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Abstract. Increasing atmospheric carbon dioxide concentration [CO2] caused by anthropogenic activities has 13 

triggered a requirement to predict the future impact of [CO2] on forests. The Hindu Kush Himalayan (HKH) region 14 

comprises a vast territory including forests, grasslands, farmlands and wetland ecosystems. In this study, the impacts 15 

of climate change and land use change on forest carbon fluxes and vegetation productivity are assessed for HKH using 16 

the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS). LPJ-GUESS simulations were driven by an 17 

ensemble of three climate models participating in the CMIP5 (Coupled Model Intercomparison Project Phase 5) 18 

database. The modeled estimates of vegetation carbon (VegC) and terrestrial primary productivity were compared 19 

with observation-based estimates. Furthermore, we also explored the net biome productivity (NBP) and its 20 

components over HKH for the period 1851-2100 under the future climate scenarios RCP2.6 and RCP8.5.  A reduced 21 

modeled NBP (reduced C sink) is observed from 1986-2015 primarily due to land use change. However, an increase 22 

in NBP is predicted under RCP2.6 and RCP8.5. The findings of the study have important implications for management 23 

of the HKH region and inform strategic decision making, land use planning and clarify policy concerns. 24 

 25 

1 Introduction 26 

Anthropogenic activities such as combustion of fossil fuels and land use changes have led to large rises in atmospheric 27 

greenhouse gas (GHG) emissions such as carbon dioxide (CO2) and methane over the last century, with atmospheric 28 

CO2 mixing ratios increasing from 277  to 409 ± 0.1 ppm in 2019  since the preindustrial period, and  rising at the 29 

mean rate of 2.3 ppm per year from 2010 to 2019 (Friedlingstein et al., 2020) This uptake is likely primarily driven 30 

by the fertilizing effects of elevated atmospheric CO2 concentrations on plant growth (Sitch et al., 2015) and by the 31 

regrowth of forests following past disturbances (Kondo et al., 2018; Pugh et al., 2019) . However, the ability of this 32 

land sink to continue in the future remains highly uncertain (Phillips and Lewis, 2014).  33 

 34 



Several studies have identified that warming can cause a stimulation in plant growth by increasing NPP and hence 35 

leading to enhanced carbon uptake (Delpierre et al., 2009;Sullivan et al., 2008;Wu et al., 2011). However, researchers 36 

have also addressed that the rising air temperatures may also stimulate autotrophic respiration in plants (Burton J. 37 

Andrew et al., 2008). Due to global temperature rise, droughts are predicted to increase in frequency, duration and 38 

severity in the future (Trenberth et al., 2013). Increase in temperature causes an exponential rise in vapour pressure 39 

deficit resulting in stomatal closure thus limiting the rate of photosynthesis and higher mortality (Williams et al., 40 

2013). Hence, the determination of the effect of global rise in temperature on forests is becoming increasingly 41 

important as vegetation response to climate change will result in changes in net carbon uptake, water use efficiency, 42 

plant establishment, carbon biomass allocation and interaction with disturbances (Urban et al., 2017).  Several studies 43 

suggest that there is a large gap in the current understanding of the quantification of biomass carbon stock leading to 44 

large uncertainty for the future projections in the ecosystem carbon balance (Ahlström et al., 2012; Jones et al., 2013; 45 

Pugh et al., 2018; Wu et al., 2017). 46 

 47 

 48 

The HKH region is a diverse and ecological buffer zone, often referred to as the “Third Pole” encompassing an area 49 

of 4.2 million km2. The region provides ecosystem services such as such as watershed protection, livestock shelter 50 

and sustaining communities of estimated 240 million people (Krishnan et al., 2019). The HKH region  has been 51 

experiencing temperature rise of 0.2°C per decade since 1960 (Chen et al., 2013). The forests of HKH are undergoing 52 

changes of varied intensity as a result of climatic and human disturbances, alongside the  various forest management 53 

policies practiced in the different countries (Behera et al., 2018; Pulakesh et al., 2017).  The rate of deforestation along 54 

the HKH has been reported to be 0.5% yr-1 in Bhutan and 1.7% yr-1 in Myanmar  from 2000 to 2014 (Brandt et al., 55 

2017). The warming trend observed over recent decades of the 20th century is attributed to the increase in 56 

anthropogenic greenhouse gas (GHG) concentrations. The HKH region is believed to be becoming increasingly 57 

sensitive to climate change (Krishnan et al., 2019). In this region, the carbon dynamics are mostly influenced by the 58 

combined effects of climatic change and land-use land-cover change (LULCC) (Almeida et al., 2018;Cao et al., 2018). 59 

Although studies on projections of temperature change exist, but the combined effect of temperature, CO2 and LU 60 

change has not been investigated. 61 

 62 

In this paper, the historical and future carbon balance of terrestrial ecosystems in the HKH region are investigated 63 

using results from the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS), a DGVM with a detailed 64 

description of forest stand structure and land use (Ahlström et al., 2012; Smith et al., 2001). The goal of the present 65 

study is to (1) evaluate the ability of the LPJ-GUESS model, as forced by climate from a selection of Earth System 66 

Models (ESMs), to reproduce observation-based estimates of vegetation carbon and satellite-derived estimates of 67 

gross primary productivity (GPP) and net primary productivity (NPP) and (2) analyse the spatial and temporal changes 68 

in net biome productivity (NBP) and its components (NPP, Fire and Soil Respiration) and VegC over the period 1851-69 

2100.  70 



2 Materials and Methods 71 

2.1 Study Area 72 

The HKH region is situated between 16°N–40°S and 61–105°E encompassing Afghanistan, Bangladesh, Bhutan, 73 

China, India, Myanmar, Nepal and Pakistan (Figure 1). The evergreen needleleaf forest (ENF) cover about 2.69% of 74 

the HKH and 10.5%, 0.06%, 1.09%, 9.37% is covered by evergreen broadleaf forest (EBF), deciduous needleleaf 75 

forest (DNF), deciduous broadleaf forest (DBF) and mixed forests (MF) respectively. A major percentage of landcover 76 

is covered by open shrublands (OShrub) and grasslands (Grass) occupying 31.57% and 32.08% of the area of HKH. 77 

Furthermore, savannas (Sav) and woody savannas (Wsav) cover about 1.19% and 4.46% respectively. The remaining 78 

land is covered by croplands (Crop) and closed shrubland (CShrub) with percentage of 5.61% and 1.09% respectively. 79 

The forests of the HKH cover about 24% of the region, supporting the 12% of the population of the world by provision 80 

of diverse ecosystem goods and  ecosystem services including energy, timber and freshwater (Behera et al., 2018) 81 

 82 

Figure 1:  Land cover of HKH from MODIS (MOD12Q1). 83 

2.2 LPJ-GUESS Ecosystem Model 84 

LPJ-GUESS is a coupled biogeography-biogeochemistry model which integrates process-based representation of 85 

terrestrial vegetation dynamics and biogeochemical cycling (Smith et al., 2001). In order to simulate the size of carbon 86 

pools in various parts of the plant such as leaves, sapwood, litter and soil the model explicitly accounts for processes 87 

such as photosynthesis, allocation and resource competition between plants. The model is useful for predicting the 88 

changes in the ecosystem dynamics and is able to simulate and predict the future response of vegetation to elevated 89 

CO2 levels at leaf and stand scales (Sitch et al., 2015). In LPJ-GUESS, the species diversity of terrestrial vegetation 90 

is represented as groups of species with similar traits known as Plant Functional Types (PFTs). The simulations here 91 



use ten PFTs that are differentiated by attributes such as physiology, morphology, phenology and response to 92 

disturbance along with bioclimatic constraints. Trees are modelled as age cohorts across multiple replicate patches, 93 

but are identical within each cohort (age class) (Smith et al., 2001). 94 

 95 

LPJ-GUESS works on a daily time steps, with some processes, such as vegetation dynamics, computed annually. The 96 

input data to the model includes atmospheric [CO2] mixing ratio, precipitation, shortwave radiation, air temperature 97 

and soil type. Simulations begin from bare ground, and go through a 500 year “spin-up phase” during which soil and 98 

carbon litter pools accumulate and reach a state of equilibrium. An analytical solution is used to accelerate spin-up of 99 

the soil carbon pools. In the spin-up phase the model is forced by constant [CO2] and a repeated detrended 30-year 100 

climate segment from the beginning of the climate dataset used. As the spin-up phase finishes, the “transient phase” 101 

begins, in which land use, climate and [CO2] evolve over time as specified in the forcing datasets. Here we analyse 102 

outputs of vegetation carbon, gross primary productivity, net primary productivity and net biome productivity and its 103 

components. 104 

 105 

2.3 Simulation Protocol 106 

In this study simulations are reanalysed from (Ahlström et al., 2012) with a focus on the HKH region. Only an 107 

overview of the salient features of the set-up are given for this study. For more set-up details, please see Ahlström et 108 

al., (2012). Spatial patterns of carbon pool, fluxes and terrestrial primary productivity were investigated in HKH 109 

forests by using the output simulations of LPJ-GUESS resolution of 0.5° × 0.5° with climate forcing from climate 110 

models participating in CMIP5 (Table 1) under RCP 2.6 (Van Vuuren et al., 2007) and RCP8.5 representative 111 

concentration pathway (Riahi et al., 2011). RCP2.6 emission pathway is representative of reduced GHG concentration 112 

levels. It is a defined as a “peak-and-decline” scenario, in which the radiative forcing level first reaches around 3.1 113 

W/m2 by mid-century, and return to a value of 2.6 W/m2 by 2100. In contrast, RCP8.5 is characterized by increasing 114 

GHG emissions over time, culminating in a radiative forcing of 8.5 W/m2 in 2100. The climatic data was bias corrected 115 

by using CRU TS 3.0 (Mitchell and Jones, 2005) 1961-90 climatologies on annual and monthly basis (seasonal bias 116 

correction). The monthly fields of precipitation, downward shortwave radiation and air temperature were bi-linearly 117 

interpolated to the CRU grid at a resolution of 0.5° x 0.5°. The correction by the climatology fields (1961-90) adjust 118 

for bias in annual averages and seasonal distribution. Figure S1 (a) and S1 (b) shows an example of how bias correction 119 

adjusts the time series of temperature and precipitation. 120 

 121 

Croplands and pastures were treated as natural grasslands in the vegetation model in simulations that simulated land 122 

use (LU)  (Ahlström et al., 2012).  To assess the impact of human land use, simulations containing potential natural 123 

vegetation (PNV) were also assessed in comparison to those containing LU for both RCP2.6 and RCP8.5. 124 

 125 

 126 

 127 



 128 

 129 

Modelling Center  Institute ID Model name 

National Center for Atmospheric 

Research 

NCAR CCSM4 

Institut Pierre–Simon Laplace IPSL IPSL-CM5A-MR 

Max Planck Institute for 

Meteorology 

MPI-M MPI-ESM-LR 

 130 

Table 1: CMIP5 models and modelling groups used to provide climate forcing data for LPJ-GUESS in this 131 

study. 132 

 133 

2.4 Model Evaluation  134 

In this study, a global dataset of forest above-ground biomass (AGB) developed within European Commission-funded 135 

GEOCARBON project was considered for the purpose of comparison with LPJ-GUESS VegC. The base year of this 136 

dataset is 2000. As LPJ-GUESS VegC includes both above- and below-ground vegetation carbon, the AGB of 137 

GEOCARBON was converted into VegC by applying a correction to estimate below-ground biomass in the 138 

GEOCARBON dataset based on (Saatchi et al., 2011). The resulting above and below ground biomass was converted 139 

to carbon content by multiplying by 0.5. 140 

 141 

Furthermore, the Moderate-resolution Imaging Spectroradiometer (MODIS) GPP and NPP product (MOD17A3H) 142 

was used for comparison with the modelled GPP and NPP. MOD17 is based on the light use efficiency approach and 143 

consists of two products, MOD17A2 and MOD17A3 (Zhao and Running, 2010). In this study we incorporated 144 

MOD17A3 that contains annual sums of GPP and NPP with a 0.0083◦ × 0.0083◦ spatial resolution for the period 145 

2000–2010. In order to compare LPJ-GUESS GPP and NPP estimates, MOD17A3 GPP and NPP datasets were 146 

downloaded from “The Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS)” website 147 

(“LP DAAC - AppEEARS”.). Land cover (MOD12Q1) used in this study was downloaded from 148 

files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/MOD12Q1/ and was used for land cover stratification 149 

(Friedl et al., 2002). Land cover related to barren, water and urban were masked from LPJ-GUESS data in order to 150 

make it comparable with MOD17A3 data (i.e. identical spatial extent, land cover classes and number of grid cells). 151 

Both GEOCARBON and MODIS datasets were aggregated to 0.5° x 0.5° resolution for comparison with LPJ-GUESS. 152 

 153 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/MOD12Q1/


3 Results 154 

3.1 Comparison between Observed and LPJ-GUESS estimations of VegC 155 

Simulations forced by three CMIP5 ESMs of mean VegC from 1986-2015 were compared with the observed 156 

GEOCARBON dataset (Figure 2). The mean VegC of observed dataset was estimated to be 4.68 kg C m-2. While the 157 

modeled VegC for HKH averages 1.93 kg C m-2, 2.04 kg C m-2 and 2.14 kg C m-2 for simulations forced by climate 158 

outputs from IPSL-CM5A-MR, MPI-ESM-LR and CCSM4 respectively. Most of the difference is found to be the 159 

southern regions of HKH. A moderate agreement was found between the GEOCARBON and LPJ-GUESS VegC with 160 

a mean r2 value of 0.44. 161 

 162 

 163 

 164 

Figure 2: The distribution of VegC as simulated by (a) GEOCARBON, (b) IPSL-CM5A-MR, (c) MPI-ESM-165 

LR (d) CCSM4 and (e,f,g) their respective differences with GEOCARBON dataset for the HKH region. 166 

 167 

Furthermore the simulations of the CMIP5 models and the observed estimations in the HKH region were compared 168 

according to land cover classes from MOD12Q1 (Figure 3). There is an underestimation of VegC in evergreen 169 

broadleaf forests. The mean GEOCARBON VegC was 7.73 kg C m-2 was on average, 2.68 kg C m-2 higher than LPJ-170 

GUESS VegC for evergreen broadleaf forest. VegC for remaining forest types showed a lesser difference than 1.5 kg 171 



C m-2.  The simulation of VegC was not very sensitive to differences in the bias-corrected modelled climates from the 172 

CMIP5 models for the period from 1986-2015. 173 

 174 

175 

Figure 3: Summary statistics of LPJ-GUESS and GEOCARBON VegC for HKH in KgC m-2 of CMIP5 176 

models according to land cover classes 177 

 178 

 179 

3.2 Evaluation of patterns of GPP and NPP from 2000-2010 180 

The mean MODIS GPP for 2000-2010 was estimated to be 0.69 ± 0.26 kgC m-2 yr-2. The GPP for IPSL-CM5A-MR, 181 

MPI-ESM-LR and CCSM4 was 0.84 ± 0.17 kgC m-2 yr-1, 0.83 ± 0.16 kgC m-2 yr-1 and 0.88 ± 0.16 kgC m-2 yr-1 182 

respectively (Figure 4). The mean MODIS NPP was estimated to be 0.38 ± 0.12  kgC m-2 yr-1 and 0.43 ± 0.07 kgC m-183 

2 yr-1, 0.42 ± 0.07 kgC m-2 yr-1, and 0.44 ± 0.07 kgC m-2 yr-1 for IPSL-CM5A-MR, MPI-ESM-LR and CCSM4 184 

respectively (Figure 4). Both of the spatial datasets are able to capture important features such as the low productive 185 

Himalayan barren areas in the north and high productive regions like the forests and croplands in lower parts of HKH 186 

region (Figure S2 & S3). There was a moderate spatial agreement between the MODIS and modelled GPP with mean 187 

r2 values of 0.54. However, there was a weaker correlation between the satellite-derived and modelled NPP with mean 188 

r2 values of 0.4. Averaged GPP and NPP from MODIS and LPJ-GUESS per land cover classes from MOD12Q1 are 189 



shown in figure 5(a) and 5(b) respectively. A difference is found in the EBF land cover class when both datasets are 190 

compared. GPP for MODIS was estimated to be 2.48 kgC m-2 yr-1 and for average ESMs GPP was estimated to be 191 

1.34 kgC m-2 yr-1. Furthermore MODIS NPP was estimated to be 1.26 kgC m-2 yr-1 and the ESMs average NPP was 192 

0.56 kgC m-2 yr-1. 193 

 194 

 195 

Figure 4: GPP and NPP for HKH showing mean GPP (blue) and mean NPP (green) from MOD17 and from 196 

the LPJ-GUESS model forced by climate outputs from the 3 ESMs (average for the period 2000–2010). 197 

Vertical black bars illustrate ± standard error where n=11 198 



 199 

Figure 5: (a) Mean MOD17 and LPJ-GUESS GPP per land cover class (b) Mean MOD17 and LPJ-GUESS 200 

NPP per land cover class. Vertical black bars illustrate ± standard error where n=11. 201 

 202 

 203 

3.3 Evaluation PFTs distribution in LPJ-GUESS 204 

 205 

 



Figure 6 shows the distribution of the PFT simulated by the LPJ model in the HKH region. The LPJ-GUESS PFT 206 

distribution was compared to the land cover classes of MOD12Q1 dataset. A major part of C3 grasses (C3G) found 207 

in in the majority of HKH area including Tibetan Plateau and West pats of the HKH region. MOD12Q1 classifies this 208 

area as open shrublands and grasslands, which is consistent given that shrubs are not explicitly included with the ten 209 

global PFTs used. The modelled data and observed data correspond well to each other in terms of the major features 210 

of the broadleaf forests. In LPJ-GUESS, regions of Bangladesh and Myanmar, most of the area is covered by tropical 211 

broadleaf raingreen forests (TrBR), whereas MOD12Q1 land cover classification shows those areas to be classified 212 

as evergreen broadleaf forests. There was minimal difference in to 2000-2010 PFT distribution between the three 213 

ESMs climates. 214 

 215 

 216 

Figure 6: Average distribution of PNV simulated from 2000-2010 by LPJ-GUESS forced by CCSM4 climate. 217 

Full PFT names (as shown in legend): BNE = boreal needle-leaved evergreen tree; C3G = C3 grass; C4G = C4 218 

grass; IBS = shade intolerant broadleaved; TeBE = temperate broadleaved evergreen tree; TeBS = temperate 219 

broad-leaved summergreen tree; TrBE = tropical broad-leaved evergreen tree; TrBR = tropical broadleaved 220 

raingreen tree 221 

 222 

3.4 Projected Spatial Changes in the Pattern of NBP and Components 223 

Two types of simulations were used in order to make a comparison to assess the spatial patterns of NBP. The 224 

simulations derived from the potential natural vegetation (PNV) were compared with simulations from land use (LU) 225 

simulations generated by LPJ-GUESS model.  NBP changes with PNV and LU were calculated for three time periods 226 

of past period (1851-1880), present period (1986-2015) and RCP2.6 and RCP8.5 representing the future scenario from 227 

https://link.springer.com/article/10.1007/s00704-012-0619-9#Fig1


2071 to 2100. In PNV simulations for 1851-1880, the mean NBP for the three ESM climates was estimated to be 228 

0.003 kgC m-2 yr-1.  It increased to 0.037 kgC m-2 yr-1  in 1986-2015. For RCP2.6 and RCP8.5, in the LU simulations, 229 

the NBP increases to 0.015 kgC m-2 yr-1 and 0.04 kgC m-2 yr-1, showing a dampening effect of land-use change on 230 

NBP increases. The simulations show a shift from carbon source to sink in both future scenarios in both simulations, 231 

with higher NBP in RCP8.5 compared to RCP2.6.  Most of the carbon sink in the future scenarios is seen in central 232 

and lower region of HKH (Fig. S4). The Tibetan Plateau acts as a carbon sink as warming temperature and carbon 233 

fertilisation stimulate vegetation growth in the future RCP8.5 scenario. 234 

 235 

NBP was broken down into its component fluxes of NPP, Fire and Soil Respiration rate (Figs. S5-7). Simulations of 236 

average NPP in the PNV and LU simulations in the past period (1851-1880) reached on average 0.306 kgC m-2 yr-1 237 

and 0.303 kgC m-2 yr-1  respectively. The present day mean NPP across HKH was estimated to be 0.388 kgC m-2 yr-1 238 

and 0.377 kgC m-2 yr-1 for PNV and LU simulations respectively. The simulated NPP increased to 0.452 kgC m-2 yr-1 239 

in PNV simulations and 0.437 kgC m-2 yr-1 in the LU simulations in RCP2.6. Furthermore in RCP8.5 the NPP 240 

increased to 0.657 kgC m-2 yr-1 in PNV simulations and 0.622 kgC m-2 yr-1 in the LU simulations. Human land use 241 

thus moderately reduced future increased in NPP.  An average value of fire flux was estimated to be 0.065 kgC m-2 242 

yr-1 and 0.041 kgC m-2 yr-1   by LPJ-GUESS for the past period for PNV and LU simulations respectively. In the 243 

present period, the model simulates a slightly higher average fire flux of 0.065 kgC m-2 yr-1 in PNV simulations, 244 

compared to 0.042 kgC m-2 yr-1 in LU simulations. For future scenario, it is predicted that in the RCP2.6 the fire flux 245 

will increase with an estimated value of 0.08 kgC m-2 yr-1 and 0.046 kgC m-2 yr-1 for PNV and LU simulations 246 

respectively. The lower fire fluxes in the LU scenarios reflect the large area of land dedicated to agriculture, which 247 

increases over time. Agricultural land is assumed not to contribute to fire fluxes in these simulations. In future scenario 248 

RCP 8.5 it is predicted that the fire flux will increase to a mean of 0.081 kgC m-2 yr-1 in HKH.  In PNV simulated soil 249 

respiration, an overall increasing trend is seen in the HKH region. In PNV simulated soil respiration, an overall 250 

increasing trend is seen in the HKH region. A lower rate of soil respiration is projected in the future scenario, with a 251 

mean value of 0.053 yr-1 and 0.054 yr-1 in RCP2.6 for PNV and LU simulations respectively. For RCP8.5, the mean 252 

soil respiration rate was found to be 0.075 yr-1 for both PNV and LU simulations.  253 

 254 

Table S8 shows the average projected changes in NBP, NPP, Fire and Soil respiration rate forced by LPJ-GUESS by 255 

climate outputs from the 3 ESM climates for past period (1851-1880), present period (1986-2015) and future scenario 256 

(2071-2100) under RCP2.6 and RCP8.5. The choice of ESM climate had a minor effect on the results. 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 



3.5 Projected Temporal Changes in the Pattern of NBP and Components according to Elevation 265 

Most of the high elevation region including the Tibetan Plateau Region is devoid of forest area as it experiences a 266 

mean annual temperature of less than -2°C. Hence the area below 4500 m is classified as low elevation and elevation 267 

above 4500 m is classified as high elevation (Pulakesh et al., 2017). Figure 7(a-d) , summarizes the temporal patterns 268 

of NBP, NPP, Fire and soil respiration according to low elevation and high elevation. In the past period from 1851-269 

1880, the NBP flux is positive in lower elevation regions (0-4500 m) of HKH as compared to higher elevation areas. 270 

The HKH region was a carbon source in the period from 1851-1880; sink strength at elevation 0 to 4500 m increased 271 

from 1986 onwards, resulting in a carbon sink, and it became a relatively strong sink in the future scenario in RCP8.5. 272 

In RCP8.5, the PNV simulations estimated a NBP of 0.02 kgC m-2 yr-1 and in LU simulation it was estimated to be 273 

0.01 kgC m-2 yr-1. However at higher elevation in PNV simulations, the NBP was estimated to be 0.12 kgC m-2 yr-1 274 

and 0.08 kgC m-2 yr-1 in LU simulations. 275 

 276 

We also analysed the change in NPP during the period from 1851 to 2100 and found that there was an upward trend 277 

in both lower and higher elevation in simulations including PNV and LU simulations. PNV simulated NPP is projected 278 

to increase from 0.31 kgC m-2 yr-1 to 0.39 kgC m-2 yr-1 from 1851-1880 and 1986-2015. In future scenario for PNV 279 

simulations the NPP is estimated to be 0.46 kgC m-2 yr-1 in RCP2.6 and 0.66 kgC m-2 yr-1 RCP8.5 respectively. For 280 

LU simulations the NPP is projected to increase from 0.31 kgC m-2 yr-1 to 0.38 kgC m-2 yr-1 from 1851-1880 and 1986-281 

2015 respectively. In future scenario, NPP in RCP2.6 is estimated to be 0.44 kgC m-2 yr-1 and 0.63 kgC m-2 yr-1 in 282 

RCP8.5 in LU simulations. 283 

 284 

The temporal trend of fire flux from 1851-2100, showing generally higher flux values in PNV simulations as compared 285 

to LU simulations. At lower and higher elevations, an increasing trend of fire flux is seen. A higher fire flux is projected 286 

in the RCP8.5 scenario with a mean value of 5.9 kgC m-2 yr-1  and 7.08 kgC m-2 yr-1   in both PNV and land use 287 

simulations respectively. The rate of soil respiration shows an increasing trend from the period of 1851-2100. A higher 288 

soil respiration rate is projected in higher elevation in RCP8.5 compared to RCP2.6 in PNV model simulations and 289 

LU model simulations. A similar trend was found in the climatic model MPI-ESM-LR included in the supplementary 290 

information (Figure S9). 291 



 292 

Figure 7 LPJ-GUESS simulated distribution by CCSM4 on a)NBP b) NPP c) Fire d) Soil Respiration rate in 293 

HKH according lower elevation (0-4500 m)and higher elevation (greater than 4500m) for PNV (grey color) 294 

and land use change (orange color). Vertical black bars illustrate ± standard error where n=30 295 

 296 

 297 

 298 

3.6 Projected Spatial Changes in the Pattern of Vegetation Carbon 299 

Model estimates of VegC in HKH terrestrial ecosystems have increased since 1986 and will increase under both future 300 

climate scenarios in both PNV and LU simulations. For simulations with no land use, the mean VegC is estimated to 301 

be 3.58 kg C m-2, 4.05 kg C m-2 for past and present period and is projected to reach to 5.51 kg C m-2 and 7.19 kg C 302 

m-2 under RCP2.6 and RCP8.5 respectively.  Furthermore, for the LU simulations, the VegC is estimated to be 2.95 303 

kg C m-2 in the past period and slightly decreasing to 2.14 kg C m-2 in the present period. An increase in VegC is 304 

predicted in both scenarios, with a mean value of 2.45 kg C m-2 and 3.80 kg C m-2 for RCP2.6 and RCP8.5 respectively. 305 

Spatial patterns show that the mean VegC (Figure 8) will increase most in the lower belt of the HKH region and north 306 

eastern region in HKH during 2071-2100 under both the RCP2.6 and RCP8.5 scenarios.  307 

 308 

 309 

 

 

 

 

 

 

 

   

 



 310 

Figure 8 LPJ-GUESS simulated distribution by CCSM4 on VegC in HKH region under a) past period (1851- 311 
1880) with PNV b) past period (1851-1880) with land use change c) difference between past PNV and past LU d) present period 312 

(1986-2015) with PNV e) present period (1986-2015) with land use change f) difference between present PNV and past LU g) 313 
future scenario RCP2.6 (2071-2100) with PNV h) future scenario RCP2.6 with LU (2071-2100) i) difference between future 314 

RCP2.6 PNV and LU j) future scenario RCP8.5 (2071-2100) with PNV k) future scenario RCP8.5 with LU l) difference between 315 
future RC8.5 PNV and LU 316 

 317 

 318 

3.7 Comparison of observational climate products 319 

 320 

Figure 9 and Figure 10 shows a comparison between CRU and ERA5 datasets of temperature and precipitation from 321 

1979 to 1990 respectively. The mean CRU temperature from 1979 to 1990 was estimated to be 5.64° C and for ERA5 322 

it was estimated to be 4.32° C. Both of the datasets capture higher temperature in the lower region of the HKH, with 323 

warmer temperature in Bangladesh and Myanmar. On the other hand low temperature are observed in the region of 324 

Tibetan Plateau, The two datasets overall showed a strong agreement with a strong correlation of 0.96. However, the 325 

agreement of spatial distribution of precipitation showed a lower correlation with an r value of 0.67. There is a 326 

difference of mean precipitation in lower region of eastern HKH. CRU dataset, shows an average precipitation of 327 

0.0018 m day-1, whereas ERA5 data shows an estimation of 0.0028 m day-1.  328 



 329 
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 345 
Figure 9 Comparison of temperature (a) average CRU (1979-1990) (b) ERA5 data (1979-1990) (c) and the difference 346 

between ERA5 and CRU dataset in degree Celsius  347 
 348 

  349 

Figure 10 Comparison of precipitation (a) average CRU (1960-1990) (b) ERA5 data (1979-1990) (c) and the difference 350 
between ERA5 and CRU dataset in m day-1  351 

 352 



4 Discussion 353 

We compared the modelled simulations VegC and primary productivity with satellite-based estimates. For VegC, the 354 

comparator dataset is a global aboveground biomass map from the GEOCARBON project for the year 2000. A good 355 

agreement was found between GEOCARBON and the ESMs with relatively little difference between the ESM 356 

climates. The difference between modelled and observed VegC was found in the EBF and may be attributed due to 357 

the differences in terms of the coverage of aboveground or belowground biomass of both datasets. The GEOCARBON 358 

dataset includes the spatial distribution of forest biomass covering only the aboveground vegetation for 2000. On the 359 

other hand, LPJ-GUESS simulation cover both above and belowground. Hence uncertainties may rise due to the 360 

converting aboveground biomass to the total of aboveground and belowground biomass for the datasets of 361 

GEOCARBON on order to be comparable with LPJ-GUESS VegC. Furthermore the satellite-derived biomass dataset 362 

GEOCARBON was generated by harmonization of datasets of two different years. The tropical biomass products 363 

represent the year 2000 status of forests, and the boreal aboveground biomass maps are based on spaceborne radar 364 

data from the year 2010. The LPJ-GUESS VegC was averaged over the years from 1986 to 2015. Hence the difference 365 

in the years of observations might have introduced additional uncertainty. This drawback of observed dataset was also 366 

highlighted by  Li et al. (2017).  367 

 368 

Secondly, we compared the LPJ-GUESS GPP and NPP with MODIS datasets from 2000-2010. A higher GPP and 369 

NPP emerged in areas covered with dense forests mainly in the southeast and southwest HKH region, especially in 370 

Bangladesh and Myanmar. The LPJ-GUESS GPP showed a better agreement with GPP MODIS than NPP MODIS. 371 

It is important to note that the LPJ-GUESS simulations here and the MODIS algorithm do not share common 372 

meteorological drivers and that might reduce the correlation between the two datasets (Liu et al., 2018). Previous 373 

studies have also reported that DGVMs generally overestimate GPP in the Northern Hemisphere (Li et al., 2016).  374 

This could be attributed to the absence of parametrization of tropospheric ozone that leads to overestimation of LAI 375 

leading to increased GPP  (Anav et al., 2013). Yet most of the researchers suggest that simulated GPP by DGVMs 376 

were neither overestimated nor underestimated, but the results are limited by number of observational or model 377 

considerations. For instance, the modelled LPJ-GUESS simulations here do not include the impact of nitrogen cycling 378 

(Li et al., 2016). The inconsistencies of primary productivity for EBF were also observed in various studies (Ardö, 379 

2015; Garrigues et al., 2008). Study carried out by Ardö (2015), estimated MOD17 GPP to be 0.8 kgC m-2 higher 380 

compared to LPJ-GUESS GPP for EBF land cover class. Areas affected by frequent cloud cover or atmospheric 381 

contamination may then show inconsistent estimates of vegetation productivity using MOD17. 382 

 383 

The second step was to explore the variability of NBP and its components and VegC over HKH from 1851-2100 with 384 

PNV and LU simulations and how this variability was influenced by elevation. Results showed that the terrestrial 385 

ecosystems of HKH had been a carbon sink for the period of 1851-2015 with a generally positive NBP and the region 386 

is projected to remain a carbon sink in both future scenarios. However in the simulations containing land use, the sink 387 

strength of the region is lower than in the potential natural simulations.  Past modelling studies (Houghton et al., 1987) 388 

did capture a large net release of carbon in the 1980s from Nepal, Bangladesh, Bhutan, India, Pakistan, Myanmar and 389 



China due to land use change mainly deforestation. Extensive research has shed light on the serious degradation of 390 

grasslands on the Tibetan Plateau of China due to anthropogenic disturbances since the 1960s (Joshi et al., 2013;Wang 391 

et al., 2008). This degradation appears to be captured well by the LPJ-GUESS simulation as a reduction of NBP in 392 

parts of China can be seen in the spatial maps from 1986-2015. Furthermore, a  recent study carried out by (Calle et 393 

al., 2016) calculated the regional carbon fluxes LULCC in Asia for the period from 1980 to 2009, using eight carbon 394 

cycle DGVMs. Since the 1980s, the ensemble mean of the DGVMs also have shown a net carbon source from South 395 

Asian and East Asian land ecosystems. From 1951 to 2005, most parts of the HKH underwent rapid population and 396 

economic growth increasing the demand for natural resources, hence resulting in large changes in LULCC and habitat 397 

fragmentation.  398 

 399 

The LPJ-GUESS simulations for the HKH for 2071-2100 for both scenarios predicted a net sink of carbon. The 400 

simulations of LPJ-GUESS of HKH region was consistent with the previous studies carried out at a global scale where 401 

a C sink was reported in the future scenario by various DGVMs during the next century (Cramer et al., 2001).  A 402 

greater increase in NBP and VegC was seen in RCP8.5, as the rate of photosynthesis by terrestrial vegetation rises 403 

due to increase with atmospheric CO2 content leading to increased carbon uptake. A global scale study carried out by 404 

(Thompson et al., 2004) discussed that the CO2 fertilization could limit the global warming in the future scenario, 405 

however the nutrient limitations, which were not considered here, could weaken this effect. The influence of carbon-406 

nitrogen interactions has a greater effect in the colder climates as compared to carbon only interactions due to inability 407 

of newly established vegetation to compete for the nitrogen resources with existing vegetation under nitrogen 408 

limitation (Wärlind et al., 2014) . However, the version of LPJ-GUESS used in this study did not take account of 409 

nutrient limitations and assume nitrogen to be at an optimal level for the terrestrial vegetation. The coupling of carbon 410 

and nitrogen cycles are becoming widely recognized as nitrogen dynamics have been incorporated into global C 411 

cycling model (Fleischer et al., 2015).  412 

 413 

In this study, the NPP increased from the period of 1851 to 2100. A higher NPP was simulated in RCP8.5, as increasing 414 

temperature and CO2 concentration level leads to increased NPP (Azhdari et al., 2020). The dominant fire occurrences 415 

taking place in HKH region are savanna fires that includes grasslands fires and fires caused by deforestation and forest 416 

degradation (Van Der Werf et al., 2010).  The ESMs used to force LPJ-GUESS simulated temperature and 417 

concentration CO2 levels (Figure S10) in RCP2.6 and RCP8.5 steadily increases from 2000 onwards. Hence with 418 

rising temperatures, the loss of carbon due to biomass burning in wildfires cause the drier forests to become more 419 

vulnerable to climate change as they are more sensitive to fire and droughts (Anderson-Teixeira et al., 2013). Studies 420 

of DGVMs indicate that in the absence of land use changes (Sitch et al., 2015), the soil respiration rate increases with 421 

climate change, however the simulations in this study taking account of land use changes have also shown an increase 422 

in soil respiration rate. Climatic warming is considered to stimulate the rates of soil respiration, potentially resulting 423 

in further increases in global temperatures by accelerating the rate of carbon feedback cycle via Ra and decomposition 424 

of organic matter (Carey et al., 2016).  425 

 426 



The study also assessed the comparison of observational climate products over HKH for the period 1979-1990. Our 427 

analysis for precipitation showed that the ERA5 climatic data has higher precipitation of 0.009 m day-1 in the HKH 428 

region of the evergreen broadleaf forests. However for CRU climatic dataset the precipitation was estimated to be 429 

0.005 m day-1. Hence the underestimation in primary productivity and biomass could be attributed to the lower 430 

precipitation estimated by CRU dataset. Past literature reported that reduction in precipitation can cause soil water 431 

stress leading to reduction in stomatal conductance and reduction in leaf area (Konings et al., 2017; Ondier et al., 432 

2021).  433 

 434 

 435 

5 Conclusion 436 

The results of this study suggest that HKH will act as a net sink of C under both strong and weak scenarios of future 437 

climate change. There was relatively good correspondence between the model and complimentary satellite-based 438 

estimates of biomass and primary productivity. However, it is important to note that as long as obtainability and access 439 

of meteorological data at a regional level and in-situ validation data such as eddy covariance measurements and long-440 

term ecological field assessments remain scarce, it can be expected the representativity of vegetation carbon and 441 

vegetation productivity estimates for HKH to remain hard to evaluate definitively. The LPJ-GUESS simulations 442 

revealed that the NBP is projected to be higher in future scenarios than in the historical period, assuming that the 443 

LULCC does not increase dramatically. Furthermore VegC storage spatial and temporal analysis suggest that, for the 444 

RCP8.5 scenario, the CMIP5 climate model produces, on average, a slightly higher VegC compared to the RCP2.6 445 

attributing to the CO2 fertilization effect in both PNV and LU simulations. Vegetation fluxes can help to analyse the 446 

carbon storage patterns, however further studies are required to assess the effects of climatic changes and 447 

anthropogenic activities on the fragile ecosystems of the HKH for the establishment of policies to improve the 448 

livelihood of the local population and the overall carbon balance in the region.  449 

 450 
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