Labrador Sea sub-surface density as a precursor of multi-decadal variability in the North Atlantic: a multi-model study

Pablo Ortega1,2, Jon Robson1, Matthew Menary3, Rowan Sutton1, Adam Blaker4, Agathe Germe4, Jöel Hirschi4, Bablu Sinha4, Leon Hermanson5 and Stephen Yeager6

1NCAS, University of Reading, Reading, UK
2Barcelona Supercomputing Center, Barcelona, Spain
3LOCEAN, Sorbonne Universités
4National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
5Met Office Hadley Centre, Exeter, UK
6National Center for Atmospheric Research, Boulder, USA

Correspondence to: Pablo Ortega (pablo.ortega@bsc.es)

Supplementary Figures
Supplementary Figure 1: a Lead-lag correlations across the picontrol ensemble between PC1-LSD and the maximum AMOC streamfunction at 45°N after the Ekman transport is removed (AMOC45). Correlations are based on 10-year running trends. For positive lags, PC1-LSD leads. Significance is assessed as in Figure 2d and indicated with a circle. b The same as in a but for dLSD index. c-h The same as in a-b but with respect to the AMOC26 (without the Ekman component), the SPGSI and ESPNA-T700 indices, respectively.
Supplementary Figure 2: a Scatterplot of the maximum correlations at any lag between PC1-LSD and AMOC26N (without the Ekman component) against the climatological mean of the Labrador Sea Density stratification index (computed as the difference of the vertical means in the levels 0-50 m minus the vertical means in the levels 400-500 m; see Fig. 1). The maximum correlations are based on 10-year running trends. The correlation coefficient between the two metrics is shown in the top-left corner. The presence of an asterisk indicates that the correlation is significant at the 95% confidence level. Colors indicate the lag at which the maximum correlation between PC1-LSD and AMOC26 is obtained. The grey vertical lines depict the mean stratification value in the DePreSys3 assimilation run for the reference period 1960-2013. b-c The same as in a but for stratification indices defined between the levels 0-100 m vs 500-1000 m and 0-200 m vs 1000-2000 m, respectively.