Earth System Dynamics

Supporting Information for

Climate Change Projections of Terrestrial Primary Productivity over the Hindu Kush Himalayan Forests

Halima Usman¹, Thomas A.M. Pugh², Anders Ahlström³, Sofia Baig^{1*}

¹Institute of Environmental Sciences & Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan

²School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

³Department of Physical Geography and Ecosystem Science, Lund University, Lund, SE-221 00, Sweden

Correspondence to: Sofia Baig (e-mail: sofia.baig@iese.nust.edu.pk)

Introduction

Net Biome Productivity (NBP) is an important measurement of flux which assesses if the region is acting a net sink or net source of carbon. Simulated NBP by IPSL-C5A-MR reveals an increasing trend for the period 1951 to 2005 with a mean NBP of 0.0035 ± 0.018 kg C m⁻² yr⁻¹. The NBP of future scenario under RCP2.6 was estimated to be 0.0029 ± 0.05 kg C m⁻² yr⁻¹ and 0.0039 ± 0.07 kg C m⁻² yr⁻¹ under RCP8.5 (Figure S1). For MPI-ESM-LR, a similar trend was also observed, with average NBP of 0.02 ± 0.04 kg C m⁻² yr⁻¹ and 0.04 ± 0.06 kg C m⁻² yr⁻¹ under RCP8.5 respectively (Figure S2). Most of the carbon sink capacity in the HKH rises in the Tibetan region of China where mostly grasslands are located. With increasing CO₂ concentration, the CO₂ fertilization

Figure S1: LPJ-GUESS simulated distribution by IPSL-CM5A-MR on NBP in HKH region under a) past period (1850-1950) b) present period (1951-2005) and future scenario under c) RCP2.6 scenario and d) RCP8.5.

MPI-ESM-LR

Figure S2: LPJ-GUESS simulated distribution by MPI-ESM-LR on NBP in HKH region under a) past period (1850-1950) b) present period (1951-2005) and future scenario under c) RCP2.6 scenario and d) RCP8.5.

The mean spatial VegC for IPSL-CM5A-MR was estimated to be 2.61 kg C m⁻² from 1850-1950, and 2.10 kg C m⁻² from 1951-2005. Under the future scenarios RCP2.6 and RCP8.5 the VegC was estimated to be 2.12 kg C m⁻² and 2.61 kg C m⁻² respectively (Figure S3). Furthermore, for MPI-ESM-LR, the VegC was estimated to be 2.83 kg C m⁻² from 1850-1950 and reducing to 2.22 kg C m⁻² from 1951-2005. Under the RCP2.6 the VegC is predicted to be 2.24 kg C m⁻² and 2.80 kg C m⁻² under RCP8.5 scenario.

Figure S3. LPJ-GUESS simulated distribution by IPSL-CM5A-MR of VegC in HKH region under a) past period (1850-1950) b) present period (1951-2005) and future scenario under c) RCP2.6 scenario and d) RCP8.5.

Figure S4. LPJ-GUESS simulated distribution by MPI-ESM-LR of VegC in HKH region under a) past period (1850-1950) b) present period (1951-2005) and future scenario under

c) RCP2.6 scenario and d) RCP8.5.