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Abstract. The intertropical convergence zone (ITCZ) is an important component of the tropical rain belt. Climate models

continue to struggle to adequately represent the ITCZ and differ substantially in its simulated response to climate change.

Here we employ complex network approaches, which extract spatio-temporal variability patterns from climate data, to better

understand differences in the dynamics of the ITCZ in state-of-the-art global circulation models (GCMs). For this purpose,

we study simulations with 14 GCMs in an idealized slab-ocean aquaplanet setup from TRACMIP – the Tropical Rain belts5

with an Annual cycle and a Continent Model Intercomparison Project. We construct network representations based on the

spatial correlation pattern of monthly surface temperature anomalies and study the zonal mean patterns of different topological

and spatial network characteristics. Specifically, we cluster the GCMs by means of their zonal network measure distribution

utilizing hierarchical clustering. We find that in the control simulation, the zonal network measure distribution is able to pick

up model differences in the tropical SST contrast, the ITCZ position and the strength of the Southern Hemisphere Hadley cell.10

Although we do not find evidence for consistent modifications in the network structure tracing the response of the ITCZ to

global warming in the considered model ensemble, our analysis demonstrates that coherent variations of the global SST field

are linked with ITCZ dynamics. This suggests that climate networks can provide a new perspective on ITCZ dynamics and

model differences therein.

1 Introduction15

One-third of Earth’s precipitation falls within the narrow band of the deep tropics within 10◦ N/S (Kang et al., 2018). This

narrow band is home to the intertropical convergence zone (ITCZ), in which the northerly and southerly trade winds of the

Hadley circulation meet and give rise to surface convergence of moist air, ascent and hence rainfall (Wallace and Hobbs,

2006). Because tropical rainfall is critical to many societies and ecosystems, reliable projections of the ITCZ response to

climate change are key to mitigation and adaptation efforts in a warming world (Donohoe and Voigt, 2017). Yet, global climate20

models are affected by persistent biases in the simulation of tropical rainfall and the ITCZ in the present-day climate, have
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difficulties in capturing past ITCZ shifts, and show limited consensus on how the ITCZ location, width, and strength will

change in response to increasing atmospheric carbon dioxide levels (Bony et al., 2015; Harrison et al., 2015; Byrne et al.,

2018). These model difficulties reflect the importance of small-scale cloud processes and their coupling with the large-scale

circulation, e.g., via cloud-radiative effects (Voigt et al., 2014) and convective mixing (Moebis and Stevens, 2012), and have25

motivated a large amount of theoretical and idealized work (Kang et al., 2009; Donohoe et al., 2013; Schneider et al., 2014;

Biasutti et al., 2018). This has led to important insights into how the position of the ITCZ is controlled by atmospheric energy

transport and sea-surface temperatures (SST).

Generally speaking, heating one hemisphere relative to the other leads to an ITCZ shift into the heated hemisphere because

of the cross-equatorial atmospheric energy transport required to balance the hemispheric heating (Kang et al., 2009; Donohoe30

et al., 2013). Moreover, warming the surface of one hemisphere also leads to an ITCZ shift into the warmer hemisphere, in line

with changes in near-surface moist static energy and boundary-layer convergence (Lindzen and Nigam, 1987; Emanuel et al.,

1994). These considerations have formed our understanding of how the ITCZ is connected to the spatial pattern of atmospheric

energetics and SST. Still, the success of these perspectives is limited, as their link to the ITCZ in model simulations can be

weaker than expected (Biasutti and Voigt, 2020). Moreover, the above perspectives operate in a time-average sense: they link35

the time-average ITCZ position to the time-average atmospheric energy transport and time-average SST pattern. Note that the

time-average here can mean both a long-term annual mean or a seasonal mean.

In this study, we aim to test an alternative perspective based not on the time-average SST field but on its variability. We ap-

ply tools from complex network theory and account for the information encoded in the spatio-temporal variability of the SST

pattern, which we attempt to relate to the time-average ITCZ position. For this purpose, we employ the concept of functional40

climate network analysis (Tsonis and Roebber, 2004; Donner et al., 2017; Dijkstra et al., 2019) that focuses on the strongest

mutual statistical interdependencies among spatially distributed records of climate variability. While being based on the same

correlation matrix as popular linear analysis approaches in statistical climatology such as empirical orthogonal function (EOF)

analysis, this approach involves a nonlinear filter that highlights only key structures and makes their associated spatial interde-

pendence patterns fully transparent (Donges et al., 2015b; Donner et al., 2017). As a result, functional climate networks have45

found a rising variety of applications in climate science (Dijkstra et al., 2019). Among others, they have provided key insights

into the climate dynamics associated with large-scale tropical SST anomalies representing the oceanic manifestation of the

El Niño Southern Oscillation. Specifically, the finding that climate network patterns based on global surface air temperature

anomalies are significantly affected by El Niño and La Niña episodes (Yamasaki et al., 2008; Gozolchiani et al., 2008, 2011)

has led to the development of improved strategies for El Niño forecasting (Ludescher et al., 2013, 2014; Feng et al., 2016;50

Meng et al., 2020) and a self-consistent classification of different flavors of El Niño and La Niña based on their corresponding

global imprints (Radebach et al., 2013; Wiedermann et al., 2016). Other successful applications include the development of

early warning indicators for a possible collapse of the Atlantic Meridional Overturning Circulation based on ocean tempera-

ture correlations (van der Mheen et al., 2013), uncovering of key spatiotemporal patterns associated with heavy precipitation

formation in different monsoon regions (Malik et al., 2012; Boers et al., 2013, 2014; Stolbova et al., 2014), improved fore-55

casting of the Indian summer monsoon onset and rainfall amount (Stolbova et al., 2016; Fan et al., 2020), and identification of
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teleconnection pathways (Zhou et al., 2015; Boers et al., 2019). In all these examples, spatio-temporal climate data have been

transformed into a network representation based on different concepts of statistical association used for identifying mutually

dependent climate time series.

To better understand the effect of spatio-temporal SST patterns on ITCZ dynamics, we present the first application of60

functional climate network analysis to idealized aquaplanet simulations from the TRACMIP model ensemble (Voigt et al.,

2016) that is freely available via the Earth System Grid Federation as well as the Pangeo project. The simulation setup and

the corresponding data are briefly introduced in Sect. 2, which also details our analysis methodology that combines functional

climate network analysis with a hierarchical clustering method to classify the TRACMIP models according to their climate

network topology. We focus on two questions. First, to what extent is the network-based classification related to the models’65

ITCZ position in the control simulation? And second, to what extent is the response of the ITCZ to quadrupled atmospheric

carbon dioxide related to changes in the climate network? The obtained results are presented in Sect. 3. The paper closes with

a discussion and conclusion in Sect. 4.

2 Data and methods

2.1 TRACMIP model ensemble70

The Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP) provides a suite

of simulations with 14 global circulation models in an idealized aquaplanet setup and a setup with an idealized continent.

TRACMIP was designed to study fundamental aspects of the ITCZ and its response to climate change, e.g., the link of the

ITCZ with SST and cross-equatorial atmospheric energy transport (Biasutti and Voigt, 2020). TRACMIP can also be used in

a much broader sense, including studies of phenomena such as the Arctic amplification (Russotto and Biasutti, 2020). The75

TRACMIP protocol has been described in detail in Voigt et al. (2016), which includes references for the participating models.

The most salient features of TRACMIP compared to other aquaplanet studies is the use of a slab ocean with a present-day-

like ocean heat transport and seasonally-varying insolation. In TRACMIP, sea surface temperatures are thus interactive and the

surface energy balance is closed, the ITCZ migrates north and south during the year, and the ITCZ is located in the Northern

Hemisphere in the zonal-mean and time-average, consistent with the present-day climate.80

In this work, we use aquaplanet simulations performed by all 14 models contributing to the intercomparison project. The

AquaControl simulation is run with a present-day like CO2 concentration of 348 ppmv. In the Aqua4xCO2 simulation, CO2 is

quadrupled to 1392 ppmv, leading to a model-dependent increase of global-mean surface temperature by 3-10 K, and changes in

the ITCZ location that range from a slight southward shift to strong northward shifts by up to 8◦ in latitude. Following Biasutti

and Voigt (2020), the ITCZ position is calculated by the precipitation centroid as defined in Adam et al. (2016) over latitudes85

within 20◦ N/S. This locates the ITCZ somewhat closer to the equator compared to the values diagnosed in Voigt et al. (2016),

but the results of our analysis are insensitive to the definition of the ITCZ position. Figure 1 illustrates the precipitation and

sea surface temperature pattern of the Aquacontrol simulations. This figure also demonstrates the tight correlation of the ITCZ

position with the tropical SST contrast (correlation coefficient> 0.99). Again following Biasutti and Voigt (2020), the latter
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Figure 1. Time-average zonal-mean precipitation (left) and surface temperature (middle) in the AquaControl simulations. The right plot

shows the tight correlation of the time-average ITCZ with the SST contrast between the Northern and Southern Hemisphere tropics.

is defined as the SST difference between the Northern and Southern Hemisphere tropical means (Eq.–25◦ N and 25◦ S–Eq.,90

respectively).

Figure 1 confirms that SST is a prime control on the ITCZ, a fact that has been exploited in many previous studies. However,

in contrast to previous work that used the time-average SST, we here apply functional climate network representations to study

the relation between the ITCZ and the internal variability of the SST field. An illustration of the temporal SST variability is

shown in Fig. 2 for the AquaControl simulation. The SST variability is minimal near the equator, is relatively constant in the95

subtropics and midlatitudes, and drops off near the poles. This pattern is broadly in line with the variability in the sum of

surface turbulent fluxes (sensible and latent heat flux) and surface winds (not shown).

The TRACMIP model output is provided on regular latitude-longitude grids that have a model-dependent horizontal res-

olution ranging from 1 to 3◦ in latitude and longitude. For the AquaControl simulations, we restrict our analysis to the last

30 years and for the Aqua4xCO2 simulations to the last 25 years to ensure that the models are in statistical equilibrium. As100

described below, we focus on monthly-mean SST fields, from which we construct functional climate networks and study their

relation to the time-average ITCZ position and tropical SST contrast.

2.2 Functional climate networks

Functional climate networks constitute an application of complex network theory to understand functional relations in the

Earth’s climate system. In general, complex networks often serve as abstract mathematical models of complex systems, in105

which individual entities are represented by nodes that are connected by links symbolizing interdependencies among the enti-

ties. In climate networks nodes are identified with geographical locations at which climate variability information is available

in the form of time series (in our case, the grid points of climate model outputs), and links connect pairs of nodes whose

climate time series exhibit a certain level of statistical association. In this work, we analyze the set of SST time series on the

longitude-latitude grid separately for each model and simulation run using the methodological setup described in the following.110

First, we calculate the linear Pearson correlation coefficient for the monthly SST anomalies of all pairs of grid points. The

time series of the SST anomalies are computed by subtracting the monthly-mean climatology from the original SST time series.
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Figure 2. Zonal-mean of the temporal standard deviation of monthly-mean SST in the AquaControl simulations. The models are color coded

as in Fig. 1.

In principle, we could utilize any statistical association measure in this step. We chose the Pearson correlation here as it has

been successfully applied in previous studies (Donges et al., 2009; Radebach et al., 2013; Wiedermann et al., 2016) and is

suitable for relatively short time series (here, 300 to 360 monthly anomaly values). For a model output with N grid points, this115

leads to a correlation matrix S of dimension N ×N .

Second, we threshold the correlation matrix and transform it into a binary matrix A. A is the adjacency matrix of the

associated climate network representation of the underlying data set and has the same dimension as S. If the correlation

value sij between two grid point time series (nodes) i and j is larger than the prescribed threshold, we set the corresponding

matrix element of A to aij = 1 (i.e., there is a link between nodes i and j), and to aij = 0 otherwise (no link). We choose120

the correlation threshold in such a way as to obtain a link density of ρ= 0.005. This implies that the network only includes

the strongest 0.5% of all possible N(N − 1)/2 undirected links (when excluding self-correlations, i.e., aii = 0). For global

networks with a comparable resolution, this order of magnitude has been a common choice in previous studies (Radebach

et al., 2013; Donner et al., 2017). It has to be noted, however, that changes in the link density of a climate network have been

previously shown to potentially result in qualitatively different behaviors of the resulting network characteristics (Radebach125

et al., 2013; Wiedermann et al., 2017) (depending on the specific network property under study). For this reason, we keep

the link density fixed for all analyses performed in this work. However, since the individual models differ in their spatial grid

resolution, the total number of links will differ between models, with a lower number of links in case of coarser grids. This has

direct consequences for the quantitative analysis of the resulting networks. In the following, we will choose our analysis setup

such that the effect of a different number of links on the final results is minimized.130

Third, based on the adjacency matrix we calculate the values of two network characteristics: the degree and the average link

distance. The degree ki encodes the number of links of each node i,

ki =
N∑

i=1

aij , (1)
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where the index i corresponds to a specific latitude-longitude grid point. As our climate networks are spatially embedded on

regular spherical grids, the spatial density of nodes on a spherical surface is not homogeneous and increases towards the poles.135

To make all nodes equally representative, we utilize the concept of the so-called node splitting invariance (n.s.i., Heitzig et al.

(2012)) and define the accordingly node-weighted n.s.i.-degree as

ki =
N∑

i=1

wiaij . (2)

Here, wi is the n.s.i. node weight, which in our case is given by the cosine of the latitude. For simplicity, in the remainder

of this work, we will briefly refer to the n.s.i. degree (sometimes also termed area-weighted connectivity (Tsonis et al., 2006;140

Tsonis and Swanson, 2008)) as the degree. Moreover, instead of discussing the full spatial pattern of degree on the whole

sphere, we will focus on the zonal-mean degree. The meaningful calculation and interpretation of this property are ensured by

the zonally-uniform boundary conditions of the aquaplanet setup. To compare the zonal-mean degree pattern between models

despite their differences in grid resolution, we normalize the zonal-mean degree such that its sum over all latitudes is 1.

The information provided by the purely topological measure of node degree is complemented by the average link distance,145

which is a spatial (geometric) characteristic. The average link distance is the mean great circle distance between a given node

and all its connected nodes (i.e., the mean spatial length of all links of a given node). For simplicity, the average link distance

is given here in units of radians; physical distances could be easily obtained by scaling the values with the Earth’s radius.

We emphasize that we have also studied a suite of additional local (such as the local clustering coefficient) as well as global

network properties (such as the network transitivity) (Radebach et al., 2013; Donner et al., 2017). These measures have not150

provided additional insights and are therefore not reported in the following.

2.3 Hierarchical Clustering

After having constructed the network for each individual model and simulation, we study to what extent the models can be

grouped according to their resulting zonal-mean network measure patterns. For this purpose, we employ a hierarchical cluster

analysis.155

As a first step, we resample the zonal-mean network measure distribution to the lowest latitudinal resolution of all models

(CALTECH, 2.8°) utilizing linear interpolation. Then, we calculate the Pearson correlation coefficient between (selected parts

of) the values of the resampled zonal-mean network measures as a function of the latitude between all pairs of models. Since the

Pearson correlation is invariant under rescaling and possible additive terms, offsets between the individual models’ magnitudes

of the zonal mean network measures that originate from the different grid resolutions do not impact the correlation values.160

We calculate the Pearson correlation individually for both the degree and the link distance and then sum the correlation

values for each model pair. This results in a matrix C of dimensions 14× 14 with elements representing the pairwise similarity

between all 14 models in terms of both types of zonal-mean network measures. The similarity measure can therefore exhibit

values in the range [−2,2] (i.e., the sum of two values each bounded by [−1,1]). For convenience, we transform this into
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normalized values within the interval [0,1] by employing a linear rescaling165

cnew
ij =

cij −minC
max

ij
(cij −minC)

,

with Cnew being the rescaled inter-model similarity matrix that is then used as an input for the hierarchical cluster analysis.

Note that minC = minij cij and maxC = maxij cij are the minimal and maximal values among all inter-model correlations

and that minC can hence be negative.

Finally, we cluster models by means of the hierarchical cluster analysis as implemented in the python package scipy, where170

we use the single linkage method for successively combining groups of models according to the highest pairwise correlation

among the respectively included models. This methodological choice ensures that the most similar models are grouped into

the same cluster, yet allows for the possibility to produce outliers. With the number of considered models being quite low,

we can at every iteration of the algorithm identify such outliers and explain this by the properties of the employed cluster

analysis method while ensuring that the most similar models indeed end up in the same cluster. Specifically, based on the175

models’ mutual similarity, our hierarchical cluster analysis method iteratively identifies pairs of models that are successively

merged into clusters until all models belong to a single cluster. The order of this clustering is depicted in a dendrogram. In the

visual representation used in this work, the resulting dendrograms are meant to be read from left (where each individual model

constitutes a single cluster) to right (all models are combined in one cluster). Vertical lines indicate a merge of two models or

clusters of models, while the horizontal lines represent the increasing cophenetic distance between the clusters (capturing the180

degree of similarity between the two groups based on the rescaled inter-model similarity matrix). Cutting the dendrogram at a

certain level of similarity, i.e., cophenetic distance, leads to certain clusters of models that will then be used in the remainder

of this study.

We are aware that there are alternative ways both to quantify the similarity between different models based on the values of

the different network measures and to cluster the models. Our methodological choices reflect the need to account for differences185

in the grid resolution of the 14 global climate models, and our preference for a simple and intuitive analysis setup.

2.4 Robustness tests

We acknowledge that our analysis setup is based on several specific choices of methodological parameters or variants. To

address this, we have tested our results for robustness in the following manner. Due to the limited amount of data and only

14 models to be clustered, we have performed two basic tests on the results. First, we have split the 30 years into two 15-190

year periods and have analyzed the two sets of anomaly time series individually. Although the results are neither identical nor

completely match the results from the analysis of 30 years, the clustering of the models is only marginally affected (not shown).

Second, we have stacked the time series of 20 randomly chosen years and compared the resulting zonal-mean network measures

for 20 independent realizations. We have found that the main features of the zonal-mean degree distribution are retained on

average among the resulting network ensembles (not shown). The two sensitivity tests hence indicate that the results described195

below are robust.
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Figure 3. Model clustering of the AquaControl global networks (left) along with the tropical SST contrast (middle) and ITCZ position (right)

for the four identified clusters. The left panel shows the dendrogram obtained from the clustering of the zonal-mean network measures. The

vertical line indicates the level of cophenetic distance at which we split the models into four clusters.

3 Results

In the following, we present the results of our functional network analysis. We first make use of the AquaControl simulations

and start by investigating climate networks constructed from the complete (global) SST field that include both, tropical and

extratropical nodes (Sect. 3.1). Subsequently, we study networks for which some of the regional connections were excluded200

(Sect. 3.2). Finally, we study the response of the climate networks and the ITCZ position to a quadrupling of CO_text2 by

repeating the analysis for the Aqua4xCO2 simulations (Sect. 3.3).

3.1 AquaControl simulations: Global network properties

The global network analysis is shown in Fig. 3 and separates the models into four clusters (left panel), with cluster 1 and

2 each consisting of 6 models, and cluster 3 and cluster 4 each containing only a single model. The zonal-mean network205

measures that underlie this clustering are shown in Fig. 4 and discussed in more detail below. Importantly, Fig. 3 demonstrates

that the clustering successfully separates models in terms of their time-average tropical SST contrasts (central panel) and, to

a slightly lesser extent, ITCZ positions (right panel). Specifically, the models in cluster 1 exhibit a stronger SST contrast and

a more poleward shifted ITCZ than the models in cluster 2. Indeed, there is no overlap between the two clusters regarding

the respective SST contrast and ITCZ position. The clustering also separates models in terms of the strength of their Southern210

Hemisphere Hadley circulation as measured by the magnitude of the minimum of the mass stream function (cluster 1: 130-158;

cluster 2: 102-129; cluster 3: 53; cluster 4: 266; all values in units of 109 kg/s). This is expected since the ITCZ position and

the Hadley cell strength tend to be strongly correlated (Donohoe et al., 2013).

The zonal-mean network measures of the four clusters are presented in Fig. 4, where the left panels show the normalized

degree and the right panels the average link distance. The spatial patterns of the zonal-mean network measures differ system-215

atically between the clusters along with their respective ITCZ positions and SST contrasts. This consistency demonstrates that

the hierarchical clustering is indeed climatologically meaningful. Despite some inter-model variability in each cluster, clusters
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Figure 4. Zonal-mean network measures from the global networks of the AquaControl simulations for each of the four clusters. The left

panels show the normalized zonal-mean degree, the right panels show the corresponding average link distance patterns. Vertical lines indicate

the position of the ITCZ. The cluster-mean is shown by black dashed lines.

1 and 2 exhibit systematic differences. For cluster 1 (Fig. 4, first row), all models show a coherent degree and link distance

minimum around the position of the ITCZ and a marked peak of both measures related to a strong Southern Hemisphere

Hadley cell. This finding has already been reported by Wolf et al. (2019) and reflects the fact that the models of cluster 1220

have the strongest Southern Hemisphere Hadley cell across the model ensemble. For cluster 2, the zonal-mean average link

distance exhibits a broad maximum around the ITCZ position instead of the minimum found for cluster 1 (Fig. 4, second row).

Moreover, the zonal-mean network measures of cluster 2 are more symmetric with respect to the equator than for the models

in cluster 1. The comparison between clusters 1 and 2 reveals that a more northward ITCZ position tends to be associated

with less symmetric network properties and minima in degree and link distance near the ITCZ, whereas an ITCZ closer to225

the equator is accompanied by a more symmetric pattern of zonal-mean network characteristics with only small meridional

contrasts in the tropical degree and a near-equatorial maximum in the average link distance.

As opposed to the aforementioned two groups of models, the networks derived from the CALTECH and AM2.1 models,

which form cluster 3 and cluster 4, respectively, show zonal-mean network measures that resemble extreme versions of cluster

1 (for AM2.1) and cluster 2 (for CALTECH). CALTECH (cluster 3) has the ITCZ closest to the equator among all models, and230

its network characteristics exhibit near-perfect symmetry with respect to the equator. By contrast, for AM2.1 (cluster 4) the
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Figure 5. Pairwise inter-model correlation score versus the difference of ITCZ position and SST contrast of all model pairs. Model pairs

where both models fall into the same multi-model cluster are colored in red (cluster 1) and blue (cluster2), respectively. The difference of the

ITCZ position is marked by circles, the difference in the SST contrast is marked by ”x”.

ITCZ is shifted far into the Northern Hemisphere and its zonal-mean network characteristics exhibit hardly any symmetry with

respect to the equator, yet marked minima of degree and average link distance at about the latitudinal position of the ITCZ.

We further demonstrate the success of the functional climate network analysis along with the hierarchical cluster analysis in

the following manner. For all pairs of models, we plot the inter-model difference in the ITCZ position and tropical SST contrast235

as a function of the similarity of the models’ zonal-mean network characteristics. The latter is measured by the elements of

the original (non-rescaled) inter-model similarity matrix cij , which represent the combined similarity of the patterns of the two

considered zonal-mean network characteristics (see Sect. 2.3). Here, we note again that cij is bounded to the interval [−2,2]

because the values of the Pearson correlation coefficients for zonal-mean degree and zonal-mean average link distance are both

restricted to [−1,1]. Figure 5 shows the resulting scatter plots of the pairwise similarity coefficient versus the ITCZ position240

and tropical SST contrast, respectively.

Despite the generally large scatter, there is a clear tendency towards smaller differences in the ITCZ position and SST

contrast for models whose climate networks are more similar (Fig. 5). Put differently, this underlines that for models that are

identified as more similar by the network and cluster analysis (larger correlation score on the x-axis), the pairwise difference in

the ITCZ position and SST contrast tends to be smaller than for models with less similar network characteristics. In addition,245

all combinations of model pairs that belong to cluster 1 or cluster 2 (recall that cluster 3 and cluster 4 only include only one

model each) are colored in red and blue, respectively. This shows that indeed the clustering only groups models together that

have similar network characteristics.
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In summary, the above results show that functional climate network analysis, although only using information from monthly

variability of the global SST field, is able to distinguish time-average model differences in the ITCZ position, SST contrast,250

and Hadley cell strength.

3.2 AquaControl simulations: Networks with stepwise exclusion of regional connections

The global network analysis in the previous subsection included both tropical and extratropical connections. To disentangle the

relative importance of tropical and extratropical connections, we repeat the analysis but successively exclude different classes

of links by setting the corresponding elements of the adjacency matrix to zero. Notably, this strategy removes links from the255

network whereas the zonal network measures are attributes of nodes and each link contributes to the degree and average link

distance of two different nodes. Hence, we still retain complete zonal-mean characteristics of networks with a specific subset of

links. The analysis of the residual network structures thereby allows us to quantify the importance of, e.g., connections within

the tropics or between the tropics and the extratropics.

First, we remove all trans-equatorial connections between the Northern and Southern Hemisphere extratropics (> 35◦ N/S).260

This analysis leads to almost indistinguishable results compared to the global networks (not shown), because the number of

trans-equatorial extratropical-extratropical connections is very low for all models. This shows that inter-hemispheric telecon-

nections between the Northern and Southern Hemisphere extratropics do not markedly affect the ITCZ position.

Second, we exclude all extratropical-extratropical connections (i.e., also links connecting two nodes within the extratropics

of the same hemisphere). As a consequence, the resulting network characteristics in the extratropics only include tropical-265

extratropical connections, while the network measures in the tropics feature both tropical-tropical and tropical-extratropical

connections. This leads to a very low link density in the extratropics while the link density in the tropics remains almost as

large as in the analysis of the complete network. The extratropics of both hemispheres together account for 110◦ in latitude that

contribute to the zonal mean values (with low link density and an irregular distribution), while the tropics cover only 70◦ in

latitude (but with high link density and smooth distribution). As a consequence, correlations between the irregular distributions270

in the extratropics do not lead to meaningful results, while the patterns of zonal-mean network measures in the tropics also

include the information from extratropical-tropical links. In the following, we therefore only consider zonal-mean network

characteristics between 35◦ S and 35◦ N to quantify the similarity between the respective model outputs. By considering the

zonal-mean characteristics only for this tropical band, we obtain smooth and stable patterns that represent both inner-tropical

and tropical-extratropical connections.275

The dendrogram obtained by our hierarchical cluster analysis as well as the associated SST contrasts and ITCZ positions

are shown in Fig. 6. Unlike for the complete network, the analysis without extratropical–extratropical connections separates

the models into 4 clusters of similar size. 3 of the 4 clusters differ regarding their SST contrast, ITCZ position, and Southern

Hemisphere Hadley cell strength. The network analysis thus identifies some model differences in the tropical climate also

when extratropical–extratropical connections are removed, but the success in doing so is reduced compared to the analysis of280

the global network.
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Figure 6. Model clustering based on the AquaControl networks without extratropical–extratropical connections (left) and values of the

tropical SST contrast (middle) and ITCZ position (right) for all models of the four identified clusters. The left panel shows the dendrogram

obtained from the hierarchical clustering of the zonal-mean network measures. The vertical line indicates the level of cophenetic distance at

which we split the models into four clusters.
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The zonal-mean network measures underlying the clustering of Fig. 6 are shown in Fig. 7. The models in cluster 3 (third row)

exhibit minima of the zonal-mean network characteristics near the ITCZ and maxima in the region of the Southern Hemisphere

Hadley cell. A similar feature is to some extent visible for the models in cluster 1 (first row), although it is blurred by additional

features like additional local minima and marked maxima of both network properties in the region of the Northern Hemisphere285

Hadley cell. The network measures for models in cluster 2 (second row) exhibit rather heterogeneous distributions, consistent

with the relatively large model spread in SST contrast and ITCZ position in that cluster. Finally, the network properties of the

models in cluster 4 (bottom row) feature some level of symmetry with respect to the equator, although their distributions differ

substantially and their cophenetic distance in the dendrogram is large (Fig. 6 left). In line with the previous results, we notice

that a decrease in the level of symmetry in the network measures is associated with an ITCZ that is more strongly shifted into290

the Northern Hemisphere. This is expected as for the ITCZ to be shifted away from the equator, there needs to be some level

of hemispheric asymmetry in the SST pattern.

Finally, we also tested the effect of additionally excluding tropical–extratropical connections, thereby retaining only inner-

tropical connections. In this case, we did not find coherent clusters with distinct ITCZ positions (not shown). This indicates

that tropical–extratropical interactions are important for the ITCZ dynamics (Kang, 2020). Furthermore, we have tested our295

method based on zonal-mean SST fields. Again, this has not led to an interpretable clustering, and the strong decrease in the

number of grid points due to the zonal averaging actually turned out to be a challenge to our analysis method.

3.3 Aqua4xCO2 - AquaControl simulations: Climate response to quadrupling carbon dioxide

In the previous two subsections, we have demonstrated that functional climate network analysis of monthly SST anomalies

can identify model differences in the time-average SST contrast and ITCZ position based on the AquaControl simulations. In300

the following, we study if the analysis can also help to understand model differences in the ITCZ response to global warming

triggered by an increase in atmospheric carbon dioxide content in the Aqua4xCO2 simulations. Across the model ensemble,

the ITCZ response varies from a slight southward shift by less than 1◦ in latitude to a strong northward shift by up to 8◦.

We analyze the change in the network measures between the AquaControl and the Aqua4xCO2 simulations. We compute the

difference between the zonal-mean network characteristics of AquaControl and Aqua4xCO2 for each model, from which we305

perform the similarity-based hierarchical cluster analysis. The corresponding results are summarized in Figs. 8 and 9. It can be

seen that our analysis identifies three clusters. These are presented together with the warming induced changes in the tropical

SST contrasts and ITCZ positions in Fig. 8. Cluster 1 and 2 each consist of two models, and both show a reduced ITCZ response

as compared to the other models. Cluster 3 contains the majority of models (10 out of 14) and spans the entire ensemble range

of ITCZ responses. This wide spread indicates that in contrast to the control climate, the combination of functional network310

and hierarchical cluster analysis does not pick up model differences in the ITCZ response to global warming. This finding

is further illustrated in Fig. 9, which shows the differences in the zonal-mean network properties between the AquaControl

and Aqua4xCO2 simulations. While clusters 1 and 2 again both exhibit muted ITCZ responses, they differ substantially in the

specific response of their network characteristics. Likewise, for cluster 3, there is no common spatial pattern in the response of

the network measures.315
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Figure 8. Model clustering based on the difference between the Aqua4xCO2 and AquaControl global networks (left) along with the warming

induced changes in the tropical SST contrast (middle) and ITCZ position (right) for the three identified cluster. The left panel shows the

dendrogram obtained from the clustering of the difference in the zonal-mean network characteristics. The vertical line indicates the level of

cophenetic distance at which we split the models into the three clusters.

4 Discussion and Conclusions

The ITCZ is a central element of Earth’s climate, yet understanding its dynamics and anticipating its response to climate

change remains a challenge. In this work, we have proposed a new perspective on the ITCZ by means of complex network

theory. We have tested this perspective by analyzing a multi-model ensemble of idealized aquaplanet simulations provided by

TRACMIP. The main difference between our work and previous considerations of the ITCZ is that our perspective is based320

on monthly-mean anomalies of sea-surface temperature (SST), whereas previous work focused on the relation of the ITCZ to

time-average SST and atmospheric energy transport.

We have constructed complex network representations based on the correlation pattern of monthly SST anomalies in the

control simulation (AquaControl) and a global-warming simulation (Aqua4xCO2). We found that the zonal-mean node degree

and average link distance of functional climate networks can separate models in terms of their ITCZ position, SST contrast325

and Hadley cell strength in the control simulation. This separation also holds when extratropical–extratropical connections are

excluded, but breaks down when further connections are excluded. This shows that the network approach correctly identifies

that extratropical-tropical connections are important in setting the tropical climate (Kang, 2020). The network analysis is also

consistent with known mechanisms such as a strong correlation between Hadley cell strength and ITCZ position. Overall, the

climate network analysis indicates that the time-mean ITCZ is connected to spatiotemporal variability of the monthly SST, a330
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Figure 9. Differences in the zonal-mean network properties of the AquaControl versus Aqua4xCO2 global networks for the three identi-

fied clusters. The left panels show the normalized difference between the zonal-mean degrees of the AquaControl and Aqua4xCO2 based

networks, while the same is shown in the right panels for the respective average link distances.

finding that is not obvious from previous work. However, we also note that the network analysis was unable to separate model

differences in the ITCZ response to global warming.

Because the aquaplanet setup is zonally symmetric in a statistical sense, we have restricted our analysis to zonal mean

network properties. This simplification implied the loss of local (single-node) information, which prohibited us to identify

possible local connectivity structures and fully exploit the complete distribution of links in the network. For example, we have335

not analyzed if and how individual nodes are connected in the meridional and zonal direction. Future work could look at

this aspect in more detail to reveal the role of, e.g., zonally-propagating tropical waves associated with large-scale patterns of

SST, wind and atmospheric energy transport. This could also involve other network characteristics like betweenness centrality

(Donges et al., 2009) or edge directionality (Wolf et al., 2019), and would complement the traditional empirical orthogonal

function (EOF) analysis or more sophisticated pattern recognition approaches such as self-organizing maps (SOM).340

One central goal of this study was to investigate to what extent correlation-based functional climate networks provide insights

into the ITCZ dynamics as simulated in state-of-the-art global climate models. Although we have discussed several of the

emerging network measures in a climatological context, their implications and specific links to the dynamics of the atmosphere

and climate system have remained to be further explored. We, therefore, consider this study a first step towards applications of

climate networks, and more broadly, topological data analysis to understand fundamental climate dynamics.345
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