraint (Masson and Knutti, 2013b)(Massen-and Knautti;- 20133, and in some cases
reversed signs of correlations between CMIP and PPEs, thus questioning the robustness of the approach. Other studies
(Annan et al., 2020) have performed objective Bayesian constraint of ECS through climate variability in simple
models, finding a wider constrained range widerthan suggested by Cox et al. (2018). As-such;-a-confirmation-ofthe
S 1 h C ¢ P 018 P 's mn N M D, s% NEOLL 9 ahle s t1ional-data o ':. S A‘A“'l‘hclargyc
discrepancy between the strength of the relationship in CMIP5 and CMIP6 further lowers our confidence in the
constraint — implying either the fluctuation-dissipation relationship in CMIPS5 was a sampling artifact or that the
additional degrees of freedom in feedback variance in CMIP6 (Zelinka et al., 2020) compared with CMIP5 complicate

Sth-0 -0 S atto & outd OV aan attto aata-o oY

the fluctutation-dissipation relationship which would be expected from simple models with a single feedback
parameter.

6 CONCLUSIONS

We have highlighted here that the existence of disagreement among published constraints suggests that structural
errors exist in the CMIP multi-model ensemble, and that some published constraints may be spurious. A common
structure in the ensemble may lead to strong EC relationships, especially if assumptions have only a small number of
degrees of freedom - and that such situations may indicate a lack of structural diversity which might be necessary for
robust uncertainty quantification.

It remains to consider how an assessment of potential structural errors in an emergent constraint should be used. The
focus of published papers and their use in, e.g., IPCC assessments, has often been on the constrained result itself (Cox
et al., 2013, 2018b)fCox—et-al;2013.-2018), but these constraints may be overconfident in the face of a potential or
demonstrated structural error. A more robust interpretation of an EC is that it provides potentially observable
information related to aspects of ensemble response variation, but not necessarily that the projection can be accurately
constrained directly with that information. In our simple example, given the presence of a relationship between A and
T280 in the single-layer ensemble, it might be accurate to interpret that the processes represented within A_could be
relevant to long term temperature evolution, but unjustified to actually constrain T280 directly.

If this logic is applied to the more complex models which are used in climate assessments, such information could
potentially highlight which processes control ensemble spread in projections, where model development needs to
assess whether current process representations are adequate and appropriately diverse, whether there are alternative
process models which could be incorporated into CMIP-class models, and where available observations have not been
fully exploited to calibrate models.

This information could also motivate more focus on the simulation of the predictor variable - are there processes which
are missing in the current generation of models which could be implemented in future versions? The presence of an
emergent constraint should also act as a warning sign that a process in the ensemble may be represented in a
structurally homogeneous fashion. Such an effect could be compounded if there are only a small number of effective
degrees of freedom sampled in the ensemble. It is thus critical to assess whether common simplifications in the
ensemble are creating or influencing emergent relationships.
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The use of an EC as the sole constraint of a projected quantity is effectively a model weighting which considers only
a subset of model performance, disregarding aspects- of model performance which are not represented within the EC
itself (even though that one metric may characterize many aspects of the climate, or itself be a sum of different
metrics). This should give us pause, because studies of model weighting have demonstrated that using a single metric
that only captures specific aspects of climate is likely to result in an overconfident result (Knutti et al., 2017; Lorenz
et al., 2018). As such, care must be taken to recognise that even if an EC exists, structural biases may preclude a
simple assessment that those models closest to the observed value have the most trustworthy response. For example,
if calibration trade-offs prevent models from being tuned to match observations in two locations simultaneously, this
may complicate the application of an emergent constraint which uses simulated climate in one of those locations as a
predictor of response.

Persistence of ECs in successive generations of models should increase to some degree confidence that emergent
constraints are not statistical artifacts (Caldwell et al., 2014; Schlund et al., 2020), but it remains possible that common
structural simplifications could persist for multiple ensemble generations. The development of multi-metric

5

Sehtund-et-al2020) could provide greater robustness to structural errors, given that a lesser reliance is placed on any
single axis of inter-model variability.: Even if two constraints are identified for the same physical process, and the
metrics are highly correlated within the ensemble (Caldwell et al., 2018), there may be some advantage in combining
their results, given the potential for differing and potentially independent biases in observations of the two quantities
(Lorenz et al., 2018). Though uncertainty in observational products themselves must still be sampled where possible,
multi-metric approaches have the potential to reduce observational uncertainty on constraints (Brunner et al., 2019).

The idea of multi-variate metrics of model performance is not new, and generic multi-variate metrics of model
climatological errors are perhaps the default approach for assessing the skill and plausibility of different models during
assessment (Baker and Taylor, 2016; Gleckler et al., 2008; Wilde et al., 2011). But, weighting models based on
general climatological performance over a large number of variables has little effect (Sanderson et al., 2017) which
does not tend to significantly decrease the projection uncertainty in the unweighted ensemble.

There is also a growing potential to improve structural robustness by moving from ‘top-down’ emergent constraints
which use the ensemble to identify correlations between net system responses (such as climate sensitivity) and

observables, and ‘bottom-up’ constraints which identify and constrain single identifiable processes. The former

approach (as applied, for example ‘in‘ (Sherwood et al., 2014)) might exploit the fact that ensemble variance in net

response is dominated by one process (ECS variance dominated by lower tropospheric mixing, in this case) — but the
resulting constraint ignores potential uncertainty in other feedbacks which might be inadequately sampled in the
ensemble. Bottom-up approaches such as the ‘cloud controlling factors’ iabyl Klein et al., 2017) have the potential to

isolate and quantify structural assumptions in composite elements of a net response, allowing the individual

assessment of constraints in each component, and the isolation of ensemble structural assumptions in the associated
processes.

ECs could play a useful role by defining reduced-space metrics which consider only those aspects of model
performance that are relevant to a particular future response. Multi-metric emergent constraints may provide a useful
‘third way’: they are less sensitive to structural errors than single-metric emergent constraints, and can be targeted
toward processes that may drive future responses more accurately than generic performance metrics which do not
explicitly account for the relevance of an observable to a given response (Baker and Taylor, 2016; Collier et al., 2018).
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There is undoubtedly also rich information to be gained from ECs which disagree - a rare quantitative indicator of
projection-relevant structural error in climate model simulations. If inconsistent constraints are proven to be
statistically robust, these inconsistencies could provide guidance in future development cycles - highlighting key
biases shared among models related to missing or misrepresented processes which might be important in properly
representing feedbacks of interest.

The collection of simulations and projections available in CMIP represents a formidable amount of data (Williams et
al., 2016), but its scale does not justify considering CMIP to be a comprehensive sample of possible representations
of the Earth System. Parametric uncertainties and computational limitations on resolution and ensemble size limit the
degree to which our current ensembles represent the tails of the distribution of possible future change, and any
statement of uncertainty of the future evolution of the climate system can only be made robustly in the context of these
uncertainties. Emergent constraints, if used less literally, could play a powerful role in understanding the ensemble
we have; a combination of more robust statistical frameworks, better understanding of the ensemble’s nature and
multi-metric techniques could provide new opportunities for understanding how the Earth might respond to climate
forcing.
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