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Abstract. The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the main set of future climate 

projections, based on concentration driven simulations, within the Coupled Model Intercomparison Project Phase 6 (CMIP6). 

This paper presents a range of its outcomes by synthesizing results from the participating global coupled Earth system models. 70 

We limit our scope to the analysis of strictly geophysical outcomes: mainly global averages and spatial patterns of change for 

surface air temperature and precipitation. We also compare CMIP6 projections to CMIP5 results, especially for those scenarios 

that were designed to provide continuity across the CMIP phases, at the same time highlighting important differences in forcing 

composition, as well as in results. The range of future temperature and precipitation changes by the end of the century (2081-

2100) encompassing the Tier 1 experiments (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and SSP1-1.9 spans a larger range 75 

of outcomes compared to CMIP5, due to higher warming (by close to 1.5°C) reached at the upper end of the 5-95% envelope 

of the highest scenario, SSP5-8.5. This is due to both the wider range of radiative forcing that the new scenarios cover and to 

higher climate sensitivities in some of the new models compared to their CMIP5 predecessors. Spatial patterns of change for 

temperature and precipitation averaged over models and scenarios have familiar features, and an analysis of their variations 

confirms model structural differences to be the dominant source of uncertainty. Models also differ with respect to the size and 80 

evolution of internal variability as measured by individual models’ initial condition ensembles’ spread, according to a set of 

initial condition ensemble simulations available under SSP3-7.0. These experiments suggest a tendency for internal variability 

to decrease along the course of the century in this scenario, a result that will benefit from further analysis over a larger set of 

models. Benefits of mitigation, all else being equal in terms of societal drivers, appear clearly when comparing scenarios 

developed under the same SSP, but to which different degrees of mitigation have been applied. It is also found that a mild 85 

overshoot in temperature of a few decades in mid-century, as represented in SSP5-3.4OS, does not affect the end outcome of 

temperature and precipitation changes by 2100, which return to the same level as those reached by the gradually increasing 

SSP4-3.4 (not erasing the possibility, however, that other aspects of the system may not be as easily reversible).  Central 

estimates of the time at which the ensemble means of the different scenarios reach a given warming level might be biased by 

the inclusion of models that have shown faster warming in the historical period than the observed. Those estimates show all 90 

scenarios reaching 1.5°C of warming compared to the 1850-1900 baseline in the second half of the current decade, with the 

time span between slow and fast warming covering between 20 and 27 years from present. 2°C of warming is reached as early 
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as 2039 by the ensemble mean under SSP5-8.5, but as late as the mid-‘60s under SSP1-2.6. The highest warming level 

considered, 5°C, is reached only by the ensemble mean under SSP5-8.5, and not until the mid-‘90s.   

 95 

1.  Introduction 

Multi-model climate projections represent an essential source of information for mitigation and 

adaptation decisions. O’Neill et al. (2016) describe the origin, rationale and details of the experimental 

design for the Scenario Model Intercomparison Project (ScenarioMIP) for the Coupled Model 

Intercomparison Project Phase 6 (CMIP6, Eyring et al, 2016).  The experiments produce projections for 100 

a set of eight new 21st century scenarios based on the Shared Socio-economic Pathways (SSPs) and 

developed by a number of Integrated Assessment Models (IAMs). Extensions beyond 2100 based on 

idealized pathways of anthropogenic forcings are also included (formalized in their protocol by 

Meinshausen et al. (2020)), together with the request for a large initial condition ensemble under one of 

the 21st century scenarios.  Two of the scenarios are concentration overshoot (peak and decline) 105 

trajectories, while the majority follow a traditional increasing or stabilizing trajectory.  

The new scenarios are the result of an intense research phase that produced a new systematic scenario 

approach, the SSP-RCP framework (van Vuuren et al., 2013), which relates the newer socio-economic 

scenarios to the Representative Concentration Pathways first adopted in CMIP5 (Moss et al., 2010; 

Taylor et al., 2012).  New qualitative narratives and future pathways of socio-economic drivers 110 

(population, technology and GDP) were developed according to two dimensions relevant to the climate 

change problem, i.e., by positioning individual pathways as each representing a combination of low, 

medium or high degrees of challenge to adaptation and to mitigation (O’Neill et al., 2013). Five such 

pathways (SSP1 through SSP5) were developed.  These were in turn used by IAMs to produce scenarios 

of anthropogenic emissions and land use (Riahi et al., 2017) consistent with the qualitative narratives 115 

and quantitative elements of each SSP. In addition to these baseline scenarios (i.e., scenarios that 

assume no explicit mitigation policies beyond those in place at the time the scenarios were created, prior 

to the Paris Agreement), a number of additional emissions and land use scenarios were produced that 

included mitigation policies (Kriegler et al., 2014) that achieved a range of radiative forcing targets for 

the end of the century. Thus, on the basis of a given SSP multiple levels of radiative forcings are 120 

achievable, given more or less stringent mitigation. Among this large set of scenarios, the ScenarioMIP 

design chose a subset to be run by global climate and Earth System Models (ESMs) in concentration 

driven mode. Some were chosen specifically to provide continuity with the RCPs: SSP1-2.6, SSP2-4.5, 

SSP4-6.0 and SSP5-8.5, where 2.6 to 8.5 stands for the stratospheric adjusted radiative forcing in Wm-2 

by the end of the 21st century as estimated by the IAMs. Additional trajectories were also chosen to fill 125 

in gaps in the previous scenario set for both baseline and mitigation scenarios (SSP5-3.4; SSP3-7.0). 

Yet another was chosen to address new policy objectives (SSP1-1.9, designed to meet the 1.5°C target 

at the end of the century). The request of prioritizing initial condition ensemble members for only one 

of the scenarios (SSP3-7.0) was aimed at gathering sizable ensembles (10 members or more) from 

various modelling centers. This was decided in recognition of the important role of internal variability 130 

in contributing to future changes, whose exploration is facilitated by initial condition ensembles (Deser 

et al., 2020; Santer et al., 2019). It was also recognized that the spread in aerosol scenarios in the four 
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RCPs used in CMIP5 was too narrow, as all assumed a large reduction in atmospheric aerosol emissions 

(Moss et al. 2010, Stouffer et al., 2017). The new SSP-based scenarios better address this uncertainty by 

sampling a larger range of aerosols pathways consistent with the corresponding GHG emissions (Riahi 135 

et al. 2017). Scenario experiments were enabled by another community effort, input4mip: Based on the 

IAM's emission trajectories, and after harmonization of those to historical emission levels (Gidden et 

al., 2019), a community effort took place to translate those emission time series and to amend them with 

additional input fields for use by ESMs. These range from providing land-use patterns 

(https://doi.org/10.22033/ESGF/input4MIPs.1127), gridded aerosol emission fields (Hoesly et al, 2018), 140 

stratospheric aerosols (Thomason et al., 2018), solar irradiance time series (Mattes et al., 2017), 

greenhouse gas concentrations (Meinshausen et al., 2020), as well as ozone fields 

(https://doi.org/10.22033/ESGF/input4MIPs.1115). 

Given the multi-model focus of CMIP and the overview purpose of this paper, the results reported here 

aim at giving a broadscale representation of ensemble results (mean and ranges, or other measures of 145 

variability). The ScenarioMIP design responded to many complex objectives and science questions, 

among which a high priority was the need to lay the foundation for integrated research across the 

geophysical, mitigation, impacts, adaptation and vulnerability research communities (O’Neill et al., 

2020).  The focus of this paper is to provide physical climate context for these more detailed analyses. 

Other Model Intercomparison Projects within CMIP6 have prescribed experiments that complement the 150 

ScenarioMIP design to address questions about the effects of small radiative forcing differences, 

specific (and often local) forcings like from land-use and short-lived climate forcers (SLCFs), the 

differential effects of emission versus concentration driven experiments testing the strength of the 

carbon cycle (Arora et al., 2020), and the effectiveness of emergent constraints in reshaping the 

uncertainty ranges of the new multi-model ensemble (Nijsse et al., 2020; Tokarska et al., 2020). They 155 

are the Land Use MIP (LUMIP, Lawrence et al., 2016), the Aerosol Chemistry MIP (AerChemMIP, 

Collins et al., 2017), the Coupled Climate-Carbon Cycle MIP (C4MIP, Jones et al., 2016), the 

Geoengineering MIP (GeoMIP, Kravitz et al., 2015) and the Carbon Dioxide Removal MIP (CDRMIP, 

Keller et al., 2018).   

In this study, we focus the analysis on the future evolution of average temperatures and precipitation. 160 

We address questions regarding the strength of the signal under the different CMIP6 scenarios and 

compared to similar CMIP5 scenarios; the identification of the time of separation between the 

temperature trajectories under the different scenarios, and the time at which they cross global warming 

thresholds. We also analyze spatial patterns of change addressing questions of robustness between the 

CMIP5 and CMIP6 multi-model ensembles, and within the CMIP6 ensemble among models and 165 

scenarios. 

 

 

2. ScenarioMIP experiments and participating models 

As described in detail in O’Neill et al. (2016) and summarized in the matrix display of Figure A1 in the 170 

Appendix, the ScenarioMIP design consists of the following concentration-driven scenario experiments, 

subdivided into two tiers to guide prioritization of computing resources. Tier 1 consists of four 21st 

century scenarios.  Three of them provide continuity with CMIP5 RCPs by targeting a similar level of 

aggregated radiative forcing (but we highlight important differences in the coming discussion): SSP1-

https://doi.org/10.22033/ESGF/input4MIPs.1127
https://doi.org/10.22033/ESGF/input4MIPs.1115
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2.6, SSP2-4.5 and SSP5-8.5.  An additional scenario, SSP3-7.0, fills a gap in the medium to high end of 175 

the range of future forcing pathways with a new baseline scenario, assuming no additional mitigation 

beyond what is currently in force. The same scenario also prescribes larger SLCFs concentrations and 

land-use changes compared to the other trajectories.  

 

Only Tier 1, which can be satisfied by one realization per model, is required for participation in 180 

ScenarioMIP.  

Tier 2 completes the design by adding  

● SSP1-1.9, informing the Paris Agreement target of 1.5°C above pre-industrial;  

● SSP4-3.4, a gap-filling mitigation scenario; 

● SSP4-6.0, an update of the CMIP5-era RCP6.0; 185 

● SSP5-3.4OS (overshoot), that tests the efficacy of an accelerated uptake of mitigation measures 

after a delay in curbing emissions until 2040: the scenario tracks SSP5-8.5 until that date, then 

decreases to the same radiative forcing of SSP4-3.4 by 2100; 

● three extensions to 2300, two of them continuing on from SSP1-2.6 and SSP5-8.5 and one 

extending the SSP5-3.4 overshoot pathway towards the lower radiative forcing level of           190 

2.6 Wm-2, to inform the analysis of long-memory processes, like ice-sheet melting and 

corresponding sea level rise. 

● nine additional initial condition ensemble members under SSP3-7.0 to explore internal 

variability and signal to noise characteristics of the different participating models.  

 195 

A list of the participating models, with references for documentation and data, is shown in Table A1 in 

the Appendix. Table A2 lists the CMIP5 models used in the comparisons. 

 

 

3. Results 200 

For the results shown in this section we extracted monthly mean near-surface air temperature (TAS) and 

precipitation (PR) from the models listed in Table A1 and A2 (for CMIP5 scenarios). These were 

averaged globally or separately over land and oceans for time series analysis (no correction for drift was 

performed), and regridded to a common 1-degree grid by linear interpolation for pattern analysis. All 
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figures of this paper are produced with the Earth System Model Evaluation Tool (ESMValTool) version 205 

2.0 (v2.0) (Righi et al., 2020; Eyring et al., 2020; Lauer et al., 2020), a tool specifically designed to 

improve and facilitate the complex evaluation and analysis of CMIP models and ensembles. 

 
3.1 Global Temperature and Precipitation Projections for Tier 1 and the SSP1-1.9 scenarios  

 210 

3.1.1 Time Series 

Figure 1 shows time series of global mean surface air temperature (GSAT) and global precipitation 

changes (see Figure A2 in the Appendix for time series of the same variables disaggregated into land-

only and ocean-only area averages; also see Tables A3 and A4 for changes under the different scenarios 

at mid-century and end-of-the-century). The historical baseline is taken as 1995-2014 (2014 being the 215 

last year of CMIP6 historical simulations). The five scenarios presented in these plots consist of the Tier 

1 experiments (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and the additional scenario designed to 

limit warming to 1.5°C above 1850-1900 (a period often used as a proxy for pre-industrial conditions), 

SSP1-1.9. We smooth each trajectory by an 11-yr running mean to focus on climate-scale variability. 

In the plots the thick line traces the ensemble average (see legend and Table A1 for the number of 220 

models included in each scenario calculation) and the shaded envelopes represent the 5-95% ranges, 

which are obtained assuming a normal distribution as 1.64σ, where σ is the inter-model standard 

deviation of the smoothed trajectories, computed for each year. Only one ensemble member (in the 

majority of cases r1i1p1f1) is used even when more runs are available for some of the models. By the 

end of the century (i.e., as the mean of the period 2081-2100) the range of warming spanned by the 225 

multi-model ensemble means under all scenarios is between 0.69 °C and 3.99°C relative to 1995-2014 

(0.84°C more when using the 1850-1900 baseline). Considering the multi-model ensemble means as the 

best estimates of the forced response under each scenario, the range spanned by them can be interpreted 

as an estimate of scenario uncertainty. When considering the shaded envelopes around the ensemble 

mean trajectories, about 0.6°C at the lower end and 1.6°C at the upper end are added to this range. This 230 

range can be seen as reflecting the compound effects of model-response uncertainty and some measure 

of internal variability in the individual model trajectories, but the latter is likely underestimated, given 

that we are using only one run per model. The use of initial condition ensembles for each of the models 

would better characterize their respective internal variability (Lehner et al., 2020). Using the 5-95% 

confidence intervals as ranges, we find that by the end of the 21st century (2081-2100 average, always 235 

compared to the 1995-2014 average) global mean temperatures are projected to increase between 

2.40°C and 5.57°C for SSP5-8.5, between 1.95°C and 4.38°C under SSP3-7.0, and between 1.27°C and 

3.00°C for SSP2-4.5. Global temperatures stabilize or even somewhat decline in the second half of the 

century in SSP1-1.9 and SSP1-2.6 which span a range from 0.13°C to 1.25°C and 0.40°C to 2.05°C, 

respectively, whereas they continue to increase to the end of the century in all other SSPs. The ensemble 240 

spread appears to consistently increase with the higher forcing and over time. This suggests that the 

model response uncertainty increases for stronger responses, an expected result as in higher scenarios 

and later periods climate sensitivity – which significantly differs among the models -- more strongly 

influences the model response (Lehner et al. 2020). This result appears robust, given the number of 

models included (between 33 and 39 for Tier 1 experiments). Only the number of models contributing 245 

to the lowest scenario (SSP1-1.9) is significantly less, i.e., 13 at the time of writing, but the analysis of 
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ensemble behavior of Section 3.2.1 below suggests that for global temperature and precipitation 

averages ten ensemble members provide a representative sample of the internal climate variability. The 

same qualitative behavior appears for land-only and ocean-only averages (Figure A2 and Table A3), 

with the faster warming over land than ocean reaching on average up to 5.46°C under SSP5-8.5 250 

(compared to the global average reaching 3.99°C) and some models reaching a much larger value under 

this scenario of 7.57°C. For the lower scenarios, limiting warming in 2100 to 0.69°C and 1.23°C 

globally translates to an average warming on land of 0.96°C and 1.61°C respectively for SSP1-1.9 and 

SSP1-2.6 (see Table A3 for all projections and their ranges referenced to the historical baseline).  

 255 

In order to characterize when pairs of scenarios diverge, we define separation the first occurrence of a 

positive difference between two time series, one under the higher and one under the lower forcing 

scenarios, which is then maintained for the remainder of the century. This is similar to Tebaldi and 

Friedlingstein (2013, TF13 in the following), which used the first occurrence of a significant trend in 

the year-by-year differences, then justified by the RCPs under consideration, among which only the 260 

lowest, RCP2.6, flattened out over the century. In that case, the remainder of the RCPs considered 

followed an increasing trajectory, with differential rates of increase, therefore justifying the expectation 

that year-by-year differences would eventually show a significant and persisting trends. Among the new 

scenarios at least two are expected to follow a flat trajectory, or even a slight peak and decline (SSP1-

1.9 and SSP1-2.6) rendering the expectation of a trend in their differences untenable. We therefore 265 

adopt a slightly different definition, here, and we also note that this definition would need to be 

modified if overshoot scenarios -- crossing their reference as they decrease -- were the main focus of 

this analysis. Also, this is not the only way to define separating scenarios and other studies have applied 

different, but still fairly similar, definitions, e.g., recently, Marotzke (2019). We use time series of 

GSAT after applying a 21-year running mean, as we are concerned with differences in climate rather 270 

than in individual years, whose temperatures are affected by large variability (this is the part of the 

definition that takes the place of the consideration of long-term trends in TF13. We also need to choose 

a threshold by which we deem the difference “positive” and somewhat discernible (this takes the place 

of asking for a significant trend in TF13). To do so, we use the results in Tebaldi et al., 2015, where the 

regional sensitivities of temperature and precipitation to changes in global average temperature were 275 

quantified. According to that analysis, 0.1°C of difference in 20-yr means of GSAT was the lowest 

value at which a multi-model ensemble consistently had a positive fraction of the grid-cells 

experiencing significant warming. In Table A5 we report the precise years when the ensemble means of 

the smoothed GSAT time series under the various scenario pairs separate according to this definition, 

and, in parenthesis, when the last of all individual models’ pairs of trajectories separate, but of course 280 

those precise estimates would change if our choices of the moving window and the threshold had been 

different. The ensemble average trajectory of GSAT under SSP5-8.5 separates from the lower 

scenarios’ ensemble average trajectories between 2027 and 2034 with the longer time as expected 

applying to the separation from SSP3-7.0. SSP3-7.0 separates from the two scenarios at the lower end 

of the range between 2031 and 2037, and ten years later from SSP2-4.5. The ensemble average 285 

trajectory of global temperature under SSP2-4.5 separates from those under the two lower scenarios, 

SSP1-1.9 and SSP1-2.6  by 2034 and 2039 respectively, while the ensemble average GSAT trajectories 

under the two lower scenarios, SSP1-1.9 and SSP1-2.6, separate from one another in 2042 (in Figure 
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A3 the differences between ensemble averages for each pair of scenarios appear as red lines). When 

considering individual models’ trajectories under the different scenarios, and defining the time of 290 

separation when the last of all individual pair of trajectories separates, model structural differences and 

a larger effect of internal variability cause a significant delay compared to the ensemble mean 

separation. Depending on the pair of scenarios considered, the length of the delay necessary for the last 

of the models to show separation varies significantly: as few as 6 years for the full separation of SSP1-

2.6 from SSP5-8.5, as many as 19 years for the full separation of SSP3-7.0 from SSP5-8.5 (Figure A3, 295 

black lines, and values in parenthesis in Table A5). 

Ensemble mean precipitation change by 2081-2100 (as a percentage of the 1995-2014 baseline) is 

between 2.0 and 3.0% for the lowest scenarios (SSP1-1.9 and SSP1-2.6), 4.2 and 4.9% for SSP2-4.5 

and SSP3-7.0, and 7.3% for SSP5-8.5. As expected, the larger variability of precipitation changes 

(relative to temperature changes), both from internal sources and model response uncertainty, is such 300 

that only the highest scenario ensemble mean trajectory separates from the lower ones appreciably 

before 2050 while the lowest scenario separates from the rest around mid-century. The ensemble means 

of the three scenarios in between overlap until close to 2070.  The multi-model spread and internal 

variability confound a large fraction of the individual scenarios’ trajectories until the end of the century 

(Figure 1, right panel). Both the magnitude of the changes and their variability are larger for 305 

precipitation averages over land than over oceans (Figure A2; see also Table A4 for a complete list of 

mid- and late century changes).  

 

 
Figure 1: Left panel: global average temperature time series (11-yr running averages) of changes from current baseline (1995-310 
2014, left axis) and pre-industrial baseline (1850-1900, right axis, obtained by adding a 0.84°C offset) for SSP1-1.9, SSP1-2.6, 

SSP2-4.5, SSP3-7.0 and SSP5-8.5. Right panel: global average precipitation time series (11-yr running averages) of percent 

changes from current baseline (1995-2014)  for SSP1-1.9, SSP1-2.6, S SP2-4.5, SSP3-7.0 and SSP5-8.5. Thick lines are ensemble 

means (number of models shown in the legends). The shading represents the +/-1.64σ interval, where σ is the standard deviation of 

the smoothed trajectories computed year-by-year (thus approximating the 5-95% confidence interval around the mean of a 315 
normal distribution). Note that the uncertainty bands are computed for the anomalies with respect to the historical baseline (1995-

2014). Thus, the right axis of the global temperature plot, showing anomalies with respect to pre-industrial, applies to the ensemble 

means, not to the uncertainty bands, which would be narrowest over the period 1850-1900 if we were to calculate uncertainties on 
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the basis of the models’ output over that period, rather than by simply adding an offset uniformly. See Figure A2 in the Appendix 

for land-only and ocean-only averages and Tables A3 and A4 for the values of changes at mid and late century. 320 
 

 

3.1.2 Normalized Patterns 

In Figure A4 we show ensemble average patterns of change by the end of the century under the five 

scenarios for both variables. In this section we focus our discussion on the general features emerging 325 

from the average normalized patterns. Normalized patterns are computed as the end-of-century 

(percent) change compared to the historical baseline, divided by the corresponding change in global 

mean temperature. This computation is first performed for each individual model/scenario, at each grid 

point, after regridding temperature and precipitation output to a common 1°x1° grid. The individual 

normalized patterns are then averaged across models and the five scenarios. As we will show, the total 330 

variations among the population of normalized patterns that form this grand average is mainly driven by 

inter-model variability, rather than inter-scenario differences. Thus, we choose to synthesize patterns of 

change across all scenarios by presenting regional changes per degree of global warming. More in depth 

analyses, also exploiting complementary experiments from LUMIP and AerChemMIP, may provide a 

more refined view of the inter-scenario differences possibly arising from different regional forcings. 335 

Figure 2a shows the spatial characteristics of warming, and of wetting and drying. For temperature 

changes, the left panel confirms the well-established gradient of warming decreasing from Northern 

high latitudes (with the Arctic regions warming at twice the pace of the global average) to the Southern 

Hemisphere, and the enhanced warming in the interior of the continents compared to ocean regions 

(which consistently warm slower than the global average). This differential is particularly pronounced 340 

in the Northern Hemisphere (and would be muted if the normalized pattern was computed at 

equilibrium). The familiar cooling spot in the Northern Atlantic appears as well - the only region with a 

negative sign of change. Studies have suggested that the cooling signal is an effect of the slowing of the 

Atlantic Meridional Overturning Circulation, which creates a signal of slower northward surface-heat 

transport, resulting in an apparent local cooling (Caesar et al., 2018; Keil et al., 2020). 345 

For precipitation, the strongest positive changes are in the equatorial Pacific and the highest latitudes of 

both hemispheres, especially the Arctic region. The large changes in subtropical Africa and Asia are due 

more to the small precipitation amounts of the climatological averages in these regions (at the 

denominator of these percent changes), than to a truly substantial increase in precipitation (see also 

below, for variability considerations). A strong drying signal continues to be projected for the 350 

Mediterranean together with central America, the Amazon region, Southern Africa and Western 

Australia.  

Similar to Tebaldi & Arblaster (2014), we give a measure of robustness of these patterns by computing 

the standard deviation at each grid-point across individual model/scenario patterns (Figure 2b). We 

further distinguish the relative contribution of scenario and model variability by computing standard 355 

deviations after averaging across models separately for each individual scenario, and across scenarios 

for each individual model, respectively. Figure 2b, top row, highlights in darker colors regions where 

the standard deviation is higher and patterns are less robust. For temperature patterns, as has been found 

in earlier studies of pattern scaling (starting from Santer et al. (1990) and in more recent work, like 

Herger et al. (2015)) the edges of sea ice retreat at both poles are areas where models disagree, and 360 

scenarios, in lesser measure, can be at odds due to their different timing of persistent ice melt. The 
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variability and therefore uncertainty of the precipitation pattern mirrors the signal of change at low 

latitudes in the Pacific and over Africa and Asia. The comparison of patterns in the middle and bottom 

rows of the figure elucidate the role of inter-model variability rather than scenario variability for both 

temperature and precipitation normalized changes, with scenario uncertainty only contributing to a 365 

small area of sea ice variability in the Arctic for temperature change, and a subregion of the Sahara for 

precipitation change  (where the denominator of the percentage values is small and therefore prone to 

cause instabilities in the values computed) . Given the radically different sample sizes used to compute 

the averages from which scenario-driven standard deviations are derived compared to model-driven 

(more than 30 for the former, and only 5 for the latter), we can also infer that internal variability is a 370 

likely contributor to model-driven standard deviation, while is mostly eliminated before the 

computation of the scenario-driven standard deviation.  

 

 

 375 
 Figure 2a: Patterns of temperature (left) and percent precipitation change (right) normalized by global average temperature 

change (averaged across CMIP6 models and all Tier 1 plus SSP1-1.9 scenarios).  
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Figure 2b: Top row: standard deviation of normalized patterns for individual CMIP6 models and scenarios. The individual 380 
patterns are the elements from which the averages shown in Figure 2 are computed. Center row: Standard deviation of 

normalized patterns, after averaging across scenarios, highlighting the role of inter-model variability. Bottom row: Standard 

deviation of normalized patterns after averaging across models, highlighting the role of inter-scenario variability.  

 

 385 

The robustness of these multi-model average patterns and the sources of their variability can be assessed 

by considering the same type of graphics computed from the four RCPs from the CMIP5 model 

ensemble.  

Figures 3 (top row) and A5, using the same color scales, are easily compared to Figures 2a and 2b 

respectively, and confirm the striking consistency of the geographical features of the normalized 390 

patterns, the size and spatial features of their variability, together with the components of the latter (i.e., 

model vs. scenario variability). 

 

 
Figure 3: Patterns of temperature (left) and percent precipitation change (right) normalized by global average temperature 395 
change (averaged across models and scenarios) from CMIP5 models and scenarios, for comparison with Figure 2.  

 

We deem a rigorous quantification of the differences between patterns beyond the scope of this paper, 

and focus on a qualitative assessment of the similarities that surface by showing on the bottom row of 
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Figure 3 the difference between CMIP6 and CMIP5 normalized patterns, confirming the small 400 

magnitude of the discrepancies in TAS over all regions, except for the Arctic, known to be affected by 

large variations among model, scenarios (with a possible role of the lowest scenario in CMIP6, SSP1-

1.9, whose land-sea ratio has likely no equivalent among the CMIP5 scenarios, but further, more 

rigorous investigation is needed to confirm this) and internal noise (likely playing a minor role given the 

number of model and scenarios contributing to these averages). Similarly for percent precipitation the 405 

regions that stand out where the largest differences are found are the tropics, known to be affected by 

large variability and uncertainties. In this case the possible role of aerosol forcing (Yip et al., 2011) 

warrants further investigation, especially as we consider that SSP3-7.0 forcing composition and  

trajectory are quite different from previous scenarios’. As mentioned, the use of these experiments in 

conjunction with their variants by LUMIP and AerChemMIP could further attribute some of these 410 

scenario-dependent features to differences in regional forcing like land-use or aerosols. Also, a subset of 

CMIP6 models are running the CMIP5 RCPs, and results from those experiments will allow a clean 

analysis of variance, partitioning sources between model and scenario generations. 

 

3.1.3 Comparison of climate projections from CMIP6 and CMIP5 for three updated scenarios  415 

 

In the previous section the comparison of normalized patterns was by construction scenario 

independent. The design of ScenarioMIP, however, deliberately included scenarios aimed at updating 

CMIP5 RCPs, and three of those are in Tier 1. Updates in the historical point of departure (2015 for 

CMIP6 rather than 2006 for CMIP5) together with updates in the models forming the ensemble which 420 

reflect on the radiative forcing levels simulated by the individual models (Smith et al., 2020) are 

obvious differences that hamper a straightforward comparison.  In addition, the emission composition of 

the scenarios also changed with the update, and we summarize how after presenting the projection 

comparison.  

We show time series of global temperature for the three updated scenarios and the corresponding results 425 

from their CMIP5 counterparts:  SSP1-2.6 vs RCP2.6, SSP2-4.5 vs RCP4.5, and SSP5-8.5 vs RCP8.5 

from CMIP6 and CMIP5, respectively. We show warming relative to the same historical baseline of 

1986-2005 used by CMIP5 (Taylor et al., 2012) and to 1850-1900. We further show how observational 

constraints applied to the range of trajectories from the new models based on recently published work 

(Tokarska et al., 2020) result in lower and narrower projections at the end of the century, and have the 430 

effect of bringing CMIP6 projections in closer alignment  to CMIP5 end-of-the century warming, even 

when the same type of constraints are applied to the latter. 
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Figure 4: Comparison of the three SSP-based scenarios updating 3 CMIP5-era RCPs with the corresponding CMIP5 output: 

SSP1-2.6, SSP2-4.5 and SSP5-8.5 on the left can be compared to RCP2.6, RCP4.5 and RCP8.5 on the right for global average 435 
temperature change (top row) and global average precipitation change (as a percentage of the baseline values, which are set to 

1986-2005 for both ensembles).  Indicators along the right axis of the plots of temperature projections show constrained ranges at 

2100, obtained by applying the method of Tokarska et al. (2020). Note that, as in Figure 1, the uncertainty bands in all figures are 

computed for anomalies with respect to the historical baseline (1986-2005 in this case). Thus the right axis of the global 

temperature plots, showing anomalies with respect to pre-industrial, applies to the ensemble means, not to the uncertainty bands, 440 
which would be narrowest over the 1850-1900,  were they calculated using the data from simulations over that period, rather than 

being registered to the new axis only on the basis of the offset. Figure A6 shows a more direct comparison of the CMIP6 and 

CMIP5 ranges before and after the application of constraints at 2081-2100, and Table A6 lists those ranges (and the unconstrained 

percent precipitation changes for the same comparisons) at 2041-2060 and 2081-2100.  

 445 

Figure 4 aligns two pairs of plots showing time series of global temperature and percent precipitation 

changes under the three updated scenarios and the original RCPs, from the CMIP6 and CMIP5 

ensembles respectively: the left-hand panels show three of the trajectories already shown in Figure 1 
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(left panels of both rows) but as anomalies/percent changes from the period 1986-2005, i.e., the last 20 

years of the CMIP5 historical period (Taylor et al., 2012). The right-hand side panels show CMIP5 450 

results for the three corresponding RCPs (see Table A2 for a list of the models used), also using the 

1986-2005 baseline. The right axis on the temperature plots allows an assessment of changes compared 

to the 1850-1900 baseline. Table A6 lists mid- and late century changes for all model ensembles under 

the different scenarios.  The new unconstrained results reach on average warmer levels, and have a 

larger inter-model spread, especially when comparing SSP5-8.5 to RCP8.5. There is 0.46°C (for the 455 

scenarios reaching 2.6Wm-2), 0.49°C (for the 4.5Wm-2 scenarios) and 0.67°C (for the 8.5Wm-2 

scenarios) more mean warming, while the upper end of the shading for SSP5-8.5 reaches 1.5°C higher 

than the CMIP5 results (Table A6). The larger warming resulting from the CMIP6 experiments is a 

combination of different forcings and the presence among the new ensemble of models with higher 

climate sensitivities than the members of the previous generations. The higher climate sensitivities in 460 

CMIP6 compared to CMIP5 (Meehl et al., 2020; Zelinka et al., 2020) become more critical for higher 

forcings, when the model response is more highly correlated to its climate sensitivity explaining the 

differential in the higher warming across the range of new scenarios, with the largest difference evident 

for SSP5-8.5.  

Several recent studies (Brunner et al., 2020, Liang et al., 2020, Nijsse et al., 2020; Ribes et al., 2020 and 465 

Tokarska et al., 2020)  constrain the ensemble projections according to the evaluation of the ensemble 

historical behavior. All studies find a strong correlation between the simulated warming trends over the 

observed historical period and the warming in SSP scenarios, which suggested constraining future 

warming using observed warming trends estimated from several observational products, and all come to 

similar results. Here and in Table A6 we show how the 2081-2100 means for both CMIP5 and CMIP6 470 

are changed as a result of applying constraints as in Tokarska et al. (2020). Also in Figure A6 we show 

the same results, but focusing specifically on these 20-yr means, before and after the application of the 

constraints. The resulting observationally-constrained ranges bring CMIP6 projections closer to both the 

the raw CMIP5 ranges and their constrained counterparts in both mean and spread (especially the upper 

bound).  In other words, models that project the most warming by the end of the century tend to do the 475 

least well in reproducing historical warming trends for both ensembles, but the effect is much more 

pronounced for CMIP6 than CMIP5 models (see also Figure A6). After constraints are applied, the 

difference in the mean changes by 2081-2100 is 0.29°C for the two lower scenarios, and 0.15°C under 

SSP5-8.5/RCP8.5. The difference in the upper range under the latter scenario is reduced to 0.59°C 

Global  precipitation projections follow temperature projections (O’Gorman et al., 2012), and therefore 480 

we see (unconstrained) CMIP6 trajectories reaching higher percent changes than CMIP5 of just below 

1%. Consistent with the relatively larger means, the spread of trajectories for individual scenarios, 

which combines internal variability with model uncertainty, is larger for the new models and scenarios.  

As mentioned, part of the differences described are due to forcing differences between the 

corresponding scenarios in CMIP5 and CMIP6. These are by design small in terms of aggregate 485 

radiative forcing, when radiative forcing is defined as IPCC-AR5-consistent total global stratospheric 

adjusted radiative forcing (AR5-SARF). By this measure of forcing, scenarios differ by less than 6% in 

2100 for the RCP2.6-SSP1-2.6 pair, 5% for the RCP4.5-SSP2-4.5 pair and around 0.3% at 8.9 Wm-2 for 

the RCP8.5-SSP5-8.5 pair. Differences over the full pathway from 2015 to 2100 are below 15%, 5% 

and 4%, respectively. However, the literature in recent years has moved away from the AR5-SARF 490 
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definition (in particular, Etminan et al., 2016 – see also implementation in Meinshausen et al., 2020),  

towards the use of effective radiative forcing (ERF), which differs from AR5-SARF in that it includes 

any non-temperature mediated feedbacks (see e.g., Smith et al., 2020).  

Given that CMIP5 and CMIP6 concentration pathways differ with respect to their composition across 

gases and other radiatively active species (Lurton et al., 2020, Fig.1), whose respective ERFs can be 495 

very different despite a similar AR5-SARF, the similarity between RCP and SSP scenarios in terms of 

forcing deteriorates when moving away from an AR5-SARF definition. For example, in SSP5-8.5 the 

AR5-SARF contribution of CH4 is by 2100 about 0.5 Wm-2 lower than in the CMIP5 RCP8.5 pathway. 

This is offset by the difference in CO2 AR5-SARF, where SSP5-8.5 is around 0.5Wm-2 higher. In 

contrast, these compensating effects do not hold any longer when using ERF. In fact, because ERF is 500 

higher than AR5-SARF for CO2 and even more so for CH4, the 2100 radiative forcing level after which 

both the RCP and SSP pathway are named are not met precisely anymore when measured by ERF. 

Another pronounced difference between the CMIP5 RCPs and the new generation of SSP-RCP 

scenarios is that the latter span a wider range of aerosol emissions and corresponding forcings. The 

main reason for this difference is a wider consideration of the possible development of air pollution 505 

policies, ranging from major failure to address air pollution in the SSP3-7.0 pathway to very ambitious 

reductions of air pollution in the SSP1-2.6,  SSP1-1.9 as well  as SSP5-8.5 pathways (Rao et al., 2017). 

All the CMIP5 RCPs followed by comparison a more “middle of the road” pollution policy path. Last, 

the effective radiative forcing levels reached by both sets of pathways can be different - depending on 

each climate model processes - from their nominal AR5-SARF values labeling the pathway, usually 510 

obtained by running the emission pathways through simple models, like using MAGICC in its AR5-

consistent setup (Riahi et al., 2017). A recent study with the EC-Earth model finds that about half of the 

difference in warming by the end  of the century when comparing CMIP5 RCPs and their updated  

CMIP6 counterparts is due to difference in effective radiative forcings at 2100 of up to 1 Wm-2 (Wyser 

et al., 2020). Figure A7, adapted from Meinshausen et al., (2020) shows a break-down of the 515 

comparison into the three main forcing agents among greenhouse gases, CO2, CH4 and N2O, from 

which the significant differences in the composition can be assessed. Next to the AR5-consistent SARF 

time series, we also show effective radiative forcing ranges under the SSPs for the end of the 21st 

century for comparison using a newer version of MAGICC, MAGICC7.3.  

Here we note that in an effort to make the comparison more direct, CMIP5 RCP forcings are available 520 

to be run with CMIP6 models, and several modeling centers have started -- at the time of writing -- 

these experiments, which have been added to the Tier 2 design of ScenarioMIP since the description in 

O’Neill et al. (2016). If enough models contribute these results, a cleaner comparison of the effects of 

the updated forcing pathways, controlling for the updated models’ effect, will be possible. Preliminary 

results with the Canadian model, CanESM2, confirm the significant role of higher radiative forcings 525 

found with EC-Earth. 

 

3.1.4 Scenarios and Warming Levels 

The ever-increasing attention to warming levels as policy targets, also due to the recognition that strong 

relations are found between them and a large set of impacts, motivates us to identify the time windows 530 

at which the new scenarios’ global temperature trajectories reach 1.5, 2.0, 3.0, 4.0 and 5.0°C since 

1850-1900. Table 1 shows the timing of first crossing of the thresholds by the ensemble average and the 
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5-95% uncertainty range around that date. This is derived by computing the 5-95% range for  the 

ensemble of trajectories of GSAT, and identifying the dates at which the upper and lower bounds of the 

range cross the threshold. The range is computed by assuming a Normal distribution for the ensemble, 535 

as the inter-model standard deviation multiplied by 1.64. Considering this range rather than the 

minimum and maximum bounds of the ensembles makes the estimates of the 5-95% range more robust, 

especially for the lowest scenario, SSP1-1.9 for which we only rely on 13 models. The analysis is 

conducted after smoothing each of the individual models’ time series by an 11-year running average, to 

smooth interannual variability. The width of the intervals would change if constraints based on the 540 

observed warming trends were applied to the ensemble along the whole century (as shown in Figure 4 

for the end of the century) but here the unconstrained ensemble is used. The anomalies from 1850-1900 

are computed as described in section 3.1.1, by computing anomalies with respect to the historical 

baseline (1995-2014) and then adding the offset value of 0.84°C to minimize the effect of biases in the 

warming during the historical period of the different models. Note however that remaining differences 545 

between models and observations in the warming trends over the period 2014 to present, and the effects 

of differences between observed and projected forcings may still introduce biases in the crossing level 

estimates, likely biasing them low.  

We first synthesize results from the experiments from Tier 1, for which we extract a common subset of 

31 models in order to make the threshold crossing estimates comparable across scenarios (for 550 

completeness we document in Table A7 the behavior of all models available, which does not change 

qualitatively the results that we are about to describe).  

The lowest warming level of 1.5°C from pre-industrial is reached on average between 2026 and 2028 

across SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 with largely overlapping confidence intervals that 

start from 2020 as the shortest waiting time and extend until 2046 at the latest under SSP2-4.5. Note 555 

however that the lower bound of the ensemble trajectories (determining the upper bound of the 

projected years by which the level is reached) under SSP1-2.6 does not warm to 1.5°C for the whole 

century (the NA as the upper bound of the time period signifies “not reached”). The next level of 2.0°C 

is reached as soon as 13 years later by the ensemble average under SSP5-8.5, and as late as 32 years 

later under SSP1-2.6, a striking reminder of how different the pace of warming is in these scenarios. 560 

The confidence intervals have similar lower bounds between 2030 and 2032 and extend to 2077 for 

SSP2-4.5, while they are significantly shorter for the higher scenarios (2064 and 2054 for SSP3-7.0 and 

SSP5-8.5 respectively). The confidence intervals for SSP1-2.6 do not reach any of the higher warming 

levels, while by 2059 the ensemble average under SSP5-8.5 has already warmed by 3°C. SSP3-7.0 takes 

9 more years, while it takes until 2092 for the ensemble average under SSP2-4.5 to reach 3°C. Under 565 

this scenario it is worth noting that only 21 out of 37 models reach that level. Only the ensemble means 

of the two higher scenarios reach 4°C, as early as 2077 for SSP5-8.5, and 14 years later for SSP3-7.0. 

The highest warming level considered of 5°C is only reached by the upper range of SSP3-7.0 (only 4 

models out of 33) while more than half the models running SSP5-8.5 (21 out of 39) reach that warming 

level in the last decade of the century (2094) as an ensemble average, and as early as 2074 when the 570 

warmer end of the ensemble range is considered.  

Only 13 models are available at the time of writing under the lowest scenario specifically designed to 

meet the Paris Agreement target of 1.5°C warming by the end of the century. Of those, two remain 

below that target for the entire century, while others have a small overshoot of the target which was 
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expected by design. The ensemble mean reaches 1.5°C already by 2029. The lower bound never crosses 575 

that level, while the upper bound is already at 1.5°C currently, i.e., by 2021 (as a reminder, CMIP6 

future simulations start at 2015). In Table A8 in the Appendix, a comparison of the CMIP5/CMIP6 

three corresponding scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5 compared to RCP2.6, RCP4.5 and 

RCP8.5) for a slightly larger ensemble of 36 CMIP6 models for which the three scenarios are available, 

and a CMIP5 ensemble of 29 models, shows dates compatible with the warmer characteristics of the 580 

CMIP6 models/scenarios. On average, the same target is reached from 3 to 9 years earlier by the CMIP6 

ensemble means compared to the CMIP5 ensemble means. A more in depth analysis than is in our 

scope is necessary to fully characterize the causes of this acceleration. Here we note that the behavior of 

the CMIP6 ensemble means reflect the use of unconstrained projections, with equal weight given to  

high climate sensitivity models, which are often also those less adherent to historical trends and that 585 

may show a faster historical warming in the last decade or so than observed. In addition, as we 

discussed in the previous section, even scenarios having the same AR5-SARF label see different 

forcings at play. The result is to make the pace of warming faster, and, in several cases, a target that was 

not reached by the CMIP5 models under a given scenario is instead reached by the corresponding 

CMIP6 ensemble/scenario. E.g, 2.0°C under SSP1-2.6 is reached in mean in 2056, while it was reached 590 

only by the upper bound (by 2040) under RCP2.6; at the opposite end, 5.0°C was reached only by the 

upper bound (in 2083) under RCP8.5, while it is reached by the ensemble mean in 2093 under SSP5-

8.5.  
 

Table 1: Times (best estimate and range - in square brackets - based on the 5-95% range of the ensemble after smoothing the 595 
trajectories by eleven-year running means) at which various warming levels (defined as relative to 1850-1900) are reached 

according to simulations following, from left to right, SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Crossing of these 

levels are defined by using anomalies wrt 1995-2014 for the model ensembles and adding the offset of 0.84°C to derive warming 

from pre-industrial. 

We use a common subset of 31 models for the Tier 1 scenarios, and all available models (13) for SSP1-1.9, while Table A7 in the 600 
appendix shows the result of using all available models under each scenario.  The number of models available under each scenario  

and the number of models reaching a given warming level are shown in parentheses. However, the estimates are based on the 

ensemble means and ranges computed from all the models considered (13 or 31 in this case), not just from the models that reach a 

given level. An estimate marked as NA is to be interpreted as “not reaching that warming level by 2100”. In cases where the 

ensemble average remains below the warming level for the whole century, it is possible for the central estimate to be NA, while the 605 
earlier time of the confidence interval is not, since it is determined by the warmer end of the ensemble range.  

 

 

 

 SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

1.5°C 2029 

[2021,NA] 

(11/13) 

2028 

[2020,NA] 

(30/31) 

2028 

[2020,2047] 

(31/31) 

2028 

[2020,2045] 

(31/31) 

2026 

[2020,2040] 

(31/31) 

2.0°C NA 

[2036,NA] 

(2/13) 

2064 

[2032,NA] 

(17/31) 

2046 

[2032,2082] 

(31/31) 

2043 

[2031,2064] 

(31/31) 

2039 

[2030,2055] 

(31/31) 

3.0°C NA 

[NA,NA] 

(0/13) 

NA 

[NA,NA] 

(0/31) 

2094 

[2058,NA] 

(16/31) 

2069 

[2052,NA] 

(31/31) 

2060 

[2048,2083] 

(31/31) 
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4.0°C NA 

[NA,NA] 

(0/13) 

NA 

[NA,NA] 

(0/31) 

NA 

[NA,NA] 

(1/31) 

2091 

[2071,NA] 

(17/31) 

2078 

[2062,NA] 

(27/31) 

5.0°C NA 

[NA,NA] 

(0/13) 

NA 

[NA,NA] 

(0/31) 

NA 

[NA,NA] 

(0/31) 

NA 

[2088,NA] 

(3/31) 

2094 

[2075,NA] 

(15/31) 

 610 

 

3.2 Climate projections from ScenarioMIP Tier 2 simulations 

 

3.2.1 SSP3-7.0 Initial Condition Ensembles 

Five models (CanESM5, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-ESM1-2-LR and UKESM1) 615 

contributed at least ten initial condition (IC) ensemble members under SSP3-7.0. We focus here on the 

behavior of the ensemble spread over the 21st century, as measured by the values of the inter-realization 

standard deviations. In the following the phrase “ensemble spread” is used, which has to be interpreted 

as the value of such standard deviation. Figure 5 shows the time evolution (over 1980-2100) of the 

ensemble spreads for global temperature and precipitation computed on an annual basis (top row) and 620 

after smoothing the individual time series by an 11-yr running mean (bottom row). One of the models, 

CanESM5, provides 50 ensemble members that we use to randomly select subsets of 10 members and 

form a background “distribution” of the timeseries of ensemble spreads, shown in grey in Figure 5. This 

is not meant to provide a quantitative assessment but rather a qualitative representation of the variability 

of “10-member ensembles”, which is what most models provide. When we compute trends for the time 625 

series of the temperature ensemble spread all show a negative slope, indicating that the ensemble spread 

has a tendency to narrow over time. In the case of the spread computed among annual values, only two 

of the models pass a significance test at the 5% level, while for decadal averages all models show 

significantly decreasing spreads (significantly negative trends). Trends of the ensemble spreads for 

precipitation are non-significant for all models when the spread is computed from annual values, while 630 

all are significantly negative, indicating a decrease in the spread, when that is computed from decadal 

means. This result appears robust for this small set of models, but confirmation with a larger number of 

models providing sizeable initial condition ensembles will be important. Decreases in GSAT variability 

have however been found in earlier studies (Huntingford et al., 2013; Brown et al., 2017) and attributed 

to reduced equator to pole gradients, and reduced albedo variability due to the disappearance of snow 635 

and sea-ice. A deeper investigation of the sources of changes in variability for both variables (which 

could also tackle how much of the changes in precipitation variability is directly connected to that of 

GSAT, and what other sources may be at play) is beyond our scope but will be facilitated by the 

availability of these CMIP6 IC ensembles in addition to the already well studied CMIP5-era large IC 

ensembles (Deser et al., 2020). 640 

After detrending the values, we compare the distribution of the ensemble spreads for an individual 

model to that of other models in order to assess if models produce ensembles with spreads that are 

significantly different. We use a Kolmogorov-Smirnov test (at 5% level) which measures differences in 

distribution. For several pairs of models, ensemble spreads based on annual values turn out to be 

indistinguishable: for temperature, CanESM5 ensemble spread is not significantly different from those 645 
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of the MPI-ESM model at Low Resolution and those of the UKESM1 model. The latter in  turn has an 

ensemble spread that is not different from that of the IPSL-CM model. For precipitation, CanESM5 and 

IPSL-CM produce comparable spreads, as do the two MPI-ESM models, and the MPI-ESM at Low 

Resolution compared to UKESM1. When we test the spreads of decadal means, all models appear 

significantly different from one another.  Last, we can exploit the CanESM5 large ensemble in order to 650 

assess the number of ensemble members necessary to estimate the forced response of globally averaged 

TAS and PR, assuming that the mean response obtained by averaging the full ensemble of 50 member is 

representative of the true forced response. It is found that, for temperature, ten ensemble members 

produce an ensemble mean trajectory indistinguishable from the one obtained averaging 50 members. 

For precipitation, only year-to-year variability is not completely smoothed out by averaging ten rather 655 

than 50 ensemble members, but filtering by an 11-year running mean effectively cancels out annual 

“wiggles”.  

 

 
Figure 5: Time series of ensemble spreads (i.e., inter-member standard deviations) computed at each year among annual (top row) 660 
or decadal (bottom row) mean values of TAS (left) and PR (right). The grey lines are obtained by resampling subset of ten 

members from the CanESM5 model ensemble that provides 50 members. They are meant to provide a qualitative indication of the 

variability “hidden” in the 10 member ensembles provided by the majority of the models. The color lines show the time series of 

standard deviations computed from 10 members of 5 models running SSP3-7.0: CanESM5 (first ten members, red), IPSL-CM6A-

LR (yellow), MPI-ESM1-2-HR (blue), MPI-ESM1-2-LR (cyan) and UKESM1 (light purple). Straight lines show  least square fits 665 
of the linear trends.  

 

3.2.2 Effects of mitigation policies comparing SSP5-8.5 with SSP5-3.4OS, and SSP4-6.0 with 

SSP4-3.4 
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The ScenarioMIP design includes two pairs of scenarios, each of which is derived from the same SSP 670 

and integrated assessment model and consists of one baseline scenario without mitigation and one 

scenario assuming mitigation policies that reduce radiative forcing. They can therefore be used to 

cleanly attribute differences in climate outcomes to mitigation efforts. The two sets of scenarios are 

SSP4-6.0 and SSP4-3.4 (produced with the GCAM model, Calvin et al., 2017), and SSP5-8.5 and 

SSP5-3.4OS (produced with the ReMIND-MagPIE model, Kriegler et al., 2017). Figures 6 and 7 show 675 

time series of global temperature and percent precipitation anomalies with respect to the baseline period 

of 1995-2014 for the two pairs, and the patterns of differences in temperature and percent precipitation 

changes by the end of the century, which we can characterize as the benefits of mitigation within the 

two SSP worlds. For reference, the pattern of change for the lower scenario in the pair is also shown.  

Figure 6 shows these outcomes for the pair of scenarios developed under SSP5. One of them is the 680 

unmitigated pathway already featured in the previous sections, SSP5-8.5, assuming high reliance on 

fossil fuels to support economic development, and reaching 8.5Wm-2 by the end of the century. The 

other scenario, SSP5-3.4OS, follows the same path of emissions until 2040, when it enforces a steep 

decline in greenhouse gas emissions, which become negative after 2070 and therefore create an 

overshoot in concentrations, radiative forcing and global average temperature, to end up at 3.4Wm-2 at 685 

2100. Note that the end-point of this scenario, according to these global measures, coincides with the 

end-point of SSP4-3.4, the lower scenario of the other pair considered in this section, which is however 

reached along a traditional non-exceed pathway.  

Figure 7 shows results for the other pair, developed under SSP4, which by the end of the century 

reached 6.0Wm-2 (without mitigation) and 3.4Wm-2 (with mitigation) respectively. Their greenhouse 690 

gas emissions start diverging immediately, by 2020,  with those of the lower scenario already 

decreasing by that time, while those of the baseline scenario continue to increase for two more decades, 

plateauing and then decreasing only after 2060. Both scenarios have a non-decreasing shape in radiative 

forcing and temperature.  

At global scales, Figure 6 and Figure A8 (left panel) show that the forced temperature signals (identified 695 

by the ensemble averages, i.e., the red lines in the time series separation plots) for the SSP5-driven 

scenario pair respond within a decade of the divergence in the emission pathways, i.e., they separate by 

2050 (just a couple of years later if we consider the last of the individual models) when we apply the 

same definition of separation used in Sect. 3.1.1. Global percent precipitation changes show the 

expected delay in the emergence of the mitigation signal, with ensemble average time series separating 700 

only after 2060 and the overlap of a large fraction  of individual ensemble members under the two 

scenarios persisting until the end of the century. The corresponding time series in Figure 7 (and the 

middle panel of Figure A8) shows that separation of temperature trajectories takes place even earlier for 

this pair of scenarios, by 2040 (2045 for the last of the individual models), consistently with the earlier 

start of the mitigation.  A large majority of the  precipitation trajectories still overlap at the end of the 705 

century.  

The differential patterns of temperature and precipitation change have strikingly similar spatial features 

when comparing Figures 6 and 7, only modulated by the strength of the changes, proportional to the gap 

in radiative forcings. Temperature changes benefit from mitigation over the whole globe, but more 

significantly and increasingly so the higher the latitude in the Northern Hemisphere. All land regions 710 

see a benefit of mitigation (in terms of the forced signal, again represented by the difference in 
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ensemble mean changes) of at least 2°C to 3°C in annual average temperatures at the end of the century, 

larger in most of the NH land regions and reaching 8°C in the Arctic for the SSP5-3.4OS/SSP5-8.5 

scenario pair. For precipitation changes, the larger differences translate in a more than doubled intensity 

(note that the colors are the same or stronger in the difference plot than in the scenario change plot) in 715 

both directions of change over the high latitudes (wetting) and the subtropics (drying). It is worth 

pointing out that patterns of change under the individual scenarios and patterns of differences between 

scenarios are similar, a further indication of the stable nature of the patterns of future change across 

different forcing scenarios.  

Last, we use Figure 6 and 7, together with the third panel of Figure A8 for an additional comparison, as 720 

the presence of two scenarios ending at the same level of radiative forcing (AR5-SARF), SSP4-3.4 and 

SSP5-3.4OS, allows us to compare the effects of the overshoot, after performing the same differencing 

for the 6 models that ran both of these scenarios. A comparison of the patterns of change under the two 

scenarios shows no apparent differences in the intensity of the changes for both temperature and 

precipitation, consistent with the global time series reaching a similar warming and precipitation change 725 

level at 2100. The model by model differences of these two scenarios (right panel in Figure A8) for 

temperature show that the effects of the overshoot trajectory translate in warmer global temperatures 

starting from 2032 and all the way to 2080 in the ensemble mean, and from  2038 to 2087 when 

considering the least differentiated of the individual models’ pairs. The overshoot causes 0.4°C of 

additional warming in the middle of the 2030-2080 period (2055), with a cumulative measure of 730 

differential warming over the period of about 14 degree-years. This simple analysis suggests that 

average temperature and precipitation changes do not show significant memory and recover quickly 

after an overshoot of this magnitude. 

The small number of models supporting these conclusions leaves the possibility that some of these 

numbers could change, when larger multi-model ensembles will become available.  735 

 

 

 

 

 740 
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Figure 6: Time series and patterns comparing SSP5-8.5 to SSP5-3.4OS. First row: Global average time series of temperature and 

percent precipitation change with respect to the 1995-2014 baseline (11-yr running means). Second row: Patterns of change for the 

same quantities, under the lower scenario, SSP5-3.4OS. Third row: Differences between the patterns of change under the higher 745 
(SSP5-8.5) and lower scenario.  
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Figure 7: Like Figure 6, but for SSP4-6.0 and SSP4-3.4.  

 750 
4. Summary and Discussion 

This paper provides an overview of ScenarioMIP results for surface temperature and precipitation 

projections under both Tier 1 and Tier 2 experiments, in addition to a comparison to CMIP5 outcomes 

for a subset of experiments that updated three of the RCPs.  
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The number of models contributing results for the simulations of 21st century scenarios ranges from 755 

almost 40 for experiments in Tier 1 to only 7 for some of the experiments in Tier 2. At the time of 

writing the availability of the long-term simulations results is too scarce to provide a robust multi-model 

ensemble perspective and we have not included those results.   

Ensemble mean trajectories of global temperature under the Tier 1 and the 1.5°C scenarios (SSP1-1.9, 

SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) span values between 0.7°C and 4.0°C above the historical 760 

baseline (1995-2014) (1.5°C-4.8°C above 1850-1900 average), but individual models reach 

significantly larger warming levels under SSP5-8.5, above 5.5°C (6.4°C from 1850-1900). A 

comparison with the three CMIP5 RCPs (RCP2.6, RCP4.5 and RCP8.5)  which reach the same nominal 

level of radiative forcing in 2100 (in terms of AR5-SARF) shows a wider range covered in the newest 

simulations, especially with respect to the upper end. Studies (Tokarska et al., 2020; Nijsse et al., 2020; 765 

Brunner et al., 2020; van Vuuren and Carter, 2014) have confirmed that this is attributable to an 

interplay of both higher radiative forcings by 2100 in the scenarios (when measured by the currently 

preferred metric, ERF) and higher climate sensitivities in a subset of the CMIP6 models, together with 

differences in background volcanic aerosols and greenhouse gases that make a straightforward 

comparison not possible (Fyfe et al., 2020; Lurton et al., 2020; Meehl et al., 2020; Meinshausen et al., 770 

2020; Michou et al., 2020; Nicholls et al., 2020, Séférian et al., 2020; Smith et al., 2020, Wyser et al., 

2020). We have shown that when applying constraints based on historical warming rates that weigh 

models differently on the basis of their performance (Tokarska et al., 2020), ensemble means and ranges 

of the CMIP6 experiments are brought closer to the corresponding means and ranges from CMIP5 

model results, as many of the models with higher climate sensitivities also tend to perform less well 775 

over the historical period in terms of regional and aggregate warming trends (Brunner et al., 2020). This 

remains true even when the same constraints are applied to the CMIP5 ensembles, as they do not have 

as large an effect on the resulting trajectories (Figure 4 and A6). A recent assessment performs a 

thorough attempt at constraining the distribution of climate sensitivity based on multiple lines of 

evidence, independently of climate models characteristics (Sherwood et al., 2020). If the resulting 780 

distribution of ECS were to be used to downweigh or cull models whose ECS is deemed an outlier, we 

would likely see changes in the CMIP6 ensemble projections in the same direction as those obtained by 

historical warming constraints, but formal studies applying this alternative type of constraints have not 

yet been published.  The lack of a one-to-one correspondence between ECS and Transient Climate 

Response (Sanderson, 2020), the latter more directly responsible for transient warming, further urges 785 

caution with this inference. According to the Tier 1 scenarios and SSP1-1.9 the 1.5°C target (above 

1850-1900) is reached by the model ensemble average in the second half of the current decade (between 

2026 and 2029 depending on the scenario). The scenario decides if the 2.0°C threshold is reached after 

only 13 more years (SSP5-8.5) or after more than 35 (SSP1-2.6) whereas it is never reached under 

SSP1-1.9. Only under SSP3-7.0 and SSP5-8.5 does a majority of models reach 4°C, while 5°C is 790 

reached by half of the ensemble members only under SSP5-8.5: models produce 4.0°C of warming, on 

average, under the two higher scenarios in 2078 (SSP5-8.5) and 2091 (SSP3-7.0), while by 2094 5.0°C 

is reached by the ensemble average under SSP5-8.5. Global precipitation change follows the pace and 

magnitude of warming (O’Gorman et al., 2012; Lambert et al., 2008) and spans a higher range of 

ensemble mean projections (by slightly less than 1%) than CMIP5 and a wider range of variability 795 

around them. Time series computed separately for land and ocean regions, and global patterns of change 
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- calculated as function of global warming - confirm well established behaviors: warming is stronger 

over land than over oceans; the North to South warming gradient over the globe persists, with strong 

polar amplification signals resulting in projected warming at twice the pace of the global average in the 

Arctic region. The regional cooling effect of North Atlantic upwelling emerges clearly. Precipitation 800 

change appears appears stronger on average over land than over the globally averaged oceans, with the 

(by now familiar) multi-model mean patterns of wetting and drying, with the high latitudes and the 

equatorial Pacific seeing increases, and the semi-arid regions of the Mediterranean, Australia and South 

Africa expecting further drying. As was the case for CMIP5 and previous multi-model ensembles, the 

average response across models is very robust to changes in the size and trajectory of well-mixed GHG 805 

forcings, and therefore similar across scenarios. However, individual models’ regional behavior may 

deviate from the average behavior significantly, especially in the regions of high internal variability, at 

the edges of sea-ice melt for temperature and in the equatorial pacific for precipitation.  

The availability of ten (or more) ensemble members under SSP3-7.0 prescribed under Tier 2 and 

completed by five models at the time of writing allows to detect a tendency to decreasing internal 810 

variability on decadal scales over time for both temperature and precipitation in all models (we note that 

several models have voluntarily provided initial condition ensembles of various sizes under other 

scenarios, but we have used one member only for those, which was all it was required for participation 

in ScenarioMIP). When considering annual frequencies only two of the models show significantly 

decreasing spread, and only for global temperature. The decadal scale results appear at odds with recent 815 

studies that detected increased variability of precipitation with warming (Pendergrass et al., 2017; Yun 

et al., 2020), and call for in-depth studies of the sources and robustness of the behavior here described. 

For several pairs of models, ensemble spreads based on annual values turn out to be indistinguishable, 

while after computing running decadal means all models show significantly different spreads from one 

another, confirming that the representation of the climate system internal noise characteristics remains 820 

model dependent (Parsons et al., 2020). CanESM5 provides 50 members and a subsampling of its 

ensemble confirms that ten realizations are sufficient to robustly estimate the forced signal of global 

temperature and precipitation by their averages, consistently with studies that have recently sought to 

investigate the question of how large a large ensemble needs to be for such estimation in those 

quantities (Milinski et al., 2020).  825 

Lastly, a new feature of ScenarioMIP’s design builds on the matrix framework combining SSPs to 

different radiative forcing levels and therefore allows estimates of the benefits of mitigation for two 

pairs of scenarios, one pair under SSP4, the other under SSP5, and also an evaluation of the path 

dependency of warming in the presence of an overshoot. The comparison of SSP5-8.5 to the overshoot 

pathway that departs from it in 2040 to strongly mitigate radiative forcing down to 3.4Wm-2 by 2100 830 

(SSP5-3.4OS) shows that the warming and absolute changes in precipitation avoided through late 

mitigation in 2040 could be up to half the expected changes under the high scenarios at the end of the 

century. The comparison of the other pair, SSP4-6.0 and SSP4-3.4  shows a similar geography of 

avoided physical impacts, but with smaller absolute differences, given the smaller reduction in radiative 

forcing between these two scenarios. We also compare the end points of SSP4-3.4, which follows 835 

monotonically increasing forcing over the century, and of SSP5-3.4OS which overshoots the late 

century levels in radiative forcing and temperature, and therefore reaches them from above. Both 

temperature and precipitation changes (averaged over the last 20 years of the 21st Century) appear 
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comparable in magnitude, suggesting a short memory of the climate system with regard to global 

average temperature and precipitation, at least after it exceeds the ultimate target for up to 5 decades, 840 

and by about 15°C of cumulative differential warming, as in this comparison. We note however that 

other environmental dimensions of climate change (such as ocean acidification or sea level rise) are not 

as easily reversible, if at all (Tokarska et al., 2019; Schwinger and Tjiputra, 2018; John et al., 2015; 

Mathesius et al, 2015; MacDougall et al., 2015; Tokarska and Zickfeld, 2015). 

A more general analysis of the time it takes for the various scenarios to see a significant separation of 845 

GSAT trajectories shows that the ensemble averages can show the climatological effects of mitigation 

(which we define as a persistent difference of at least a tenth of a degree) already within 15 years from 

the divergence of forcings when comparing SSP5-8.5 to the two lower scenarios, SSP1-1.9 and SSP1-

2.6. “Adjacent” scenarios take longer to separate but they all do so, according to the ensemble means, 

by the mid 2040s. Individual pairs of trajectories from the ensemble members can take between about 5 850 

and 20 years longer than the ensemble means (the longer period corresponding to the comparison 

between the two higher scenarios, SSP3-7.0 and SSP5-8.5).  

We have limited this analysis to two variables and simple descriptive statistics of their behavior. The 

ScenarioMIP design together with the presence of complementary experiments in several other MIPs, 

and of the richness of the archived data (Jukes et al., 2020) from the ESMs simulations is going to 855 

provide the basis for many more in-depth analyses of the physical system behavior. This will be further 

supported by a subset of CMIP6 models that are running CMIP5 RCPs, thus enabling a rigorous 

separation of the sources of variation between the two generations of experiments. Importantly, the 

ScenarioMIP effort aims at supporting integrated analyses of Earth and human systems’ responses to 

future changes. These studies will integrate socio-economic changes described by SSPs with climate 860 

system changes characterized by ESM outcomes to assess risks and possible mitigation and adaptation 

response options. While we don’t address the integration of ScenarioMIP outcomes in interdisciplinary 

studies within this overview, that integration remains the overarching motivation for ScenarioMIP 

coordinated effort.  

5. Data and Code Availability 865 

CMIP5 (see Table A2) and CMIP6 (see Table A1) model output is available through the Earth System 

Grid Foundation (ESGF) and can be directly used within the ESMValTool (e.g. https://esgf-

data.dkrz.de/projects/esgf-dkrz/). The corresponding recipe that can be used to reproduce the figures of 

this paper will be included in ESMValTool v2.0 (Righi et al., 2020; Eyring et al., 2019a; Lauer et al., 

2020; Weigel et al., 2020) as soon as the paper is published. The ESMValTool is released under the 870 

Apache License, VERSION 2.0. The ESMValTool code is available from the ESMValTool webpage at 

https://www.esmvaltool.org/ and from github (https://github.com/ESMValGroup/ESMValTool). As of 

December 2020, 27 modeling centers participated in ScenarioMIP by running at a minimum its Tier 1 

experiments and provided their output through the ESGF. Table A1 lists them, together with their 

model(s) and the doi referencing the data. 875 

 

Author Contributions 

C. Tebaldi, V. Eyring, J. Fyfe and E. Fischer designed and organized the analysis. K. Debeire 

https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://www.esmvaltool.org/
https://www.esmvaltool.org/
https://www.esmvaltool.org/
https://github.com/ESMValGroup/ESMValTool


29 

 

performed data processing and analysis, and drew all figures and most of the tables. C. Tebaldi wrote 

the first draft of the paper. All authors provided input, comments and editing on the various parts of the 880 

analysis. In addition, modeling centers representatives (from S. Bauer to T. Ziehn in the authors’ list) 

were responsible for performing the ScenarioMIP simulations and publishing their model output to the 

ESGF. The authors declare that they have no conflict of interest.  

Acknowledgements 

C. Tebaldi was supported by the Energy Exascale Earth System Model (E3SM) project, funded by U.S. 885 

Department of Energy, Office of Science, Office of Biological and Environmental Research. The 

Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under 

Contract DE-AC05-76RLO1830. This work has been also supported by the European Union’s Horizon 

2020 Framework Programme for Research and Innovation “Coordinated Research in Earth Systems and 

Climate: Experiments, kNowledge, Dissemination and Outreach (CRESCENDO)” project under Grant 890 

Agreement No. 641816, and the EVal4CMIP project funded by the Helmholtz Society. We 

acknowledge the World Climate Research Programme (WCRP), which, through its Working Group on 

Coupled Modelling, coordinated and promoted CMIP. We thank the climate modeling groups (listed in 

Tables A1 and A2) for producing and making available their model output, the Earth System Grid 

Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who 895 

support CMIP, ESGF and the individual modeling centers efforts. Work at LLNL was performed under 

the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under 

Contract DE-AC52-07NA27344. A. Voldoire and R. Seferian thank the H2020 CONSTRAIN under the 

grant agreement N. 820829 and the support of the team in charge of the CNRM-CM climate model. 

Supercomputing time was provided by the Meteo-France/DSI supercomputing center. The 900 

computational resources of the Deutsches Klimarechenzentrum (DKRZ, Hamburg, Germany) that 

allowed the analysis of this study with the ESMValTool are kindly acknowledged. 

 
References 

Arora, V.K., Katavouta, A., Williams, R.G., Jones, C.D., Brovkin, V., Friedlingstein, P.,  Schwinger, 905 

J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M.A., Christian, J.R., Delire, C., Fisher, R. A., 

Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, 

D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., 

Wiltshire, A., Wu, T., and Ziehn, T.: Carbon-concentration and carbon-climate feedbacks in CMIP6 

models, and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, 910 

 https://doi.org/10.5194/bg-17-4173-2020, 2020. 

 

Bao Y., Song, Z. and Qiao, F.: FIO‐ESM version 2.0: Model description and evaluation, Journal of 

Geophysical Research: Oceans, 125, e2019JC016036, https://doi.org/10.1029/2019JC016036, 2020. 

Bao, Q. and Li, J.: Progress in climate modeling of precipitation over the Tibetan Plateau, National 915 

Science Review, 7, 3, 486–487, https://doi.org/10.1093/nsr/nwaa006, 2020.  

https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.1029/2019JC016036
https://doi.org/10.1093/nsr/nwaa006


30 

 

Bauer, N., Calvin, K., Hammerling, J., Fricko, O., Fujimori, S., Hilaire, J., Eom, J., Krey, V., Kriegler, 

E., Mouratiadou, I., Sytze de Boer, H., van den Berg, M., Carrara, S., Daioglou, V., Drouet, L., 

Edmonds, J.E., Gernaat, D., Havlik, P., Johnson, N., Klein, D., Kyle, P., Marangoni, G., Masui, T., 

Pietzcker, R.C., Strubegger, M., Wise, M., Riahi, K., and van Vuuren, D.P.: Shared Socio-Economic 920 

Pathways of the Energy Sector – Quantifying the Narratives, Global Environmental Change, 42, 2017, 

316–330, https://doi.org/10.1016/j.gloenvcha.2016.07.006, 2017. 

 

Beadling, R. L., Russell, J. L., Stouffer, R.J., Mazloff, M., Talley, L. D., Goodman, P. J., Sallée, J. B., 

Hewitt, H. T., Hyder, P., and Pandde, A.: Representation of Southern Ocean properties across Coupled 925 

Model Intercomparison Project generations: CMIP3 to CMIP6. J. Climate, 

https://doi.org/10.1175/JCLI-D-19-0970.1, 2020. 

 

Bi, D., Dix, M., Marsland, S., O’Farrell, S., Sullivan, A., Bodman, R., Law, R., Harman, I., Srbinovsky, 

J., Rashid, H. A., Dobrohotoff, P., Mackallah, C., Yan, H., Hirst, A., Savita, A., Dias, F. B., 930 

Woodhouse, M., Fiedler, R., and Heerdegen, A.: Configuration and spin-up of ACCESS-CM2, the new 

generation Australian Community Climate and Earth System Simulator Coupled Model.Journal of 

Southern Hemisphere Earth Systems Science, 70, 1, 225-251, https://doi.org/10.1071/ES19040, 2020. 

 

Boucher, O., Servonnat, J., Albright, A., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, 935 

R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, 

F.,Cozic, A.,Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, 

M., Ducharne, A., Dufresne, J., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M., 

Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J., Guenet, B., Guez, L., Guilyardi, E., Guimberteau, 

M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, 940 

G.,Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., 

Madeleine, J.,Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, 

I.,Ottlé, C.,Peylin, P.,Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, 

A.,Swingedouw, D.,Thiéblemont, R., Traore, A., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., 

and Vuichard, N.: Presentation and evaluation of the IPSL-CM6A-LR climate model, Journal of 945 

Advances in Modeling Earth System, 12, e2019MS002010,  https://doi.org/10.1029/2019MS002010, 

2020. 

 

Brown, P. T., Ming, Y., Li, W., and Hill, S. A.: Change in the magnitude and mechanisms of global 

temperature variability with warming. Nature Climate Change 7, 743–748. 950 

https://doi.org/10.1038/nclimate3381, 2017. 

 

Brunner L., Pendergrass, A.G., Lehner, F., Merrifield, A.L., Lorenz, R., and Knutti, R.: Reduced global 

warming from CMIP6 projections when weighting models by performance and independence. Earth 

System Dynamics, 11, 995–1012, https://doi.org/10.5194/esd-2020-23, 2020. 955 

 

Burrows, S. M., Maltrud, M., Yang, X., Zhu, Q., Jeffery, N., Shi, X., Ricciuto, D., Wang, S., Bisht, G., 

Tang, J., Wolfe, J., Harrop, B. E., Singh, B., Brent, L., Baldwin, S., Zhou, T., Cameron-Smith, P., Keen, 

https://doi.org/10.1016/j.gloenvcha.2016.07.006
https://doi.org/10.1071/ES19040
https://doi.org/10.1029/2019MS002010
https://doi.org/10.5194/esd-2020-23


31 

 

N., Collier, N., Xu, M., Hunke, E. C., Elliott, S. M., Turner, A. K., Li, H., Wang, H., Golaz, J.-C., 

Bond-Lamberty, B., Hoffman, F. M., Riley, W. J., Thornton, P. E., Calvin, K., and Leung, L. R.: The 960 

DOE E3SM v1.1 biogeochemistry configuration: Description and simulated ecosystem‐climate 

responses to historical changes in forcing. Journal of Advances in Modeling Earth Systems, 12, 

e2019MS001766,  https://doi.org/10.1029/2019MS001766, 2020. 

 

Caesar L, Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed fingerprint of a weakening 965 

Atlantic Ocean overturning circulation, Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-

0006-5, 2018. 

 

Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R.,  

Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., and Wise, M.: The SSP4: A world of 970 

deepening inequality. Global Environmental Change, 42, 284–296, 

https://doi.org/10.1016/j.gloenvcha.2016.06.010, 2017. 

 

Cao, J., Wang, B., Yang, Y.-M., Ma, L., Li, J., Sun, B., Bao, Y., He, J., Zhou, X., and Wu, L.: The 

NUIST Earth System Model (NESM) version 3: description and preliminary evaluation, Geoscientific 975 

Model Development, 11, 2975-2993, https://doi.org/10.5194/gmd-11-2975-2018, 2018. 

 

Cherchi A., Fogli, P.-G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., 

Materia, S., Bellucci, A., and Navarra, A.:  Global mean climate and main patterns of variability in the 

CMCC-CM2 coupled model, Journal of Advances in Modeling Earth Systems, 11,185–209,  980 

https://doi.org/10.1029/2018MS001369, 2019. 

 

Collins, W.J., Lamarque, J.-F., Schultz, M., Boucher, O., Eyring, V., Hegglin, M.I., Maycock, A., 

Myhre, G., Prather, M., Shindell, D., and Smith, S.J.: AerChemMIP: Quantifying the Effects of 

Chemistry and Aerosols in CMIP6. Geoscientific Model Development, 10, 2, 585–607, 985 

https://doi.org/10.5194/gmd-10-585-2017, 2017. 

 

Counillon, F., Keenlyside, N., Bethke, I., Wang, Y., Billeau, S., Shen, M.L., and Bentsen, M.: Flow-

dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian Climate 

Prediction Model. Tellus A: Dynamic Meteorology and Oceanography, 68, 1, 32437,  990 

https://doi.org/10.3402/tellusa.v68.32437, 2016. 

 

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K. , Edwards, J., 

Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., 

Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., 995 

Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., 

Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, 

D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., 

Rasch, P. J., and Strand, W. G.,, The Community Earth System Model Version 2 (CESM2). Journal of 

Advances in Modeling Earth Systems, 12, 2, https://doi.org/10.1029/2019MS001916, 2020. 1000 

https://doi.org/10.1029/2019MS001766
https://doi.org/10.1038/s41586-018-0006-5
https://doi.org/10.1038/s41586-018-0006-5
https://doi.org/10.1016/j.gloenvcha.2016.06.010
https://doi.org/10.5194/gmd-11-2975-2018
https://doi.org/10.1029/2018MS001369
https://doi.org/10.5194/gmd-10-585-2017
https://doi.org/10.3402/tellusa.v68.32437
https://doi.org/10.1029/2019MS001916


32 

 

 

Delworth, T. L., Stouffer R.J., Dixon K.W., Spelman, M., Knutson, T., Broccoli, A., Kushner, P., and 

Wetherald, R.: Review of simulations of climate variability and change with the GFDL R30 coupled 

climate model. Climate Dynamics, 19(7), 555-574, https://doi.org/ 10.1007/s00382-002-0249-5, 2002. 

 1005 

Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, 

C., Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., 

Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from Earth System 

Model Initial-Condition Large Ensembles and Future Prospects. Nature Climate Change, 10, 4, 277–

286, https://doi.org/10.1038/s41558-020-0731-2, 2020. 1010 

 

Doescher, R., and the EC-Earth Consortium: The EC-Earth3 Earth System Model for the Climate 

Model Intercomparison Project 6, in preparation, 2020. 

 

Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., 1015 

Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., 

Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H., 

Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonov, 

S., Paynter, D. J., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, 

D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., 1020 

Zeng, Y., and Zhao, M.: The GFDL Earth System Model version 4.1 (GFDL-ESM4.1): Model 1 

description and simulation characteristics. Journal of Advances in Modeling Earth 

Systems,  https://doi.org/10.1029/2019MS002015, 2020. 

 

Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing of carbon dioxide, 1025 

methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophys. Res. 

Lett., 43, 12,614– 12,623, doi:10.1002/2016GL071930, 2016. 

 

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R., and Taylor, K.E.: Overview 

of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and 1030 

Organization. Geoscientific Model Development, 9, 5, 1937–1958, https://doi.org/10.5194/gmd-9-1937-

2016, 2016. 

 

Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O., Brötz, B., 

Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P., Debeire, K., de 1035 

Mora, L., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., 

Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., 

Koirala, S., Koldunov, N., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B., 

Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., 

Swaminathan, R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K., and Zimmermann, 1040 

K.: ESMValTool v2.0 – Extended set of large-scale diagnostics for quasi-operational and 

https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.1029/2019MS002015
https://doi.org/10.1002/2016GL071930
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016


33 

 

comprehensive evaluation of Earth system models in CMIP. Geoscientific Model Development, 13, 

3383-3438, https://doi.org/10.5194/gmd-13-3383-2020,  2020. 

 

Fyfe, J.C, Kharin, V.V., Santer, B.D., Cole, N.S., and Gillett, N.P: Significant impact of forcing 1045 

uncertainty in a large ensemble of climate model simulations. PNAS (in review). 

 

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den 

Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., 

Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: 1050 

Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of 

harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475, 

https://doi.org/10.5194/gmd-12-1443-2019, 2019. 

 

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., 1055 

Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A., 

Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S., 

Deakin, M., Easter, R. C., Evans, K.J., Feng, Y., Flanner, M., Foucar, J. G., Fyke, J. G., Griffin, B. M., 

Hannay, C., Harrop, B. E., Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., 

Jones, P. W., Keen, N. D., Klein, S. A., Larson, Vi. E., Leung, L. R., Li, H.-Y., Lin, W., Lipscomb, W. 1060 

H., Ma, P..-L., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B., Neale, R. 

B., Price, S. F., Qian, Y.., Rasch, P. J., Reeves Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts, A.F., 

Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton, P. E., 

Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, 

P. H., Xie, S., Yang, Y., Yoon, J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., 1065 

Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM coupled model version 1: Overview and 

evaluation at standard resolution. Journal of Advances in Modeling Earth Systems, 11, 2089–2129, 

https://doi.org/10.1029/2018MS001603, 2019. 

 

Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., 1070 

Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: 

Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes 

and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020. 

He, B., Bao, Q., Wang, X., Zhou, L., Wu, X., Liu, Y., Wu, G., Chen, K., He, S., Hu, W., Li, J., Li, J, 

Nian, G., Wang, L., Yang, J., Zhang, M., and Zhang, X.:, CAS FGOALS-f3-L Model Datasets for 1075 

CMIP6 Historical Atmospheric Model Intercomparison Project Simulation. Advances in Atmospheric 

Sciences, 36, 771-778, https://doi.org/10.1007/s00376-019-9027-8, 2019. 

Held, I. M., Guo, H., Adcroft, A., Dunne, J. P., Horowitz, L. W., Krasting, J., Shevliakova, E., Winton, 

M., Zhao, M., Bushuk, M., Wittenberg, A. T., Wyman, B., Xiang, B., Zhang, R., Anderson, W., Balaji, 

V., Donner, L., Dunne, K., Durachta, J., Gauthier, P. P. G., Ginoux, P., Golaz, J.-C., Griffies, S. M., 1080 

Hallberg, R., Harris, L., Harrison, M., Hurlin, W., John, J., Lin, P., Lin, S.-J., Malyshev, S., Menzel, R., 

https://doi.org/10.5194/gmd-13-3383-2020
https://doi.org/10.1029/2018MS001603
https://doi.org/10.1007/s00376-019-9027-8


34 

 

Milly, P. C. D., Ming, Y., Naik, V., Paynter, D., Paulot, F., Rammaswamy, V., Reichl, B., Robinson, T., 

Rosati, A., Seman, C., Silvers, L. G., Underwood, S., and Zadeh, N.: Structure and performance of 

GFDL's CM4.0 climate model. Journal of Advances in Modeling Earth Systems, 11.h, 

https://doi.org/10.1029/2019MS001829, 2019. 1085 

 

Herger, N., Sanderson, B. and Knutti, R.: Improved pattern scaling approaches for the use in climate 

impact studies. Geophysical Research Letters, 42, doi:10.1002/2015GL063569, 2015. 

 

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., 1090 

Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., 

Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic 

emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. 

Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018. 

 1095 

Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy, F., Rochetin, N., Jam, A., Musat, I., 

Idelkadi, A., Fairhead, L., Foujols, M.-A., Mellul, L., Traore, A.-K., Dufresne, J.-L., Boucher, O., 

Lefebvre, M.-P., Millour, E., Vignon, E., Jouhaud, J., Diallo, F. B., Lott, F., Gastineau, G., Caubel, A., 

Meurdesoif, Y., and Ghattas, J.: LMDZ-6A: the improved atmospheric component of the IPSL coupled 

model. Journal of Advances in Modeling Earth System,12, e2019MS001892, 1100 

https://doi.org/10.1029/2019MS001892, 2020. 

 

Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T.M., and Cox, P.M.: No increase in global 

temperature variability despite changing regional patterns. Nature 500, 327–330, 

https://doi.org/10.1038/nature12310, 2013. 1105 

 

John, J. G., Stock, C. A., and Dunne, J. P.: A more productive, but different, ocean after 

mitigation. Geophysical Research Letters, 42, 9836–9845. https://doi.org/10.1002/2015GL066160, 

2015. 

 1110 

Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., 

Ilyina, T., John, J. G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T., 

and Zaehle, S.: C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: 

experimental protocol for CMIP6, Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-

2853-2016, 2016. 1115 

 

Juckes, M., Taylor, K. E., Durack, P. J., Lawrence, B., Mizielinski, M. S., Pamment, A., Peterschmitt, 

J.-Y., Rixen, M., and Sénési, S.: The CMIP6 Data Request (DREQ, version 01.00.31), Geosci. Model 

Dev., 13, 201–224, https://doi.org/10.5194/gmd-13-201-2020, 2020. 

 1120 

Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D., and Gosh, R.: Multiple drivers of 

the North Atlantic warming hole. Nature Climate Change 10, 667–671, https://doi.org/10.1038/s41558-

020-0819-8, 2020. 

https://doi.org/10.1029/2019MS001829
https://doi.org/10.1002/2015GL063569
https://doi.org/10.1029/2019MS001892
https://doi.org/10.1002/2015GL066160
https://doi.org/10.1038/s41558-020-0819-8
https://doi.org/10.1038/s41558-020-0819-8


35 

 

 

Keller, D. P., Lenton, A., Scott, V., Vaughan, N. E., Bauer, N., Ji, D., Jones, C. D., Kravitz, B., Muri, 1125 

H., and Zickfeld, K.: The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): 

rationale and experimental protocol for CMIP6, Geosci. Model Dev., 11, 1133–1160, 

https://doi.org/10.5194/gmd-11-1133-2018, 2018. 

 

Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L., Ackerman, A. S., 1130 

Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz, C. 

A., Del Genio, A.D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis, A. A., Leboissetier, 

A., LeGrande, A. N., Lo, K. K., Marshall, J., Matthews, E. E., McDermid, S., Mezuman, K., Miller, R. 

L., Murray, L. T., Oinas, V., Orbe, C., García-Pando, C. P., Perlwitz, J. P., Puma, M. J., Rind, D., 

Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J., 1135 

and Yao, M.-S.: GISS-E2.1: Configurations and climatology. Journal of Advances in Modeling Earth 

Systems, https://doi.org /10.1029/2019MS002025, 2020. 

 

Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J. M., Irvine, P. J., Jones, A., Lawrence, M. 

G., MacCracken, M., Muri, H., Moore, J. C., Niemeier, U., Phipps, S. J., Sillmann, J., Storelvmo, T., 1140 

Wang, H., and Watanabe, S.: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): 

simulation design and preliminary results, Geosci. Model Dev., 8, 3379–3392, 

https://doi.org/10.5194/gmd-8-3379-2015, 2015. 

 

Kriegler, E., Edmonds, J., Hallegatte, S., Ebi, K.L., Kram, T., Riahi, K., Winkler, H., and van Vuuren, 1145 

D.P.: A New Scenario Framework for Climate Change Research: The Concept of Shared Climate 

Policy Assumptions. Climatic Change, 122, 3, 401–414, https://doi.org/10.1007/s10584-013-0971-5, 

2014. 

 

Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler, J., Baumstark, L., Bodirsky, 1150 

B. L., Hilaire, J., Klein, D., Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J.-P., Luderer, G., Pehl, 

M., Pietzcker, R.t, Piontek, F., Lotze-Campen, H., Biewald, A., Bonsch, M., Giannousakis, A., 

Kreidenweis, U., Müller, C., Rolinski, S., Schultes, A., Schwanitz, J., Stevanovic, M., Calvin, K., 

Emmerling, J., Fujimori, S., and Edenhofer, O.: Fossil-fueled development (SSP5): An energy and 

resource intensive scenario for the 21st Century. Global Environmental Change, 42, 297–315, 1155 

https://doi.org/10.1016/j.gloenvcha.2016.05.015, 2017. 

 

Kuhlbrodt, T., Jones, C. G., Sellar, A., Storkey, D., Blockley, E., Stringer, M., Hill, R., Graham, T., 

Ridley, J., Blaker, A., Calvert, D., Copsey, D., Ellis, R., Hewitt, H., Hyder, P., Ineson, S., Mulcahy, J., 

Siahaan, A., and Walton, J.: The low‐resolution version of HadGEM3 GC3.1: Development and 1160 

evaluation for global climate. Journal of Advances in Modeling Earth Systems, 10, 2865– 2888, 

https://doi.org/10.1029/2018MS001370, 2018. 

 

https://doi.org/10.1029/2019MS002025
https://doi.org/10.1007/s10584-013-0971-5
https://doi.org/10.1016/j.gloenvcha.2016.05.015
https://doi.org/10.1029/2018MS001370


36 

 

Lambert, F. H., Stine, A.R., Krakauer, N.Y. and Chiang, J.C.H.: How much will precipitation increase 

with global warming? EOS, Transactions American Geophysical Union 89, 21: 193-194, 1165 

https://doi.org/10.1029/2008EO210001, 2008. 

 

Lauer, A., Eyring, V., Bellprat, O., Bock, L., Gier, B. K., Hunter, A., Lorenz, R., Pérez-Zanón, N., 

Righi, M., Schlund, M., Senftleben, D., Weigel, K., and Zechlau, S.: Earth System Model Evaluation 

Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth 1170 

system models in CMIP, Geosci. Model Dev., 13, 4205–4228, https://doi.org/10.5194/gmd-13-4205-

2020, 2020. 

 

Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones, A. D., Jones, C. D., 

Lawrence, P. J., de Noblet-Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova, E.: The Land 1175 

Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental 

design, Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, 2016. 

 

Lee, J., Kim, J., Sun, M.-A., Kim, B.-H., Moon, H., Sung, H. M., Kim, J., and Byun, Y.-H.: Evaluation 

of the Korea Meteorological Administration Advanced Community Earth-System model (K-1180 

ACE). Asia-Pacific J Atmos Sci 56, 381–395, https://doi.org/10.1007/s13143-019-00144-7, 2020. 

 

Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: 

Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. 

Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, 2020. 1185 

 

Li, J., Bao, Q. Liu, Y., Wu, G., Wang, L., He, B., Wang, X., and Li, J.: Evaluation of FAMIL2 in 

Simulating the Climatology and Seasonal‐to‐Interannual Variability of Tropical Cyclone 

Characteristics. Journal of Advances in Modeling Earth System, 11, 1117-

1136,  https://doi.org/10.1029/2018MS001506, 2019. 1190 

 

Liang, Y., Gillett, N.P. and Monahan, A.H.: Climate Model Projections of 21 St Century Global 

Warming Constrained Using the Observed Warming Trend. Geophysical Research Letters, 

https://doi.org/10.1029/2019gl086757, 2020. 

 1195 

Lurton, T., Balkanski, Y., Bastrikov, V., Bekki, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., 

Contoux, C., Cozic, A., Cugnet, D., Dufresne, J., Éthé, C., Foujols, M.-A., Ghattas, J., Hauglustaine, D., 

Hu, R.-M., Kageyama, M., Khodri, M., Lebas, N., Levavasseur, G., Marchand, M., Ottlé, C., Peylin, P., 

Sima, A., Szopa, S., Thiéblemont, R., Vuichard, N., and Boucher, O.: CMIP6 forcing data as 

implemented in the IPSL-CM6 model. Journal of Advances in Modeling Earth System, 12, 1200 

e2019MS001940, https://doi.org/10.1029/2019MS001940, 2020. 

 

MacDougall, A. H., Zickfeld, K., Knutti, R., and Matthews, H. D.: Sensitivity of carbon budgets to 

permafrost carbon feedbacks and non‐CO2 forcings. Environmental Research Letters, 10, 

125003. https://doi.org/10.1088/1748‐9326/10/12/125003, 2015. 1205 

https://doi.org/10.1029/2008EO210001
https://doi.org/10.1007/s13143-019-00144-7
https://doi.org/10.1029/2018MS001506
https://doi.org/10.1029/2019gl086757
https://doi.org/10.1029/2019MS001940
https://doi.org/10.1088/1748-9326/10/12/125003


37 

 

 

Marotzke, J.: Quantifying the role of internal variability in the temperature we expect to observe in the 

coming decades. Wiley Interdiscip. Rev. Clim. Chang., 10, 1–12, https://doi.org/10.1002/wcc.563, 

2019. 

 1210 

Mathesius, S., Hofmann, M., Caldeira, K., and Schellnhuber, H. J.: Long‐term response of oceans to 

CO2 removal from the atmosphere. Nature Climate Change, 5(12), 1107–

1113. https://doi.org/10.1038/nclimate2729, 2015. 

 

Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., 1215 

Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, 

M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., 

Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and 

Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, 

https://doi.org/10.5194/gmd-10-2247-2017, 2017. 1220 

 

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., 

Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D.S., Haak, 

H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la-Cuesta, D., 

Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., 1225 

Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W.A., Nabel, J. 

E. M. S.Nam, C. C. W.Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., 

Pongratz, J., Popp, M., Raddatz, T.J., Rast, S., Redler, R., Reick, C.H., Rohrschneider, T., Schemann, 

V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K.D., Stein, L., Stemmler, I., Stevens, B., von 

Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and 1230 

Roeckner, E.: Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its 

Response to Increasing CO2. Journal of Advances in Modeling Earth Systems, 11, 998-1038,  

doi:10.1029/2018MS001400, 2019. 

 

Meehl, G. A., Senior, C.A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R.J., Taylor, K.E., and 1235 

Schlund, M.: Context for interpreting equilibrium climate sensitivity and transient climate response 

from the CMIP6 earth system models, Science Advances, 6, 26, https://doi.org/10.1126/sciadv.aba1981, 

2020. 

 

Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., 1240 

Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., 

Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, 

G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse 

gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, 

https://doi.org/10.5194/gmd-13-3571-2020, 2020. 1245 

 

Michou, M., Nabat, P., Saint-Martin, D., Bock, J., Decharme, B., Mallet, M., Roehrig, R., Seferian, R., 

https://doi.org/10.1002/wcc.563
https://doi.org/10.1038/nclimate2729
https://doi.org/10.1029/2018MS001400
https://doi.org/10.1126/sciadv.aba1981


38 

 

Senesi, S., and Voldoire, A.: Present‐day and historical aerosol and ozone characteristics in CNRM 

CMIP6 simulations. Journal of Advances in Modeling Earth Systems,12, e2019MS001816,  

https://doi.org/10.1029/2019MS001816, 2020. 1250 

 

Milinski, S., Maher, N., and Olonscheck, D.: How large does a large ensemble need to be? Earth 

System Dynamics, 11, 885-901, https://doi.org/10.5194/esd-11-885-2020, 2020.  

 

Miller, R.L., Schmidt, G.A., Nazarenko, L., Bauer, S.E., Kelley, M., Ruedy, R., Russell, G.L., 1255 

Ackerman, A., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y., Clune, T.L., Cook, 

B., Cruz, C.A., Del Genio, A.D., Elsaesser, G.S., Faluvegi, G., Kiang, N.Y., Kim, D., Lacis, A.A., 

Leboissetier, A., LeGrande, A.N., Lo, K.K., Marshall, J., Matthews, E.E., McDermid, S., Mezuman, K., 

Murray, L.T., Oinas, V., Orbe, C., García-Pando, C.P., Perlwitz, J.P., Puma, M.J., Rind, D., Romanou, 

A., Shindell, D.T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J., and Yao, M.-1260 

S.: CMIP6 historical simulations (1850-2014) with GISS ModelE2.1. Journal of Advances in Modeling 

Earth Systems, doi:10.1029/2019MS002034, 2020. 

 

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, 

T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., 1265 

Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of 

scenarios for climate change research and assessment. Nature 463, 7282, 747–756, 

https://doi.org/10.1038/nature08823, 2010. 

 

Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., 1270 

Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., 

Roeckner, E., Stemmler, I., Tian, F., and Marotzke, J.: A high‐resolution version of the Max Planck 

Institute Earth System Model MPI‐ESM1.2‐HR. Journal of Advances in Modeling Earth Systems, 10, 

1383–1413, doi:10.1029/2017MS001217, 2018. 

 1275 

Nicholls, Z. R. J., Meinshausen, M., Lewis, J., Gieseke, R., Dommenget, D., Dorheim, K., Fan, C.-S., 

Fuglestvedt, J. S., Gasser, T., Golüke, U., Goodwin, P., Hartin, C., Hope, A. P., Kriegler, E., Leach, N. 

J., Marchegiani, D., McBride, L. A., Quilcaille, Y., Rogelj, J., Salawitch, R. J., Samset, B. H., Sandstad, 

M., Shiklomanov, A. N., Skeie, R. B., Smith, C. J., Smith, S., Tanaka, K., Tsutsui, J., and Xie, Z.: 

Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-1280 

mean temperature response, Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-

2020, 2020. 

 

Nijsse, F. J. M. M., Cox, P. M., and Williamson, M. S.: Emergent constraints on transient climate 

response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and 1285 

CMIP6 models, Earth Syst. Dynam., 11, 737–750, https://doi.org/10.5194/esd-11-737-2020, 2020. 

 

O’Gorman, P.A., Allan, R.P., Byrne, M.P. and Previdi, M.: Energetic constraints on precipitation under 

climate change. Surveys in Geophysics, 33, 585–608, https://doi.org/10.1007/s10712-011-9159-6, 2012. 

/Users/teba502/Library/Containers/com.microsoft.Word/Data/Desktop/ScenarioMIP/%20%20
/Users/teba502/Library/Containers/com.microsoft.Word/Data/Desktop/ScenarioMIP/%20%20
https://doi.org/10.1029/2019MS001816
https://doi.org/10.5194/esd-11-885-2020
https://doi.org/10.1038/nature08823
https://doi.org/10.1029/2017MS001217
https://doi.org/10.1007/s10712-011-9159-6


39 

 

 1290 

O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., 

Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The 

Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–

3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. 

 1295 

O’Neill, B.C., Kriegel, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T.R., Mathur, R., and van Vuuren, 

D.P.: A New Scenario Framework for Climate Change Research: The Concept of Shared 

Socioeconomic Pathways. Climatic Change, 122, 3, 387–400,  https://doi.org10.1007/s10584-013-0905-

2, 2013. 

 1300 

O’Neill, B. C., Carter, T. R., Ebi, K., Harrison, P. A., Kemp-Benedict, E., Kok, K., Kriegler, E., 

Preston, B. L., Riahi, K., Sillmann, J., van Ruijven, B. J., van Vuuren, D., Carlisle, D., Conde, C., 

Fuglestvedt, J., Green, C., Hasegawa, T., Leininger, J., Monteith, S., and Pichs-Madruga, R.: 

Achievements and needs for the climate change scenarios framework. Nature Climate Change, 

10, 1074–1084, https://doi.org/10.1038/s41558-020-00952-0, 2020.  1305 

 

Parsons, L. A., Brennan, M. K., Wills, R.C. J., and Proistosescu, C.: Magnitudes and spatial patterns of 

interdecadal temperature variability in CMIP6. Geophysical Research Letters, 47, e2019GL086588. 

https://doi.org/10.1029/2019GL086588, 2020. 

 1310 

Pendergrass, A.G., Knutti, R., Lehner, F., Deser, C., and Sanderson, B.M.: Precipitation variability 

increases in a warmer climate. Scientific Reports, 7, 17966, https://doi.org/10.1038/s41598-017-17966-

y, 2017. 

 

Rao, S., Klimont, Z., Smith, S. J., Van Dingenen, R., Dentener, F., Bouwman, L., Riahi, K., Amann, 1315 

M., Bodirsky, B.L., van Vuuren, D. P., Aleluia Reis, L., Calvin, K., Drouet, L., Fricko, O., Fujimori, S., 

Gernaat, D., Havlik, P., Harmsen, M., Hasegawa, T., Heyes, C., Hilaire, J., Luderer, G., Masui, T., 

Stehfest, E., Strefler, J., van der Sluis, S., and Tavoni, M.: Future air pollution in the Shared Socio-

economic Pathways. Global Environmental Change, 42, 346-358, 

https://doi.org/10.1016/j.gloenvcha.2016.05.012, 2017. 1320 

 

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, N., Calvin, 

K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, 

T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, 

S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., 1325 

Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J.C., Kainuma, M., Klimont, Z., 

Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared 

Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: 

An Overview. Global Environmental Change, 42,153–168, 

https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017. 1330 

 

https://doi.org10.1007/s10584-013-0905-2
https://doi.org10.1007/s10584-013-0905-2
https://doi.org/10.1029/2019GL086588
https://doi.org/10.1038/s41598-017-17966-y
https://doi.org/10.1038/s41598-017-17966-y
https://doi.org/10.1016/j.gloenvcha.2016.05.012
https://doi.org/10.1016/j.gloenvcha.2016.05.009


40 

 

Ribes, A., Qasmi, S., and Gillett, N.: Making climate projections conditional on historical observations. 

Science Advances, in press, 2020. 

 

Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., Schlund, M., Vegas-Regidor, J., Bock, L., 1335 

Brötz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., Koldunov, N., Little, 

B., Loosveldt Tomas, S., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) 

v2.0 – technical overview, Geosci. Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-

2020, 2020. 

 1340 

Roehrig, R., Beau, I., Saint-Martin, D., Alias, A., Decharme, B., Guérémy, J.-F., Voldoire, A., Abdel-

Lathif, A.Y., Bazile, E., Belamari, S., Blein, S., Bouniol, D., Bouteloup, Y., Cattiaux, J., Chauvin, F., 

Chevallier, M., Colin, J., Douville, H., Marquet, P., Michou, M., Nabat, P., Oudar, T., Peyrillé, P., 

Piriou, J.-M., Salas y Mélia, D., Séférian, R., and Sénési, S.: The CNRM global atmosphere model 

ARPEGE-Climat 6.3: description and evaluation. Journal of Advances in Modeling Earth Systems,  1345 

https://doi.org/10.1029/2020MS002075, 2020. 

 

Rong, X., Li, J., Chen, H., Xin, Y., Su, J., Hua, L., Zhou, T., Qi, Y., Zhang, Z., Zhang, G., and Li, J.: 

The CAMS climate system model and a basic evaluation of the climatology and climate variability 

simulation. Journal of Meteorological Research, 32, 6, 839-861, https://doi.org/10.1007/s13351-018-1350 

8058-x, 2018. 

 

Sanderson, B.: Relating climate sensitivity indices to projection uncertainty. Earth System Dynamics, 

11, 3, 721-735, https://doi.org/10.5194/esd-11-721-2020, 2020. 

 1355 

Santer, B.D., Wigley, T.M.L., Schlesinger, M.E. and Mitchell, J.F.B.: Developing climate scenarios 

from equilibrium GCM results, Hamburg, Germany, 

https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/Report_47.pdf, 1990. 

Santer, B.D., Fyfe, J.C., Solomon, S., Painter, J.F., Bonfils, C., Pallotta, G., and Zelinka, M.D.:, 

Quantifying Stochastic Uncertainty in Detection Time of Human-Caused Climate Signals. Proceedings 1360 

of the National Academy of Sciences, 116, 40, 19821–19827,  

https://doi.org/10.1073/pnas.1904586116, 2019. 

 

Schwinger, J., and Tjiputra, J.: Ocean carbon cycle feedbacks under negative emissions. Geophysical 

Research Letters, 45, 5062-5070. https://doi.org/10.1029/2018GL077790, 2018. 1365 

 

Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., 

Berthet, S., Chevallier, M., Sénési, S., Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O., 

Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A., Rocher, M., Roehrig, R., Salas-y-Mélia, D., 

Sanchez, E., Terray, L., Valcke, S., Waldman, R., Aumont, O., Bopp, L., Deshayes, J., Éthé, C., and 1370 

Madec, G.: Evaluation of CNRM Earth‐System model, CNRM‐ESM2‐1: role of Earth system processes 

https://doi.org/10.1029/2020MS002075
https://doi.org/10.1029/2020MS002075
https://doi.org/10.1029/2020MS002075
https://doi.org/10.1007/s13351-018-8058-x
https://doi.org/10.1007/s13351-018-8058-x
https://doi.org/10.5194/esd-11-721-2020
https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/Report_47.pdf
https://doi.org/10.1073/pnas.1904586116
https://doi.org/10.1029/2018GL077790


41 

 

in present‐day and future climate. Journal of Advances in Modeling Earth Systems, 11, 

https://doi.org/10.1029/2019MS001791, 2020. 

 

Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., 1375 

Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., 

Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., 

Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview 

of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, 

historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-1380 

13-6165-2020, 2020. 

 

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, 

M., Hill, R., Palmieri, J., Woodward, S., de Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, 

R., Johnson, C. E., Walton, J., Abraham, N.L., Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, 1385 

S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N., Griffiths, 

P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., 

Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., 

Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.: UKESM1: Description and 

evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 11, 4513– 1390 

4558, https://doi.org/10.1029/2019MS001739, 2019. 

 

Semmler, T., S. Danilov, P. Gierz, H. F., Goessling, H.F., Hegewald, J., Hinrichs, C., Koldunov, N., 

Khosravi, N., Mu, L., Rackow, T., Sein, D.V., Sidorenko, D., Wang, Q., and Jung, T.: Simulations for 

CMIP6 with the AWI climate model AWI-CM-1-1. Journal of Advances in Modeling Earth 1395 

Systems, 12, e2019MS002009.  https://doi.org/10.1029/2019MS002009, 2020. 

 

Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, 

G., Klein, S. A., Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, 

C. S., Foster, G. L., Hausfather, Z., von der Heydt, A. S., Knutti, R., Mauritsen, T., Norris, J. R., 1400 

Proistosescu, C., Rugenstein, M., Schmidt, G. A., Tokarska, K. B., and Zelinka, M. D.: An assessment 

of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 

http://dx.doi.org/10.1029/2019RG000678, 2020. 

 

Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-1405 

L., Nabat, P., Michou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O'Connor, F. M., 

Robertson, E., Wiltshire, A., Andrews, T., Hannay, C., Miller, R., Nazarenko, L., Kirkevåg, A., Olivié, 

D., Fiedler, S., Lewinschal, A., Mackallah, C., Dix, M., Pincus, R., and Forster, P. M.: Effective 

radiative forcing and adjustments in CMIP6 models, Atmos. Chem. Phys., 20, 9591–9618, 

https://doi.org/10.5194/acp-20-9591-2020, 2020. 1410 
 

Stouffer, R. J., Eyring, V., Meehl, G.A., Bony, S., Senior, C., Stevens, B., and Taylor, K.: CMIP5 

https://doi.org/10.1029/2019MS001791
https://doi.org/10.1029/2019MS001739
https://doi.org/10.1029/2019MS002009
http://dx.doi.org/10.1029/2019RG000678


42 

 

Scientific Gaps and Recommendations for CMIP6. Bulletin of the American Meteorological Society, 

98, 1, 95–105, https://doi.org/10.1175/bams-d-15-00013.1, 2017. 

 1415 

Swapna, P., Krishnan, R., Sandeep, N., Prajeesh, A.G., Ayantika, D.C., Manmeet, S., Vellore, R.: Long-

term climate simulations using the IITM Earth System Model (IITM-ESMv2) with focus on the South 

Asian Monsoon. Journal of Advances in Modeling Earth Systems, 

https://doi.org/10.1029/2017MS001262, 2018. 

 1420 

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, 

V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., 

Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth 

System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, 

https://doi.org/10.5194/gmd-12-4823-2019, 2019. 1425 

 

Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, 

M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, 

K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and 

Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate 1430 

sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-

2019, 2019. 

 

Taylor, K.E., Stouffer, R.J., and Meehl, G.A.: An Overview of CMIP5 and the Experiment Design. 

Bulletin of the American Meteorological Society, 93, 4, 485–498, https://doi.org/10.1175/bams-d-11-1435 

00094.1, 2012. 

 

Tebaldi, C., and Arblaster, J.M.: Pattern scaling: Its strengths and limitations, and an update on the 

latest model simulations. Climatic Change 122, 459–471, https://doi.org/10.1007/s10584-013-1032-9, 

2014. 1440 

 

Tebaldi, C., and Friedlingstein, P.: Delayed detection of climate mitigation benefits. Proceedings of the 

National Academy of Sciences, 110, 43, 17229-17234, https://doi.org/10.1073/pnas.1300005110, 2013. 

 

Tebaldi, C., O’Neill, B.C., and Lamarque, J.F.: Sensitivity of regional climate to global temperature and 1445 

forcing. Environ. Res. Lett., 10, 074001, https://doi.org/10.1088/1748-9326/10/7/074001, 2015. 

 

Thomason, L. W., Ernest, N., Millán, L., Rieger, L., Bourassa, A., Vernier, J.-P., Manney, G., Luo, B., 

Arfeuille, F., and Peter, T.: A global space-based stratospheric aerosol climatology: 1979–2016, Earth 

Syst. Sci. Data, 10, 469–492, https://doi.org/10.5194/essd-10-469-2018, 2018. 1450 

 

Tjiputra, J. F., Schwinger, J., Bentsen, M., Morée, A. L., Gao, S., Bethke, I., Heinze, C., Goris, N., 

Gupta, A., He, Y.-C., Olivié, D., Seland, Ø., and Schulz, M.: Ocean biogeochemistry in the Norwegian 

https://doi.org/10.1175/bams-d-15-00013.1
https://doi.org/10.1029/2017MS001262
https://doi.org/10.1175/bams-d-11-00094.1
https://doi.org/10.1175/bams-d-11-00094.1
https://doi.org/10.1007/s10584-013-1032-9
https://doi.org/10.1088/1748-9326/10/7/074001


43 

 

Earth System Model version 2 (NorESM2), Geosci. Model Dev., 13, 2393–2431, 

https://doi.org/10.5194/gmd-13-2393-2020, 2020. 1455 

 

Tokarska, K. B., and Zickfeld, K.: The effectiveness of net negative carbon dioxide emissions in 

reversing anthropogenic climate change. Environmental Research Letters, 10, 

094013. https://doi.org/10.1088/1748‐9326/10/9/094013, 2015. 

 1460 

Tokarska, K. B., Zickfeld, K., and  Rogelj, J.:  Path independence of carbon budgets when meeting a 

stringent global mean temperature target after an overshoot. Earth's Future, 7, 1283-

1295 https://doi.org/10.1029/2019EF001312, 2019 

 

Tokarska, K.B., Stolpe, M.B., Sippel, S., et al., Past Warming Trend Constrains Future Warming in 1465 

CMIP6 Models. Science Advances, 6, 12, https://doi.org/10.1126/sciadv.aaz9549, 2020.  

 

van Vuuren, D. P., and Carter, T. R.: Climate and socio-economic scenarios for climate change research 

and assessment: reconciling the new with the old. Climatic Change, 122, 3, 415-429, 

https://doi.org/10.1007/s10584-013-0974-2, 2014. 1470 

 

Van Vuuren, D.P., Kriegler, E., O’Neill, B.C., Ebi, K.L., Riahi, K., Carter, T.R., Edmonds, J., 

Hallegatte, S., Kram, T., Mathur, R., and Winkler, H.: A New Scenario Framework for Climate Change 

Research: Scenario Matrix Architecture. Climatic Change, 122, 3, pp 373–386, 

https://doi.org/10.1007/s10584-013-0906-1, 2013. 1475 

 

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, 

J.-F., Michou, M., Moine, M.-P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., 

Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville, H., Ethé, C., 

Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A., 1480 

Sanchez-Gomez, E., Terray, L., and Waldman, R.: Evaluation of CMIP6 DECK experiments with 

CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11, n.7,  2177-2213,  

https://doi.org/10.1029/2019MS001683, 2019. 

 

Volodin, E.M., Mortikov, E.V., Kostrykin, S.V., Galin, V.Ya., Lykossov, V.N., Gritsun, A.S., Diansky, 1485 

N.A., Gusev, A. V., Iakovlev, N.G., Shestakova, A.A., and Emelina, S.V.: Simulation of the modern 

climate using the INM-CM48 climate model. Russian Journal of Numerical Analysis and Mathematical 

Modelling, 33, n.6, 367-374, https://doi.org/10.1515/rnam-2018-0032, 2018. 

 

Volodin, E.M., Mortikov, E.V., Kostrykin, S.V., Galin, V.Ya.,  Lykossov, V.N., Diansky, N.A., Gusev, 1490 

A. V., and Iakovlev, N.G.: Simulation of the present-day climate with the climate model INMCM5. 

Climate Dynamics, 49, 3715–3734, https://doi.org/10.1007/s00382-017-3539-7, 2017. 

 

Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., Schlund, M., Adeniyi, K., Andela, B., Arnone, 

E., Berg, P., Caron, L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, C. W., Paçal, A., 1495 

https://doi.org/10.1088/1748-9326/10/9/094013
https://doi.org/10.1029/2019EF001312
https://doi.org/10.1126/sciadv.aaz9549
https://doi.org/10.1007/s10584-013-0974-2
https://doi.org/10.1007/s10584-013-0906-1
https://doi.org/10.1029/2019MS001683
https://doi.org/10.1029/2019MS001683
https://doi.org/10.1029/2019MS001683
https://doi.org/10.1029/2019MS001683
https://doi.org/10.1515/rnam-2018-0032
https://doi.org/10.1007/s00382-017-3539-7


44 

 

Pérez-Zanón, N., Predoi, V., Sandstad, M., Sillmann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, 

J., and Eyring, V.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme 

events, regional and impact evaluation and analysis of Earth system models in CMIP, Geosci. Model 

Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-244, in review, 2020. 

 1500 

Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D., Comer, R., Davis, P., 

Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., 

Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., 

Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and Xavier, P. K.: 

The Met Office Global Coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. Journal of 1505 

Advances in Modeling Earth Systems, 10, 357–380,  https://doi.org/10.1002/2017MS001115, 2017. 

 

Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., 

Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, 

X.: The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to 1510 

CMIP6 , Geosci. Model Dev., 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019, 2019. 

 

Wyser, Klaus, Kjellstrom, E., Koenigk, T., Martins, H., and Doscher, R.: Warmer Climate Projections 

in EC-Earth3-Veg: the Role of Changes in the Greenhouse Gas Concentrations from CMIP5 to CMIP6. 

Environmental Research Letters, 15, 5, p. 054020, https://doi.org/10.1088/1748-9326/ab81c2, 2020. 1515 

 

Xin, X.-G., Wu, T.-W., Zhang, J., Zhang, F., Li, W.-P., Zhang, Y.-W., Lu, Y.-X., Fang, Y.-J., Jie, W.-

H., Zhang, L., Dong, M., Shi, X.-L., Li, J.-L., Chu, M., Liu, Q.-X., and Yan, J.-H.:, Introduction of BCC 

models and its participation in CMIP6. Climate Change Research, 15,5, 533-539, 

https://doi.org/10.12006/j.issn.1673-1719.2019.039, 2019. 1520 

 

Yip, S., Ferro, C.A.T., Stephenson, D.B., and Hawkins, E.: A simple, coherent framework for 

partitioning uncertainty in climate predictions. Journal of Climate, 24, 17, 4634-4643, 

https://doi.org/10.1175/2011JCLI4085.1, 2011. 

 1525 

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., 

Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and 

Ishii, M.: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: 

Description and basic evaluation of the physical component. Journal of the Meteorological Society of 

Japan, 97, 931-965, https://doi.org/10.2151/jmsj.2019-051, 2019. 1530 

 

Yun, K.-S., Lee, J.-Y., Timmermann, A., Stein, K., Stuecker, M.F., Fyfe, J.C., and Chung, E.S.: 

Increasing ENSO-rainfall variability due to changes in future tropical temperature-rainfall relationship. 

Nature Communications Earth and Environment, in press.  

 1535 

Zelinka, M.D., Myers, T.A., McCoy, D.T., Po-Chedley, S., Caldwell, P.M., Ceppi, P., Klein, S.A., and 

Taylor, K.E.: Causes of Higher Climate Sensitivity in CMIP6 Models. Geophysical Research Letters, 

https://doi.org/10.1002/2017MS001115
https://doi.org/10.1088/1748-9326/ab81c2
https://doi.org/10.12006/j.issn.1673-1719.2019.039
https://doi.org/10.1175/2011JCLI4085.1
https://doi.org/10.2151/jmsj.2019-051


45 

 

47, 1, https://doi.org/10.1029/2019gl085782, 2020. 

 

Ziehn T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R.W., Dix, M., Stevens, L., Wang Y.-1540 

P., and Srbinovsky, J.: The Australian Earth System Model: ACCESS-ESM1.5. Journal 

of Southern Hemisphere Earth Systems Science 70, 193-214, https://doi.org/10.1071/ES19035, 2020. 

 

 

 1545 

 

 

 

 

 1550 

 

 

 

 

 1555 

Appendix: Additional Tables and Figures 

 
Table A1. Modeling centers and their model(s) contributing to CMIP6 ScenarioMIP. The citations are included in the main 

bibliography.  DOIs refer to the data available through the Earth System Grid Federation. The last columns details the 

experiments to which the model(s) contributed.  1560 

Institution Model(s) Model References 

Dataset DOIs  

 

Experiments 

Alfred Wegener Institute, 
Helmholtz Centre for Polar and 

Marine Research (Germany) 

AWI Semmler et al. (2020) 
 

https://doi.org/10.22033/es

gf/cmip6.376 

https://doi.org/10.22033/es

gf/cmip6.359 
 

historical, ssp126, ssp245, 
ssp370, ssp585 

 

Beijing Climate Center (China) BCC-CSM2-MR Wu et al. (2019) 

Xin et al. (2019) 

 

https://doi.org/10.22033/ES
GF/C\MIP6.1732 

 

 

 

 

historical, ssp126, ssp245, 

ssp370, ssp585 

 

 
 

 

 

 

 
 

Canadian Centre for Climate CanESM5-CanOE; CanESM5 Swart  et al. (2019) CanESM5-CanOE: 

https://doi.org/10.1029/2019gl085782
https://doi.org/10.1071/ES19035
https://doi.org/10.22033/ESGF/CMIP6.1732
https://doi.org/10.22033/ESGF/CMIP6.1732
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Modelling and Analysis(Canada)  

https://doi.org/10.22033/ES

GF/CMIP6.1317 

https://doi.org/10.22033/ES
GF/CMIP6.10207 

 

historical, ssp126, ssp245, 

ssp370, ssp585 

 

CanESM5: 
historical, ssp119, ssp126, 

ssp245, ssp370*, ssp434, 

ssp460, ssp534-over, 

ssp585 

Centre for Climate Change 
Research, Indian Institute of 

Tropical Meteorology (India) 

IITM-ESM Swapna et al. (2018) 
 

https://doi.org/10.22033/ES

GF/CMIP6.44 

 

historical, ssp126, ssp370, 
ssp585 

 

Centro Euro-Mediterraneo sui 
Cambiamenti Climatici (Italy) 

CMCC-CM2-SR5 Cherchi et al. (2019) 

 http://doi.org/10.22033/

ESGF/CMIP6.3825 

  https://doi.org/10.2203

3/ESGF/CMIP6.3887 

    https://doi.org/10.220

33/ESGF/CMIP6.3889 

    http://doi.org/10.2203

3/ESGF/CMIP6.3890 

 http://doi.org/10.22033/

ESGF/CMIP6.3896 
 

historical, ssp126, ssp245, 
ssp370, ssp585 

 

Chinese Academy of 

Meteorological Sciences (China) 

CAMS-CSM1.0 Rong et al. (2018)  

https://doi.org/10.22033/ES

GF/CMIP6.11004 

historical, ssp119, ssp126, 

ssp245, ssp370, ssp585 

CNRM-CERFACS (France) CNRM-CM6.1-HR; CNRM-
CM6.1; CNRM-ESM2.1 

Roehrig et al. (2020) 
Michou, M., et al. (2020) 

Voldoire A., et al. (2019) 

Seferian R. et al. (2019) 

 
https://doi.org/10.22033/ES

GF/CMIP6.4191, 2019.  

https://doi.org/10.22033/ES

GF/CMIP6.4197 

https://doi.org/10.22033/ES
GF/CMIP6.4198 

CNRM-CM6.1-HR: 
historical, ssp126, ssp245, 

ssp370, ssp585 

 

CNRM-CM6.1: 
historical, ssp126, ssp245, 

ssp370, ssp585 

 

CNRM-ESM2.1: 

historical, ssp119, ssp126, 
ssp245, ssp370, ssp434, 

ssp460, ssp534-over, 

ssp585 

CSIRO (Australia) ACCESS-ESM1.5 Ziehn et al. (2020) 

 
https://doi.org/10.22033/ES

GF/CMIP6.2291 

historical, ssp126, ssp245, 

ssp370, ssp585 

CSIRO-ARCCSS (Australia) ACCESS-CM2 Bi  et al. ( 2020) 

 

https://doi.org/10.22033/ES
GF/CMIP6.2285 

historical, ssp126, ssp245, 

ssp370, ssp585 

EC-Earth Consortium EC-Earth3, EC-Earth3-Veg Doescher et al. (2020)  

 

https://doi.org/10.22033/ES

Both: historical, ssp119, 

ssp126, ssp245, ssp370, 

ssp585 

https://doi.org/10.22033/ESGF/CMIP6.1317
https://doi.org/10.22033/ESGF/CMIP6.1317
https://doi.org/10.22033/ESGF/CMIP6.10207
https://doi.org/10.22033/ESGF/CMIP6.10207
http://doi.org/10.22033/ESGF/CMIP6.3825
http://doi.org/10.22033/ESGF/CMIP6.3825
https://doi.org/10.22033/ESGF/CMIP6.3887
https://doi.org/10.22033/ESGF/CMIP6.3887
https://doi.org/10.22033/ESGF/CMIP6.3889
https://doi.org/10.22033/ESGF/CMIP6.3889
http://doi.org/10.22033/ESGF/CMIP6.3890
http://doi.org/10.22033/ESGF/CMIP6.3890
http://doi.org/10.22033/ESGF/CMIP6.3896
http://doi.org/10.22033/ESGF/CMIP6.3896
https://doi.org/10.22033/ESGF/CMIP6.11004
https://doi.org/10.22033/ESGF/CMIP6.11004
https://doi.org/10.22033/ESGF/CMIP6.4191
https://doi.org/10.22033/ESGF/CMIP6.4191
https://doi.org/10.22033/ESGF/CMIP6.4197
https://doi.org/10.22033/ESGF/CMIP6.4197
https://doi.org/10.22033/ESGF/CMIP6.4198
https://doi.org/10.22033/ESGF/CMIP6.4198
https://doi.org/10.22033/ESGF/CMIP6.2291
https://doi.org/10.22033/ESGF/CMIP6.2291
https://doi.org/10.22033/ESGF/CMIP6.2285
https://doi.org/10.22033/ESGF/CMIP6.2285
https://doi.org/10.22033/ESGF/CMIP6.727
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GF/CMIP6.727 

Department of Energy (USA) E3SM-1.1 Golaz  et al. (2018), 

Burrows et al., (2020). 

 
https://doi.org/10.22033/ES

GF/CMIP6.4497 

http://cera-

www.dkrz.de/WDCC/meta

/CMIP6/CMIP6.ScenarioM
IP.E3SM-Project.E3SM-1-

1.ssp585 

 

Historical, ssp585 

First Institute of Oceanography 

(China) 

FIO-ESM-2.0 Bao et al. (2020) 

 
https://doi.org/10.22033/ES

GF/CMIP6.9208 

https://doi.org/10.22033/ES

GF/CMIP6.9209 

https://doi.org/10.22033/ES
GF/CMIP6.9214 

historical, ssp126, ssp245, 

ssp585 

Institut Pierre-Simon Laplace 

(France) 

IPSL-CM6A-LR Boucher. et al. (2020) 
Hourdin  et al. (2019) 

Lurton et al. (2019) 

 
https://doi.org/10.22033/ES

GF/CMIP6.1532 

historical, ssp119, ssp126, 

ssp245, ssp370*, ssp434, 

ssp460, ssp534-over, 

ssp585 

Institute for Numerical 

Mathematic (Russia) 

INM-CM5.0;INM-CM4.8 Volodin et al. (2017) 

Volodin et al. (2018) 

 
https://doi.org/10.22033/ES

GF/CMIP6.12321   

https://doi.org/10.22033/ES

GF/CMIP6.12322 
 

Both: historical, ssp126, 

ssp245, ssp370, ssp585 

Institute of Atmospheric Physics 

(China) 

FGOALS-f3-L;FGOALS-g3 He et al. (2019)  

Li et al. (2019) 

Bao and Li. (2020)   
 
https://doi.org/10.22033/ES

GF/CMIP6.2046 

https://doi.org/10.22033/ES

GF/CMIP6.2056 

FGOALS-f3-L: 

historical, ssp126, ssp245, 

ssp370, ssp585 

 
FGOALS-g3: 

historical, ssp126, ssp245, 

ssp370, ssp434, ssp534-

over, ssp460, ssp585 

 

JAMSTEC, NIES,AORI, U. of 

Tokyo(Japan) 

MIROC6; MIROC-ES2L Tatebe et al ( 2019) 

Hajima  et al. (2020) 

 

 

https://doi.org/10.22033/ES
GF/CMIP6.898, 2019. 

. 

https://doi.org/10.22033/ES

GF/CMIP6.936, 2019. 

 

MIROC6: 

historical, ssp119, ssp126, 

ssp245, ssp370, ssp434, 

ssp460, ssp534-over, 

ssp585 
 

MIROC-ES2L: 

historical, ssp119, ssp126, 

ssp245, ssp370, ssp534-

over, ssp585 

https://doi.org/10.22033/ESGF/CMIP6.727
https://doi.org/10.22033/ESGF/CMIP6.4497
https://doi.org/10.22033/ESGF/CMIP6.4497
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.ScenarioMIP.E3SM-Project.E3SM-1-1.ssp585
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.ScenarioMIP.E3SM-Project.E3SM-1-1.ssp585
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.ScenarioMIP.E3SM-Project.E3SM-1-1.ssp585
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.ScenarioMIP.E3SM-Project.E3SM-1-1.ssp585
http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.ScenarioMIP.E3SM-Project.E3SM-1-1.ssp585
https://doi.org/10.22033/ESGF/CMIP6.9208
https://doi.org/10.22033/ESGF/CMIP6.9208
https://doi.org/10.22033/ESGF/CMIP6.9209
https://doi.org/10.22033/ESGF/CMIP6.9209
https://doi.org/10.22033/ESGF/CMIP6.9214
https://doi.org/10.22033/ESGF/CMIP6.9214
https://doi.org/10.22033/ESGF/CMIP6.1532
https://doi.org/10.22033/ESGF/CMIP6.1532
https://doi.org/10.22033/ESGF/CMIP6.12321
https://doi.org/10.22033/ESGF/CMIP6.12321
https://doi.org/10.22033/ESGF/CMIP6.12322
https://doi.org/10.22033/ESGF/CMIP6.12322
https://doi.org/10.22033/ESGF/CMIP6.2046
https://doi.org/10.22033/ESGF/CMIP6.2046
https://doi.org/10.22033/ESGF/CMIP6.2056
https://doi.org/10.22033/ESGF/CMIP6.2056
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Korea Institute of Ocean Science 

and Technology 

KIOST-ESM Kim et al., 2020 

 

https://doi.org/10.22033/ES

GF/CMIP6.1922 
 

https://doi.org/10.22033/ES

GF/CMIP6.11241 . 
 

historical, ssp126, ssp245, 

ssp585 

Max Planck Institute for 
Meteorology (Germany), also 

Deutsches Klimarechenzentrum 

(Germany)  and Deutscher 

Wetterdienst (Germany) 

MPI-ESM1.2-LR Mauritsen  et al. (2019),  
Mueller  et al. (2018) 

 

https://doi.org/10.22033/ES

GF/CMIP6.2450 

https://doi.org/10.22033/ES
GF/CMIP6.1869 

https://doi.org/10.22033/ES

GF/CMIP6.793 

historical, ssp126, ssp245, 
sp370*, ssp585 

Met Office Hadley Center (UK) 
and Natural Environment 

Research Council (UK) 

UKESM1.0-LL; HadGEM3-
GC31-LL; HadGEM3-GC31-MM 

Sellar et al (2019) 
Kuhlbrodt et al (2018) 

Williams et al (2017) 

 

 
https://doi.org/10.22033/ES
GF/CMIP6.1567 

https://doi.org/10.22033/ES

GF/CMIP6.10845 

UKESM1.0-LL: 
historical, ssp119, ssp126, 

ssp245, ssp370, ssp534-

over, ssp585 

 

HadGEM3-GC31-LL: 
historical, ssp126, ssp245, 

ssp585 

 

HadGEM3-GC31-MM: 

historical, ssp126, ssp585 

Meteorological Research 

Institute (Japan) 

MRI-ESM2.0 Yukimoto et al. (2019) 

 

https://doi.org/10.22033/ES

GF/CMIP6.638 

historical, ssp119, ssp126, 

ssp245, ssp370, ssp434, 

ssp460, ssp534-over, 

ssp585 

NASA GISS (USA) GISS-E2.1-G  Kelley et al. (2020) 
Miller et al. (2020) 

 
https://doi.org/10.22033/ES

GF/CMIP6.2074 

historical, ssp126, ssp370, 
ssp434, ssp460, ssp585 

Nanjing University of 
Information Science and 

Technology (China) 

NESM3 Cao  et al. (2019) 
https://doi.org/10.22033/ES

GF/CMIP6.2027 

historical, ssp126, ssp245, 
ssp585 

National Center for Atmospheric 

Research (USA) 

CESM2(CAM6) and CESM2 

(WACCM6) 

Danabasoglu  et al. (2019) 

 
https://doi.org/10.22033/ES
GF/CMIP6.10026 

https://doi.org/10.22033/ES

GF/CMIP6.2201 

CESM2: 

historical, ssp126, ssp245, 

ssp370, ssp585 
 

CESM2 -WACCM: 

historical, ssp126, ssp245, 

ssp370, ssp534-over, 

ssp585 

National Institute of 

Meteorological Sciences, Korea 

Meteorological Administration 

(South Korea) 

K-ACE-1-0-G 

Lee et al. (2020) 

historical, ssp126, ssp245, 

ssp370, ssp585 

 

https://doi.org/10.22033/ESGF/CMIP6.2450
https://doi.org/10.22033/ESGF/CMIP6.2450
https://doi.org/10.22033/ESGF/CMIP6.1869
https://doi.org/10.22033/ESGF/CMIP6.1869
https://doi.org/10.22033/ESGF/CMIP6.793
https://doi.org/10.22033/ESGF/CMIP6.793
https://doi.org/10.22033/ESGF/CMIP6.1567
https://doi.org/10.22033/ESGF/CMIP6.1567
https://doi.org/10.22033/ESGF/CMIP6.10845
https://doi.org/10.22033/ESGF/CMIP6.10845
https://doi.org/10.22033/ESGF/CMIP6.2074
https://doi.org/10.22033/ESGF/CMIP6.2074
https://doi.org/10.22033/ESGF/CMIP6.2027
https://doi.org/10.22033/ESGF/CMIP6.2027
https://doi.org/10.22033/ESGF/CMIP6.10026
https://doi.org/10.22033/ESGF/CMIP6.10026
https://doi.org/10.22033/ESGF/CMIP6.2201
https://doi.org/10.22033/ESGF/CMIP6.2201
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https://doi.org/10.22033/ES

GF/CMIP6.2241  

NOAA-Geophysical Fluid 

Dynamics Laboratory (USA) 

GFDL-CM4; GFDL-ESM4 Held et al. (2019) 

Dunne  et al.  (2020) 

https://doi.org/10.22033/ES

GF/CMIP6.1414 

https://doi.org/10.22033/ES

GF/CMIP6.9242.  

GFDL-CM4: 

historical, ssp245, ssp585 
 

GFDL-ESM4: 

historical, ssp119, ssp126, 

ssp245, ssp370, ssp585 

Norwegian Climate Center 
(Norway) 

NorESM2-LM; NorESM2-MM;  Seland et al. (2020) 
Tjiputra et al. (2020) 

Counillon et al. (2016) 

 

https://doi.org/10.22033/ES

GF/CMIP6.604 
https://doi.org/10.22033/ES

GF/CMIP6.608 

https://doi.org/10.22033/ES

GF/CMIP6.10894 

Both: historical, ssp126, 
ssp245, ssp370 ssp585 

University of Arizona (USA) MCM-UA-1-0 Delworth et al., (2002) 
Beadling et al. (2020) 

 

 https://doi.org/10.22033/E

SGF/CMIP6.2421 

 

historical, ssp126, ssp245, 
ssp370 ssp585 

 

 
Table A2: Modeling centers participating in CMIP5 and their models  used in the comparison of SSPs and RCPs. 
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Beijing Climate Center (China) BCC-CSM1-1; BCC-CSM1-1-M 

BNU (China) BNU-ESM 

Canadian Centre for Climate Modelling and Analysis(Canada) CanESM2 

CNRM-Cerfacs  (France) CNRM-CM5 

CSIRO-BOM (Australia) ACCESS1-0;ACCESS1-3; CSIRO-Mk3-6-0 

EC-Earth Consortium EC-Earth 

Euro-Mediterranean Center on Climate Change  (Italy) CMCC-CM;CMCC-CMS 

First Institute of Oceanography (China) FIO-ESM 

https://doi.org/10.22033/ESGF/CMIP6.1414
https://doi.org/10.22033/ESGF/CMIP6.1414
https://doi.org/10.22033/ESGF/CMIP6.604
https://doi.org/10.22033/ESGF/CMIP6.604
https://doi.org/10.22033/ESGF/CMIP6.608
https://doi.org/10.22033/ESGF/CMIP6.608
https://doi.org/10.22033/ESGF/CMIP6.10894
https://doi.org/10.22033/ESGF/CMIP6.10894
https://doi.org/10.22033/ESGF/CMIP6.2421
https://doi.org/10.22033/ESGF/CMIP6.2421
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Institut Pierre Simon Laplace (France) IPSL-CM5A-LR;IPSL-CM5A-MR;IPSL-CM5B-LR 

Institute for Numerical Mathematic (Russia) INM-CM4 

Institute of Atmospheric Physics (China) FGOALS-g2 

 JAMSTEC, NIES, CCSR, U. of Tokyo(Japan) MIROC-ESM; MIROC-ESM-CHEM;MIROC5 

Max Planck Institute (Germany) MPI-ESM-LR; MPI-ESM-HR 

Met Office Hadley Center (UK) HadGEM2-AO; HadGEM2-CC; HadGEM2-ES 

Meteorological Research Institute (Japan) MRI-CGCM3 

NASA GISS (USA) GISS-E2-R; GISS-E2-R-CC;GISS-E2-H; GISS-E2-H-CC 

National Center for Atmospheric Research (USA) CCSM4; CESM1-BGC; CESM1-CAM5; CESM1-WACCM 

NOAA-Geophysical Fluid Dynamics Laboratory (USA) GFDL-CM3; GFDL-ESM2G;GFDL-ESM2M 

Norwegian Climate Center (Norway) NorESM1-ME;NorESM1-M 

 
Table A3: CMIP6 models’ projected warming under the five scenarios by 2041-2060 and 2081-2100 relative to the historical 

baseline of 1995-2014. Ensemble mean values and, in square brackets,  5-95% confidence intervals (+/- 1.64σ). 

 

Surface Air 

Temperature 

Change (℃) 

(1995-2014) 

SSP1-1.9 

(13 models) 

SSP1-2.6 

(38 models) 

SSP2-4.5 

(37 models) 

SSP3-7.0 

(33 models) 

SSP5-8.5 

(39 models 

for global, 38 

for 

land/ocean) 

2041-2060 

Global 

0.83 

[0.31,1.36] 

1.07 

[0.51,1.63] 

1.32 

[0.77,1.88] 

1.46 

[0.82,2.10] 

1.74 

[1.05,2.42] 

2081-2100 

Global 

0.69 

[0.13,1.25] 

1.23 

[0.40,2.05] 

2.14 

[1.27,3.00] 

3.16 

[1.95,4.38] 

3.99 

[2.40,5.57] 

2041-2060 

Land-Only 

1.16 

[0.45,1.87] 

1.45 

[0.73,2.17] 

1.80 

[1.04,2.55] 

1.97 

[1.10,2.84] 

2.35 

[1.43,3.28] 

2081-2100 

Land-Only 

0.96 

[0.17,1.74] 

1.61 

[0.56,2.65] 

2.85 

[1.73,3.97] 

4.26 

[2.63,5.90] 

5.46 

[3.36,7.57] 
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 1595 
 

 

 

 

 1600 
 

 

 

 

 1605 
 

 

Table A4: CMIP6 models’ projected changes in precipitation under the five scenarios by 2041-2060 and 2081-2100 expressed as 

percentages relative to the historical baseline of 1995-2014. Ensemble mean values and, in square brackets, 5-95% confidence 

intervals (+/- 1.64σ). 1610 
 

Precipitation 

Change (%) 

(1995-2014) 

SSP1-1.9 

(13 models) 

SSP1-2.6 

(37 models) 

SSP2-4.5 

(36 models) 

SSP3-7.0 

(33 models) 

SSP5-8.5 

(38 models for 

global, 37 for 

land/ocean) 

2041-2060 

Ocean-Only 

0.69 

[0.26,1.12] 

0.91 

[0.42,1.40] 

1.12 

[0.64,1.59] 

1.24 

[0.70,1.78] 

1.46 

[0.87,2.05] 

2081-2100 

Ocean-Only 

0.57 

[0.11,1.03] 

1.06 

[0.33,1.79] 

1.83 

[1.07,2.59] 

2.70 

[1.65,3.74] 

3.41 

[2.06,4.75] 
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2041-2060 

Global 

2.04 

[0.53,3.56] 

2.37 

[0.63,4.10] 

2.33 

[0.81,3.85] 

2.08 

[0.58,3.57] 

2.78 

[0.89,4.67] 

2081-2100 

Global 

2.02 

[0.37,3.67] 

3.05 

[0.81,5.28] 

4.19 

[1.79,6.59] 

4.88 

[1.92,7.85] 

7.30 

[-0.65,15.26] 

2041-2060 

Land-Only 

2.59 

[0.53,4.66] 

2.90 

[-0.07,5.87] 

2.91 

[0.21,5.61] 

2.67 

[-0.22,5.57] 

3.90 

[0.55,7.24] 

2081-2100 

Land-Only 

2.32 

[0.03,4.61] 

3.57 

[0.04,7.11] 

4.83 

[1.06,8.60] 

6.19 

[1.14,11.24] 

8.61 

[2.37,14.85] 

2041-2060 

Ocean-Only 

1.81 

[0.44,3.17] 

2.21 

[0.54,3.88] 

2.16 

[0.60,3.72] 

1.95 

[0.53,3.38] 

2.56 

[0.72,4.40] 

2081-2100 

Ocean-Only 

1.87 

[0.36,3.38] 

2.88 

[0.77,5.00] 

4.01 

[1.55,6.47] 

4.67 

[1.62,7.72] 

6.21 

[2.07,10.35] 

 
Table A5: Time of separation between smoothed GSAT trajectories under pairs of scenarios. Shown is the year by which the 

ensemble means separate, and, in square brackets, the year by which the last of the separation among individual models’ 

trajectories takes place. Separation is defined as the emergence of a positive difference (we use 0.1℃ as threshold) that persists for 1615 
the remainder of the century. We first apply a 21-year running mean to the GSAT time series in order to characterize separation 

“of climates”.  

 

 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

SSP1-1.9 2042 [2050] 2034 [2043] 2031 [2041] 2027 [2036] 

SSP1-2.6  2039 [2053] 2037 [2048] 2030 [2036] 

SSP2-4.5   2046 [2058] 2031 [2044] 

SSP3-7.0    2034 [2053] 

Table A6: Projected warming and precipitation change under comparable scenarios, for CMIP5 and CMIP6 ensembles, and for 

the CMIP6 ensemble constrained by the method of Tokarska et al. (2020). For the latter the number of models remains the same 1620 
as for the unconstrained projections. Differently from Tables A3 and A4, which use the CMIP6 current baseline period of 1995-

2014, here all changes are relative to the CMIP5 current baseline period of 1986-2005. See also Figure A6 for a graphical 

representation of the raw and constrained temperature projections for 2081-2100, besides Figure 4 in the main text.  

 

GSAT Change (℃)  (1986-2005) Precipitation Change (%) (1986-2005) 
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 2041-2060 2081-2100  2041-2060 2081-2100 

RCP 2.6 
(28 models) 

1.01 
(0.50,1.62) 

1.01 
(0.23,1.74) 

RCP 2.6 
(27 models) 

2.20 
(0.90,3.50) 

2.52 
(0.77,4.27) 

RCP 2.6 
constrained 

0.85 
(0.38,1.31) 

0.83 
(0.15,1.50) 

   

SSP1-2.6 
(37 models) 

1.35 
(0.77,2.06) 

1.47 
(0.80,2.44) 

SSP1-2.6 
(37 models) 

2.78 
(0.95,4.61) 

3.46 
(1.14,5.79) 

SSP1-2.6 
constrained 

1.07 
(0.54,1.59) 

1.12 
(0.38,1.85) 

   

RCP 4.5 
(36 models) 

1.33 
(0.86,1.83) 

1.90 
(1.07,2.72) 

RCP4.5 
(38 models) 

2.42 
(1.23,3.61) 

3.64 
(1.71,5.57) 

RCP 4.5 
constrained 

1.19 
(0.75,1.62) 

1.71 
(0.87, 2.56) 

   

SSP2-4.5  
(38 models) 

1.57 
(1.04,2.30) 

2.39 
(1.53,3.50) 

SSP2-4.5  
(36 models) 

2.75 
(1.11,4.39) 

4.62 
(2.08,7.16) 

SSP2-4.5 
constrained 

1.30 
(0.80,1.79) 

2.00 
(1.20,2.80) 

   

RCP 8.5 
(37 models) 

1.79 
(1.25,2.37) 

3.71 
(2.71,4.71) 

RCP8.5 
(36 models) 

3.00 
(1.54,4.46) 

6.20 
(3.35,9.06) 

RCP 8.5 
constrained 

1.62 
(1.12,2.12) 

3.45 
(2.43,4.46) 

   

SSP5-8.5 
(40 models) 

2.02 
(1.37,2.95) 

4.38 
(2.92,6.20) 

SSP5-8.5 
(37 models) 

3.25 
(1.26,5.24) 

7.05 
(3.03,11.06) 

SSP5-8.5 
constrained 

1.62 
(0.99,2.24) 

3.60 
(2.13,5.05) 

   

 1625 
 

 

 

Table A7: Like Table 1 in the main text, times of crossing of different warming levels by the available ensembles 

running the various scenarios (best estimate and range - in square brackets - based on the 5-95% range of the 1630 
ensemble after smoothing the trajectories by eleven-year running means). Crossing of these levels are defined by 

using anomalies wrt 1995-2014 for the model ensembles, and adding the offset of 0.84°C to derive warming from pre-

industrial. 

Since the number of models available under each scenario varies, and in some cases not all models reach a given 

warming level, those numbers are shown in parentheses. However, the estimates are based on the ensemble means 1635 
and ranges computed from the whole ensemble, not just from the models that reach a given level. An estimate 
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marked as NA is to be interpreted as “not reaching a given level by 2100”. In cases where the ensemble average 

remains below the warming level for the whole century, it is possible for the central estimate to be NA, while the 

earlier time of the confidence interval is not, since the upper bound of the ensemble range may still reach that 

warming level. 1640 
 

 SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

1.5°C 2029 

[2021,NA] 

(11/13) 

2028 

[2020,NA] 

(37/38) 

2027 

[2020,2046] 

(37/37) 

2028 

[2020,2045] 

(33/33) 

2026 

[2020,2040] 

(39/39) 

2.0°C NA 

[2036,NA] 

(2/13) 

2060 

[2032,NA] 

(21/38) 

2045 

[2031,2077] 

(37/37) 

2043 

[2031,2064] 

(33/33) 

2039 

[2030,2054] 

(39/39) 

3.0°C NA 

[NA,NA] 

(0/13) 

NA 

[NA,NA] 

(1/38) 

2092 

[2059,NA] 

(21/37) 

2068 

[2052,NA] 

(33/33) 

2059 

[2047,2082] 

(39/39) 

4.0°C NA 

[NA,NA] 

(0/13) 

NA 

[NA,NA] 

(0/38) 

NA 

[NA,NA] 

(2/37) 

2091 

[2071,NA] 

(18/33) 

2077 

[2062,NA] 

(33/39) 

5.0°C NA 

[NA,NA] 

(0/13) 

NA 

[NA,NA] 

(0/38) 

NA 

[NA,NA] 

(0/37) 

NA 

[2088,NA] 

(4/33) 

2094 

[2074,NA] 

(21/39) 
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 1655 
 

Table A8: Warming level crossings for CMIP5 and CMIP6 scenarios/ensembles. Shown are times when an 11-year 

running average of the ensemble mean trajectory, and the lower and upper bounds of its  90% confidence interval 

(1.64σ, where σ is the ensemble standard deviation after smoothing) cross various warming levels, under the three 

comparable scenarios: SSP1-2.6, SSP2-4.5 and SSP5-8.5 for CMIP6 models, RCP2.6, RCP4.5 and RCP8.5 for CMIP5 1660 
models. NAs values indicate that the corresponding ensemble metric (mean, lower or upper bound of the confidence 

interval) does not reach the corresponding warming level by 2100. The numbers on the bottom row of each cell 

indicate the number of models that reach that warming level. The largest ensemble available under all three scenarios 
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considered is used in both cases, with 36 CMIP6 models and 29 CMIP5 models.  

 1665 
 

 SSP1-2.6 SSP2-4.5 SSP5-8.5 RCP2.6 RCP4.5 RCP8.5 

1.5°C  2025 
(2020,NA) 

35/36 

2026 
(2020,2047) 

36/36 

2024 
(2020,2040) 

36/36 

2034 
(2018,NA) 

23/29 

2029 
(2021,2055) 

29/29 

2027 
(2018,2039) 

29/29 

2.0°C  2056 
(2029,NA) 

18/36 

2043 
(2028,2080) 

36/36 

2038 
(2027,2054) 

36/36 

NA 
(2040,NA) 

7/29 

2051 
(2035,NA) 

24/29 

2041 
(2030,2056) 

29/29 

3.0°C  NA 
(2092,NA) 

2/36 

2089 
(2055,NA) 

20/36 

2058 
(2045,2082) 

36/36 

NA 
(NA,NA) 

0/29 

NA 
(2069,NA) 

7/29 

2063 
(2051,2085) 

29/29 

4.0°C  NA 
(NA,NA) 

0/36 

NA 
(2092,NA) 

2/36 

2076 
(2060,NA) 

31/36 

NA 
(NA,NA) 

0/29 

NA 
(NA,NA) 

0/29 

2084 
(2068,NA) 

24/29 

5.0°C  NA 
(NA,NA) 

0/36 

NA 
(NA,NA) 

0/36 

2093 
(2073,NA) 

20/36 

NA 
(NA,NA) 

0/29 

NA 
(NA,NA) 

0/29 

NA 
(2083,NA) 

10/29 
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Figure A1: ScenarioMIP design (modified from O’Neill et al., 2020). White and colored  boxes indicate achievable 

2100 levels of  forcings under the different SSPs. Grey areas are at the intersection of SSPs and radiative forcing 

levels that were not achievable by any of the IAMs employed to produce these scenarios.  1685 
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Figure A2: Land-only and ocean-only average time series of temperature and percent precipitation changes relative to 1995-2014, 

for the 4 scenarios of Tier 1, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, and SSP1-1.9. 

 1690 
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Figure A3: Time series of year-by-year differences in GSAT between each scenario run in Tier 1 and each of the lower scenario 

runs (including SSP1-1.9). The time series from the individual models were first smoothed by a 21-year running mean. 1695 
First row: differences between SSP5-8.5 and, respectively, SSP1-1.9, SSP1-2.6, SSP2-4.5 and SSP3-7.0.  

Second row: differences between SSP3-7.0 and respectively SSP1-1.9, SSP1-2.6 and SSP2-4.5. Third row: differences between 

SSP2-4.5 and SSP1-1.9 and SSP1-2.6. Fourth row: differences between SSP1-2.6 and SSP1-1.9. Each black line corresponds to an 

individual model’s time series of differences. The red line is the ensemble mean difference. The ensemble size varies across the 

plots based on the number of models available for which the difference can be computed. It is as small as 10 members for those 1700 
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differences involving SSP1-1.9 and as large as 25 to 30 members when both scenarios belong to Tier 1.  

 
Figure A4: Patterns of changes by 2081-2100 relative to 1995-2014 in surface air temperature (℃) and precipitation (%) under the 

five scenarios. 



60 

 

 1705 

 
Figure A5: Top row: standard deviation of normalized patterns for individual CMIP5 models and scenarios. The individual 

patterns are the elements from which the averages shown in Figure 3 are computed. Center row: Standard deviation of 

normalized patterns, after averaging across scenarios, highlighting the role of inter-model variability. Bottom row: Standard 

deviation of normalized patterns after averaging across models, highlighting the role of inter-scenario variability. These standard 1710 
deviations can be compared with the corresponding results from CMIP6 models/scenarios in Figure A5. 
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 1715 

 

 

 
Figure A6: A closer look at the effects of applying the Tokarska et al. 2020 constraints to CMIP6 and CMIP6 projections (mean 

changes at 2081-2100 compared to 1986-2005) for the nominally corresponding scenarios.  1720 
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Figure A7: Comparison of CO2, CH4 and N2O concentrations and radiative forcings for the concentration-driven CMIP5 runs 

with RCP-Y scenarios (Meinshausen et al., 2011) and CMIP6 runs with SSPX-Y scenarios (Meinshausen et al., 2020). The higher 

scenario SSP5-8.5 features higher CO2 concentrations largely due to updated carbon cycle settings. RCP8.5 emissions with the 

same carbon cycle settings (shown as thin dashed line in panel a) would produce similar CO2 concentrations. The methane and 1725 
nitrous oxide concentrations are however lower in SSP5-8.5 than in RCP8.5 (despite updated gas cycles producing higher 

concentrations for the same emission trajectory). Panels a, c and e adapted from Figure 11 in Meinshausen et al. 2020. At the time 

of producing the SSPs (March 2018), stratospheric-adjusted radiative forcings have been used to compare the nameplate radiative 

forcing levels in 2100 using MAGICC6.8 with IPCC AR5 consistent settings (see panels b, d, f). Effective radiative forcings (ERFs) 

take additional adjustments into account that are non-temperature induced and differ from stratospheric-adjusted radiative 1730 
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forcings. Shown are 2080-2100 probabilistic results of SSP ERFs, using MAGICC7.3. These ERFs differ from SARFs and tend to 

be higher for CO2 and total radiative forcings (see panel b and f). Given that the efficacy and rapid adjustments are different for 

different forcing agents, also the match between RCPs and SSP scenarios differs when comparing them in the effective radiative 

forcing space, rather than in terms of their stratospheric-adjusted radiative forcings.  

 1735 

 

 
 
Figure A8: As in Figure A3, year by year GSAT differences for the two pairs of scenarios differing only by the amount of 

mitigation assumed (left and center panel) and for the two scenarios that achieve the same level of radiative forcing by 2100, one 1740 
by overshooting it in the middle of the century (right panel). From left to right: year by year differences for the seven models that 

ran SSP5-8.5 and SSP5-3.4OS, for the seven models that ran SSP4-6.0 and SSP4-3.4, and for the 5 models that ran SSP4-3.4 and 

SSP5-3.4OS. Black lines are differences computed between pairs of GSAT trajectories for each of the models. Red lines are 

differences between the two ensemble mean trajectories.   
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