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Abstract.  

The sixth phase of the Coupled Model Intercomparison Project (CMIP6) is the latest modeling effort for 10 

general circulation models to simulate and project various aspects of climate change. Many of the general 

circulation models (GCMs) participating in CMIP6 provide archived output that can be used to calculate 

equilibrium climate sensitivity (ECS) and forecast future temperature change based on emissions 

scenarios from several Shared Socioeconomic Pathways (SSPs). Here we use our multiple linear 

regression energy balance model, the Empirical Model of Global Climate (EM-GC), to simulate and 15 

project changes in global mean surface temperature (GMST), calculate ECS, and compare to results from 

the CMIP6 multi-model ensemble. An important aspect of our study is comprehensive analysis of 

uncertainties due to radiative forcing of climate from tropospheric aerosols (AER RF) in the EM-GC 

framework. We quantify the attributable anthropogenic warming rate (AAWR) from the climate record 

using the EM-GC and use AAWR as a metric to determine how well CMIP6 GCMs replicate human-20 

driven global warming over the last forty years. The CMIP6 multi-model ensemble indicates a median 

value of AAWR over 1975-2014 of 0.221°C/decade (range of 0.151 to 0.299°C/decade; all ranges given 

here are for 5th and 95th confidence intervals), which is notably faster warming than our median estimate 

for AAWR of 0.135°C/decade (range of 0.097 to 0.195°C/decade) inferred from analysis of the Hadley 

Center Climatic Research Unit data record for GMST. Estimates of ECS found using the EM-GC (best 25 

estimate 2.01°C; range of 1.12 to 4.12°C) are generally consistent with the range of ECS of 1.5 to 4.5°C 

given by IPCC’s Fifth Assessment Report. The CMIP6 multi-model ensemble exhibits considerably 
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larger values of ECS (median 3.74°C; range of 2.19-5.65°C). The dominant factor in the uncertainty for 

our empirical determinations of AAWR and ECS is imprecise knowledge of AER RF for the 

contemporary atmosphere. We calculate the likelihood of achieving the Paris Agreement target (1.5°C) 30 

and upper limit (2.0°C) of global warming relative to pre-industrial for seven of the SSPs using both the 

EM-GC and the CMIP6 multi-model ensemble. In our model framework, SSP1-2.6 is the 1.5°C pathway 

with a 64.8% probability of limiting warming at this level by the end of century and SSP4-3.4 is the 2.0°C 

pathway, with a 74.0% probability of achieving the Paris upper limit. These estimates are based on the 

assumptions that climate feedback has been and will remain constant over time since the prior temperature 35 

record can be fit so well assuming constant climate feedback.  In addition, we quantify the sensitivity of 

future warming to the curbing of the current rapid growth of atmospheric methane and show major near-

term limits on the future growth of methane are especially important for achievement of the 1.5°C goal 

of future warming. We also quantify warming scenarios assuming climate feedback will rise over time, a 

feature common among many CMIP6 GCMs; under this assumption, it becomes more difficult to achieve 40 

any specific warming target. Finally, we assess warming projections in terms of future anthropogenic 

emissions of atmospheric carbon. In our model framework, humans can emit only another 268 ± 91 Gt C 

after 2019 to have a 66% likelihood of limiting warming to 1.5°C, and another 565 ± 120 Gt C to have 

the same probability of limiting warming to 2.0°C. Given the estimated emission of 11.7 Gt C per year 

for 2019 due to combustion of fossil fuels and deforestation, our EM-GC simulations suggest the 1.5°C 45 

warming target of the Paris Agreement will not be achieved unless carbon and methane emissions are 

severely curtailed in the next two decades. 

1 Introduction 

The goals of the Paris Agreement, negotiated in December of 2015, are to keep global warming below 

2.0°C relative to the start of the Industrial Era and pursue efforts to limit global warming to 1.5°C. General 50 

circulation models (GCMs) project future temperature change using various evolutions of greenhouse 

gases and determine the likelihood of achieving the goals of the agreement. Many GCMs are participating 

in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to quantify how the models 
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represent different aspects of climate change (Eyring et al., 2016). Having accurate projections of future 

temperature is critical for achieving the goals of the Paris Agreement. Chapter 11 of  IPCC’s Fifth 55 

Assessment Report shows that some of the previous generations of these models participating in phase 5 

of the Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012) tended to overestimate the 

increase in global mean surface temperature (GMST) for the 21st century (Kirtman et al., 2013). In this 

analysis we use a multiple linear regression energy balance model to quantify the change in GMST from 

1850-2019, project future changes in GMST, compare to the CMIP6 multi-model ensemble, and 60 

determine the likelihood of achieving the goals of the Paris Agreement. 

 Several prior studies have used a multiple linear regression approach to model the GMST anomaly 

in order to quantify the impact of anthropogenic and natural factors on climate (Foster and Rahmstorf, 

2011; Lean and Rind, 2008, 2009; Zhou and Tung, 2013). Typically, total solar irradiance, volcanoes, 

and El Niño southern oscillation (ENSO) are the natural components represented in the multiple linear 65 

regression, and greenhouse gases and aerosols are the anthropogenic factors. We use multiple linear 

regression, in connection with a dynamic ocean module that accounts for the export of heat from the 

atmosphere to the ocean, to represent the natural and anthropogenic components of the climate system. 

In addition to the typical natural factors listed above, we include the Atlantic meridional overturning 

circulation (AMOC), Pacific decadal oscillation (PDO), and Indian Ocean dipole (IOD) to provide a 70 

robust representation of the natural climate system (Canty et al., 2013; Hope et al., 2017). Our 

anthropogenic components also include the effect of land use change (i.e., deforestation) on Earth’s 

albedo and the export of heat from the atmosphere to the ocean as the atmosphere warms. 

 Our analysis builds on the work of Canty et al. (2013) and Hope et al. (2017) and includes several 

key updates. One is the extension back in time of our analysis to 1850. The Hadley Center Climatic 75 

Research Unit (Morice et al., 2012), Berkley Earth Group (Rohde et al., 2013), and Cowtan and Way 

(2014) provide GMST records starting in 1850, which now allows for a simulation of GMST that covers 

170 years. The second update is the use of the Shared Socioeconomic Pathways (SSPs) (O’Neill et al., 

2017) as our climate scenarios to designate future evolution of greenhouse gas and aerosol abundances. 

The third is the adoption of an upper ocean to our model, formulated in a manner that matches the 80 

equations of Bony et al. (2006) and Schwartz (2012). A description of the model, the various input 
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parameters used, and the updates listed above is given in Sect. 2. Section 3 provides results of CMIP6 

comparing to the historical climate record, equilibrium climate sensitivity (ECS), as well as comparisons 

of our model and CMIP6 projections of future GMST change. Discussion of these results is provided in 

Sect. 4, along with concluding remarks. 85 

 

2 Data and Methodology 

2.1 Empirical model of global climate 

In this analysis we use the empirical model of global climate (EM-GC), which provides a multiple linear 

regression, energy balance simulation of GMST. As detailed in the following paragraphs, the EM-GC 90 

solves for ocean heat uptake efficiency (κ) and six regression coefficients to minimize the cost function 

in Eq. (1). 

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ∑
1

𝜎𝑂𝐵𝑆𝑖
2 (𝛥𝑇𝑂𝐵𝑆𝑖 −  𝛥𝑇𝑀𝐷𝐿𝑖)

2𝑁𝑀𝑂𝑁𝑇𝐻𝑆
𝑖=1    (1) 

In this equation, ΔTOBS represents a time series of observed monthly GMST anomalies, ΔTMDL is the 

modeled monthly change in GMST, σOBS is the 1-sigma uncertainty associated with each temperature 95 

observation, i is the index for each month, and NMONTHS is the total number of months used in the analysis. 

For this analysis, we trained the model from 1850-2019. The observed GMST anomalies are blended near 

surface air and sea surface temperature differences relative to the GMST anomaly over 1850-1900, which 

is assumed to represent pre-industrial conditions. 

 We consider several anthropogenic and natural factors as components of ΔTMDL. The radiative 100 

forcing (RF) due to greenhouse gases (GHGs), anthropogenic aerosols (AER), land use change (LUC), 

and the export of heat from the atmosphere to the world’s oceans are the anthropogenic components of 

ΔTMDL. The influence on GMST from total solar irradiance (TSI), El Niño southern oscillation (ENSO), 

the Atlantic meridional overturning circulation (AMOC), volcanic eruptions that reach the stratosphere 

and enhance stratospheric aerosol optical depth (SAOD), the Pacific decadal oscillation, (PDO) and the 105 

Indian Ocean dipole (IOD) are the natural components of ΔTMDL. Equation (2) shows how we calculate 

ΔTMDL, the modeled monthly change in GMST. 

𝛥𝑇𝑀𝐷𝐿𝑖 =
1 +  𝛾

𝜆𝑃
 {𝐺𝐻𝐺 𝛥𝑅𝐹𝑖 + 𝐴𝐸𝑅 𝛥𝑅𝐹𝑖 + 𝐿𝑈𝐶 𝛥𝑅𝐹𝑖 − 𝑄𝑂𝐶𝐸𝐴𝑁 𝑖} +  𝐶0 +  𝐶1 × 𝑆𝐴𝑂𝐷𝑖−6 + 
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𝐶2 × 𝑇𝑆𝐼𝑖−1 + 𝐶3 × 𝐸𝑁𝑆𝑂𝑖−2 + 𝐶4 × 𝐴𝑀𝑂𝐶𝑖 + 𝐶5 × 𝑃𝐷𝑂𝑖 + 𝐶6 × 𝐼𝑂𝐷𝑖   (2) 

 In Eq. (2), GHG ΔRFi , AER ΔRFi, and LUC ΔRFi represent monthly time series of the increase 110 

in the stratospheric adjusted values of the RF of climate (Solomon, 2007) since 1750. The parameter λP 

represents the response of a blackbody to a perturbation in the absence of climate feedback (3.2 W m−2, 

(Bony et al., 2006)). The SAOD, TSI, and ENSO are lagged by 6, 1, and 2 months respectively. The lag 

of 6 months for SAOD is representative of the time needed for the surface temperature to respond to a 

change in the aerosol loading due to a volcanic eruption (Douglass and Knox, 2005). This lag is the same 115 

as used by Lean and Rind (2008) and Foster and Rahmstorf (2011). The 1 month delay for TSI yields the 

maximum value of C2, the solar irradiance regression coefficient. Lean and Rind (2008) and Foster and 

Rahmstorf (2011) also use a 1 month lag for TSI in their analyses. The 2 month delay for the response of 

GMST to ENSO is the lag needed to obtain the largest value of the correlation coefficient of the 

Multivariate ENSO Index version 2 (MEI.v2) (Wolter and Timlin, 1993; Zhang et al., 2019) versus the 120 

value of TENSO calculated by Thompson et al. (2009). In Thompson et al. (2009), TENSO is the simulated 

response of GMST to variability induced by ENSO, taking into consideration the effective heat capacity 

of the atmospheric-ocean mixed layer. Lean and Rind (2008) used a 4-month lag for ENSO.  

The term AMOCi represents the influence of the change in the strength of the thermohaline 

circulation on GMST (Knight et al., 2005; Medhaug and Furevik, 2011; Stouffer et al., 2006; Zhang and 125 

Delworth, 2007). We use the Atlantic multidecadal variability, based on the area weighted monthly mean 

sea surface temperature (SST) in the Atlantic Ocean between the equator and 60°N (Schlesinger and 

Ramankutty, 1994), as a proxy for the strength of AMOC. A strong AMOC is characterized by northward 

flow of energy that would otherwise be radiated to space, which occurs in both the ocean and atmosphere 

and leads to particularly warm summers in Europe (Kavvada et al., 2013) as well as a number of other 130 

well documented influences in other climatic regions (Nigam et al., 2011). The total anthropogenic RF of 

climate is used to detrend the AMOC signal because this method provides a more realistic approach to 

infer the changes in the strength of AMOC and its effect on GMST than other detrending options (Canty 

et al., 2013).  
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 The dimensionless parameter γ represents the sensitivity of the global climate to feedbacks that 135 

occur due to a change in the RF of GHGs, AER, and LUC. We relate γ to the climate feedback 

parameter, λΣ, as shown in Eq. (3). 

1 + 𝛾 =
1

1 − (
𝜆𝛴

𝜆𝑃
)
 

where λΣ = Σ all climate feedbacks    (3) 

i.e., λΣ = λWater Vapor + λLapse Rate + λClouds + λSurface Albedo 140 

The relation between λΣ and γ in Eq. (3) is commonly used in the climate modeling community (Sect. 8.6 

of Solomon (2007)). Bony et al. (2006) and Gregory (2000) use a different formalism to define their 

climate feedback parameter. Our value of λΣ is related to the IPCC’s Fifth Assessment Report ((Stocker 

et al., 2013), hereafter IPCC 2013) definition of λ via λΣ = λP – λ.  

Our model explicitly accounts for the export of heat from the atmosphere to the world’s oceans 145 

(i.e., ocean heat export or OHE). The quantity QOCEAN in Eq. (2) represents OHE. In our previous analyses 

(Canty et al., 2013; Hope et al., 2017), QOCEAN was subtracted outside of the climate feedback 

multiplicative term (1+γ)/λP. We have rewritten Eq. (2) to be comparable to the formulation for this term 

used by Bony et al. (2006) and Schwartz (2012). The effect of this update results in our model being able 

to fit the historical climate record with higher values of climate feedback, especially for strong aerosol 150 

cooling (see Fig. S1 and supplement for more information). We calculate QOCEAN by simulating the long-

term trend in observed ocean heat content (OHC) as shown in Eq. (4) and Eq. (5). 

𝑄𝑂𝐶𝐸𝐴𝑁𝑖 =  𝜅(𝛥𝑇𝐴𝑇𝑀,𝐻𝑈𝑀𝐴𝑁𝑖 −  𝛥𝑇𝑂𝐶𝐸𝐴𝑁,𝐻𝑈𝑀𝐴𝑁𝑖)     (4) 

𝜅 =
𝑂𝐻𝐸 × 𝛥𝑡

∫ ([
1+𝛾

𝜆𝑃
{𝐺𝐻𝐺 𝑅𝐹𝑖−72+𝐴𝐸𝑅 𝑅𝐹𝑖−72+𝐿𝑈𝐶 𝑅𝐹𝑖−72}]−[𝑓0 ∑ 𝑄𝑂𝐶𝐸𝐴𝑁] 𝑖−72

0 ) 𝑑𝑡
𝑡𝐸𝑁𝐷

𝑡𝑆𝑇𝐴𝑅𝑇
 
  (5) 

The κ term is the ocean heat uptake efficiency (W m−2 °C−1) and is based on the definition used in Raper 155 

et al. (2002), where κ is the ratio between the atmosphere and ocean temperature difference that best fits 

observed OHC data (Sect. 2.2.8 describes the OHC data records used in our analysis). The value of κ is 

determined based upon the best fit (described below) between QOCEAN and the observed OHC record. The 

term ΔTOCEAN,HUMAN represents the temperature response of the well-mixed, top 100 m of the ocean due 

to the total anthropogenically driven rise in OHC. This formulation of ΔTOCEAN,HUMAN allows the model 160 
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ocean to warm in response to an atmospheric warming. We use a 6 year lag (72 months) for QOCEAN to 

account for the time needed for the energy leaving the atmosphere to heat the upper ocean and penetrate 

to depth, based on Schwartz (2012). Our analysis of modeled GMST is insensitive to whether this 6 year 

lag or the 10 year lag from Lean and Rind (2009) is used. The tSTART and tEND limits on the integral in Eq. 

(5) are the start and end years, associated with each OHC record. The start and end years vary between 165 

the 5 OHC records (see supplement for the different start and end years). The constant f0 term in Eq. (5) 

is a combination of the heat capacity of ocean water, the fraction of total ocean volume in the surface 

layer, and the fraction of total QOCEAN that warms the surface layer, and is equal to 8.76×10-5 °C m2 W−1. 

We represent the global ocean as being 1 km deep for 10% of the ocean area (representing the continental 

shelves) and 4 km deep for the remaining area, which approximates the average depth of the actual world’s 170 

oceans to within 3%; 3.7 km compared to 3.682-3.814 km from Charette and Smith (2010). Based upon 

our analysis of decadal ocean warming as a function of depth extracted from CMIP5 GCMs, we have 

determined that 13.7% of the rise in total OHC occurs in the well mixed, upper 100 m of the ocean, the 

term represented by ΔTOCEAN,HUMAN in equation (4). The bottom rung of Fig. 1 compares our modeled 

OHC to the observed OHC record based upon the average of five data sets; the value of κ resulting in the 175 

best simulation of observed OHC is shown.  

We use the reduced chi-squared (χ2) metric to define the goodness of fit between the modeled and 

measured GMST anomaly for the atmosphere and also between simulated and observed OHC. Equation 

(6) and Eq. (7) show the calculations for χ2 for the atmosphere, and Eq. (8) shows the calculation for χ2 

for the ocean. As noted above, minimization of the difference between the measured and modeled GMST 180 

anomaly results in the EM-GC being able to replicate the observed rise in temperature over the past 170 

years quite well, as shown in Fig. 1. We have added two additional new features to the model to assure 

accurate representation of the rise in OHC as well as the rise in GMST since 1940. The first new feature, 

Eq. (7), was added because of a change in the specification of the uncertainty of the GMST anomaly 

(σOBSi in Eq. (2)) given by the Hadley Center Climatic Research Unit (HadCRUT). A recent update 185 

resulted in much larger uncertainties being ascribed to the GMST anomaly for the entire data record, 

which caused some solutions to yield visually poor simulations of the rise in GMST over the past 4 to 5 

decades. The second new feature, Eq. (8), was added because for some selections of the radiative forcing 
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due to tropospheric aerosols (AER ΔRFi in Eq. (2)), the original model formulation was converging but 

producing simulations of OHC that seemed physically improper, based on visual inspection of observed 190 

and modeled OHC. As a result of these two issues, all calculations shown here are subject to three 

goodness-of-fit constraints, described by Eq. (6) to (8): 

𝜒𝐴𝑇𝑀
2 =

1

𝑁𝑌𝐸𝐴𝑅𝑆−𝑁𝐹𝐼𝑇𝑇𝐼𝑁𝐺 𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅𝑆−1
∗  ∑

1

〈𝜎𝑂𝐵𝑆𝑗〉2
(〈∆𝑇𝑂𝐵𝑆𝑗〉 − 〈∆𝑇𝑀𝐷𝐿𝑗〉)

2
   

𝑁𝑌𝐸𝐴𝑅𝑆
𝑗=1   (6) 

𝜒𝑅𝐸𝐶𝐸𝑁𝑇
2 =

1

𝑁𝑌𝐸𝐴𝑅𝑆,𝑅𝐸𝐶−𝑁𝐹𝐼𝑇𝑇𝐼𝑁𝐺 𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅𝑆−1
∗  ∑

1

〈𝜎𝑂𝐵𝑆𝑗〉2
(〈∆𝑇𝑂𝐵𝑆𝑗〉 − 〈∆𝑇𝑀𝐷𝐿𝑗〉)

2
   

𝑁𝑌𝐸𝐴𝑅𝑆,𝑅𝐸𝐶

𝑗=1  (7) 

𝜒𝑂𝐶𝐸𝐴𝑁
2 =

1

𝑁𝑌𝐸𝐴𝑅𝑆−𝑁𝐹𝐼𝑇𝑇𝐼𝑁𝐺 𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅𝑆−1
∗  ∑

1

〈𝜎𝑂𝐵𝑆𝑗〉2
(〈𝑂𝐻𝐶𝑂𝐵𝑆𝑗〉 − 〈𝑂𝐻𝐶𝑀𝐷𝐿𝑗〉)

2
   

𝑁𝑌𝐸𝐴𝑅𝑆,𝑂𝐻𝐶

𝑗=1  (8) 195 

Here, <ΔTOBS>, <ΔTMDL>, and <σOBS> in Eq. (6) and Eq. (7) represent the annually averaged observed, 

modeled, and uncertainty in the GMST anomaly, respectively. The variable NFITTING PARAMETERS is equal 

to 9 for typical simulations, the sum of 7 (the number of regression coefficients) plus 2 (model output 

parameters γ and κ). In Eq. (8), <OHCOBS> and <OHCMDL> represent the annual averaged observed and 

modeled OHC. The σOBS term in Eq. (8) is the uncertainty in the OHC record (see Sect. 2.2.8 for more 200 

information). The equation for all three formulations of χ2 is based on annual averages, rather than 

monthly time series, because the autocorrelation functions of ΔTOBS and ΔTMDL display similar shapes 

using annual averages, and do not match utilizing monthly averages (see supplement of Canty et al. (2013) 

for further explanation). For Eq. (6) to (8), we define an acceptable fit to the climate record as χ2 ≤ 2. The 

number of years (NYEARS) varies across the three equations. Equation (6) uses the total number of years 205 

in the GMST record, which for HadCRUT is 170 years. The number of years in Eq. (8), NYEARS,OHC, 

depends on the OHC data set used, as each data set spans a different range. The average of five OHC data 

sets that is our primary data source extends from 1955-2017, a total of 63 years. The value of χ2
OCEAN 

found using Eq. (8) is displayed on the bottom rung of Fig. 1. All model simulations shown throughout 

this paper have χ2
OCEAN ≤ 2, representing a good fit to the observed rise in OHC over the time of the data 210 

record. 

The calculation of χ2
RECENT shown in Eq. (7) is used to constrain the model to match the observed 

changes in GMST over the time frame 1940-2019, a total of 80 years (NYEARS,REC equals 80). This time 

frame was chosen to include a full cycle of AMOC, as the strength of the thermohaline circulation tends 
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to vary on a period of 60-80 years (Chen and Tung, 2018; Kushnir, 1994; Schlesinger and Ramankutty, 215 

1994). As noted above, the χ2
RECENT constraint was added to our model framework because the large 

temperature uncertainties associated with v4.6 of the HadCRUT data set allowed the original model to 

provide numerically good fits but poor visual fits to GMST changes in the recent time period (i.e. the red 

line in the top rung of Fig. 1 starts to strongly deviate from the black line beginning in about 2000 under 

certain conditions). All model simulations shown below have χ2
RECENT ≤ 2 representing a good fit to the 220 

Figure 1. Measured and modeled GMST anomaly (ΔT) relative to a pre-industrial (1850-1900) baseline. (a) 

Observed (black) and modeled (red) ΔT from 1850-2019. This panel also displays the values of λΣ and χ2
ATM (see 

text) for this best-fit simulation. (b) Contributions from total human activity. This panel also denotes the best 

estimate numerical value of the attributable anthropogenic warming rate from 1975-2014 (black dashed) as well as 

the 2σ uncertainty in the slope for a model run that uses the best estimate of AER RF2011 of −0.9 W m−2. (c) Solar 

irradiance (light blue) and major volcanoes (purple). (d) Influences from ENSO on ΔT. (e) Contributions from 

AMOC to ΔT and to observed warming from 1975-2014. (f) Influences from PDO (blue) and IOD (pink) on ΔT. 

(g) Measured (black) and modeled (red) ocean heat content (OHC) as a function of time for the average of five data 

sets (see text), the value of χ2
OCEAN for this run, as well as the ocean heat uptake efficiency, κ, needed to provide 

the best-fit to the OHC record. The error bars (blue) denote the uncertainty in OHC used in this analysis (see Sect. 

2.2.8). 
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observed rise in GMST over the past 80 years, which results in modeled GMST that replicates observed 

GMST for the entire time series.  

 Figure 1 shows the observed (HadCRUT) and modeled GMST anomaly from 1850-2019, and the 

various anthropogenic and natural components that constitute modeled GMST (see Fig. S3 for results 

using Cowtan and Way (2014) GMST record and the Cheng et al. (2017) OHC record (hereafter Cheng 225 

2017)). Figure 1a shows the value of climate feedback, 1.38 W m−2 °C−1, that is needed to achieve a best 

fit to the climate record for this simulation, resulting in values of χ2
ATM = 0.71 and χ2

OCEAN = 0.32. Figure 

1b is the total contribution of human activity to variations in GMST, which includes GHGs, AER, LUC, 

and the export of heat from the atmosphere to the ocean. For the simulation shown, the aerosol radiative 

forcing is −0.9 W m−2, the best estimate given by IPCC 2013 (Myhre et al., 2013). This panel also notes 230 

the best estimate of the time rate of change of GMST attributed to humans from 1975-2014, or the 

attributable anthropogenic warming rate (AAWR (see Sect. 2.3)). Figure 1c illustrates the contribution to 

the GMST anomaly from TSI (Solar) and SAOD (Volcano) over the 170-year period. The influences of 

ENSO and AMOC are indicated in Figs. 1d and 1e, respectively. The contribution of AMOC to the rise 

in GMST over 1975-2014 (the same time period used to define AAWR) is also specified on Fig. 1e. 235 

Figure 1f indicates the small effect of IOD and PDO on GMST in our model framework. The last panel, 

Fig. 1g, shows the time series of observed OHC based upon the average of five data sets for the upper 

700 m of the ocean (black points and blue error bars; see Sect. 2.2.8) and the modeled value of OHC (red 

line). For this simulation, the OHC data is best fit for a value of κ equal to 1.28 W m−2 °C−1,  which falls 

within the range of empirical estimates for this parameter given by Raper et al. (2002). The sum of the 240 

contributions of human activity, TSI, SAOD, ENSO, AMOC, PDO and the IOD to temporal variations in 

the GMST anomaly shown in Fig. 1b to 1f plus the value of C0 equals the modeled GMST anomaly, 

shown by the red line in Fig. 1a. 

 Altering the training period of our model has a slight effect on our results (see Fig. S2 and the 

supplement for information on various training periods). We project relatively similar results for end of 245 

century warming for training periods that start in 1850 and end in either 2009 or 1999, compared to results 

shown throughout the paper for a training period of 1850 to 2019, indicating the stability of our approach. 

As detailed in the supplement, we do find some differences from the results shown in the paper upon use 
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of a training period of 1850 to 1989 due to the reduction in the number of years considered from the 

available OHC records. 250 

 

2.2 Model Inputs 

2.2.1 Temperature data 

We use five global mean surface temperature anomalies from the Hadley Centre Climatic Research Unit 

(HadCRUT, (Morice et al., 2012)) from 1850-2019, National Centers for Environmental Information 255 

NOAAGlobalTemp v5 (NOAAGT, (Smith et al., 2008; Zhang et al., 2019)) from 1880-2019, NASA 

Goddard Institute of Space Studies Surface Temperature Analysis v4 (GISTEMP, (Hansen et al., 2010)) 

from 1880-2019, Berkeley Earth Group (BEG, (Rohde et al., 2013)) from 1850-2019, and Cowtan and 

Way (2014) (CW14; see Fig. S4 and the supplement for information on CW14 GMST record) from 1850-

2019. Our analysis primarily uses the HadCRUT GMST data set, because this GMST record is the central 260 

focus of some contemporary studies (Liang et al., 2020; Nicholls et al., 2020a, 2020b), but in some 

sections, results are shown for all five data sets. All temperature anomalies are with respect to a pre-

industrial baseline (1850-1900). To alter each data record so that the temperature anomaly is relative to 

the same pre-industrial baseline, we adjust all data sets relative to the HadCRUT baseline of 1961-1990 

because we primarily use the HadCRUT data record in this analysis. We then adjust each data set to the 265 

pre-industrial baseline, as described in the methods section of Hope et al. (2017). 

 

2.2.2 Shared Socioeconomic Pathways 

For this analysis, we use the estimates of the future abundances of greenhouse gases and aerosols provided 

by the SSPs. There are twenty-six scenarios, five baseline pathways and twenty-one mitigation scenarios. 270 

The baseline pathways follow specific narratives for factors such as population, education, economic 

growth, and technological developments of sources of renewable energy (Calvin et al., 2017; Fricko et 

al., 2017; Fujimori et al., 2017; Kriegler et al., 2017; van Vuuren et al., 2017) to represent several possible 

futures spanning different challenges for adaptation and mitigation to climate change as illustrated in Fig. 

1 of O’Neill et al. (2014). The twenty-one mitigation scenarios follow one of the baseline pathways but 275 

include specific climate policy to reach a designated radiative forcing at the end of the century. 
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 As part of CMIP6, the ScenarioMIP experiment (O’Neill et al., 2016) includes eight SSPs (SSP1-

1.9, SSP1-2.6, SSP4-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0, SSP5-8.5, and SSP5-3.4-OS) that GCMs use to 

project future GMST. The first number is the reference pathway that the scenario follows (i.e. SSP1 

follows the first SSP narrative) and the numbers after the dash are the target radiative forcing at the end 280 

of the century (i.e. SSP1-2.6 reaches around 2.6 W m−2 in 2100). The ScenarioMIP experiment designates 

Tier 1 and Tier 2 scenarios. The Tier 1 scenarios are SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 , and 

the Tier 2 scenarios are SSP1-1.9, SSP4-3.4, SSP4-6.0, and SSP5-3.4-OS (an overshoot pathway that 

follows SSP5-8.5 until around 2040, where carbon dioxide emissions drastically decrease and become 

negative in 2065). Our analysis includes seven of the eight ScenarioMIP SSPs: all but the overshoot 285 

pathway. We highlight four in the main paper: two Tier 1 (SSP1-2.6 and SSP2-4.5) and two Tier 2 (SSP1-

1.9 and SSP4-3.4) scenarios. Analysis of the other three SSPs is included in the supplement. Figure 2 

shows the time evolution of the atmospheric abundance of the three major anthropogenic GHGs (carbon 

dioxide, methane, and nitrous oxide) for each of the seven SSPs we consider as well as observations of 

the global mean atmospheric abundance for these gases to the end of 2019 (Dlugokencky, 2020; 290 

Dlugokencky and Tans, 2020).  

 

2.2.3 Greenhouse gases 

The historical values of GHG mixing ratios were provided by Meinshausen et al. (2017) from 1850-2014. 

We used the equations from Myhre (1998) to calculate the change in RF due to carbon dioxide (CO2), 295 

methane (CH4), nitrous oxide (N2O), ozone depleting substances (ODS), hydrofluorocarbons, 

Figure 2. Observed and projected greenhouse gas mixing ratios. (a) Carbon dioxide abundances from observations 

(black) and seven of the ScenarioMIP SSPs (colors, as indicated). (b) Methane abundances from observations and 

ScenarioMIP SSPs. (c) Nitrous oxide abundances from observations and ScenarioMIP SSPs. 
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perfluorocarbons, and sulfur hexafluoride relative to RF in year 1850. We also used the updated pre-

industrial values of CH4 and N2O from IPCC 2013 and the radiative efficiencies from WMO (2018) The 

radiative forcing of CH4 also includes the 15% enhancement from the increase in stratospheric water 

vapor due to rising atmospheric CH4 (Myhre et al., 2007). Values of GHG mixing ratios, other than ODSs, 300 

from 2015-2100 are from the SSP Database (Calvin et al., 2017; Fricko et al., 2017; Fujimori et al., 2017; 

Kriegler et al., 2017; Rogelj et al., 2018; van Vuuren et al., 2017) and are provided on a decadal basis. 

These mixing ratios were interpolated onto a monthly time scale. We used the estimates of future ODS 

abundances provided in Table 6-4 of the 2018 Ozone Assessment Report (Carpenter et al., 2018), because 

the SSP database did not provide these estimates. We also include tropospheric ozone (O3
TROP) as a GHG, 305 

because tropospheric ozone rivals N2O as the third most important anthropogenic GHG (Fig 8.15 of 

Myhre et al. (2013)). The RF due to O3
TROP from the RCPs provided by the Potsdam Institute for Climate 

Impact Research (Meinshausen et al., 2011) is used, because the SSP database does not provide estimates. 

Values of RF due to O3
TROP from RCP2.6, RCP4.5, RCP6.0, and RCP8.5 are substituted in for SSP1-2.6, 

SSP2-4.5, SSP4-6.0, and SSP5-8.5, respectively. We created new time series for the RF due to O3
TROP for 310 

SSP4-3.4 and SSP3-7.0 using linear combinations of RF time series from RCP2.6 and RCP8.5, with 

weights based on the end of century total RF value due to all GHGs of the respective time series. Finally, 

the RF time series for O3
TROP from RCP2.6 was also used for SSP1-1.9. Figure S5 shows the ozone RF 

time series used in this analysis and the supplement provides more information about the creation of the 

time series for the RF due to O3
TROP. 315 

 

2.2.4 Aerosol radiative forcing   

The value of the change in total aerosol radiative forcing in 2011 relative to pre-industrial (AER RF2011) 

is highly uncertain. Chapter 8 of the IPCC 2013 report gives a best estimate of AER RF2011 as −0.9 W 

m−2, a likely range between −0.4 and −1.5 W m−2, and a 5th to 95th percent confidence interval between 320 

−0.1 and – 1.9 W m−2 (Myhre et al., 2013). This substantial range in AER RF2011 results in a large spread 

in future projections of global GMST. Figure 3 shows the effect of varying the value of AER RF2011 on 

projections of GMST in our EM-GC framework, for the same SSP4-3.4 GHG scenario. The middle panel 

on Figs. 3a, 3b, and 3c shows the contribution to GMST of GHGs, LUC, AER, as well as net human 
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activities. As the value of AER RF2011 decreases and aerosols cool more strongly, the value of climate 325 

feedback (model parameter λΣ) rises, and the net contribution of human impact on GMST by the end of 

the century increases. Depending on which value of AER RF2011 is used, the rise in GMST by year 2100 

for the SSP4-3.4 pathway could range from 1.3°C (Fig. 3a) to 2.6°C (Fig. 3c) relative to pre-industrial. 

Strong aerosol cooling offsets a substantial fraction of GHG-induced warming, and a large value of 

climate feedback (λΣ = 2.32 W m−2 °C−1) is needed to fit the historical climate record (Fig. 3c). In this 330 

case, future warming is large, well above the goals of the Paris Agreement by the end of the century. 

Conversely, weak aerosol cooling offsets only a small fraction of GHG-induced warming, resulting in a 

small value of climate feedback (λΣ = 0.73 W m−2 °C−1) needed to fit the observed GMST record (Fig. 

3a). The use of any of the values of AER RF2011 in Fig. 3 can result in a very good fit to the climate record 

(i.e., χ2
ATM ≤ 2, χ2

RECENT ≤ 2, and χ2
OCEAN ≤ 2).  335 

 We use the total aerosol RF time series provided by the SSP database for each SSP scenario. The 

database provides AER RF from 2005-2100, with values for all SSPs nearly identical until about 2010 

(Riahi et al., 2017; Rogelj et al., 2018). In the EM-GC, we calculate temperature projections over the 

Figure 3. Measured and EM-GC simulated GMST anomaly (ΔT) relative to a pre-industrial (1850-1900) baseline, 

as well as projected ΔT to end of century for SSP4-3.4. Top panel of each plot displays observed (black) and 

simulated (red) ΔT, as well as the values of λΣ and χ2
ATM for each model run. The Paris Agreement target (1.5°C) 

and upper limit (2.0°C) are shown (gold circles). The second panel shows the contribution of GHGs, aerosols, and 

land use change to ΔT, as well as the net human component. The bottom panel compares observed (black) and 

modeled (red) values of OHC for simulations constrained by the average of five data sets (see text) and also 

provides the numerical values of κ needed to obtain best-fits to the OHC record as well as best-fit values of χ2
OCEAN. 

The only difference between (a), (b), and (c) is the time series for RF due to tropospheric aerosols used to constrain 

the EM-GC; values of AER RF2011 for each time series are (a) −0.4 W m−2, (b) −0.9 W m−2, (c) −1.5 W m − 2.  
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entire observational period, beginning in 1850. Consequently, we create AER RF time series that begin 

in 1850 and span the range of uncertainty given by Chapter 8 of IPCC 2013. We use historical estimates 340 

of AER RF from 1850-2014 for the four RCPs provided by the Potsdam Institute for Climate Research 

(Meinshausen et al., 2011). The AER RF value in 2014 from the appropriate historical estimate (i.e. RCP 

4.5 is used for SSP2-4.5) is scaled by a constant multiplicative factor, such that the historical RCP value 

at the end of 2014 matches the SSP time series at the start of 2015, yielding a continuous time series for 

the RF of climate due to tropospheric aerosols. This scaled time series has AER RF2011 nearly equal to 345 

−1.0 W m−2, which we take as the SSP-based best estimate of the change in total aerosol radiative forcing 

in 2011 relative to pre-industrial. Next, the single continuous time series is scaled, again by a constant 

multiplicative factor, to match the IPCC 2013 best estimate and range of uncertainty for AER RF2011 

(Myhre et al., 2013). This procedure results in five additional time series of AER RF. Six time series of 

AER RF are thus created for each SSP, having values of AER RF2011 equal to −0.1, −0.4, −0.9, −1.0, −1.5, 350 

and −1.9 W m−2. Figure S7 shows these six AER RF time series for SSP1-2.6 and SSP4-3.4. In the EM-

GC framework, we further scale these six time series to create a total of 400 AER RF time series to fully 

analyze the range of AER RF2011 given by Myhre et al. (2013). 

 

2.2.5 Total solar irradiance and stratospheric aerosol optical depth 355 

We use the TSI time series provided for the CMIP6 models from 1850-2014 (Matthes et al., 2017) and 

append values from the Solar Radiation and Climate Experiment (SORCE) (Dudok de Wit et al., 2017) 

for 2015 to the end of 2019. The values of TSIi used in Eq. (2) are differences of monthly mean values 

minus the long-term average (i.e., TSI anomalies). Consistent with prior studies (e.g., Lean and Rind 

(2008) and Foster and Rahmstorf (2011)) variations in solar irradiance due to the 11-year solar cycle have 360 

a small but noticeable effect on the EM-GC simulation of the GMST anomaly (Fig. 1c). For projections 

of future warming, we set the term TSIi in Eq. (2) equal to zero from the start of 2020 until 2100 (i.e., we 

do not propagate 11-year variations of TSI forward in time).  

The time series for SAOD is a combination of values computed from extinction coefficients for 

the CMIP6 GCMs (Arfeuille et al., 2014) from 1850-1978 and the Global Space-based Stratospheric 365 

Aerosol Climatology (GloSSAC v2.0) (Thomason et al., 2018) from 1979-2018. Extinction coefficients 
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at 550 nm were integrated from the tropopause to 39.5 km and averaged over the globe using a cosine of 

latitude weighting. The CMIP6 and GloSSAC extinction coefficients span 80°S to 80°N. To extend the 

SAOD time series to the end of 2019, we use the level 3, gridded SAOD product from the Cloud-Aerosol 

Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (Vaughan et al., 2004). Time series of 370 

globally averaged SAOD from CALIPSO have a very similar shape to the GloSSAC time series over the 

period of overlap (2006-2018), with a slight offset. To append the CALIPSO SAOD for 2018-2019, we 

took the average difference between the two time series for the overlapping months and then adjusted the 

CALIPSO time series by this offset. This slight adjustment to the CALIPSO record has no bearing on our 

scientific results, since the effect of volcanic activity on GMST has been small over the past 2 decades 375 

(Fig. 1c). We set the term SAODi in Eq. (2) equal to the value in December 2019 from the start of 2020 

until 2100. 

 

2.2.6 El Niño southern oscillation, Pacific decadal oscillation, and Indian Ocean dipole 

We use the MEI.v2 (Wolter and Timlin, 1993; Zhang et al., 2019) to characterize the influence of ENSO 380 

on GMST. In order to obtain a time series that spans the entire training period of our model, 1850-2019, 

we append three time series to create an MEI.v2 index over the full time extent of our model training 

period. The MEI.v2 provides two month averages of empirical orthogonal functions of five different 

climatic variables from 1979 to present (Zhang et al., 2019). To have the ENSO index extend back to 

1850, we compute differences in SST anomalies over the tropical Pacific basin as defined by the MEI.v2 385 

from 1850-1870 using HadSST3 (Kennedy et al., 2011). Our internal computation of this surrogate for 

the MEI index is then appended to the MEI.ext of Wolter and Timlin (2011), which extends from 1871-

1978, and the MEI.v2 index of (Zhang et al., 2019) (1979-2019). This full time series provides a 

representation of ENSO that covers from 1850 to present. Consistent with prior regression-based 

approaches (Foster and Rahmstorf, 2011; Lean and Rind, 2008), we find a significant portion of the 390 

monthly and at times annual variation in GMST is well explained by ENSO (Fig. 1d). As for the other 

natural terms, we assume ENSOi in Eq. (2) is zero for 2020-2100. 

 The Pacific decadal oscillation is the leading principal component of North Pacific monthly SST 

variability poleward of 20°N (Barnett et al., 1999). The PDO index maintained by the University of 
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Washington provides monthly values from 1900-2018. The PDO varies on a multidecadal time scale and 395 

affects climate in the North Pacific and North America, and has secondary effects in the tropics (Barnett 

et al., 1999). In our model framework, the expression of PDO on GMST is dependent on the model 

specification of the AER RF time series, as shown in Fig. S6. At low values of AER RF2011, such as −0.1 

W m−2, the effect of PDO on GMST is negligible and the contribution from AMOC dominates. At high 

values of AER RF2011 (−1.5 W m−2), the effect of PDO on GMST is equal to the contribution from AMOC. 400 

At high values of AER RF2011, we obtain results similar to findings from England et al. (2014) and 

Trenberth and Fasullo (2013) that shows the PDO exhibits an appreciable influence on GMST, especially 

for the 2000-2010 time period. 

The Indian Ocean dipole is based upon the difference in the anomalous sea surface temperatures 

(SST) between the western equatorial Indian Ocean (50°-70° E and 10° S-10° N) and the south eastern 405 

equatorial Indian Ocean (90° E-110° E & 10° S-0° N) as defined in Saji et al. (1999). We use 1°  1° SSTs 

from the Centennial in situ Observation-Based Estimate (COBE) (Ishii et al., 2005) to create an IOD 

index from 1850-2019. As noted above and shown on Fig. 1f, the regression coefficients for PDO and 

IOD are quite small. We find little influence of either PDO or IOD in the HadCRUT time series of GMST, 

but these terms are retained for completeness. We assume PDOi and IODi in Eq. (2) are zero after the start 410 

of 2019 and 2020, respectively. 

 

2.2.7 Atlantic meridional overturning circulation 

We use the Atlantic multidecadal variability (AMV) index as the area weighted, monthly mean SST from 

HadSST3 (Kennedy et al., 2011), between the equator and 60° N in the Atlantic Ocean (Schlesinger and 415 

Ramankutty, 1994) to characterize the influence of variations in the strength of the AMOC on GMST. 

The AMV index is detrended using the RF anomaly due to anthropogenic activity over the historical time 

frame of the analysis, as discussed in Sect. 3.2.3 of Canty et al. (2013), because this detrending option 

removes the influence of long-term global warming on the AMV index. The detrended AMV index serves 

as a proxy for variations in the strength of the AMOC (Knight et al., 2005; Medhaug and Furevik, 2011; 420 

Zhang and Delworth, 2007), which has particularly noticeable effects on climate in the Northern 

Hemisphere (Jackson et al., 2015; Kavvada et al., 2013; Nigam et al., 2011). For this analysis, the index 
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has been Fourier filtered to remove frequencies above 9 yr−1 to retain only the low frequency, high 

amplitude component of the thermohaline circulation (Canty et al., 2013). As noted above and shown in 

Fig. 1, a considerable portion of the long-term variability in GMST is attributed to variations in the 425 

strength of AMOC, including about 0.036°C/decade over the 1975-2014 time period. There is 

considerable debate about the validity of the use of a proxy such as the AMV index as a surrogate for the 

climatic effects of AMOC that is centered mainly around how much of the variability of the index is either 

internal (i.e., natural variability) or externally forced (i.e., driven by anthropogenic factors) (Haustein et 

al., 2019; Knight et al., 2005; Medhaug and Furevik, 2011; Stouffer et al., 2006). We stress, as explained 430 

below, none of our scientific conclusions are altered if we neglect AMV as a regression variable. 

 

2.2.8 Ocean heat content records 

Ocean heat content data records from five recent and independent papers are used in this study. We utilize 

OHC data from Balmaseda et al. (2013), Carton et al. (2018), Cheng et al. (2017), Ishii et al. (2017), and  435 

Levitus et al. (2012), as well as the average of the records to model the export of heat (OHE) from the 

atmosphere to the ocean. Figure S8 shows these five OHC records as well as the multi-measurement 

average. While most of these data sets have a common origin, they differ in how extensive temporal and 

spatial gaps in the coverage of ocean temperatures have been handled, ranging from data assimilation 

(Carton et al., 2018) to an iterative radius of influence mapping method (Cheng et al., 2017). The five 440 

data sets are all set to zero in 1986, which is the midpoint of the multi-measurement time series, by 

applying an offset for visual comparison. Since OHE, in units of W m−2, is based upon the slope of each 

OHC data set, this offset has no impact on the computation of OHE from OHC that is central to our study. 

For the computation of OHE from OHC, we use a value of the surface area of the world’s oceans equal 

to 3.3  1014 m2
 (Domingues et al., 2008). The OHC records we analyze are for the upper 700 m of the 445 

ocean. To calculate the OHE for the whole ocean, we multiply the OHE by 1/0.7 to account for the fact 

that the upper 700 m of the ocean holds 70% of the heat (Sect. 5.2.2.1 (Solomon, 2007)). When we 

subtract the amount of heat going into the ocean in Eq. 2 (QOCEAN), we also must account for the difference 

in surface area between the global atmosphere and the world’s oceans. Since the QOCEAN term is computed 

for the surface area of the ocean, but the forcing is applied to the whole atmosphere, we multiply the 450 
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QOCEAN term by the ratio of the surface area of the ocean to the surface area of the atmosphere, which is 

0.67. 

 As noted above, the calculation of χ2
OCEAN shown in Eq. (8) is used to constrain our model 

representation of the temporal rise in OHC. Only model runs that provide a good fit to the observed OHC 

record are shown below. For these five OHC data sets, uncertainty estimates are not always provided. 455 

Furthermore, some studies that do provide uncertainties give estimates that seem unreasonably small (see 

Fig. S9 and the supplement). Because of the discrepancy in uncertainties between OHC records, we create 

a new uncertainty time series using both the 1-sigma standard deviation of the average of the five OHC 

records and the uncertainties from the Cheng 2017 OHC record. We create this new uncertainty from 

1955-2019 by a monthly time step and use either the 1-sigma standard deviation of the average of the five 460 

OHC records or the uncertainties from the Cheng 2017 OHC record, whichever is larger, for that month. 

We use the Cheng 2017 OHC uncertainties because these estimates are the largest of the five data sets. 

Additionally, the standard deviation from the mean of the five OHC records is very low in the 1980s, 

which is an artifact of our normalization treatment, not inherent to any of the records. This combined 

uncertainty estimate is substituted in for each individual data set and the average, resulting in our use of 465 

the same time varying uncertainty in OHC for all data sets. Figure S9 and the supplement provide more 

detail on the creation of this time dependent uncertainty estimate for OHC. 

 The choice of OHC record has only a small effect on future projections of GMST using the EM-

GC. Figure 4 illustrates the effect of varying OHC record on future temperature. The bottom panels show 

the observed and modeled OHC, the value of κ needed to best fit the OHC data record, as well as the 470 

resulting value of χ2
OCEAN. Of the two OHC records shown, Balmaseda et al. (2013) (Fig. 4a) yields the 

lowest value of κ and Ishii et al. (2017) (Fig. 4b) results in the highest estimate of κ. For the same value 

of AER RF2011 (i.e., −0.9 W m−2) and GHG scenario (SSP4-3.4), we find a difference of 0.25°C in the 

modeled rise in GMST in year 2100 for these two simulations (red lines on top panels). For most of the 

remaining analysis, we use the multi-measurement average of the five OHC data records. However, in 475 

Sects. 3.1 and 3.2 we quantify the effect of OHC data record on both attributable anthropogenic warming 

rate and equilibrium climate sensitivity.  
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2.3 Attributable anthropogenic warming rate 480 

The attributable anthropogenic warming rate, or AAWR, is the time rate of change of GMST due to 

humans from 1975-2014. We use AAWR as a metric in the EM-GC framework to quantify the human 

influence on global warming over the past few decades, and most importantly to also assess how well the 

CMIP6 GCMs can replicate this quantity. This analysis is motivated by the study of Foster and Rahmstorf 

(2011), who examined the human influence on the time rate of change of GMST from 1979-2010 using 485 

a residual method. We extend the end year of our analysis to 2014 because this is the last year of the 

CMIP6 Historical simulation. We pushed the start year back to 1975 so that our analysis covers a forty-

year period, over which the effect of human activity on GMST rose nearly linear with respect to time 

(Fig. 1b and Fig. S10c).  

We calculate AAWR utilizing the EM-GC by computing a linear fit to the ΔTHUMAN,ATM term: 490 

Figure 4. Measured and EM-GC simulated GMST change (ΔT) from 1850-2019, as well as projected ΔT to year 

2100 for SSP4-3.4. Top panel of each plot shows observed (black) and simulated (red) ΔT, the λΣ and χ2
ATM values, 

and the Paris Agreement target and upper limit. The second panel displays the contribution of GHGs, aerosols, and 

land use change on ΔT. The bottom panel compares the observed (black) and modeled (red) OHC for two different 

OHC records and displays the value of κ needed to provide best-fits to the OHC record, as well as best-fit values 

of χ2
OCEAN. Both use an aerosol RF in 2011 of −0.9 W m−2. (a) OHC record from Balmaseda et al. (2013). (b) OHC 

record from Ishii et al. (2017). 
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 𝛥𝑇𝐴𝑇𝑀,𝐻𝑈𝑀𝐴𝑁𝑖 =
1+𝛾

𝜆𝑝
 {𝐺𝐻𝐺 𝛥𝑅𝐹𝑖 + 𝐴𝐸𝑅 𝛥𝑅𝐹𝑖 + 𝐿𝑈𝐶 𝛥𝑅𝐹𝑖 − 𝑄𝑂𝐶𝐸𝐴𝑁}    (9) 

for a regression that spans 1850-2019. The ΔTHUMAN,ATM term represents the net impact of the change in 

GMST due to RF of climate by anthropogenic GHGs, tropospheric aerosols, as well as the variation in 

surface reflectivity due to land use change (deforestation), taking into account that for each model time 

step, a portion of the human-induced climate forcing is exported to the world’s oceans. For each 495 

simulation, the slope of the linear least squares fit to the 480 monthly values of ΔTHUMAN,ATM is used to 

determine AAWR. For the time period 1975-2014, a value for AAWR of 0.144  0.005 °C/decade is 

found using a value of AER RF2011 equal to −0.9 W m−2, where the uncertainty corresponds to the 2-sigma 

standard error of a linear least squares fit. The computation of AAWR found by fitting monthly values of 

ΔTHUMAN,ATM is insensitive to modest changes in start and end year for the AAWR calculation (see Table 500 

S1), as well as whether or not the AMOC, PDO, or IOD terms are included in the regression framework 

(Canty et al., 2013; Hope et al., 2017). We are able to fit the climate record better (i.e. smaller values of 

χ2 in Eqs. (6), (7), and (8)) upon consideration of the AMOC term. However, computed values of AAWR 

are insensitive to whether this term is used in the regression because whatever contributions the variation 

in the strength of the thermohaline circulation may have had on GMST are not considered in Eq. (9) (see 505 

Sect. 2.3 of Hope et al. (2017) for further explanation). 

 The determination of AAWR from historical CMIP6 near surface air temperature output involves 

conducting  a regression of deseasonalized, globally averaged, monthly ΔT (ΔTDES,GLB) from each GCM 

(Hope et al., 2017), termed the REG method. The archived CMIP6 Historical runs are constrained by 

observed variations in SAOD and influenced by other factors such as internal model generated ENSOs. 510 

The ΔTDES,GLB time series for all of the runs from each CMIP6 GCM are averaged together to obtain one 

time series of ΔTDES,GLB
 for each GCM. This average ΔTDES,GLB time series is used to compute AAWR. 

The regression approach is used to compute the influence of SAOD on GMST from CMIP6 GCMs. The 

time needed for GMST to respond to a change in the aerosol loading in the stratosphere due to a volcanic 

eruption in each GCM can exhibit a significant difference compared to the empirically determined 515 

response time of 6 months discussed in Sect. 2.1. A lag was determined for each GCM by calculating the 

value of the monthly delay between volcanic eruptions and the surface temperature response that resulted 
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in the largest regression coefficient for SAOD. We regress the ΔTDES,GLB against SAOD and the 

anthropogenic effect on temperature, which is approximated as a linear function from 1975-2014. The 

value of AAWR is the slope of the anthropogenic effect on temperature. Figure S10 illustrates the REG 520 

method used to determine AAWR from the CMIP6 GCMs. Table S2 depicts the slight effect on values 

of AAWR for the CMIP6 GCMs of changing the start or end year for the regression. At the time of 

analysis, there are 50 CMIP6 GCMs with the necessary archived output to calculate AAWR, with the 

values of AAWR found using REG shown in Table S3. 

 We also use a second method to extract the value of AAWR from the CMIP6 multi-model 525 

ensemble. This method, termed LIN, involves the computation of a linear regression of global, annual 

average values of GMST from the CMIP6 multi-model ensemble (Hope et al., 2017). For LIN, we exclude 

the years of obvious volcanic influence on the rise in GMST from the CMIP6 multi-model ensemble 

Historical simulations: i.e. data for 1982 and 1983 (following the eruption of El Chichón) and 1991 and 

1992 (following the eruption of Mount Pinatubo) are excluded. Archived global, annual average values 530 

of GMST covering 1975-2014, excluding these four years, are fit using linear regression, with the AAWR 

set equal to the slope of the fit. Values of AAWR for 1975-2014 found using LIN are also shown in Table 

S3 for each GCM. Analysis of AAWR for these 50 GCMs of LIN versus REG (see Fig. S11) results in a 

correlation coefficient (r2) of 0.995 and a mean ratio of 1.009  0.015, with LIN-based AAWR exceeding 

REG-based AAWR by about 1%. The close agreement of AAWR found using both methods provides 535 

strong evidence for the accurate determination of AAWR from the CMIP6 GCMs. We use the REG 

method in this analysis because it provides a more rigorous technique to remove the influence of SAOD 

on GMST from the CMIP6 multi-model ensemble compared to the LIN method. All of our scientific 

conclusions are unchanged had we used LIN-based values of AAWR from the CMIP6 multi-model 

ensemble. 540 

 

2.4 Equilibrium climate sensitivity 

The equilibrium climate sensitivity (ECS), which represents the warming that would occur after climate 

has equilibrated with atmospheric CO2 at the 2×pre-industrial level (Kiehl, 2007; Otto et al., 2013; 
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Schwartz, 2012) is also used to compare results of our EM-GC to CMIP6 multi-model output. To calculate 545 

ECS from the EM-GC, we use the following equation: 

𝐸𝐶𝑆 =
1+𝛾

𝜆𝑃
× 5.35 W m−2 ×  ln(2)     (10) 

That represents the rise in GMST for a doubling of CO2, assuming no other perturbations as well as 

equilibrium in other components of the climate system (i.e., QOCEAN = 0) (Mascioli et al., 2013). The 

expression for the radiative forcing of CO2 is from Myhre (1998). The quantity γ in Eq. (10), which 550 

represents the sensitivity of the GMST to feedbacks within the climate system, is the only variable 

component of ECS. We only use values of γ that result in good fits (χ2 ≤ 2 for Eq. (6) to (8)) between 

modeled and observed GMST and modeled and observed OHC. 

 For the estimate of ECS from the CMIP6 multi-model ensemble, we use the method described by 

Gregory et al. (2004). We use the Gregory method to calculate ECS from the CMIP6 GCMs because this 555 

procedure is preferred by Eyring et al. (2016) for the use by CMIP6. There have been some recent analyses 

that suggest the Gregory method may underestimate ECS (Rugenstein et al., 2020). However, we use the 

Gregory method to be consistent with the approach for CMIP6 recommended by Eyring et al. (2016). 

To use the Gregory method, near surface air temperature output from the Abrupt 4CO2 and 

piControl simulations, as well as net downward radiative flux output from the Abrupt 4CO2 simulation 560 

is used to calculate ECS. At the time of this analysis, 28 models released the necessary output to the 

CMIP6 archive (see Table S4 for the list of models and individual values of ECS). The near surface air 

temperature and net downward radiative flux was converted from monthly gridded output to annual global 

averages. We calculate the temperature change for the Abrupt 4CO2 simulation by subtracting the 

piControl near surface air temperature (Chen et al., 2019) (Fig. S12). This computed temperature anomaly 565 

is then regressed against the net downward radiative flux, with the x-intercept yielding the equilibrium 

response of ΔT to a quadrupling of CO2. This equilibrium response is then divided by two (Jones et al., 

2019) to arrive at the equilibrium climate sensitivity (Fig. S12).  

 

2.5 Aerosol weighting method 570 
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Probabilistic forecasts of the future rise in GMST for various SSPs are an important part of our analysis. 

Probabilities of AAWR and ECS are computed by considering the uncertainty in AER RF2011. We also 

provide probabilistic estimates of AAWR and ECS. All of these quantities are computed by incorporating 

the uncertainty in the radiative forcing of climate due to tropospheric aerosols within results of our EM-

GC simulations. We use an asymmetric Gaussian to assign weights to the value of GMST, AAWR or 575 

ECS found for various time series of radiative forcing by aerosols associated with particular values of 

AER RF2011. Figure 5a shows the asymmetric Gaussian function we use to maximize the values of AAWR 

or ECS at the best estimate of AER RF2011 of −0.9 W m−2, accomplished by giving these values the highest 

weighting. The IPCC 2013 “likely” range limits of AER RF2011 of −0.4 and −1.5 W m−2 (Myhre et al., 

2013) are assigned to the one sigma values of the Gaussian, and the AAWR or ECS estimates occurring 580 

at the “likely” range AER RF2011 limits are given the same weighting. The −0.1 and −1.9 W m−2 limits of 

the AER RF2011 range are assigned as the two sigma values of the asymmetric Gaussian, based upon the 

IPCC 2013 description of these two values as being 5 and 95% uncertainty limits (Myhre et al., 2013). 

The Gaussian we use is asymmetric due to the fact that the distribution of the likely range and 5th and 95th 

percentiles of the values of AER RF2011 are not distributed symmetrically from the best estimate of −0.9 585 

W m−2. For example, the likely ranges of AER RF2011 are given as −0.4 W m−2 and −1.5 W m−2; the −0.4 

W m−2 value is 0.5 W m−2 from the best estimate whereas −1.5 W m−2 is 0.6 W m−2 from the best estimate. 
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We fit a Gaussian to the likely range and 5th and 95th percentiles that has slightly different shape on either 

side of the best estimate, as shown in Fig. 5a. 

Figure 5b shows the value of AAWR in °C/decade as a function of the climate feedback parameter, 590 

λΣ, and AER RF2011. We are able to find more good fits to the observed GMST for small values of AER 

RF2011 than at larger values of AER RF2011. Therefore, we bin values of AAWR (Fig. 5b), ECS (Fig. 5c), 

Figure 5. Aerosol weighting method. (a) The weights assigned to an asymmetric Gaussian distribution of AER 

RF2011 based on values provided by chapter 8 of IPCC 2013. The five black circles indicate the assigned weights 

for the AER RF2011 best estimate of −0.9 W m−2, likely range of −0.4 and −1.5 W m−2, and the 5th and 95th confidence 

intervals of −0.1 and −1.9 W m−2. (b) Values of AAWR in °C/decade as a function of climate feedback parameter, 

λΣ, and the value of AER RF2011 associated with various time series for the RF of climate due to tropospheric 

aerosols. The colors denote the various values of AAWR calculated from 1975-2014 using the EM-GC. (c) ECS in 

°C as a function of λΣ and the value of AER RF2011. The colors denote various values of ECS found using the EM-

GC. For panels (b) and (c), model results are shown only for combinations of λΣ and RF due to tropospheric aerosols 

for which good fits to the climate record could be achieved. 
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or future GMST (described in Sect. 3.3) by AER RF2011 and find the probability distribution for values of 

AAWR, ECS, or future GMST within each bin. The resulting probability distributions are assigned the 

weights associated with each value of AER RF2011 in the bins to arrive at the probabilistic estimates of 595 

AAWR or ECS shown in Sect. 3. If we did not use this procedure and instead simply averaged all of the 

values for AAWR and ECS shown in Fig. 5, undue emphasis would be given to model results that occur 

at small AER RF2011 (see Fig. S14 for unweighted ECS values). This aerosol weighting method allows 

the expert assessment of the likely range of RF due to tropospheric aerosols given in Chapter 8 of IPCC 

2013 (Myhre et al., 2013) to be quantitatively incorporated into our computations of AAWR, ECS, and 600 

GMST. 

 

3 Results 

3.1 AAWR, comparison to CMIP6 multi-model ensemble 

An important measure of any climate model is the ability to accurately simulate the human influence on 605 

the global mean surface temperature (GMST) anomaly. We use the attributable anthropogenic warming 

rate (AAWR) found by our highly constrained Empirical Model of Global Climate (EM-GC) to quantify 

how well the CMIP6 multi-model ensemble (see Table S5 for a list of CMIP6 GCMs analyzed in this 

study) is able to simulate the human influence on global warming over the past several decades. The EM-

GC results in Fig. 6 have been constrained by blended near surface air temperature (TAS) and the 610 

temperature at the interface of the atmosphere and the upper boundary of the ocean (TOS) (Griffies et al., 

2016). The CMIP6 multi-model output contains archived fields of TAS and TOS, whereas only a subset 

of GCM groups provide the archived land fraction needed to calculate blended near surface air 

temperature. Cowtan et al. (2015) compare the modeled and measured trend in global temperature over 

1975-2014 and found a 4.0% difference in the trend upon the use of blended temperature from CMIP5 615 

GCMs, rather than global modeled TAS. Their analysis focused on a comparison of modeled and 

measured temperature, not just the anthropogenic component. We have used the method of Cowtan et al. 

(2015) to create blended CMIP6 temperature output, for the CMIP6 GCMs that provide TAS, TOS, and 

the land fraction. Upon our use of blended CMIP6 temperature output for these GCMs, and calculation 

of AAWR for 1975-2014 as described in Sect. 2.3, we find that AAWR based upon blended CMIP6 620 
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temperature is 3.5% lower than AAWR found when using only TAS. Tokarska et al. (2020) estimate an 

effect of 0.013°C/decade in the trend of CMIP6 temperature output upon the use of blended CMIP6 

temperature instead of TAS, while Cowtan et al. (2015) report a difference of 0.030°C/decade between 

the trend in observations and modeled output. Since the difference between values of AAWR found using 

blended CMIP6 temperature output and TAS is so small and does not affect any of our conclusions, we 625 

use TAS output from the CMIP6 multi-model archive because this choice allows the behavior of many 

more GCMs to be examined. 

  Figure 6 compares values of AAWR from 1975-2014 computed using our EM-GC with AAWR 

found utilizing archived output from the CMIP6 multi-model ensemble. Five GMST data sets and five 

OHC records can be used to estimate AAWR with the EM-GC; for each choice, AAWR exhibits 630 

sensitivity to the variation of the time series of radiative forcing due to tropospheric aerosols. Each box 

and whisker plot found using our EM-GC shows, for a particular choice of GMST and OHC data record, 

the 25th, 50th, and 75th percentiles of AAWR (box), and 5th and 95th percentiles (whiskers) found using the 

aerosol weighting method described in Sect. 2.5. The star symbol indicates the minimum and maximum 

values of AAWR for each value of GMST data set and OHC record. The choice of OHC record and 635 

GMST data set has a slight effect on AAWR, as shown by the colored EM-GC symbols in Fig. 6. For 

example, switching from using the HadCRUT record to the CW14 record increases the values of λΣ that 

result in good fits to the climate record, which in turn affects the values of AAWR. The estimate of the 

value of AAWR increases from 0.143°C/decade to 0.153°C/decade when using the Cheng OHC record 

and changing the GMST record from HadCRUT to CW14. The averages of the five 25th, 50th, and 75th 640 

percentiles of AAWR found using the HadCRUT data set for GMST are 0.115, 0.135, and 
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0.160°C/decade, respectively. The 5th and 95th percentile values of AAWR from HadCRUT are 0.097 and 

0.195°C/decade. 

The box and whisker symbol labeled CMIP6 in Fig. 6 shows the 5th, 25th, 50th, 75th, and 95th 

percentiles of AAWR calculated from 50 GCMs, also from 1975-2014, as described in Sect. 2.3. The 645 

stars denote the minimum and maximum values of AAWR from the GCMs. Two CMIP6 models exhibit 

values of AAWR similar to the median values we infer from the HadCRUT, BEG, GISTEMP, NOAAGT, 

and CW14 data records using the EM-GC, in particular INM-CM5-0 (Volodin and Gritsun, 2018) yields 

0.147°C/decade and MIROC6 (Tatebe et al., 2019) results in 0.157°C/decade (Table S3 provides values 

of AAWR for all individual CMIP6 GCMs). The median value of AAWR from the CMIP6 multi-model 650 

ensemble is 0.221°C/decade, about 60% larger than the 50th percentile value of AAWR found using the 

HadCRUT data set for GMST noted above. The 5th, 25th, 75th, and 95th percentiles of AAWR from the 

CMIP6 multi-model ensemble are 0.151, 0.192, 0.245, and 0.299°C/decade, respectively. Some CMIP6 

GCMs exhibit values of AAWR that are almost 0.1°C/decade larger than our largest empirical estimates 

Figure 6. AAWR from the EM-GC and CMIP6 multi-model ensemble for 1975-2014. Five temperature data sets 

and five ocean heat content records are used to compare values of AAWR computed from the EM-GC. The box 

represents the 25th, 50th, and 75th percentiles, the whiskers denote the 5th and 95th percentiles, and the stars show 

the minimum and maximum values of AAWR from the EM-GC based upon the aerosol weighting method 

described in Sect. 2.5. The red box labeled “CMIP6” shows the 25th, 50th, and 75th percentiles, the whiskers 

represent the 5th and 95th percentiles, and the stars denote the minimum and maximum values of AAWR from the 

50 member CMIP6 multi-model ensemble. 
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for 1975-2014; the maximum value of AAWR from the GCMs is 0.354 °C/decade. The maximum value 655 

of AAWR based off the historical climate record using the EM-GC is 0.257°C/decade (NOAAGT data 

set using the Cheng OHC record and a time series for RF due to tropospheric aerosols consistent with 

AER RF2011 equal to −1.6 W m−2). The 95th percentiles of all EM-GC based values of AAWR in Fig. 6 

are below the 75th percentile of AAWR from the CMIP6 multi-model ensemble of 0.245°C/decade, 

supporting the notion that CMIP6 GCMs tend to exhibit a faster rate of anthropogenic warming over the 660 

past four decades than the actual atmosphere.  

Our determination that the rate of global warming from the CMIP6 multi-model ensemble over 

the time period 1975-2014 significantly exceeds the rise in GMST attributed to human activity is aligned 

with a similar finding highlighted in Figure 11.25b of chapter 11 of the IPCC 2013 report that CMIP5 

models tend to warm too quickly compared to the actual climate system over the time period 1975-2014 665 

(Kirtman et al., 2013). The values of AAWR from the CMIP6 multi-model ensemble from our analysis 

present a similar finding as Tokarska et al. (2020), that some of the CMIP6 models over estimate recent 

warming trends, with Tokarska et al. (2020) examining the trend in the human component of GMST from 

1981-2014. We arrive at a similar conclusion that CMIP6 models overestimate the rate of global warming 

for the 1982-2014 time period of AAWR as shown in Table S2. Our results, the finding by the IPCC 2013 670 

report, and Tokarska et al. (2020) appear to be quite different than the conclusion of Hausfather et al. 

(2020) that past climate models have matched recent temperature observations quite well. The Hausfather 

et al. (2020) study does not examine CMIP5 GCMs, let alone CMIP6 GCMs, and the last two rows of 

their Table 1 indicate that the skill of climate models forecasting the change in GMST over time decreased 

considerably between the Third Assessment Report (TAR) and the Fourth Assessment Report (AR4). The 675 

change in temperature over time for the TAR and AR4 only span 17 and 10 years, respectively (Hausfather 

et al., 2020). In Fig. 6, we examine the ability of the GCMs to simulate the rise in GMST attributed to 

humans over a 40 year time period, which provides a better measure of how well the models simulate the 

observations than when using a shorter time period. The temperature change over time for the TAR and 

AR4 examined by Hausfather et al. (2020) ends in 2017, which was right after a very strong ENSO, so 680 

their analysis may be influenced by the 2015 to 2016 ENSO event. In contrast, our analysis of AAWR is 

not influenced by natural variability such as ENSO because we examine the human component of global 
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warming after explicitly accounting for and removing the influence of ENSO on GMST. Consequently, 

our determination of AAWR from observations (Table S1) and GCMs (Table S2) depends only to a small 

extent on the specification of start year (for values ranging from 1970 to 1984) and end year (2004 to 685 

2018). Our analysis shows that upon quantification of the human driver to global warming within both 

the data record and climate models, the CMIP6 GCMs warm faster than observed GMST over the past 

four decades, regardless of precise specification of start and end year. 

 

3.2 ECS 690 

Equilibrium climate sensitivity (ECS) is a metric often used to compare the sensitivity of warming among 

GCMs, as well as with warming inferred from the historical climate record. Figure 7 shows values of ECS 

inferred from the climate record using our EM-GC, five GMST data sets, and five OHC records. As for 

AAWR, the largest variation in ECS is driven by uncertainty in AER RF2011. The colored circles represent 

the ECS values found using the IPCC 2013 best estimate of AER RF2011 of −0.9 W m−2 (Myhre et al., 695 

2013). The ECS values found utilizing the EM-GC are displayed using a box and whisker symbol. The 

middle line represents the median values of ECS, and the box is bounded by the 25th and 75th percentiles. 

The whiskers connect to the 5th and 95th percentiles, and the stars denote the minimum and maximum 

values. We use the aerosol weighting method described in Sect. 2.5 to calculate the percentiles for ECS; 

values of ECS found without aerosol weighting are shown in Fig. S14. Varying the choice of GMST data 700 

record has a slight effect on the value of ECS, whereas the choice of OHC record has a larger effect, as 

indicated by the various heights of the box and whiskers and the maximum values of ECS. In the EM-GC 

framework, the ocean heat export term (QOCEAN) represents disequilibrium in the climate system. We 

compute values of QOCEAN from various records of OHC. If the current value of QOCEAN is as large as 

suggested by the Cheng 2017 and Ishii et al. (2017) OHC records, then Earth’s climate will exhibit a 705 

larger rise in GMST to reach equilibrium than if the value of QOCEAN inferred from the OHC record of 

Balmaseda et al. (2013) is correct. The averages of the 25th, 50th, and 75th percentiles of ECS found using 
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the HadCRUT data set for GMST are 1.49, 1.85, and 2.50°C, respectively. The average best estimate of 

ECS using the HadCRUT data set and an AER RF2011 value of −0.9 W m−2 is 2.01°C. 

 The box and whisker symbol labeled CMIP6 in Fig. 7 shows the 25th, 50th, 75th, and 5th and 95th 710 

percentiles of ECS calculated from output of 28 CMIP6 models, as described in Sect. 2.4. Minimum and 

maximum values are represented by the stars. The values of ECS from the CMIP6 multi-model ensemble 

are larger than the majority of values inferred from the climate record using the EM-GC. The height of 

the box for the CMIP6 multi-model ensemble estimate of ECS is larger than the height of the boxes for 

ECS inferred from the climate record using the EM-GC, indicating that the GCMs exhibit a wide range 715 

of ECS values. The 25th and 75th percentiles of ECS from the CMIP6 multi-model ensemble are 2.84°C 

and 4.93°C, respectively. The 5th percentile of ECS from the CMIP6 multi-model ensemble is 2.19°C, 

and the 95th percentile is 5.65°C (see Table S4 for ECS values for specific models). In contrast, the average 

5th and 95th percentiles from the EM-GC are 1.12°C and 4.12°C, respectively. The median value of ECS 

Figure 7. ECS from the EM-GC and the CMIP6 multi-model ensemble. Five GMST data sets and five ocean heat 

content records are used to compare values of ECS computed from the EM-GC. The box represents the 25th, 50th, 

and 75th percentiles, the whiskers denote the 5th and 95th percentiles, and the stars indicate the minimum and 

maximum values of ECS using the EM-GC based upon the weighting method described in Sect. 2.5. The circles 

denote the value of ECS associated with the best estimate of AER RF2011 of −0.9 W m−2. The red box labeled 

“CMIP6” represents the 25th, 50th, and 75th percentiles, the whiskers denote the 5th and 95th percentiles, and the 

stars indicate the minimum and maximum values of ECS from the 28 member CMIP6 multi-model ensemble. 
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from the CMIP6 multi-model ensemble is 3.74°C, more than double the median value of 1.85°C found 720 

using the HadCRUT temperature record.  

 We tested our approach of calculating ECS utilizing the EM-GC to CMIP6 GCMs by altering the 

EM-GC framework to include CMIP6 output (see the supplement for details). Our results in Fig. S13 

show the validity of our approach. We obtain similar values of ECS for the CMIP6 GCMs using the EM-

GC framework as the Gregory method. The EM-GC method is insensitive to which OHC record is used, 725 

as indicated in Fig. S13a and S13b. 

Figure 8 summarizes values of ECS found utilizing the analysis of the century and a half long 

climate record using our EM-GC, our examination of a 28 member CMIP6 GCM ensemble, and 13 other 

recent studies. The studies are divided into three categories: those that estimated ECS based on 

observations (Historical Analysis), others that used GCM output but constrained the output in some way 730 

Figure 8. Values of ECS from the EM-GC (black), our analysis of the CMIP6 multi-model ensemble (black), 

and 13 other studies grouped by type of analysis. The studies are listed by lead author (first initial of their first 

name and first initial of their last name) and the year of publication, unless there are only two authors, in which 

case initials of both authors are listed. Historical analysis includes Lewis and Grünwald (2018) NL+PG18, Otto 

et al. (2013) AO13, and Skeie et al. (2018) RS18. Constrained GCM output includes Armour (2017) KA17, Cox 

et al. (2018) PC18, Dessler et al. (2018) AD18, Nijsse et al. (2020) FN20, Rugenstein et al. (2020) MR20, 

Sherwood et al. (2020) SS20, Stocker et al. (2013) IPCC 2013, and Tokarska et al. (2020) KT20. GCM output 

includes Proistosescu and Huybers (2017) CP+PH17 and Zelinka et al. (2020) MZ20. 
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(Constrained GCM Output), and studies that examined raw GCM output (GCM Output). We obtain a best 

estimate for ECS of 2.01°C using the HadCRUT data record and a value of AER RF2011 = −0.9 W m−2 

with a range of ECS of 1.12-4.12°C (5th and 95th percent confidence interval). This estimate of ECS 

largely falls within the range provided by IPCC 2013 of 1.5°C to 4.5°C for ECS and is supported by three 

other derivations of ECS from the empirical climate record: 2.0°C (range of 1.2-3.9°C) given by Otto et 735 

al. (2013), 1.87°C (range of 1.1-4.05°C) given by Lewis and Grünwald (2018), and 2.0°C (range of 1.2-

3.1°C) given by Skeie et al. (2018) (all range values are for the 5th and 95th percent confidence interval). 

Our estimate of ECS covers the same range of values given by Cox et al. (2018), Dessler et al. (2018), 

and Nijsse et al. (2020), as illustrated in Fig. 8. Our determination of ECS from the CMIP6 GCMs 

resembles that from Proistosescu and Huybers (2017) and Zelinka et al. (2020) as indicated in the GCM 740 

Output category of Fig. 8. 

 Recent studies have shown that the CMIP6 multi-model ensemble exhibits higher values of ECS 

than the CMIP5 models because of larger, positive cloud feedbacks within the latest models (Gettelman 

et al., 2019; Meehl et al., 2020; Sherwood et al., 2020; Zelinka et al., 2020). The IPCC 2013 report gives 

a likely range of 1.5°C to 4.5°C for ECS (Stocker et al., 2013), and some of the CMIP6 GCMs analyzed 745 

in this study have values of ECS more than 1°C above this range. However, some in the climate 

community seem to currently doubt whether the very large values of ECS are representative of the real 

world (Forster et al., 2020; Lewis and Curry, 2018; Tokarska et al., 2020). Gettelman et al. (2019) found 

that the newest version of the Community Earth System Model (CESM2) has a higher value of ECS than 

CESM1 (5.3°C versus 4.0°C) and urge the climate community to work together to determine the 750 

plausibility of such high values of ECS. Zhu et al. (2020) found that the high values of ECS in CESM2 

and other GCMs is not supported by the paleoclimate record and are biased too warm. An analysis by 

Nijsse et al. (2020) obtains a median value of ECS from the CMIP6 multi-model ensemble of 2.6°C and 

range of 1.52-4.03°C (5th and 95th percentiles) coupled to a two-box energy balance model and the climate 

record. Similarly, Sherwood et al. (2020) conclude cooling during the Last Glacial Maximum provides 755 

strong evidence against ECS being greater than 4.5°C and conclude ECS lies within the range of 2.3 to 

4.7°C at the 5th to 95th percent confidence intervals. 
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We obtain a wide range of ECS values from our EM-GC simulations of the climate record due to 

consideration of the uncertainty in the radiative forcing of climate due to tropospheric aerosols (Figs. 5c 

and 8). However, under one circumstance, we find values of ECS using the EM-GC that are similar to the 760 

maximum value of ECS from the CMIP6 multi-model ensemble. Our very large estimate of ECS occurs 

if we assume that anthropogenic aerosols have exhibited very strong cooling and offset a large amount of 

greenhouse gas warming, such that the observed GMST record can only be well simulated under the 

condition of large climate feedback (i.e., values of λΣ in Eq. (3) greater or equal to 2.5 W m−2 °C−1). If 

aerosols have truly strongly cooled the climate, offsetting the vast majority of the rise in RF due to 765 

greenhouse gases as suggested by Shen et al. (2020), the actual value of ECS may lie close to 5°C or 

larger. Under the more likely scenario that aerosols have not cooled this strongly as suggested by Bond 

et al. (2013), then it is more feasible that ECS lies well below 5°C. The highest values of ECS found using 

our analysis (red portion of Fig 5c) are assigned low weights due to the assessment by Myhre et al. (2013) 

that the large AER RF2011 associated with these ECS values is unlikely. 770 

Four empirical determinations of ECS (our study plus Lewis and Grünwald (2018), Otto et al. 

(2013), and Skeie et al. (2018)) and the CMIP6-constrained estimates of Cox et al. (2018), Dessler et al. 

(2018), and Nijsse et al. (2020) are in slight contrast with the 2.3-4.7°C range for ECS (5th and 95th 

confidence interval) published recently by Sherwood et al. (2020) (Fig 8). As noted above, Sherwood et 

al. (2020) use paleoclimate data to rule out the high range of ECS. They rely on a determination that the 775 

feedback due to clouds is moderately to strongly positive to rule out the low range of ECS found by our 

analysis and the studies noted above. We caution that knowledge of the cloud feedback from observations 

is generally limited to databases such as the International Satellite Cloud Climatology Project (ISCCP) 

(Schiffer and Rossow, 1983) and Pathfinder Atmospheres Extended (PATMOS-x) (Foster and Heidinger, 

2013) that, while monumental in terms of complexity and scope, cover only a fairly short (i.e., about 36 780 

years) part of the century and a half climate record (Klein et al., 2017; Sherwood et al., 2020). Most 

assessments of total cloud feedback rely on some combination of observations such as ISCCP, PATMOS-

x, or other satellite records together with the results of regression analysis, GCM projections, and large 

eddy simulations that are able to resolve some of the convective processes involved in cloud formation 

(Klein et al., 2017; Sherwood et al., 2020). The most important component of the global cloud feedback 785 
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is tropical low clouds, which Sherwood et al. (2020) consider to exert a positive feedback on climate 

based largely on the results of Klein et al. (2017). The determination by Klein et al. (2017) of a likely 

positive feedback for tropical low altitude clouds is based on the mean and standard deviation of the 

central value of this feedback determined by five studies, even though four of these studies exhibit 

uncertainties that encompass zero feedback and the fifth nearly reaches zero (their Fig. 3). This fact, 790 

combined with the recent study by Weaver et al. (2020) who report no long term statistically significant 

trend in global cloud reflectivity at 340 nm averaged between 45° S and 45° N based on analysis of data 

collected by a variety of NOAA and NASA satellite instruments, causes us to suggest the true value of 

ECS may lie below the 2.3°C lower limit given by Sherwood et al. (2020). 

In our model framework, the largest uncertainty in ECS is driven by imprecise knowledge of the 795 

radiative forcing of climate by tropospheric aerosols. As shown in Fig. 5c, a wide range of ECS values 

can be inferred from the century and a half long climate record. We stress that each value of ECS shown 

in Fig. 5c is based upon a simulation for which χ2
ATM, χ2

RECENT, and χ2
OCEAN are all less than or equal to 

2. Better knowledge of AER RF for the contemporary atmosphere would lead to a reduction in the 

uncertainty of ECS. Numerous studies of the climate record, including our century and a half simulations, 800 

infer the possibility of lower values of ECS than was given by a recent analysis of studies that involve 

examination of data from compendiums such as ISCCP and PATMOS-x (Sherwood et al., 2020). 

However, Sherwood et al. (2020) did not examine consistency of the inferred value of ECS with the 

ability of models to accurately simulate the GMST anomaly between 1850 and present. 

 805 

3.3 Future projections 

3.3.1 CMIP6 

The CMIP6 multi-model archive provides future projections of the GMST anomaly relative to pre-

industrial (ΔT) using the ScenarioMIP Shared Socioeconomic Pathways (SSPs). Figure 9 shows the 

CMIP6 multi-model ensemble projections of ΔT for the four SSPs (SSP1-1.9, SSP1-2.6, SSP4-3.4, and 810 

SSP2-4.5) highlighted in our analysis. Each SSP scenario has varying amounts of gridded, monthly mean 

TAS projections submitted to the CMIP6 archive by GCMs (indicated on each plot). Global, monthly ΔT 

was created by averaging the TAS output over the globe with a cosine latitude weighting. The global, 
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monthly ΔT time series for all of the runs for each CMIP6 GCM were averaged together to obtain one 

time series of ΔT. The varying amount of GCM output available for each SSP scenario is due to the fact 815 

that: a) SSP1-2.6 and SSP2-4.5 are Tier 1 scenarios (O’Neill et al., 2016) and are designated as priority 

over the other SSPs (as described in Sect. 2.2.2), and b) not all GCMs have provided results to the CMIP6 

archive at the time of the analysis. More CMIP6 multi-model output will likely become available as 

modeling groups who have not submitted output to the CMIP6 archive finalize their results. However, we 

do not expect additional GCM simulations will affect our conclusions unless the GCM output is 820 

significantly different than that currently available. 

 The red trapezoid in Fig. 9 labeled as the IPCC 2013 likely range is the same trapezoid as that 

displayed on Figure 11.25b from chapter 11 of the IPCC 2013 report (Kirtman et al., 2013). All of the 

recent observations of ΔT from HadCRUT lie within the likely range of warming designated by this 

trapezoid. Many of the projections of the rise in ΔT from the CMIP6 multi-model ensemble lie above the 825 

IPCC 2013 likely range of warming. The Paris Agreement target of 1.5°C and upper limit of 2.0°C are 

shown as yellow circles, included to allow for comparison of the future projections of ΔT from the CMIP6 

multi-model ensemble with the goals of the agreement. The thick blue line on each plot is the CMIP6 

multi-model mean of ΔT, and the dashed blue lines are the minimum and maximum ΔT projections from 

the CMIP6 multi-model ensemble. For SSP1-1.9, the multi-model mean projection of ΔT in 2100 from 830 

the CMIP6 GCMs lies just above the Paris Agreement target at 1.6°C, whereas for SSP1-2.6 the CMIP6 

multi-model mean reaches the Paris Agreement upper limit of 2.0°C at the end of this century. For both 

SSP4-3.4 and SSP2-4.5, the end of century CMIP6 multi-model mean lies above the Paris Agreement 

upper limit at 3.0°C and 3.1°C, respectively.  
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 Figure 9 illustrates there is a bimodality of CMIP6 multi-model projections of ΔT, with a few 835 

GCMs having future values of ΔT that are considerably higher than others. This divergence for GCM 

projections of ΔT is especially evident in Fig. 9a, c, and d. The two CMIP6 GCMs that have the highest 

values of ΔT across the four SSPs are CanESM5 (Swart et al., 2019) and UKESM1 (Sellar et al., 2020). 

The CanESM5 and UKESM1 GCMs have the highest values of AAWR (0.354°C/decade and 

0.299°C/decade, respectively), large values of ECS (5.70°C and 5.40°C, respectively), and exceed 840 

observed ΔT reported by HadCRUT for the past few decades (apparent in Fig. 9). 

  

3.3.2 EM-GC 

Figure 9. Historical simulations and future projections of GMST from the CMIP6 multi-model 

ensemble for several SSP scenarios. (a) GCM simulations from the Historical experiment, and future 

model projections from SSP1-1.9. Observations (black) are from HadCRUT to the end of 2019. The 

IPCC 2013 likely range of warming (red) is from Figure 11.25b from chapter 11 of the IPCC 2013 

report. The CMIP6 multi-model mean (thick, blue) and minimum and maximum (dashed, blue) lines 

are shown. The Paris Agreement target of 1.5°C and upper limit (yellow) of 2.0°C are included to 

demonstrate how the GCM projections compare. (b) Future GMST projections from SSP1-2.6. (c) 

Future GMST projections from SSP4-3.4. (d) Future GMST projections from SSP2-4.5. 
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The EM-GC is also used to project future changes in ΔT using the SSPs. Figure 10 shows the GMST 

anomaly in 2100 from pre-industrial (ΔT2100) as a function of the climate feedback parameter and AER 845 

RF2011, for the four SSPs highlighted throughout. Only model runs from the EM-GC that achieved a good 

fit to the climate record (χ2
ATM ≤ 2, χ2

RECENT ≤ 2, χ2
OCEAN ≤ 2) are shown. The EM-GC runs that satisfy 

these three χ2 constraints but fall outside of the IPCC 2013 range for AER RF2011 (Myhre et al., 2013) are 

shaded grey (left hand side of each panel). We do not consider the EM-GC projections that lie outside of 

the IPCC 2013 range for AER RF2011 in our projections of ΔT, yet these results are shown to illustrate 850 

that the EM-GC can fit the climate record with estimates of the RF due to tropospheric aerosols that lie 

below (i.e., less cooling) of the 5th confidence interval of −0.1 W m−2 for AER RF2011 given by IPCC 

2013. We cannot establish any good fits of the climate record for AER RF2011 with a cooling stronger 

Figure 10. ΔT2100 as a function of climate feedback parameter and tropospheric aerosol radiative forcing in 2011 

using the EM-GC. (a) Future GMST change for SSP1-1.9. The region outside of the AER RF2011 range provided 

by IPCC 2013 is shaded (grey). Colors denote the GMST change in year 2100 relative to pre-industrial. The color 

bar is the same across all four panels for comparison. (b) GMST anomaly for SSP1-2.6. (c) Future temperature 

change for SSP4-3.4. (d) GMST anomaly for SSP2-4.5. 
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than about −1.6 W m−2. The range of ΔT2100 we compute using the EM-GC for SSP1-1.9, SSP1-2.6, SSP4-

3.4, and SSP2-4.5 are 0.65-2.16°C, 0.82-2.78°C, 1.00-3.28°C, and 1.21-3.78°C, respectively. Results for 855 

SSP4-6.0, SSP3-7.0, and SSP5-8.5 are shown in Fig. S15: ΔT2100 ranges are 1.41-4.47°C, 1.84-5.56°C, 

and 2.13-6.75°C for these three scenarios. 

The large range of T2100 found for any given SSP scenario (i.e., a factor of 3.1 difference between 

the smallest and largest end of century warming for SSP2-4.5) is caused by the fact that the climate record 

can be fit nearly equally well by a considerably large combination of the climate feedback parameter (our 860 

) and scenarios for radiative forcing due to tropospheric aerosols. The more aerosols have cooled, 

offsetting the relatively well-known warming due to GHGs, the larger  must be to fit the climate record. 

Since the RF of aerosols is set to diminish in the future due largely to public health concerns (Lelieveld 

et al., 2015; Shindell et al., 2016; Smith and Bond, 2014), the part of our model ensemble requiring 

relatively large values of  to achieve a good fit to the climate record will result in higher values of 865 

T2100 than other members of our model ensemble with small values of .  Most GCMs sample only a 

small portion of the possible combinations of  and AER RF2011 shown in Figs. 10 and S8. 

 

3.3.3 Comparing CMIP6 and EM-GC  

Time series of future projections of ΔT from the EM-GC can be illustrated as probabilistic 870 

forecasts. Figure 11 shows the change in future ΔT for SSP1-1.9, SSP1-2.6, SSP4-3.4, and SSP2-4.5 

colored by the probability of reaching at least that rise in ΔT by the end of the century. The EM-GC 

probabilities are computed from ensemble members for model runs constrained by the HadCRUT data 

records for GMST and the average of 5 OHC data records (Fig. S8) based upon the aerosol weighting 

method, described in Sect. 2.5. The trapezoid from chapter 11 of IPCC 2013 (Kirtman et al., 2013) is 875 

shown on Fig. 11 in black to highlight that the EM-GC projections of the future rise in ΔT lie within the 

IPCC 2013 likely range of warming. The Paris Agreement target and upper limit are included to compare 

the EM-GC projections of future ΔT to the Paris Agreement goals. The white shaded region is the EM-

GC’s median estimate of future ΔT for each SSP scenario. The median estimate for ΔT2100 for simulations 

using SSP1-1.9 and SSP1-2.6 falls below the Paris Agreement target at 1.0°C and 1.3°C, respectively. 880 



40 

 

The median estimate of ΔT2100 from the EM-GC for SSP4-3.4 is between the Paris Agreement target and 

upper limit at 1.6°C. For SSP2-4.5 the median estimate of ΔT2100 is just below the Paris Agreement upper 

limit at 1.9°C. The CMIP6 minimum, multi-model mean, and maximum projections of ΔT, identical to 

those in Fig. 9, are also shown in Fig. 11. The CMIP6 minimum projection of the rise in ΔT falls near the 

EM-GC median estimate of ΔT for each SSP scenario. The CMIP6 multi-model mean value of the future 885 

change in ΔT falls below the EM-GC maximum value of ΔT, while the CMIP6 maximum value is far 

above the maximum projections of the future rise in ΔT using the EM-GC. Results for SSP4-6.0, SSP3-

7.0, and SSP5-8.5 are provided in Fig. S16.Figure 12 compares probability distribution functions (PDFs) 

for the projection of ΔT2100 utilizing the EM-GC with the HadCRUT GMST record and average of the 

five OHC data set and the CW14 GMST record combined with the Cheng 2017 OHC record, and the 890 

CMIP6 multi-model ensemble. The CW14 PDF is shown to illustrate the slight sensitivity of our 

projections of ΔT2100 to the choice of GMST and OHC records. For the CMIP6 multi-model results, we 

Figure 11. Probabilistic forecasts of the future rise in ΔT from the EM-GC for several SSPs. (a) Future projections 

of ΔT for SSP1-1.9. Observations (orange) are from HadCRUT. The IPCC 2013 likely range of warming (black) 

is from Figure 11.25b of chapter 11 of IPCC 2013. The Paris Agreement target and upper limit (yellow) are shown 

for comparison to EM-GC projections. The CMIP6 minimum, multi-model mean, and maximum values of ΔT are 

shown to compare to EM-GC projections. Colors denote the probability of reaching at least that temperature by the 

end of the century. (b) Future projections of ΔT for SSP1-2.6. (c) Future projections of ΔT for SSP4-3.4. (d) Future 

projections of ΔT for SSP2-4.5. 
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compute the probabilities of achieving the Paris Agreement target of 1.5°C and upper limit of 2.0°C (at 

the end of the century) by calculating how many of the GCMs participating in each scenario have 

projections of ΔT2100 below the target or upper limit. In contrast, the probabilities for the projections of 895 

ΔT2100 using our EM-GC are computed using the aerosol weighting method, described in Sect. 2.5. The 

height of each histogram represents the probability that a particular range of ΔT2100, defined by the width 

of each line segment, will occur. The left-hand y-axis displays the probability of ΔT2100 using the EM-

GC, while the right-hand y-axis represents the probability of ΔT2100 using the CMIP6 multi-model 

simulations. The values on the CMIP6 multi-model ensemble y-axis are double the values on the EM-GC 900 

y-axis, for visual comparison. The solid black line denotes the Paris Agreement target and the dotted 

Figure 12. Probability density functions (PDF) for ΔT2100
 found using the EM-GC with the HadCRUT temperature 

record (dark blue), the EM-GC with the CW14 temperature record (light blue), and CMIP6 multi-model results 

(red). (a) PDF for EM-GC results and CMIP6 multi-model results for SSP1-1.9. The left-hand y-axis is for EM-

GC probabilities and the righthand y-axis is for the CMIP6 multi-model ensemble probabilities. (b) PDF for SSP1-

2.6. (c) PDF for SSP4-3.4. (d) PDF for SSP2-4.5. 



42 

 

black line signifies the upper limit on each panel. The PDFs for SSP4-6.0, SSP3-7.0, and SSP5-8.5 are 

shown in Fig. S17. 

Numerical values of probabilities for staying at or below the Paris Agreement target or upper limit 

for all seven SSP scenarios are given in Table 1. Results utilizing the EM-GC and HadCRUT GMST 905 

combined with the average OHC are shown in the top half of the table, and probabilities using the CW14 

GMST and Cheng 2017 OHC records are shown in the bottom half. The CMIP6 multi-model projections 

exhibit lower probabilities of achieving the goals of the Paris Agreement than the projections using the 

EM-GC. In the creation of ScenarioMIP, SSP1-2.6 was designed to be a scenario that achieved the Paris 

Agreement goals and likely (greater than 66% probability (Stocker et al., 2013)) limited warming below 910 

2.0°C, and was expected to produce a future rise in ΔT2100 of 1.7°C (O’Neill et al., 2016). The CMIP6 

multi-model probability of SSP1-2.6 to stay at or below 2.0°C is 51.5%, as shown in Table 1. Based on 

our analysis, the CMIP6 multi-model ensemble does not indicate SSP1-2.6 as being a 2.0°C pathway, 

because it will only provide about a 50:50 likelihood of limiting warming below 2.0°C.  

Table 1. .List of SSP scenarios analyzed in this study and the probabilities of achieving the Paris Agreement target 915 

or upper limit based on the EM-GC using the HadCRUT4 GMST data set and average of the five OHC records and 

the CMIP6 multi-model ensemble. The second half of the table shows the probabilities of achieving the Paris 

Agreement target or upper limit based on the EM-GC using the CW14 GMST record and Cheng 2017 OHC data 

set. The probabilities using the EM-GC are computed using the aerosol weighting method. The probabilities using 

the CMIP6 models are computed by calculating how many of the models for that scenario are below the temperature 920 

limits compared to the total number of models. 

 
Probability of Staying at or 

Below 1.5°C 

Probability of Staying at or 

Below 2.0°C 

 EM-GC CMIP6 EM-GC CMIP6 

SSP1-1.9 84.1% 50.0% 96.7% 80.0% 

SSP1-2.6 64.8% 15.2% 88.4% 51.5% 

SSP4-3.4 37.6% 0.0% 74.0% 16.7% 

SSP2-4.5 10.5% 0.0% 53.1% 3.1% 

SSP4-6.0 0.6% 0.0% 26.6% 0.0% 

SSP3-7.0 0.0% 0.0% 1.3% 0.0% 

SSP5-8.5 0.0% 0.0% 0.0% 0.0% 
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 Using CW14 and Cheng OHC Record 

SSP1-1.9 82.4%  97.5%  

SSP1-2.6 57.0%  85.5%  

SSP4-3.4 28.1%  69.6%  

SSP2-4.5 4.2%  43.2%  

SSP4-6.0 0.0%  17.4%  

SSP3-7.0 0.0%  0.0%  

SSP5-8.5 0.0%  0.0%  

 Projections of ΔT2100 based on the EM-GC provide more optimism for achieving the Paris 

Agreement goals than the CMIP6 multi-model ensemble. The SSP1-1.9 scenario results in an 84.1% 

probability of ΔT2100 staying at or below 1.5°C, while SSP1-2.6 gives a 64.8% likelihood of global 

warming staying at or below 1.5°C by end of century (Table 1) using the HadCRUT temperature record. 925 

The probabilities decrease to 82.4% and 57.0% upon the use of the CW14 temperature record and OHC 

from Cheng 2017. The SSP1-1.9 scenario involves extreme climate mitigation that is unlikely to happen 

in the next few years with atmospheric CO2 peaking close to present day values (Fig. 2a). The SSP1-2.6 

scenario requires less climate mitigation than SSP1-1.9 (though still requires net negative emissions 

towards the end of the century) and provides greater than a 50% likelihood of staying at or below the 930 

Paris Agreement target, thus we designate SSP1-2.6 as the 1.5°C pathway in our model framework instead 

of SSP1-1.9. This result is supported by Tokarska et al. (2020), who show that the SSP1-2.6 scenario has 

a likely range of warming at 1.33-1.99°C above preindustrial by end of century, based upon filtering 

CMIP6 GCM output on the level of agreement with the observed climate record. Previous studies 

suggested that a 2.6 W m−2 scenario was in line with the 2.0°C goal (Kriegler et al., 2014, 2015; O’Neill 935 

et al., 2016; Riahi et al., 2015). However, our analysis suggests the 2.6 W m−2 scenario provides between 

a 57-65% probability of achieving the more stringent 1.5°C target depending on the choice of GMST and 

OHC data records, and that a 3.4 W m−2 scenario (i.e., SSP4-3.4) is in line with the 2.0°C goal and has 

about a 70-74% probability of limiting warming to 2.0°C (Table 1) depending on the choice of the same 

data records. We therefore designate SSP4-3.4 as the 2.0°C pathway. Significant climate mitigation 940 



44 

 

efforts will be required to keep the growth of CO2, CH4, and N2O below the trajectories shown for SSP1-

2.6 (1.5°C pathway in our model framework) and SSP4-3.4 (2.0°C pathway) (Fig. 2).  

 

3.3.4 Transient climate response and carbon budgets 

The transient climate response to cumulative emissions (TCRE) relates the rise in ΔT to the cumulative 945 

amount of carbon released to the atmosphere by human activities. We illustrate TCRE from the EM-GC 

as probabilistic forecasts, as shown in Fig. 13, to analyze future projections of ΔT. Figure 13 displays the 

GMST anomaly from pre-industrial versus the cumulative emissions of CO2, in Gt C, since 1870. The 

orange line represents observations of ΔT from HadCRUT plotted against cumulative carbon emissions 

from the Global Carbon Budget project (Friedlingstein et al., 2019). The colors represent the probability 950 

that ΔT will rise to the indicated level, considering only acceptable fits to the climate record, for the EM-

GC ensemble run constrained to match GMST from HadCRUT and the mean OHC record from the five 

OHC data records (Fig. S8) and using the aerosol weighting method. The dotted and dashed horizontal 

lines are placed at ΔT values of 1.5°C and 2.0°C, the target and upper limit of the Paris Agreement. The 

intersections of the light grey curve with the dotted horizontal line represent the 95% probability of the 955 

Paris Agreement target being achieved, and the intersections of the light grey curve with the dashed 

horizontal line represent the 95% probability of the Paris Agreement upper limit being achieved. The 

intersection of these horizontal lines with the dark grey and the black curves are the 66% and 50% 

probabilities, respectively of the Paris Agreement target or upper limit being attained. The SSP5-8.5 
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scenario was used to calculate TCRE because this scenario has the highest cumulative carbon emissions 960 

needed to provide the most complete relation between ΔT and future emissions. 

 Table 2 contains estimated carbon budgets from our analysis in the form of the total CO2 emissions 

(Gt C) since 1870 that result in a 95%, 66%, and 50% probability of the future rise in ΔT staying below 

the Paris Agreement target and upper limit and the future CO2 emissions since 2019. Examination of 

Friedlingstein et al. (2014) and Murphy et al. (2014) led to our determination that the uncertainty in 965 

estimates of atmospheric CO2 from emissions driven runs of CMIP5 coupled atmospheric / carbon cycle 

models is about 10% (1-sigma). We therefore use 10% as the uncertainty in how atmospheric CO2 will 

respond to the prescribed carbon emissions. We apply the 10% uncertainty estimate to the future 

remaining carbon budget. To obtain a 95% likelihood of limiting the rise in future ΔT below 1.5°C, only 

746 ± 75 Gt C since 1870 can be released into the atmosphere. For a 66% likelihood, 906 ± 91 Gt C can 970 

Figure 13. Transient climate response to cumulative CO2 emissions for SSP5-8.5 using the EM-GC. Simulations 

of the rise in ΔT versus cumulative CO2 emissions in units of Gt C. The orange line is observations of ΔT from 

HadCRUT plotted against cumulative carbon emissions from the Global Carbon Budget project (Friedlingstein et 

al., 2019). The dotted and dashed lines denote the Paris Agreement target and upper limit, respectively. The EM-

GC projections represent the probability that the future value of ΔT will rise to the indicated level, considering 

only acceptable fits to the climate record. The light grey, dark grey, and black curves denote the 95, 66, and 50% 

probabilities of either the Paris target (intersection of dotted horizontal lines) or upper limit (intersection of dashed 

lines with curves) being achieved. 
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be released, while for a 50% probability 974 ± 97 Gt C in total can be emitted. To have a 95% probability 

of ΔT staying below the 2.0°C upper limit, 933 ± 93 Gt C since 1870 can be released into the atmosphere. 

For a 66% likelihood of the rise in ΔT staying below the upper limit, 1,203 ± 120 Gt C can be emitted, 

whereas for a 50% likelihood 1,323 ± 132 Gt C can be released. To place these numbers in their proper 

perspective, about 638 Gt C have been released from 1870 through the end of 2019 due to land use change, 975 

fossil fuel emissions, gas flaring, and cement production according to the Global Carbon Budget project 

(Friedlingstein et al., 2019). In our model framework, after 2019 society can therefore only emit another 

108 ± 75, 268 ± 91, or 336 ± 97 Gt C to have either a 95%, 66%, or 50% chance of limiting warming to 

1.5°C. These future emissions estimates rise to 295 ± 93, 565 ± 120, and 685 ± 132 Gt C to have a 95%, 

66%, or 50% chance of limiting warming to 2.0°C. 980 

Table 2. Total cumulative and future carbon emissions that will lead to crossing the Paris temperature thresholds 

based on the EM-GC. Estimates of ΣCO2
EMISSIONS that would cause global warming to stay below indicated 

thresholds for 95%, 66%, and 50% probabilities. The values in the top half of the table are the estimates of total 

cumulative carbon emissions that will lead to crossing the Paris Agreement thresholds with the 10% uncertainty 

included. The values in the bottom half of the table are the estimates of future cumulative carbon emissions after 985 

2019 that will lead to crossing the Paris Agreement thresholds, with the same 10% uncertainty. The range of years 

given represents when the Paris Agreement thresholds will be passed based upon the rate of emissions from SSP5-

8.5 or continuing the 2019 rate of emissions of 11.7 Gt C yr−1. 

Total ΣCO2
EMISSIONS since 1870 from the EM-GC 

 95% 66% 50% 

1.5°C 746 ± 75 Gt C 906 ± 91 Gt C 974 ± 97 Gt C 

2.0°C 933 ± 93 Gt C 1203 ± 120 Gt C 1323 ± 132 Gt C 

Future ΣCO2
EMISSIONS (assuming 638 Gt C released between 

1870-2019) 

 95% 66% 50% 

1.5°C 

108 ± 75 Gt C 

(2022a-2032a) 

268 ± 91 Gt C 

(2032-2042) 

336 ± 97 Gt C 

(2036-2045) 

(2021b-2034b) (2034-2049) (2039-2056) 

2.0°C 
295 ± 93 Gt C 

(2033a-2043a) 

565 ± 120 Gt C 

(2046-2056) 

685 ± 132 Gt C 

(2051-2061) 

(2036b-2052b) (2057-2077) (2066-2088) 
a Year the 1.5°C target or 2.0°C upper limit will be exceeded 

assuming the rate of emission inferred from SSP5-8.5 and the 1-

sigma uncertainty 
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b Year the 1.5°C target or 2.0°C upper limit will be exceeded 

assuming the 2019 rate of emission of 11.7 Gt C yr-1 and the 1-

sigma uncertainty 

 

An analysis by van Vuuren et al. (2020) assesses TCRE based on cumulative emissions after 2010. 990 

Their analysis indicates only 228 Gt C can be released since 2010 to have a 66% probability of achieving 

the Paris Agreement target of limiting the rise in ΔT below 1.5°C in 2100. They base this estimate on an 

analysis of climate sensitivity and carbon cycle components, including an adjustment to TCRE for the 

tendency of CMIP5 GCMs to warm too quickly that had been suggested by Millar et al. (2017). In our 

model framework, we find a 66% probability of limiting warming to 1.5°C upon the release of 369 ± 91 995 

Gt C between 2010 and 2100. It is not surprising our analysis provides somewhat more latitude for the 

probabilistic forecasts of limiting warming to 1.5°C compared to estimates based on analyses of GCM 

output, given the tendency of CMIP5 GCMs (Hope et al., 2017) and CMIP6 GCMs (Sect. 3.1) to warm 

so much faster than the observed climate system. Regardless, between 2010 and 2019, about 101 Gt C 

has been released to the atmosphere (Friedlingstein et al., 2019), so the remaining budget after 2019 for 1000 

limiting warming to 1.5°C is about 127 Gt C according to van Vuuren et al. (2020). At the pace of 

emissions in 2019 of 11.7 Gt C yr−1, society will cross this threshold in about a decade. Our model 

framework suggests a remaining budget of 268 ± 91 Gt C (Table 2). Society has at most about 20 years, 

or 15-29 years based on the 10% uncertainty, to severely limit carbon emissions to have a 66% probability 

to achieve the target of the Paris Agreement.  1005 

 

3.3.5 Blended methane 

Atmospheric abundances of methane will likely continue to increase as society expands natural gas 

production and agriculture, making it important to analyze the impact of various methane scenarios on 

the rise of GMST. It is unlikely future atmospheric methane abundances will progress as indicated by 1010 

SSP1-2.6 (see Fig. 2), a low radiative forcing scenario. Current observations shown in Fig. 2 illustrate 

that the methane mixing ratio is following SSP2-4.5 and has missed the initial decline needed to follow 

the SSP1-2.6 pathway. To analyze the effect varying future methane abundance pathways will have on 

GMST, we have generated linear interpolations of the SSP1-2.6 and SSP3-7.0 methane future abundances 
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and created four alternate scenarios (see Fig. S18), which we call blended methane scenarios. We can 1015 

substitute one of the blended methane scenarios into the EM-GC instead of using the projection of 

methane specified by the SSP database to quantify the sensitivity of future warming to various evolutions 

of methane on the rise in GMST. 

 Figure 14 shows the probability of staying at or below the Paris Agreement target (gold colors) or 

upper limit (purple colors) for SSP1-2.6 (solid) and SSP4-3.4 (dotted) as a function of the methane mixing 1020 

ratio in 2100. The lowest atmospheric methane mixing ratio value in 2100 of 1.15 ppm is from the SSP1-

2.6 methane pathway, the highest mixing ratio in 2100 of 3.20 ppm is from the SSP3-7.0 methane 

pathway, and the four in between are the blended methane scenarios. As the atmospheric methane 

abundance increases, the likelihood of achieving the goals in the Paris Agreement decreases. For SSP1-

2.6, the probability of limiting the rise in GMST below the 1.5°C target begins at 65% using the SSP1-1025 

2.6 designated methane pathway and decreases as the blended scenarios are considered. The probability 

of achieving the Paris Agreement target declines to just under 50% if methane reaches 2.4 ppm in 2100 

and to 34% if methane increases to 3.2 ppm in 2100. Even though we have labeled SSP1-2.6 the 1.5°C 

Figure 14. Probability of staying at or below the Paris Agreement target and upper limit for SSP1-2.6 and SSP4-

3.4 as a function of varying methane scenarios using the EM-GC. The atmospheric methane scenarios are 

calculated using linear combinations of methane abundances from SSP1-2.6 and SSP3-7.0 to span the range of 

future methane abundances. 
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pathway in our model framework, limiting future warming to this challenging amount can likely only be 

achieved by strict limits on both emissions of carbon dioxide and methane.  1030 

In Sect. 3.3.3, we showed that if all GHGs follow the SSP4-3.4 scenario there would be a 74% 

probability of limiting warming to 2.0°C. If the methane pathway instead follows SSP1-2.6, which has an 

end of century mixing ratio of only 1.15 ppm, then the probability of achieving the Paris Agreement goal 

rises to 82%. However, if the methane pathway follows SSP3-7.0 and the end of century mixing ratio 

increases to 3.2 ppm, then the probability of achieving the Paris Agreement goal declines to 65%. 1035 

Reducing the future anthropogenic emissions of methane might be more challenging than 

controlling future emissions of carbon dioxide, simply because methane has such a wide variety of sources 

related to energy, agriculture, and ruminants (Kirschke et al., 2013). Given the current widespread use of 

methane as a source of energy in the United States and parts of Europe (Saunois et al., 2020), combined 

with the continued growth in the global number of ruminants (Wolf et al., 2017), it seems unrealistic for 1040 

atmospheric methane to follow the peak and sharp decline starting in 2025 of the SSP1-2.6 pathway (Fig. 

3b). Our analysis suggests failure to limit methane to the SSP1-2.6 trajectory will have a larger impact on 

the achievement of the 1.5°C Paris goal compared to the 2.0°C upper limit. Figure 14 is designed to 

provide some perspective on the importance of future controls on limiting the growth of methane on 

projections of end of century warming. 1045 

 

3.3.6 Climate feedback 

In our analysis above, we have assumed the value of λΣ (and thus λ, see Eq (3) and corresponding text in 

Sect. 2.1) is constant over time. Time-constant λΣ is the simplest assumption one can make. The climate 

record can be fit very well based on this conjecture, as shown in Fig. 1a and Fig. S3a. However, many 1050 

GCMs suggest that climate feedback may vary over time (Marvel et al., 2018; Rugenstein et al., 2020). 

In our EM-GC framework, we are able to conduct calculations allowing the value of λΣ to vary over time, 

and to project future temperature with such an assumption. Up until this point, our simulations have used 

λΣ to be consistent with how our model results had been presented in prior publications (Canty et al., 

2013; Hope et al., 2017). Recall from Sect. 2.1 that λΣ = λP – λ. To assess the effect of time varying climate 1055 

feedback on our projections of global warming, we examine the sensitivity in terms of λ−1, because this 
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quantity scales proportionally with ΔT and also our use of the inverse λ allows for direct comparison to 

the results of Marvel et al. (2018) and Rugenstein et al. (2020). 

 Figure 15 shows the change in observed and modeled GMST under several assumptions regarding 

λ−1. The first assumption is that the value of λ−1 is constant over time (Figs. 15a, e). We are able to fit the 1060 

climate record over the past 170 years (χ2
ATM) and past 80 years (χ2

RECENT) extremely well for constant 

λ−1. To simulate variations of  λ−1 over time, we alter runs from the EM-GC that were conducted with 

constant λ−1, by modifying the ΔTATM,HUMAN component of these original EM-GC simulations. The value 

of λ−1 takes the same shape as the SSP4-3.4 RF time series, scaled, and shifted so that the new time series 

maintains an average value of λ−1 over the observational record that is identical to the constant λ−1 value. 1065 

In simulations described below, the value of λ−1 is assumed to continue to rise into the future, at the same 

proportionality to ΔTATM,HUMAN as the prior increase.  

If we allow the value of λ−1 to scale with anthropogenic forcing such that the maximum value of 

χ2
ATM is always less than or equal to 2, we obtain the result shown in Fig. 15b. This scaling of λ−1 results 

in a value of ΔT2100 about 50% higher than when a constant value of λ−1 is used and an increase in λ−1 by 1070 

nearly a factor of 2.5 at the end of century. The modeled change in GMST starts to deviate from the 

observations around year 2000. This deviation is seen in the residual between modeled and observed 

GMST in Fig. 15f. If we allow the value of λ−1 to scale with anthropogenic forcing so that the maximum 

value of χ2
RECENT is less than or equal to 2, we arrive at the result shown in Fig. 15c, yielding a value of 

ΔT2100 that nearly doubles over two and a half centuries and a rise in λ−1 by a factor of 4. The modeled 1075 

change in GMST starts to deviate dramatically from observations around year 1990. This stark deviation 

is seen in the residual between modeled and observed GMST in Fig. 15g. The χ2
ATM value in Fig. 15g is 

3.63, which does not satisfy our reduced chi-squared constraints, and interestingly appears to resemble 

the behavior of some CMIP6 GCMs (see Fig. 9 as well as Tokarska et al. (2020)).  

Several other studies have investigated the degree of change in λ−1. Marvel et al. (2018) suggest 1080 

that the median value of ECS from the CMIP5 GCMs may increase from 1.8 to 2.3°C or 1.8 to 3.1°C due 

to time varying λ−1, which corresponds to an increase in λ−1 from 1850-2100 of 28 to 72%, respectively. 

Rugenstein et al. (2020) estimates a median increase of 17% for values of ECS from CMIP6 GCMs when 



51 

 

examining millennial length simulations compared to the 150-year Gregory et al. (2004) method, which 

is consistent with about an 11% rise in λ−1 (Fig. 2b of Rugenstein et al. (2020)). A doubling (Fig. 15b) or 1085 

quadrupling of λ−1 (Fig. 15c) over two and a half centuries is faster than the increase indicated by Marvel 

et al. (2018) and the millennia order timescale in Sect. 12.5.3 of IPCC 2013 and Rugenstein et al. (2020). 

A 50% increase or lower in λ−1 (Fig. 15d) is in line with the estimate of the change in ECS due to time-

variant λ−1 indicated by Marvel et al. (2018) and Rugenstein et al. (2020). The assumption of constant 

feedback within the EM-GC framework is reasonable because there is no strong evidence from the climate 1090 

record for a noticeable increase in λ−1 on the multidecadal simulations shown in Fig. 15. If the true value 

of λ−1 actually rises over time as suggested by some of the CMIP6 (Rugenstein et al., 2020) and CMIP5 

GCMs (Marvel et al., 2018), our projections of global warming would be a few tenths of a degree warmer 

than our current best estimates assuming constant λ−1, as shown in Fig. 15d. Interestingly, increasing λ−1 

by 50% results in a similar value of ΔT2100 as when utilizing a higher value of AER RF2011 (i.e. AER 1095 

RF2011 less than −0.9 W m−2) in the EM-GC framework (see Fig. 3). 
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4 Conclusions 

In this paper we use a multiple linear regression energy balance model (EM-GC), to analyze and project 

changes in the future rise in global mean surface temperature (GMST), calculate the attributable 1100 

anthropogenic warming rate (AAWR, the component of the rise in GMST caused by human activities) 

over the past four decades, and compute the equilibrium climate sensitivity (ECS, the rise in GMST that 

Figure 15. Change in GMST from 1850-2019 for observations from HadCRUT (black) and 1850-2100 for modeled 

(red) using SSP4-3.4 and the residual between modeled and observations. (a) Rise in GMST assuming a constant 

value of λ−1. (b) Rise in GMST allowing λ−1 to vary while the value of χ2
ATM is kept below 2. (c) Rise in GMST 

allowing λ−1 to vary while the value of χ2
RECENT is kept below 2. (d) Rise in GMST allowing λ−1 to increase by 

50%. (e) Residual between modeled and observed rise in GMST from 1850-2019 for constant λ−1. (f) Same as (e) 

but for varying λ−1 while the value of χ2
ATM is kept below 2. (g) Same as (f) but for varying λ−1 while the value of 

χ2
RECENT is kept below 2. (h) same as (g) but for increasing λ−1 by 50%. 
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would occur after climate has equilibrated with atmospheric CO2 at the 2×pre-industrial level). 

Projections of the rise in GMST (T) are conducted for seven of the Shared Socioeconomic Pathway 

(SSP) projections of GHGs (O’Neill et al., 2017). We compare computations of AAWR, ECS, and 1105 

projections of T to values for each quantity computed from archived output provided by GCMs as part 

of CMIP6 (Eyring et al., 2016). A critical component of our study is comprehensive analysis of 

uncertainties in AAWR, ECS, and projections of T in our EM-GC framework, due to the rather large 

uncertainty in radiative forcing of climate from tropospheric aerosols (AER RF). 

The best estimate of values of AAWR from 1975-2014 computed using our EM-GC constrained 1110 

by the century and a half long record for GMST provided by the HadCRUT data record (Morice et al., 

2012) is 0.135°C/decade and the 5th, and 95th percentiles are 0.097 and 0.195°C/decade, respectively. The 

median value of AAWR from the CMIP6 multi-model ensemble is 0.221°C/decade and the 5th, and 95th 

percentiles are 0.151 and 0.299°C/decade, respectively. We show that the component of GMST attributed 

to human activity within the CMIP6 multi-model ensemble warms considerably faster than observations 1115 

over the past four decades, a result that is consistent with a recent analysis of output from the CMIP6 

multi-model ensemble (Tokarska et al., 2020) as well as output from CMIP5 GCMs assessed in AR5 (i.e, 

Fig. 11.25b of Kirtman et al. (2013)). This finding differs from the conclusion of Hausfather et al. (2020), 

who showed fairly good agreement between projections of global warming from GCMs and observed T. 

As detailed in Sect. 3.1, this paper examined GCMs that proceeded CMIP5 and examined T for a time 1120 

period that ends in 2017, a time when global temperature was influenced by a strong ENSO event that 

ended in 2016. The majority of the uncertainty in our EM-GC based estimate of AAWR is due to 

imprecise knowledge of the true value of AER RF.  

In our model framework the best estimate of ECS is 2.01°C and the 5th and 95th percentiles are 

1.12 and 4.12°C, respectively. The median value of ECS from the CMIP6 multi-model ensemble is 1125 

3.74°C, which is almost double the value of ECS inferred from the observed climate record. The 5th and 

95th percentiles of ECS from the CMIP6 multi-model ensemble are 2.19 and 5.65°C, respectively. We 

obtain a wide range of ECS values using the EM-GC because of the uncertainty in AER RF. With an 

AER RF2011 equal to −1.6 W m−2, the EM-GC calculates a value of ECS similar to the maximum value of 
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ECS from the CMIP6 multi-model mean. We cannot rule out the very high value of ECS, but we assign 1130 

a low probability based on the IPCC 2013 low likelihood for the needed value of AER RF2011. Our 

empirically based determination of ECS is in good overall agreement with the recent empirical 

determinations of Lewis and Grünwald (2018) (1.87°C, range of 1.1-4.05°C) and Skeie et al. (2018) 

(2.0°C, range of 1.2-3.1°C) and the slightly older empirically determination reported by Otto et al. (2013) 

(2.0°C, range of 1.2-3.9°C) (all range values are for the 5th and 95th percent confidence interval). A recent 1135 

review of climate feedback and climate sensitivity published by Sherwood et al. (2020) reported ECS lies 

within the range of 2.3 to 4.7°C at the 5th to 95th percent confidence intervals; their lower bound for ECS 

is quite a bit higher than the lower bound found in our analysis, as well as by Cox et al. (2018), Dessler 

et al. (2018), Lewis and Grünwald (2018), Nijsse et al. (2020), Otto et al. (2013), Skeie et al. (2018), and 

Tokarska et al. (2020).  1140 

 We also examined the probability of limiting the future rise in GMST below the Paris Agreement 

target of 1.5°C and upper limit of 2.0°C. Our probabilistic forecasts of projections of T include a 

comprehensive treatment of the uncertainty in AER RF, a capability outside the scope of the GCM 

intercomparisons conducted for CMIP6. Our analysis indicates that the SSP1-2.6 scenario is the 1.5°C 

pathway, providing between a 57.0-64.8% likelihood of keeping the end of century rise in T below the 1145 

Paris Agreement target of 1.5°C (relative to pre-industrial) depending on the choice of GMST and OHC 

record. We find that the SSP4-3.4 scenario is the 2.0°C pathway, as this scenario provides a 69.6-74.0% 

likelihood of limiting global warming to below the Paris Agreement upper limit of 2.0°C by end of 

century. In contrast, the CMIP6 multi-model mean only suggests a 15.2% probability of achieving the 

Paris Agreement target for SSP1-2.6 and a 16.7% probability of attaining the Paris Agreement goal for 1150 

SSP4-3.4. This result is not surprising, given the tendency of most CMIP6 GCMs to warm faster than has 

been observed over the past four decades. Our projections of T using a physically based model tied to 

observations of ocean heat content, quantification of natural as well as anthropogenic drivers of variations 

in GMST, and consideration of uncertainty in AER RF are shown to be remarkably similar to the expert 

assessment of the future rise in GMST that was sketched out in Fig. 11.25b of AR5 (Kirtman et al., 2013), 1155 

and the empirically-based filtering of CMIP6 model output recently published by Tokarska et al. (2020). 
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Finally and most importantly, our estimates are based on the assumption that climate feedback has been 

and will continue to remain constant over time, since the prior temperature record can be fit so well under 

this assumption. As described in Section 3.3.6, if climate feedback rises over time, larger warming will 

be realized than that found under the assumption of temporally invariant feedback. 1160 

We also quantify the sensitivity of the probability of achieving the Paris Agreement target (1.5°C) 

or upper limit (2.0°C) to future atmospheric abundances of  methane. The end of century mixing ratio of 

methane in the SSP1-2.6 scenario is 1.15 ppm, considerably less than the contemporary abundance of 

1.88 ppm. The likelihood of attaining the 1.5°C target for SSP1-2.6 decreases as future methane emissions 

increase, declines to just under 50% if methane reaches 2.4 ppm in 2100 and to 34% if methane increases 1165 

to 3.2 ppm at end of century. Our analysis described in Sect. 3.3.5 demonstrates that major near-term 

limits on the future growth of methane are especially important for achievement of the 1.5°C limit to 

future warming that constitutes the goal of the Paris Agreement. 

 Finally, we have also quantified in the EM-GC framework the remaining budgets of carbon (i.e., 

CO2) emissions that can occur while attaining either the goal or upper limit of the Paris Agreement. We 1170 

find that after 2019, society can only emit another 108 ± 75, 268 ± 91, or 336 ± 97 Gt C to have either a 

95%, 66%, or 50% chance of limiting warming to 1.5°C. These future emissions estimates rise to 295 ± 

93, 565 ± 120, and 685 ± 132 Gt C to have a  95%, 66%, or 50% chance of limiting warming to 2.0°C. 

Given the anthropogenic emissions of carbon due to combustion of fossil fuels, cement production, gas 

flaring, and land use change are about 11.7 Gt per year in 2019 (Friedlingstein et al., 2019), our study 1175 

indicates that the target (1.5°C warming) of the Paris Agreement will not be achieved unless carbon 

emissions are severely curtailed in the next two decades.  

 We conclude by noting that the CMIP6 multi-model ensemble provides many useful parameters 

such as sea level rise, sea ice decline, and precipitation changes, that provide a great societal 

understanding of the impact of climate change. We do not mean to undermine the importance of the 1180 

CMIP6 GCMs by this analysis. Rather, we hope that studies such as this, along with other recent 

evaluations of CMIP6 multi-model output such as Nijsse et al. (2020) and Tokarska et al. (2020) will 

provide improved use of the CMIP6 multi-model ensemble for policy decisions. Our EM-GC was built 

to specifically simulate and project changes in GMST; we do not examine numerous other components 
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of the climate system that affect society. Our study indicates that unless society can implement steep 1185 

reductions in the emissions of carbon (CO2) and methane (CH4) rather soon, the Paris Agreement will fail 

to be achieved. We suggest there is slighly more time to achieve these steep reductions than indicated by 

the CMIP6 multi-model mean. The incredibly valuable output of the CMIP6 GCMs is important for 

determining the consequences for society of 1.5°C, 2.0°C, or even larger rises in GMST. 

 1190 

5 Acronyms 

AAWR – Attributable anthropogenic warming rate 

AR4 – Fourth Assessment Report 

AER – Anthropogenic aerosols 

AER RF2011 – Radiative forcing due to anthropogenic aerosols in 2011 1195 

AMOC – Atlantic meridional overturning circulation 

AMV – Atlantic multidecadal variability 

BEG – Berkley Earth Group 

CALIPSO – Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

CMIP5 – Coupled Model Intercomparison Project Phase 5 1200 

CMIP6 – Coupled Model Intercomparison Project Phase 6 

COBE - Centennial in situ Observation-Based Estimate 

CW14 – Cowtan and Way (2014) temperature record 

ECS – Equilibrium climate sensitivity 

EM-GC – Empirical Model of Global climate 1205 

ENSO – El Niño southern oscillation 

GCM – General Circulation Model 

GHG – Greenhouse gas 

GISTEMP – Goddard Institute for Space Studies Surface Temperature Analysis v4 

GloSSAC – Global Space-based Stratospheric Aerosol Climatology 1210 

GMST – Global mean surface temperature 

HadCRUT – Hadley Center Climatic Research Unit 
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IPCC – Intergovernmental Panel on Climate Change 

ISCCP – International Satellite Cloud Climatology Project 

IOD – Indian Ocean dipole 1215 

LIN – Linear method 

LUC – Land use change 

MEI – Multivariate ENSO index 

NOAAGT – National Center for Environmental Information NOAAGlobalTemp v5 

ODS – Ozone depleting substances 1220 

OHC – Ocean heat content 

OHE – Ocean heat export 

PATMOS-X - Pathfinder Atmospheres Extended 

PDO – Pacific decadal oscillation 

RCP – Representative concentration pathway 1225 

REG – Regression method 

RF – Radiative forcing 

SAOD – Stratospheric aerosol optical depth 

SORCE – Solar Radiation and Climate Experiment 

SSP – Shared Socioeconomic Pathway 1230 

SST – Sea surface temperature 

TAR – Third Assessment Report 

TAS – Near surface air temperature 

TCRE – Transient climate response to cumulative emissions 

TOS – Temperature at the interface of the atmosphere and the upper boundary of the ocean 1235 

TSI – Total solar irradiance 
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10 Data availability 

All data used as inputs into the EM-GC are available from resources on the web. We have provided the 

links to the resources below. The data are also available along with the EM-GC output data used in this 1650 

analysis at 10.5281/zenodo.3908407 (McBride et al., 2020) on Zenodo.org. 

 

IOD: The COBE SST data is provided by the NOAA ESRL physical sciences division from their web 

site https://www.esrl.noaa.gov/psd/. 

 1655 

Tropospheric ozone RF: http://www.pik-potsdam.de/~mmalte/rcps/ . 

 

MEI.v2 and MEI.ext: https://psl.noaa.gov/enso/mei/data/meiv2.data and 

https://psl.noaa.gov/enso/mei.ext/table.ext.html 

 1660 

PDO:  http://research.jisao.washington.edu/pdo/PDO.latest.txt 

 

https://www.esrl.noaa.gov/psd/
http://www.pik-potsdam.de/~mmalte/rcps/
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SAOD: https://eosweb.larc.nasa.gov/project/glossac/glossac 

 

TSI: http://lasp.colorado.edu/home/sorce/data/tsi-data/ 1665 

 

OHC Records: 

 Balmaseda: http://www.cgd.ucar.edu/cas/catalog/ocean/OHC700m.tar.gz 

 Carton: https://www.atmos.umd.edu/~ocean/index_files/soda3_readme.htm 

 Cheng: http://159.226.119.60/cheng/ 1670 

 Ishii: http://159.226.119.60/cheng/ 

 Levitus: https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/ 

  

 

SSP Database: All information for the SSPs obtained from the SSP database is at 1675 

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about . 

 

CMIP6 Input Data: 

https://docs.google.com/document/d/1pU9IiJvPJwRvIgVaSDdJ4O0Jeorv_2ekEtted34K9cA/edit#headi

ng=h.jdoykiw7tpen 1680 

 

CMIP6 Model Output Archive: https://esgf-node.llnl.gov/search/cmip6/ 
 

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about

