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Abstract.  

The sixth phase of the Coupled Model Intercomparison Project (CMIP6) is the latest modeling effort for 10 

general circulation models to simulate and project various aspects of climate change. Many of the general 

circulation models (GCMs) participating in CMIP6 provide archived output that can be used to calculate 

equilibrium climate sensitivity (ECS) and forecast future temperature change based on emissions 

scenarios from several Shared Socioeconomic Pathways (SSPs). Here we use our multiple linear 

regression energy balance model, the Empirical Model of Global Climate (EM-GC), to simulate and 15 

project changes in global mean surface temperature (GMST), calculate ECS, and compare to results from 

the CMIP6 multi-model ensemble. An important aspect of our study is comprehensive analysis of 

uncertainties due to radiative forcing of climate from tropospheric aerosols (AER RF) in the EM-GC 

framework. We quantify the attributable anthropogenic warming rate (AAWR) from the climate record 

using the EM-GC and use AAWR as a metric to determine how well CMIP6 GCMs replicate human-20 

driven global warming over the last forty years. The CMIP6 multi-model ensemble indicates a median 

value of AAWR over 1975-2014 of 0.221°C/decade (range of 0.151 to 0.299°C/decade; all ranges given 

here are for 5th and 95th confidence intervals), which is notably faster warming than our median estimate 

for AAWR of 0.135157°C/decade (range of 0.097 120 to 0.195°C/decade) inferred from analysis of the 

Hadley Center Climatic Research Unit Version 5 data record for GMST. Estimates of ECS found using 25 

the EM-GC (best estimate 2.0133°C; range of 1.12 40 to  4.123.57°C) are generally consistent with the 

range of ECS of 1.5 to 4.5°C given by IPCC’s Fifth Assessment Report. The CMIP6 multi-model 
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ensemble exhibits considerably larger values of ECS (median 3.74°C; range of 2.19- to 5.65°C). The 

dominant factor in the uncertainty for our empirical determinations of AAWR and ECS is imprecise 

knowledge of AER RF for the contemporary atmosphere. We calculate the likelihood of achieving the 30 

Paris Agreement target (1.5°C) and upper limit (2.0°C) of global warming relative to pre-industrial for 

seven of the SSPs using both the EM-GC and the CMIP6 multi-model ensemble. In our model framework, 

SSP1-2.6 is the 1.5°C pathway withhas a 64.853% probability of limiting warming at this levelat or below 

the Paris target by the end of century and SSP4-3.4 is the 2.0°C pathway, withhas a 74.064% probability 

of achieving the Paris upper limit. These estimates are based on the assumptions that climate feedback 35 

has been and will remain constant over time since the prior temperature record can be fit so well assuming 

constant climate feedback.  In addition, we quantify the sensitivity of future warming to the curbing of 

the current rapid growth of atmospheric methane and show major near-term limits on the future growth 

of methane are especially important for achievement of the 1.5°C goal of future warming. We also 

quantify warming scenarios assuming climate feedback will rise over time, a feature common among 40 

many CMIP6 GCMs; under this assumption, it becomes more difficult to achieve any specific warming 

target. Finally, we assess warming projections in terms of future anthropogenic emissions of atmospheric 

carbon. In our model framework, humans can emit only another 268 150 ± 91 79 Gt C after 2019 to have 

a 66% likelihood of limiting warming to 1.5°C, and another 565 400 ± 120 104 Gt C to have the same 

probability of limiting warming to 2.0°C. Given the estimated emission of 11.7 Gt C per year for 2019 45 

due to combustion of fossil fuels and deforestation, our EM-GC simulations suggest the 1.5°C warming 

target of the Paris Agreement will not be achieved unless carbon and methane emissions are severely 

curtailed in the next two decades10 years. 

1 Introduction 

The goals of the Paris Agreement, negotiated in December of 2015, are to keep global warming below 50 

2.0°C relative to the start of the Industrial Era and pursue efforts to limit global warming to 1.5°C. General 

circulation models (GCMs) project future temperature change using various evolutions of greenhouse 

gases and determine the likelihood of achieving the goals of the agreement. Many GCMs are participating 
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in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to quantify how the models 

represent different aspects of climate change (Eyring et al., 2016). Having accurateAccurate projections 55 

of future temperature is are critical for achieving the goals of the Paris Agreement. Chapter 11 of  IPCC’s 

Fifth Assessment Report shows that some of the previous generations of these models participating in 

phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012) tended to 

overestimate the increase in global mean surface temperature (GMST) for the 21st century (Kirtman et 

al., 2013). In this analysis we use a multiple linear regression energy balance model to quantify the change 60 

in GMST from 1850-2019, project future changes in GMST, compare to the CMIP6 multi-model 

ensemble, and determine the likelihood of achieving the goals of the Paris Agreement. 

 Several prior studies have used a multiple linear regression approach to model the GMST anomaly 

in order to quantify the impact of anthropogenic and natural factors on climate (Foster and Rahmstorf, 

2011; Lean and Rind, 2008, 2009; Zhou and Tung, 2013). Typically, total solar irradiance, volcanoes, 65 

and El Niño southern oscillation (ENSO) are the natural components represented in the multiple linear 

regression, . and gGreenhouse gases and aerosols are the anthropogenic factors. We use multiple linear 

regression, in connection with a dynamic ocean module that accounts for the export of heat from the 

atmosphere to the ocean, to represent the natural and anthropogenic components of the climate system. 

In addition to the typical natural factors listed above, we include the Atlantic meridional overturning 70 

circulation (AMOC), Pacific decadal oscillation (PDO), and Indian Ocean dipole (IOD) to provide a 

robust representation of the natural climate system (Canty et al., 2013; Hope et al., 2017). Our 

anthropogenic components also include the effect of land useland-use change (i.e., deforestation) on 

Earth’s albedo and the export of heat from the atmosphere to the ocean as the atmosphere warms. 

 Our analysis builds on the work of Canty et al. (2013) and Hope et al. (2017) and includes several 75 

key updates. One is the extension back in time of our analysis to 1850. The Hadley Center Climatic 

Research Unit (Morice et al., 2012, 2021), Berkley Earth Group (Rohde and Hausfather, 2020), and 

Cowtan and Way (2014) provide GMST records starting in 1850, which now allows for a simulations of 

GMST that covers 170 years. The second update is the use of the Shared Socioeconomic Pathways (SSPs) 

(O’Neill et al., 2017) as our climate scenarios to designate futurefor  evolution of greenhouse gas and 80 

aerosol abundances. The third is the adoption of an upper ocean to our model, formulated in a manner 
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that matches the equations of Bony et al. (2006) and Schwartz (2012). A description of the model, the 

various input parameters used, and the updates listed above is given in Sect. 2. Section 3 provides shows 

results of CMIP6 and EM-GC comparing comparisons to the historical climate record, estimations of 

equilibrium climate sensitivity (ECS), as well as comparisons of our model and CMIP6 projections of 85 

future GMST change. Discussion of these results is provided in Sect. 4, along with concluding remarks. 

 

2 Data and Methodology 

2.1 Empirical model of global climate 

In this analysis we use the empirical model of global climate (EM-GC), which provides a multiple linear 90 

regression, energy balance simulation of GMST. As detailed in the following paragraphs, the EM-GC 

solves for ocean heat uptake efficiency (κ) and six regression coefficients to minimize the cost function 

in Eq. (1). 

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ∑
1

𝜎𝑂𝐵𝑆𝑖
2 (𝛥𝑇𝑂𝐵𝑆𝑖 −  𝛥𝑇𝑀𝐷𝐿𝑖)

2𝑁𝑀𝑂𝑁𝑇𝐻𝑆
𝑖=1    (1) 

In this equation, ΔTOBS represents a time series of observed monthly GMST anomalies, ΔTMDL is the 95 

modeled monthly change in GMST, σOBS is the 1-sigma uncertainty associated with each temperature 

observation, i is the index for each month, and NMONTHS is the total number of months used in the analysis. 

For this analysis, we trained the model from 1850-2019. The observed GMST anomalies are blended near 

surface air and sea surface temperature differences relative to the GMST anomaly over 1850-1900, which 

is assumed to represent pre-industrial conditions. 100 

 We consider several anthropogenic and natural factors as components of ΔTMDL. The radiative 

forcing (RF) due to greenhouse gases (GHGs), anthropogenic aerosols (AER), land useland-use change 

(LUC), and the export of heat from the atmosphere to the world’s oceans are the anthropogenic 

components of ΔTMDL. The influence on GMST from total solar irradiance (TSI), El Niño southern 

oscillation (ENSO), the Atlantic meridional overturning circulation (AMOC), volcanic eruptions that 105 

reach the stratosphere and enhance stratospheric aerosol optical depth (SAOD), the Pacific decadal 

oscillation, (PDO) and the Indian Ocean dipole (IOD) are the natural components of ΔTMDL. Equation (2) 

shows how we calculate ΔTMDL, the modeled monthly change in GMST. 
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𝛥𝑇𝑀𝐷𝐿𝑖 =
1 +  𝛾

𝜆𝑃
 {𝐺𝐻𝐺 𝛥𝑅𝐹𝑖 + 𝐴𝐸𝑅 𝛥𝑅𝐹𝑖 + 𝐿𝑈𝐶 𝛥𝑅𝐹𝑖 − 𝑄𝑂𝐶𝐸𝐴𝑁 𝑖} +  𝐶0 +  𝐶1 × 𝑆𝐴𝑂𝐷𝑖−6 + 

𝐶2 × 𝑇𝑆𝐼𝑖−1 + 𝐶3 × 𝐸𝑁𝑆𝑂𝑖−2 + 𝐶4 × 𝐴𝑀𝑂𝐶𝑖 + 𝐶5 × 𝑃𝐷𝑂𝑖 + 𝐶6 × 𝐼𝑂𝐷𝑖   (2) 110 

 In Eq. (2), GHG ΔRFi , AER ΔRFi, and LUC ΔRFi represent monthly time series of the increase 

in the stratospheric adjusted values of the RF of climate (Solomon, 2007) since 1750. The parameter λP 

represents the response of a blackbody to a perturbation in the absence of climate feedback (3.2 W m−2, 

(Bony et al., 2006)). The SAOD, TSI, and ENSO are lagged by 6, 1, and 2 months respectively. The lag 

of 6 months for SAOD is representative of the time needed for the surface temperature to respond to a 115 

change in the aerosol loading due to a volcanic eruption (Douglass and Knox, 2005). This lag is the same 

as used by Lean and Rind (2008) and Foster and Rahmstorf (2011). The 1 month delay for TSI yields the 

maximum value of C2, the solar irradiance regression coefficient. Lean and Rind (2008) and Foster and 

Rahmstorf (2011) also use a 1 month lag for TSI in their analyses. The 2 month delay for the response of 

GMST to ENSO is the lag needed to obtain the largest value of the correlation coefficient of the 120 

Multivariate ENSO Index version 2 (MEI.v2) (Wolter and Timlin, 1993; Zhang et al., 2019) versus the 

value of TENSO calculated by Thompson et al. (2009). In Thompson et al. (2009), TENSO is the simulated 

response of GMST to variability induced by ENSO, taking into consideration the effective heat capacity 

of the atmospheric-ocean mixed layer. Lean and Rind (2008) used a 4-month lag for ENSO.  

The term AMOCi represents the influence of the change in the strength of the thermohaline 125 

circulation on GMST (Knight et al., 2005; Medhaug and Furevik, 2011; Stouffer et al., 2006; Zhang and 

Delworth, 2007). We use the Atlantic multidecadal variability, based on the area weighted monthly mean 

sea surface temperature (SST) in the Atlantic Ocean between the equator and 60°N (Schlesinger and 

Ramankutty, 1994), as a proxy for the strength of AMOC. A strong AMOC is characterized by northward 

flow of energy that would otherwise be radiated to space, which occurs in both the ocean and atmosphere 130 

and leads to particularly warm summers in Europe (Kavvada et al., 2013) as well as a number of other 

well documented influences in other climatic regions (Nigam et al., 2011). The total anthropogenic RF of 

climate is used to detrend the AMOC signal because. Tthis method provides a more realistic approach to 

infer the changes in the strength of AMOC and its effect on GMST than other detrending options (Canty 

et al., 2013).  135 
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 The dimensionless parameter γ represents the sensitivity of the global climate to feedbacks that 

occur due to a change in the RF of GHGs, AER, and LUC. We relate γ to the climate feedback 

parameter, λΣ, as shown in Eq. (3). 

1 + 𝛾 =
1

1 − (
𝜆𝛴

𝜆𝑃
)
 

where λΣ = Σ all climate feedbacks    (3) 140 

i.e., λΣ = λWater Vapor + λLapse Rate + λClouds + λSurface Albedo 

The relation between λΣ and γ in Eq. (3) is commonly used in the climate modeling community (Sect. 8.6 

of Solomon (2007)). Bony et al. (2006) and Gregory (2000) use a different formalism to define their 

climate feedback parameter. Our value of λΣ is related to the IPCC’s Fifth Assessment Report ((Stocker 

et al., 2013), hereafter IPCC 2013) definition of λ via λΣ = λP – λ.  145 

Our model explicitly accounts for the export of heat from the atmosphere to the world’s oceans 

(i.e., ocean heat export or OHE). The quantity QOCEAN in Eq. (2) represents OHE. In our previous analyses 

(Canty et al., 2013; Hope et al., 2017), QOCEAN was subtracted outside of the climate feedback 

multiplicative term (1+γ)/λP. We have rewritten Eq. (2) to be comparable to the formulation for this term 

used by Bony et al. (2006) and Schwartz (2012). The effect of this update results in our model being able 150 

toDue to this update, our model fits the historical climate record with higher values of climate feedback, 

especially for strong aerosol cooling (see Fig. S1 and supplement for more information). We calculate 

QOCEAN by simulating the long-term trend in observed ocean heat content (OHC) as shown in Eq. (4) and 

Eq. (5). 

𝑄𝑂𝐶𝐸𝐴𝑁𝑖 =  𝜅(𝛥𝑇𝐴𝑇𝑀,𝐻𝑈𝑀𝐴𝑁𝑖 −  𝛥𝑇𝑂𝐶𝐸𝐴𝑁,𝐻𝑈𝑀𝐴𝑁𝑖)     (4) 155 

𝜅 =
𝑂𝐻𝐸 × 𝛥𝑡

∫ ([
1+𝛾

𝜆𝑃
{𝐺𝐻𝐺 𝑅𝐹𝑖−72+𝐴𝐸𝑅 𝑅𝐹𝑖−72+𝐿𝑈𝐶 𝑅𝐹𝑖−72}]−[𝑓0 ∑ 𝑄𝑂𝐶𝐸𝐴𝑁] 𝑖−72

0 ) 𝑑𝑡
𝑡𝐸𝑁𝐷

𝑡𝑆𝑇𝐴𝑅𝑇
 
  (5) 

The κ term is the ocean heat uptake efficiency (W m−2 °C−1) and is based on the definition used in Raper 

et al. (2002), where κ is the ratio between the atmosphere and ocean temperature difference that best fits 

observed OHC data (Sect. 2.2.8 describes the OHC data records used in our analysis). The value of κ is 

determined based upon on the best fit (described below) between QOCEAN and the observed OHC record. 160 

The term ΔTOCEAN,HUMAN represents the temperature response of the well-mixed, top 100 m of the ocean 
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due to the total anthropogenically driven rise in OHC. This formulation of ΔTOCEAN,HUMAN allows the 

model ocean to warm in response to an atmospheric warming. We use a 6 year lag (72 months) for QOCEAN 

to account for the time needed for the energy leaving the atmosphere to heat the upper ocean and penetrate 

to depth, based on Schwartz (2012). Our analysis of modeled GMST is insensitive to whether this 6 year 165 

lag or the 10 year lag from Lean and Rind (2009) is used. The tSTART and tEND limits on the integral in Eq. 

(5) are the start and end years, associated with each OHC record. The start and end years vary between 

the 5 OHC records (see supplement for the different start and end years). The constant f0 term in Eq. (5) 

is a combination of the heat capacity of ocean water, the fraction of total ocean volume in the surface 

layer, and the fraction of total QOCEAN that warms the surface layer, and is equal to 8.76×10-5 °C m2 W−1. 170 

We represent the global ocean as being 1 km deep for 10% of the ocean area (representing the continental 

shelves) and 4 km deep for the remaining area, which approximates the average depth of the actual world’s 

oceans to within 3%; 3.7 km compared to 3.682-3.814 km from Charette and Smith (2010). Based upon 

on our analysis of decadal ocean warming as a function of depth extracted from CMIP5 GCMs, we have 

determined that 13.7% of the rise in total OHC occurs in the well mixed, upper 100 m of the ocean, the 175 

term represented by ΔTOCEAN,HUMAN in equation (4). The bottom rung panel of Fig. 1 compares our 

modeled OHC to the observed OHC record based upon on the average of five data sets; the value of κ 

resulting in the best simulation of observed OHC is shown.  

We use the reduced chi-squared (χ2) metric to define the goodness of fit between the modeled and 

measured GMST anomaly for the atmosphere and also between simulated and observed OHC. Equation 180 

(6) and Eq. (7) show the calculations for χ2 for the atmosphere, and Eq. (8) shows the calculation for χ2 

for the ocean. As noted above, mMinimization of the difference between the measured and modeled 

GMST anomaly results in the EM-GC being able to replicate the observed rise in temperature over the 

past 170 years quite well, as shown in Fig. 1. We have added two additional new features to the model to 

assure accurate representation of the rise in OHC as well as the rise in GMST since 1940. The first new 185 

feature, Eq. (7), was added to ensure all simulations matched the past 80 years of observations well 

because of a change in the specification of the uncertainty of the GMST anomaly (σOBSi in Eq. (2). ) given 

by the Hadley Center Climatic Research Unit (HadCRUT). A recent update resulted in much larger 

uncertainties being ascribed to the GMST anomaly for the entire data record,Without the χ2
RECENT 
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constraint, which caused some solutions to yieldwith a value of χ2
ATM less than or equal to 2 have visually 190 

poor simulations of the rise in GMST over the past 4 to 5 decades. The second new feature, Eq. (8), was 

added because for in the original model formulation some selections of the radiative forcing due to 

tropospheric aerosols (AER ΔRFi in Eq. (2)) converged, the original model formulation was converging 

butin a way that producing produced simulations of OHC that seemed physically improper, based on 

visual inspection of observed and modeled OHC. As a result of these two issues, all calculations shown 195 

here are subject to three goodness-of-fit constraints, described by Eq. (6) to (8): 

𝜒𝐴𝑇𝑀
2 =

1

𝑁𝑌𝐸𝐴𝑅𝑆−𝑁𝐹𝐼𝑇𝑇𝐼𝑁𝐺 𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅𝑆−1
∗  ∑

1

〈𝜎𝑂𝐵𝑆𝑗〉2
(〈∆𝑇𝑂𝐵𝑆𝑗〉 − 〈∆𝑇𝑀𝐷𝐿𝑗〉)

2
   

𝑁𝑌𝐸𝐴𝑅𝑆
𝑗=1   (6) 

𝜒𝑅𝐸𝐶𝐸𝑁𝑇
2 =

1

𝑁𝑌𝐸𝐴𝑅𝑆,𝑅𝐸𝐶−𝑁𝐹𝐼𝑇𝑇𝐼𝑁𝐺 𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅𝑆−1
∗  ∑

1

〈𝜎𝑂𝐵𝑆𝑗〉2
(〈∆𝑇𝑂𝐵𝑆𝑗〉 − 〈∆𝑇𝑀𝐷𝐿𝑗〉)

2
   

𝑁𝑌𝐸𝐴𝑅𝑆,𝑅𝐸𝐶

𝑗=1  (7) 

𝜒𝑂𝐶𝐸𝐴𝑁
2 =

1

𝑁𝑌𝐸𝐴𝑅𝑆−𝑁𝐹𝐼𝑇𝑇𝐼𝑁𝐺 𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅𝑆−1
∗  ∑

1

〈𝜎𝑂𝐵𝑆𝑗〉2
(〈𝑂𝐻𝐶𝑂𝐵𝑆𝑗〉 − 〈𝑂𝐻𝐶𝑀𝐷𝐿𝑗〉)

2
   

𝑁𝑌𝐸𝐴𝑅𝑆,𝑂𝐻𝐶

𝑗=1  (8) 

Here, <ΔTOBS>, <ΔTMDL>, and <σOBS> in Eq. (6) and Eq. (7) represent the annually averaged observed, 200 

modeled, and uncertainty in the GMST anomaly, respectively. The variable NFITTING PARAMETERS is equal 

to 9 for typical simulations, the sum of 7 (the number of regression coefficients) plus 2 (model output 

parameters γ and κ). In Eq. (8), <OHCOBS> and <OHCMDL> represent the annual averaged observed and 

modeled OHC. The σOBS term in Eq. (8) is the uncertainty in the OHC record (see Sect. 2.2.8 for more 

information). The equation for all three formulations of χ2 is based on annual averages, rather than 205 

monthly time series, . because tWe calculate χ2 with annual valueshe because the autocorrelation functions 

of ΔTOBS and ΔTMDL display similar shapes using annual averages, and do not match utilizing monthly 

averages (see supplement of Canty et al. (2013) for further explanation). The Hadley Center Climate 

Research Unit (HadCRUT) version 4 uncertainties for GMST are used for the σOBS in Eq. (6) to (8) for 

all of the GMST records analyzed here (see Sect. 2.2.1 and the supplement for more information). For 210 

Eq. (6) to (8), we define an acceptable fit to the climate record as χ2 ≤ 2. The number of years (NYEARS) 

varies across the three equations. Equation (6) uses the total number of years in the GMST record, which 

for HadCRUT5 is 170 years. The number of years in Eq. (8), NYEARS,OHC, depends on the OHC data set 

used, as each data set spans a different range. The average of five OHC data sets that is our primary, 

which we use as our primary data sourceOHC series, extends from 1955-2017, a total of 63 years. The 215 

value of χ2
OCEAN found using Eq. (8) is displayed on the bottom rung panel of Fig. 1. All model simulations 
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shown throughout this paper have χ2
OCEAN ≤ 2, representing a good fit to the observed rise in OHC over 

the time of the data record. 

The calculation of χ2
RECENT shown in Eq. (7) is used to constrain the model to match the observed 

changes in GMST over the time frame 1940-2019, a total of 80 years (NYEARS,REC equals 80). This time 220 

frame was chosen to include a full cycle of AMOC, as the strength of the thermohaline circulation tends 

to vary on a period of 60-80 years (Chen and Tung, 2018; Kushnir, 1994; Schlesinger and Ramankutty, 

1994). As noted above, the χ2
RECENT constraint was added to our model framework because without this 

constraint the model is able to provide numerically good but poor visual fits to the GMST anomaly under 

certain conditions  the large temperature uncertainties associated with v4.6 of the HadCRUT data set 225 

allowed the original model to provide numerically good fits but poor visual fits to GMST changes in the 

recent time period (i.e. the red line in the top rung panel of Fig. 1 starts to strongly deviate from the black 

line beginning in about 2000 under certain conditions). All model simulations shown below have χ2
RECENT 

≤ 2 representing a good fit to the observed rise in GMST over the past 80 years, which results in modeled 

GMST that replicates observed GMST for the entire time series.  230 

 Figure 1 shows the observed (HadCRUT5) and modeled GMST anomaly from 1850-2019, and 

the various anthropogenic and natural components that constitute modeled GMST (see Fig. S3 for results 

using Cowtan and Way (2014) GMST record and the Cheng et al. (2017) OHC record (hereafter Cheng 

2017)). Figure 1a shows the value of climate feedback, 1.38 62 W m−2 °C−1, that is needed to achieve a 

best fit to the climate record for this simulation, resulting in values of χ2
ATM = 0.71 80 and χ2

OCEAN = 235 

0.3231. Figure 1b is the total contribution of human activity to variations in GMST, which includes 

GHGs, AER, LUC, and the export of heat from the atmosphere to the ocean. For the simulation shown, 

the aerosol radiative forcing is −0.9 W m−2, the best estimate given by IPCC 2013 (Myhre et al., 2013). 

This panel also notes the best estimate of the time rate of change of GMST attributed to humans from 

1975-2014, or the attributable anthropogenic warming rate (AAWR (see Sect. 2.3)). Figure 1c illustrates 240 

the contribution to the GMST anomaly from TSI (Solar) and SAOD (Volcano) over the 170-year period. 

The influences of ENSO and AMOC are indicated in Figs. 1d and 1e, respectively. Furthermore, Tthe 

contribution of AMOC to the rise in GMST over 1975-2014 (the same time period used to define AAWR) 

is also specified on Fig. 1e (dotted black line). Figure 1f indicates the small effect of IOD and PDO on 
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GMST in our model framework. The last panel, Fig. 1g, shows the time series of observed OHC based 245 

upon on the average of five data sets for the upper 700 m of the ocean (black points and blue error bars; 

see Sect. 2.2.8) and the modeled value of OHC (red line). For this simulation, the OHC data is best fit for 

a value of κ equal to 1.28 17 W m−2 °C−1 fits the OHC data best.,  which This value of κ falls within the 

range of empirical estimates for this parameter given by Raper et al. (2002). The sum of the contributions 

of human activity, TSI, SAOD, ENSO, AMOC, PDO and the IOD to temporal variations in the GMST 250 

anomaly shown in Fig. 1b to 1f plus the value of C0 equals the modeled GMST anomaly, shown by the 

red line in Fig. 1a. 

 Altering the training period of our model has a slight effect on our results (see Fig. S2, S3, and 

the supplement for information on various training periods). We project relatively similar results for end 

of century warming for training periods that start in 1850 and end in either 2009 or 1999, compared to 255 

results shown throughout the paper for a training period of 1850 to 2019, indicating the stability of our 

approach. As detailed in the supplement, we do find some differences from the results shown in the paper 

upon use of a training period of 1850 to 1989 due to the reduction in the number of years considered from 

the available OHC records. 
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 260 

2.2 Model Inputs 

2.2.1 Temperature data 

Figure 1. Measured and modeled GMST anomaly (ΔT) relative to a pre-industrial (1850-1900) baseline. (a) 

Observed (black) HadCRUT5 and modeled (red) ΔT from 1850-2019. This panel also displays the values of λΣ and 

χ2
ATM (see text) for this best-fit simulation. (b) Contributions from total human activity. This panel also denotes the 

best estimate numerical value of the attributable anthropogenic warming rate from 1975-2014 (black dashed) as 

well as the 2σ uncertainty in the slope for a model run that uses the best estimate of AER RF2011 of −0.9 W m−2. (c) 

Solar TSI irradiance (light bluepurple) and major volcanoesSAOD  (purplelight blue). (d) Influences from ENSO 

on ΔT. (e) Contributions from AMOC to ΔT and to observed warming from 1975-2014. (f) Influences from PDO 

(blue) and IOD (pink) on ΔT. (g) Measured (black) and modeled (red) ocean heat content (OHC) as a function of 

time for the average of five data sets (see text), the value of χ2
OCEAN for this run, as well as the ocean heat uptake 

efficiency, κ, needed to provide the best-fit to the OHC record. The error bars (blue) denote the uncertainty in OHC 

used in this analysis (see Sect. 2.2.8). 



12 

 

We use five seven global mean surface temperature anomaliesanomaly records. These records include 

from the Hadley Centre Climatic Research Unit version 4 (HadCRUT4, (Morice et al., 2012)) and version 

5 (HadCRUT5 (Morice et al., 2021)) from 1850-2019, National Centers for Environmental Information 265 

NOAAGlobalTemp v5 (NOAAGT, (Smith et al., 2008; Zhang et al., 2019)) from 1880-2019, NASA 

Goddard Institute of Space Studies Surface Temperature Analysis v4 (GISTEMP, (Hansen et al., 2010)) 

from 1880-2019, Berkeley Earth Group (BEG, (Rohde and Hausfather, 2020)) from 1850-2019, and 

Cowtan and Way (2014) (CW14; see Fig. S4 and the supplement for information on CW14 GMST record) 

from 1850-2019, and the Japanese Meteorological Agency (JMA (Ishihara, 2006)) from 1891-2019. We 270 

use the uncertainty time series from HadCRUT4 for all GMST records because the HadCRUT4 

uncertainty provides a realistic description of the variation in GMST among the seven records (see the 

supplement, Figs. S4 and S5, and Table S1 for more information). Our analysis primarily uses the 

HadCRUT5 GMST data set, because this GMST record is the central focus of some contemporary studies 

(Liang et al., 2020; Nicholls et al., 2020a, 2020b), but in some sections, results are shown for all five the 275 

other data sets. All temperature anomalies are with respect to a pre-industrial baseline (1850-1900). To 

alter each data record so that the temperature anomaly is relative to the same pre-industrial baseline, we 

adjust all data sets relative to the HadCRUT5 baseline of 1961-1990. because we primarily use the 

HadCRUT data record in this analysis. We then adjust each data set by the same amount to the 

HadCRUT5 pre-industrial baseline, as described in the methods section of Hope et al. (2017)supplement. 280 

 

2.2.2 Shared Socioeconomic Pathways 

For this analysis, we use the estimates of the future abundances of greenhouse gases and aerosols provided 

by the SSPs. There are twenty-six scenarios, five baseline pathways and twenty-one mitigation scenarios. 

The baseline pathways follow specific narratives for factors such as population, education, economic 285 

growth, and technological developments of sources of renewable energy (Calvin et al., 2017; Fricko et 

al., 2017; Fujimori et al., 2017; Kriegler et al., 2017; van Vuuren et al., 2017) to represent several possible 

futures spanning different challenges for adaptation and mitigation to climate change as illustrated in Fig. 

1 of O’Neill et al. (2014). The twenty-one mitigation scenarios follow one of the baseline pathways but 

include specific climate policy to reach a designated radiative forcing at the end of the century. 290 
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 As part of CMIP6, the ScenarioMIP experiment (O’Neill et al., 2016) includes eight SSPs (SSP1-

1.9, SSP1-2.6, SSP4-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0, SSP5-8.5, and SSP5-3.4-OS) that GCMs use to 

project future GMST. The first number is the reference pathway that the scenario follows (i.e. SSP1 

follows the first SSP narrative) and the numbers after the dash are the target radiative forcing at the end 

of the century (i.e. SSP1-2.6 reaches around 2.6 W m−2 in 2100). The ScenarioMIP experiment designates 295 

Tier 1 and Tier 2 scenarios. The Tier 1 scenarios are SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 , and 

the Tier 2 scenarios are SSP1-1.9, SSP4-3.4, SSP4-6.0, and SSP5-3.4-OS (an overshoot pathway that 

follows SSP5-8.5 until around 2040, where carbon dioxide emissions drastically decrease and become 

negative in 2065). Our analysis includes seven of the eight ScenarioMIP SSPs: all but the overshoot 

pathway. We highlight four in the main paper: two Tier 1 (SSP1-2.6 and SSP2-4.5) and two Tier 2 (SSP1-300 

1.9 and SSP4-3.4) scenarios. Analysis of the other three SSPs is included in the supplement. Figure 2 

shows the time evolution of the atmospheric abundance of the three major anthropogenic GHGs (carbon 

dioxide, methane, and nitrous oxide) for each of the seven SSPs we consider as well as observations of 

the global mean atmospheric abundance for these gases to the end of 2019 (Dlugokencky, 2020; 

Dlugokencky and Tans, 2020).  305 

 

2.2.3 Greenhouse gases 

The historical values of GHG mixing ratios were provided by Meinshausen et al. (2017) from 1850-2014. 

We used the equations from Myhre (1998) to calculate the change in RF due to carbon dioxide (CO2), 

methane (CH4), nitrous oxide (N2O), ozone depleting substances (ODS), hydrofluorocarbons, 310 

Figure 2. Observed and projected greenhouse gas mixing ratios. (a) Carbon dioxide abundances from observations 

(black) and seven of the ScenarioMIP SSPs (colors, as indicated). (b) Methane abundances from observations and 

ScenarioMIP SSPs. (c) Nitrous oxide abundances from observations and ScenarioMIP SSPs. 
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perfluorocarbons, and sulfur hexafluoride relative to RF in year 1850. We also used the updated pre-

industrial values of CH4 and N2O from IPCC 2013 and the radiative efficiencies from WMO (2018). The 

radiative forcing of CH4 also includes the 15% enhancement from the increase in stratospheric water 

vapor due to rising atmospheric CH4 (Myhre et al., 2007). Values of GHG mixing ratios, other than ODSs, 

from 2015-2100 are from the SSP Database (Calvin et al., 2017; Fricko et al., 2017; Fujimori et al., 2017; 315 

Kriegler et al., 2017; Rogelj et al., 2018; van Vuuren et al., 2017) and are provided on a decadal basis. 

These mixing ratios were interpolated onto a monthly time scale. We used the estimates of future ODS 

abundances provided in Table 6-4 of the 2018 Ozone Assessment Report (Carpenter et al., 2018), because 

the SSP database did not provide these estimates. We also include tropospheric ozone (O3
TROP) as a GHG, 

because tropospheric ozone rivals N2O as the third most important anthropogenic GHG (Fig 8.15 of 320 

Myhre et al. (2013)). The RF due to O3
TROP from the RCPs provided by the Potsdam Institute for Climate 

Impact Research (Meinshausen et al., 2011) is used, because the SSP database does not provide estimates. 

Values of RF due to O3
TROP from RCP2.6, RCP4.5, RCP6.0, and RCP8.5 are substituted in for SSP1-2.6, 

SSP2-4.5, SSP4-6.0, and SSP5-8.5, respectively. We created new time series for the RF due to O3
TROP for 

SSP4-3.4 and SSP3-7.0 using linear combinations of RF time series from RCP2.6 and RCP8.5, with 325 

weights based on the end of century total RF value due to all GHGs of the respective time series. Finally, 

the RF time series for O3
TROP from RCP2.6 was also used for SSP1-1.9. Figure S5 S6 shows the ozone 

RF time series used in this analysis and the supplement provides more information about the creation of 

the time series for the RF due to O3
TROP. 

 330 

2.2.4 Aerosol radiative forcing   

The value of the change in total aerosol radiative forcing (direct and indirect) in 2011 relative to pre-

industrial (AER RF2011) is highly uncertain. Chapter 8 of the IPCC 2013 report gives a best estimate of 

AER RF2011 as −0.9 W m−2, a likely range between −0.4 and −1.5 W m−2, and a 5th to 95th percent 

confidence interval between −0.1 and – 1.9 W m−2 (Myhre et al., 2013). This substantial range in AER 335 

RF2011 results in a large spread in future projections of global GMST. Figure 3 shows the effect of varying 

the value of AER RF2011 on projections of GMST in our EM-GC framework, for the same SSP4-3.4 GHG 

scenario. The middle panel on Figs. 3a, 3b, and 3c shows the contribution to GMST of GHGs, LUC, 
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AER, as well as net human activities. As the value of AER RF2011 decreases and aerosols cool more 

strongly, the value of climate feedback (model parameter λΣ) rises, and the net contribution of human 340 

impact on GMST by the end of the century increases. Depending on which value of AER RF2011 is used, 

the rise in GMST by year 2100 for the SSP4-3.4 pathway could range from 1.35°C (Fig. 3a) to 2.68°C 

(Fig. 3c) relative to pre-industrial. Strong aerosol cooling offsets a substantial fraction of GHG-induced 

warming, and a large value of climate feedback (λΣ = 2.32 41 W m−2 °C−1) is needed to fit the historical 

climate record (Fig. 3c). In this case, future warming is large, well above the goals of the Paris Agreement 345 

by the end of the century. Conversely, weak aerosol cooling offsets only a small fraction of GHG-induced 

warming, resulting in a small value of climate feedback (λΣ = 0.73 1.08 W m−2 °C−1) needed to fit the 

observed GMST record (Fig. 3a). The use of any of the values of AER RF2011 in Fig. 3 can result in a 

very good fit to the climate record (i.e., χ2
ATM ≤ 2, χ2

RECENT ≤ 2, and χ2
OCEAN ≤ 2).  

 We use the total aerosol RF time series provided by the SSP database for each SSP scenario. The 350 

database provides AER RF from 2005-2100, with values for all SSPs nearly identical until about 2010 

(Riahi et al., 2017; Rogelj et al., 2018). In the EM-GC, we calculate temperature projections over the 

entire observational period, beginning in 1850. Consequently, weWe create AER RF time series that 

begin in 1850 and span the range of uncertainty given by Chapter 8 of IPCC 2013. We use historical 

estimates of AER RF from 1850-2014 for the four RCPs provided by the Potsdam Institute for Climate 355 

Research (Meinshausen et al., 2011). The AER RF value in 2014 from the appropriate historical estimate 

(i.e. RCP 4.5 is used for SSP2-4.5) is scaled by a constant multiplicative factor, such that the historical 

RCP value at the end of 2014 matches the SSP time series at the start of 2015., This scaling yielding 

yields a continuous time series for the RF of climate due to tropospheric aerosols. This scaled time series 

has AER RF2011 nearly equal to −1.0 W m−2, which we take as the SSP-based best estimate of the change 360 

in total aerosol radiative forcing in 2011 relative to pre-industrial. Next, the single continuous time series 

is scaled, again by a constant multiplicative factor, to match the IPCC 2013 best estimate and range of 

uncertainty for AER RF2011 (Myhre et al., 2013). This procedure results in five additional time series of 

AER RF. Six time series of AER RF are thus created for each SSP, having values of AER RF2011 equal 

to −0.1, −0.4, −0.9, −1.0, −1.5, and −1.9 W m−2. Figure S7 shows these six AER RF time series for SSP1-365 
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2.6 and SSP4-3.4. In the EM-GC framework, we further scale these six time series to create a total of 400 

AER RF time series to fully analyze the range of AER RF2011 given by Myhre et al. (2013). 

 

2.2.5 Total solar irradiance and stratospheric aerosol optical depth 

We use the TSI time series provided for the CMIP6 models from 1850-2014 (Matthes et al., 2017) and 370 

append values from the Solar Radiation and Climate Experiment (SORCE) (Dudok de Wit et al., 2017) 

for 2015 to the end of 2019. The values of TSIi used in Eq. (2) are differences of monthly mean values 

minus the long-term average (i.e., TSI anomalies). Consistent with prior studies (e.g., Lean and Rind 

(2008) and Foster and Rahmstorf (2011)) variations in solar irradiance due to the 11-year solar cycle have 

a small but noticeable effect on the EM-GC simulation of the GMST anomaly (Fig. 1c). For projections 375 

of future warming, we set the term TSIi in Eq. (2) equal to zero from the start of 2020 until 2100 (i.e., we 

do not propagate 11-year variations of TSI forward in time).  

The time series for SAOD is a combination of values computed from extinction coefficients for 

the CMIP6 GCMs (Arfeuille et al., 2014) from 1850-1978 and the Global Space-based Stratospheric 

Figure 3. Measured (HadCRUT5) and EM-GC simulated GMST anomaly (ΔT) relative to a pre-industrial (1850-

1900) baseline, as well as projected ΔT to end of century for SSP4-3.4. Top panel of each plot displays observed 

(black) and simulated (red) ΔT, as well as the values of λΣ and χ2
ATM for each model run. The Paris Agreement 

target (1.5°C) and upper limit (2.0°C) are shown (gold circles). The second panel shows the contribution of GHGs, 

aerosols, and land useland-use change to ΔT, as well as the net human component. The bottom panel compares 

observed (black) and modeled (red) values of OHC for simulations constrained by the average of five data sets (see 

text) and also provides the numerical values of κ needed to obtain best-fits to the OHC record as well as best-fit 

values of χ2
OCEAN. The only difference between (a), (b), and (c) is the time series for RF due to tropospheric aerosols 

used to constrain the EM-GC; values of AER RF2011 for each time series are (a) −0.4 W m−2, (b) −0.9 W m−2, (c) 

−1.5 W m − 2.  
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Aerosol Climatology (GloSSAC v2.0) (Thomason et al., 2018) from 1979-2018. Extinction coefficients 380 

at 550 nm were integrated from the tropopause to 39.5 km and averaged over the globe using a cosine of 

latitude weighting. The CMIP6 and GloSSAC extinction coefficients span 80°S to 80°N. To extend the 

SAOD time series to the end of 2019, we use the level 3, gridded SAOD product from the Cloud-Aerosol 

Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (Vaughan et al., 2004). Time series of 

globally averaged SAOD from CALIPSO have a very similar shape to the GloSSAC time series over the 385 

period of overlap (2006-2018), with a slight offset because GloSSAC uses estimates of CALIPSO data 

for SAOD. To append the CALIPSO SAOD for after 2018-2019, we took the average difference between 

the two time series for the overlapping months and then adjusted the CALIPSO time series by this offset. 

This slight adjustment to the CALIPSO record has no bearing on our scientific results, since the effect of 

volcanic activity on GMST has been small over the past 2 decades (Fig. 1c). We set the term SAODi in 390 

Eq. (2) equal to the value in December 2019 from the start of 2020 until 2100. 

 

2.2.6 El Niño southern oscillation, Pacific decadal oscillation, and Indian Ocean dipole 

We use the MEI.v2 (Wolter and Timlin, 1993; Zhang et al., 2019) to characterize the influence of ENSO 

on GMST. In order to obtain a time series that spans the entire training period of our model, 1850-2019, 395 

we append three time series to create an MEI.v2 index over the full time extent of our model training 

period. The MEI.v2 provides two month averages of empirical orthogonal functions of five different 

climatic variables from 1979 to present (Zhang et al., 2019). To have the ENSO index extend back to 

1850, we compute differences in SST anomalies over the tropical Pacific basin as defined by the MEI.v2 

from 1850-1870 using HadSST3 (Kennedy et al., 2011). Our internal computation of this surrogate for 400 

the MEI index is then appended to the MEI.ext of Wolter and Timlin (2011), which extends from 1871-

1978, and the MEI.v2 index of (Zhang et al., 2019) (1979-2019). This full time series provides a 

representation of ENSO that covers from 1850 to present. Consistent with prior regression-based 

approaches (Foster and Rahmstorf, 2011; Lean and Rind, 2008), we find a significant portion of the 

monthly and at times annual variation in GMST is well explained by ENSO (Fig. 1d). As for the other 405 

natural terms, we assume ENSOi in Eq. (2) is zero for 2020-2100. 
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 The Pacific decadal oscillation is the leading principal component of North Pacific monthly SST 

variability poleward of 20°N (Barnett et al., 1999). The PDO index maintained by the University of 

Washington provides monthly values from 1900-2018. The PDO varies on a multidecadal time scale and 

affects climate in the North Pacific and North America, and has secondary effects in the tropics (Barnett 410 

et al., 1999). In our model framework, the expression of PDO on GMST is dependent on the model 

specification of the AER RF time series, as shown in Fig. S6S8. At low values of AER RF2011, such as 

−0.1 W m−2, the effect of PDO on GMST is negligible and the contribution from AMOC dominates. At 

high values of AER RF2011 (−1.5 W m−2), the effect of PDO on GMST is equal to the contribution from 

AMOC. At high values of AER RF2011, we obtain results similar to findings from England et al. (2014) 415 

and Trenberth and Fasullo (2013) that shows the PDO exhibits an appreciable influence on GMST, 

especially for the 2000-2010 time period. 

The Indian Ocean dipole is based upon on the difference in the anomalous sea surface 

temperatures (SST) between the western equatorial Indian Ocean (50°-70° E and 10° S-10° N) and the 

south eastern equatorial Indian Ocean (90° E-110° E & 10° S-0° N) as defined in Saji et al. (1999). We 420 

use 1°  1° SSTs from the Centennial in situ Observation-Based Estimate (COBE) (Ishii et al., 2005) to 

create an IOD index from 1850-2019. As noted above and shown on Fig. 1f, the regression coefficients 

for PDO and IOD are quite small. We find little influence of either PDO or IOD in the HadCRUT5 time 

series of GMST, but these terms are retained for completeness. We assume PDOi and IODi in Eq. (2) are 

zero after the start of 2019 and 2020, respectively. 425 

 

2.2.7 Atlantic meridional overturning circulation 

We use the Atlantic multidecadal variability (AMV) index as the area weighted, monthly mean SST from 

HadSST3 HadSST4 (Kennedy et al., 2019)(Kennedy et al., 2011), between the equator and 60° N in the 

Atlantic Ocean (Schlesinger and Ramankutty, 1994) to characterize the influence of variations in the 430 

strength of the AMOC on GMST. The AMV index is detrended using the RF anomaly due to 

anthropogenic activity over the historical time frame of the analysis, as discussed in Sect. 3.2.3 of Canty 

et al. (2013), because this detrending option removes the influence of long-term global warming on the 

AMV index. The detrended AMV index serves as a proxy for variations in the strength of the AMOC 
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(Knight et al., 2005; Medhaug and Furevik, 2011; Zhang and Delworth, 2007), which has particularly 435 

noticeable effects on climate in the Northern Hemisphere (Jackson et al., 2015; Kavvada et al., 2013; 

Nigam et al., 2011). For this analysis, the index has been Fourier filtered to remove frequencies above 9 

yr−1 to retain only the low frequency, high amplitude component of the thermohaline circulation (Canty 

et al., 2013). As noted above and shown in Fig. 1, a considerable portion of the long-term variability in 

GMST is attributed to variations in the strength of AMOC, including about 0.036025°C/decade over the 440 

1975-2014 time period. There is considerable debate about the validity of the use of a proxy such as the 

AMV index as a surrogate for the climatic effects of AMOC that is centered mainly around how much of 

the variability of the index is either internal (i.e., natural variability) or externally forced (i.e., driven by 

anthropogenic factors) (Haustein et al., 2019; Knight et al., 2005; Medhaug and Furevik, 2011; Stouffer 

et al., 2006). We stress, as explained belowin Sect. 2.3, none of our major scientific conclusions are altered 445 

if we neglect AMV as a regression variable. 

 

2.2.8 Ocean heat content records 

Ocean heat content data records from five recent and independent papers are used in this study. We utilize 

OHC data from Balmaseda et al. (2013), Carton et al. (2018), Cheng et al. (2017), Ishii et al. (2017), and  450 

Levitus et al. (2012), as well as the average of the records to model the export of heat (OHE) from the 

atmosphere to the ocean. Figure S8 S9 shows these five OHC records as well as the multi-measurement 

average. While most of these data sets have a common origin, they differ in how extensive temporal and 

spatial gaps in the coverage of ocean temperatures have been handled, ranging from data assimilation 

(Carton et al., 2018) to an iterative radius of influence mapping method (Cheng et al., 2017). The five 455 

data sets are all set to zero in 1986, which is the midpoint of the multi-measurement time series, by 

applying an offset for visual comparison. Since OHE, in units of W m−2, is based upon on the slope of 

each OHC data set, this offset has no impact on the computation of OHE from OHC that is central to our 

study. For the computation of OHE from OHC, we use a value of the surface area of the world’s oceans 

equal to 3.3  1014 m2
 (Domingues et al., 2008). The OHC records we analyze are for the upper 700 m of 460 

the ocean. To calculate the OHE for the whole ocean, we multiply the OHE by 1/0.7 to account for the 

fact that the upper 700 m of the ocean holds 70% of the heat (Sect. 5.2.2.1 (Solomon, 2007)). When we 
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subtract the amount of heat going into the ocean in Eq. 2 (QOCEAN), we also must account for the difference 

in surface area between the global atmosphere and the world’s oceans. Since the QOCEAN term is computed 

for the surface area of the ocean, but the forcing is applied to the whole atmosphere, we multiply the 465 

QOCEAN term by the ratio of the surface area of the ocean to the surface area of the atmosphere, which is 

0.67. 

 As noted above, the calculation of χ2
OCEAN shown in Eq. (8) is used to constrain our model 

representation of the temporal rise in OHC. Only model runs that provide a good fit to the observed OHC 

record are shown below. For these five OHC data sets, uncertainty estimates are not always provided. 470 

Furthermore, some studies that do provide uncertainties give estimates that seem unreasonably small (see 

Fig. S9 S10 and the supplement). Because of the discrepancy in uncertainties between OHC records, we 

create a new uncertainty time series using both the 1-sigmaσ standard deviation of the average of the five 

OHC records and the uncertainties from the Cheng et al. (2017) (hereafter Cheng 2017) OHC record. We 

create this new uncertainty from 1955-2019 by a monthly time step and use either the 1-sigmaσ standard 475 

deviation of the average of the five OHC records or the uncertainties from the Cheng 2017 OHC record, 

whichever is larger, for that month. We use the Cheng 2017 OHC uncertainties because these estimates 

are the largest of the five data sets. Additionally, the standard deviation from the mean of the five OHC 

records is very low in the 1980s, which is an artifact of our normalization treatment, not inherent to any 

of the records. This combined uncertainty estimate is substituted in for each individual data set and the 480 

average, resulting in our use of the same time varying uncertainty in OHC for all data sets. Figure S9 S10 

and the supplement provide more detail on the creation of this time dependent uncertainty estimate for 

OHC. 

 The choice of OHC record has only a small effect on future projections of GMST using the EM-

GC. Figure 4 illustrates the effect of varying OHC record on future temperature. The bottom panels show 485 

the observed and modeled OHC, the value of κ needed to best fit the OHC data record, as well as theand 

the resulting value of χ2
OCEAN. Of the two OHC records shown, Balmaseda et al. (2013) (Fig. 4a) yields 

the lowest value of κ and Ishii et al. (2017) (Fig. 4b) results in the highest estimate of κ. For the same 

value of AER RF2011 (i.e., −0.9 W m−2) and GHG scenario (SSP4-3.4), we find a difference of 0.25°C in 

the modeled rise in GMST in year 2100 for these two simulations (red lines on top panels). For most of 490 
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the remaining analysis, we use the multi-measurement average of the five OHC data records. However, 

in In Sects. 3.1 and 3.2 we quantify the effect of OHC data record on both attributable anthropogenic 

warming rate and equilibrium climate sensitivity.  

 

 495 

2.3 Attributable anthropogenic warming rate 

The attributable anthropogenic warming rate, or AAWR, is the time rate of change of GMST due to 

humans from 1975-2014. We use AAWR as a metric in the EM-GC framework to quantify the human 

influence on global warming over the past few decades, and most importantly to also assess how well the 

CMIP6 GCMs can replicate this quantity. This analysis is motivated by the study of Foster and Rahmstorf 500 

(2011), who examined the human influence on the time rate of change of GMST from 1979-2010 using 

a residual method. We extend the end year of our analysis to 2014 because this is the last year of the 

CMIP6 Historical simulation. We pushed the start year back to 1975 so that our analysis covers a forty-

Figure 4. Measured (HadCRUT5) and EM-GC simulated GMST change (ΔT) from 1850-2019, as well as projected 

ΔT to year 2100 for SSP4-3.4. Top panel of each plot shows observed (black) and simulated (red) ΔT, the λΣ and 

χ2
ATM values, and the Paris Agreement target and upper limit. The second panel displays the contribution of GHGs, 

aerosols, and land useland-use change on ΔT. The bottom panel compares the observed (black) and modeled (red) 

OHC for two different OHC records and displays the value of κ needed to provide best-fits to the OHC record, as 

well as best-fit values of χ2
OCEAN. Both use an aerosol RF in 2011 of −0.9 W m−2. (a) OHC record from Balmaseda 

et al. (2013). (b) OHC record from Ishii et al. (2017). 
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year period, over which the effect of human activity on GMST rose nearly linear with respect to time 

(Fig. 1b and Fig. S10c).  505 

We calculate AAWR utilizing the EM-GC by computing a linear fit to the ΔTHUMAN,ATM term: 

 𝛥𝑇𝐴𝑇𝑀,𝐻𝑈𝑀𝐴𝑁𝑖 =
1+𝛾

𝜆𝑝
 {𝐺𝐻𝐺 𝛥𝑅𝐹𝑖 + 𝐴𝐸𝑅 𝛥𝑅𝐹𝑖 + 𝐿𝑈𝐶 𝛥𝑅𝐹𝑖 − 𝑄𝑂𝐶𝐸𝐴𝑁}    (9) 

for a regression that spans 1850-2019. The ΔTHUMAN,ATM term represents the net impact of the change in 

GMST due to RF of climate by anthropogenic GHGs, tropospheric aerosols, as well as the variation in 

surface reflectivity due to land useland-use change (deforestation), taking into account that for each model 510 

time step, a portion of the human-induced climate forcing is exported to the world’s oceans. For each 

simulation, the slope of the linear least squares fit to the 480 monthly values of ΔTHUMAN,ATM is used to 

determine AAWR. For the time period 1975-2014, a value for AAWR of 0.144  0.005 °C/decade is 

found using a value of AER RF2011 equal to −0.9 W m−2, where the uncertainty corresponds to the 2-

sigmaσ standard error of a linear least squares fit. The computation of AAWR found by fitting monthly 515 

values of ΔTHUMAN,ATM is insensitive to modest changes in start and end year for the AAWR calculation 

(see Table S1).,  The value of λΣ, and therefore AAWR, is also insensitive whether as well as whether or 

not the AMOC, PDO, or IOD terms are included in the regression framework (Canty et al., 2013; Hope 

et al., 2017). We are able to fit the climate record better (i.e. smaller values of χ2 in Eqs. (6), (7), and (8)) 

upon considerationby including of the AMOC term. However, computed values of AAWR are insensitive 520 

to whether this termAMOC is used in the regression because whatever contributions the variation in the 

strength of the thermohaline circulation may have had on GMST are not considered in Eq. (9) (see Sect. 

2.3 of Hope et al. (2017)Fig. S11 for further explanation). 

 The determination of AAWR from historical CMIP6 near surface air temperature output involves 

conducting  a regression of deseasonalized, globally averaged, monthly ΔT (ΔTDES,GLB) from each GCM 525 

(Hope et al., 2017), termed the REG method. The archived CMIP6 Historical runs are constrained by 

observed variations in SAOD and influenced by other factors such as internal model generated ENSOs. 

The ΔTDES,GLB time series for all of the runs from each CMIP6 GCM are averaged together to obtain one 

time series of ΔTDES,GLB
 for each GCM. This average ΔTDES,GLB time series is used to compute AAWR. 

The regression approach is used to compute the influence of SAOD on GMST from CMIP6 GCMs. The 530 
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time needed for GMST to respond to a change in the aerosol loading in the stratosphere due to a volcanic 

eruption in each GCM can exhibit a significant difference compared to the empirically determined 

response time of 6 months discussed in Sect. 2.1. A lag was determined for each GCM by calculating the 

value of the monthly delay between volcanic eruptions and the surface temperature response that resulted 

in the largest regression coefficient for SAOD. We regress the ΔTDES,GLB against SAOD and the 535 

anthropogenic effect on temperature, which is approximated as a linear function from 1975-2014. The 

value of AAWR is the slope of the anthropogenic effect on temperature. Figure S10 S12 illustrates the 

REG method used to determine AAWR from the CMIP6 GCMs. Table S2 S3 depicts the slight effect on 

values of AAWR for the CMIP6 GCMs of changing the start or end year for the regression. At the time 

of analysis, there are 50 CMIP6 GCMs with the necessary archived output to calculate AAWR, with the 540 

values of AAWR found using REG shown in Table S3. Figure S13 and the supplement compare values 

of AAWR found using the REG method applied to EM-GC output with values of AAWR found using 

Eq. (9), as support for the validity of using the REG method to determine AAWR from CMIP6 output. 

 We also use a second method to extract the value of AAWR from the CMIP6 multi-model 

ensemble. This method, termed LIN, involves the computation of a linear regression of global, annual 545 

average values of GMST from the CMIP6 multi-model ensemble (Hope et al., 2017). For LIN, we exclude 

the years of obvious volcanic influence on the rise in GMST from the CMIP6 multi-model ensemble 

Historical simulations: i.e. data for 1982 and 1983 (following the eruption of El Chichón) and 1991 and 

1992 (following the eruption of Mount Pinatubo) are excluded. Archived global, annual average values 

of GMST covering 1975-2014, excluding these four years, are fit using linear regression, with the AAWR 550 

set equal to the slope of the fit. Values of AAWR for 1975-2014 found using LIN are also shown in Table 

S3 S4 for each GCM. Analysis of AAWR for these 50 GCMs of LIN versus REG (see Fig. S11S14) 

results in a correlation coefficient (r2) of 0.995 and a mean ratio of 1.009  0.015, with LIN-based AAWR 

exceeding REG-based AAWR by about 1%. The close agreement of AAWR found using both methods 

provides strong evidence for the accurate determination of AAWR from the CMIP6 GCMs. We use the 555 

REG method in this analysis because it provides a more rigorous technique to remove the influence of 

SAOD on GMST from the CMIP6 multi-model ensemble compared to the LIN method. All of our 
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scientific conclusions are unchanged had we used LIN-based values of AAWR from the CMIP6 multi-

model ensemble. 

The CMIP6 multi-model ensemble provides simulations of near surface air temperature (TAS), 560 

which we use to calculate AAWR. The EM-GC uses blended near surface air temperature to determine 

values of AAWR. Cowtan et al. (2015) provide a method to create blended near surface air temperature 

output from the GCMs. The CMIP6 multi-model ensemble contains archived fields of TAS and the 

temperature at the interface of the atmosphere and the upper boundary of the ocean (TOS) (Griffies et al., 

2016), whereas only a subset of GCM groups provide the archived land fraction needed to calculate 565 

blended near surface air temperature using the Cowtan et al. (2015) method. Cowtan et al. (2015) compare 

the modeled and measured trend in global temperature over 1975-2014 and found a 4.0% difference in 

the trend upon the use of blended temperature from CMIP5 GCMs, rather than global modeled TAS. 

Their analysis focused on a comparison of modeled and measured temperature, not just the anthropogenic 

component. We have used the method of Cowtan et al. (2015) to create blended CMIP6 temperature 570 

output, for the CMIP6 GCMs that provide TAS, TOS, and the land fraction. Upon our use of blended 

CMIP6 temperature output for these GCMs, and calculation of AAWR for 1975-2014, we find that 

AAWR based on blended CMIP6 temperature is 3.5% lower than AAWR found when using only TAS. 

Tokarska et al. (2020) estimate an effect of 0.013°C/decade in the trend of CMIP6 temperature output 

upon the use of blended CMIP6 temperature instead of TAS, while Cowtan et al. (2015) report a 575 

difference of 0.030°C/decade between the trend in observations and modeled output. Since the difference 

between values of AAWR found using blended CMIP6 temperature output and TAS is so small and does 

not affect any of our conclusions, we use TAS output from the CMIP6 multi-model archive because this 

choice allows many more GCMs to be examined. 

 580 

2.4 Equilibrium climate sensitivity 

The equilibrium climate sensitivity (ECS), which represents the warming that would occur after climate 

has equilibrated with atmospheric CO2 at the 2×pre-industrial level (Kiehl, 2007; Otto et al., 2013; 

Schwartz, 2012) is also used to compare results of our EM-GC to CMIP6 multi-model output. To calculate 

ECS from the EM-GC, we use the following equation: 585 
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𝐸𝐶𝑆 =
1+𝛾

𝜆𝑃
× 5.35 W m−2 ×  ln(2)     (10) 

That represents the rise in GMST for a doubling of CO2, assuming no other perturbations as well as 

equilibrium in other components of the climate system (i.e., QOCEAN = 0) (Mascioli et al., 2013). The 

expression for the radiative forcing of CO2 is from Myhre (1998). The quantity γ in Eq. (10), which 

represents the sensitivity of the GMST to feedbacks within the climate system, is the only variable 590 

component of ECS. We only use values of γ that result in good fits (χ2 ≤ 2 for Eq. (6) to (8)) between 

modeled and observed GMST and modeled and observed OHC. 

 For the estimate of ECS from the CMIP6 multi-model ensemble, we use the method described by 

Gregory et al. (2004) (See the supplement and Fig. S15 for more information). At the time of this analysis, 

28 models released the necessary output to the CMIP6 archive (see Table S5 for the list of models and 595 

individual values of ECS). There have been some recent analyses that suggest the Gregory method may 

underestimate ECS (Rugenstein et al., 2020). However, Wwe use the Gregory method to calculate ECS 

from the CMIP6 GCMs because this procedure is preferred by Eyring et al. (2016) for the use by CMIP6. 

There have been some recent analyses that suggest the Gregory method may underestimate ECS . 

However, we use the Gregory method to be consistent with the approach for CMIP6 recommended by 600 

Eyring et al. (2016). 

To use the Gregory method, near surface air temperature output from the Abrupt 4CO2 and 

piControl simulations, as well as net downward radiative flux output from the Abrupt 4CO2 simulation 

is used to calculate ECS. At the time of this analysis, 28 models released the necessary output to the 

CMIP6 archive (see Table S4 for the list of models and individual values of ECS). The near surface air 605 

temperature and net downward radiative flux was converted from monthly gridded output to annual global 

averages. We calculate the temperature change for the Abrupt 4CO2 simulation by subtracting the 

piControl near surface air temperature (Chen et al., 2019) (Fig. S12). This computed temperature anomaly 

is then regressed against the net downward radiative flux, with the x-intercept yielding the equilibrium 

response of ΔT to a quadrupling of CO2. This equilibrium response is then divided by two (Jones et al., 610 

2019) to arrive at the equilibrium climate sensitivity (Fig. S12).  

 



26 

 

2.5 Aerosol weighting method 

Probabilistic forecasts of the future rise in GMST for various SSPs are an important part of our analysis. 

Probabilities of AAWR and ECS are computed by considering the uncertainty in AER RF2011. We also 615 

provide probabilistic estimates of AAWR and ECS. All of these quantities are computed by incorporating 

the uncertainty in the radiative forcing of climate due to tropospheric aerosols within results of our EM-

GC simulations. We use an asymmetric Gaussian to assign weights to the value of GMST, AAWR or 

ECS found for various time series of radiative forcing by aerosols associated with particular values of 

AER RF2011. Figure 5a shows the asymmetric Gaussian function we use to maximize the values of AAWR 620 

or ECS at the best estimate of AER RF2011 of −0.9 W m−2, accomplished by giving these values the highest 

weighting. The IPCC 2013 “likely” range limits of AER RF2011 of −0.4 and −1.5 W m−2 (Myhre et al., 

2013) are assigned to the one 1sigmaσ values of the Gaussian, and the AAWR or ECS estimates occurring 

at the “likely” range AER RF2011 limits are given the same weighting. The −0.1 and −1.9 W m−2 limits of 

the AER RF2011 range are assigned as the two 2sigmaσ values of the asymmetric Gaussian, based upon 625 

on the IPCC 2013 description of these two values as being 5 and 95% uncertainty limits (Myhre et al., 

2013). The Gaussian we use is asymmetric due to the fact that the distribution of the likely range and 5th 

and 95th percentiles of the values of AER RF2011 are not distributed symmetrically from the best estimate 

of −0.9 W m−2. For example, the likely ranges of AER RF2011 are given as −0.4 W m−2 and −1.5 W m−2; 

the −0.4 W m−2 value is 0.5 W m−2 from the best estimate whereas −1.5 W m−2 is 0.6 W m−2 from the 630 

best estimate. We fit a Gaussian to the likely range and 5th and 95th percentiles that has slightly different 

shape on either side of the best estimate, as shown in Fig. 5a. 

Figure 5b shows the value of AAWR in °C/decade as a function of the climate feedback parameter, 

λΣ, and AER RF2011. We are able to find more good fits to the observed GMST for small values of AER 

RF2011 than at larger values of AER RF2011. Therefore, we bin values of AAWR (Fig. 5b), ECS (Fig. 5c), 635 

or future GMST (described in Sect. 3.3) by AER RF2011 and find the probability distribution for values of 

AAWR, ECS, or future GMST within each bin. The resulting probability distributions are assigned the 

weights associated with each value of AER RF2011 in the bins to arrive at the probabilistic estimates of 

AAWR or ECS shown in Sect. 3. If we did not use this procedure and instead simply averaged all of the 

values for AAWR and ECS shown in Fig. 5, undue emphasis would be given to model results that occur 640 
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at small AER RF2011 (see Fig. S14 S16 for unweighted ECS values). This aerosol weighting method 

allows the expert assessment of the likely range of RF due to tropospheric aerosols given in Chapter 8 of 

IPCC 2013 (Myhre et al., 2013) to be quantitatively incorporated into our computations of AAWR, ECS, 

and GMST. 

 645 

3 Results 

Figure 5. Aerosol weighting method. (a) The weights assigned to an asymmetric Gaussian distribution of AER 

RF2011 based on values provided by chapter 8 of IPCC 2013. The five black circles indicate the assigned weights 

for the AER RF2011 best estimate of −0.9 W m−2, likely range of −0.4 and −1.5 W m−2, and the 5th and 95th confidence 

intervals of −0.1 and −1.9 W m−2. (b) Values of AAWR in °C/decade as a function of climate feedback parameter, 

λΣ, and the value of AER RF2011 associated with various time series for the RF of climate due to tropospheric 

aerosols. The colors denote the various values of AAWR calculated from 1975-2014 using the EM-GC trained with 

the HadCRUT5 ΔT record. (c) ECS in °C as a function of λΣ and the value of AER RF2011. The colors denote various 

values of ECS found using the EM-GC. For panels (b) and (c), model results are shown only for combinations of 

λΣ and RF due to tropospheric aerosols for which good fits to the climate record could be achieved. 
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3.1 AAWR, comparison to CMIP6 multi-model ensemble 

An important measure of any climate model is the ability to accurately simulate the human influence on 

the global mean surface temperature (GMST) anomaly. We use the attributable anthropogenic warming 

rate (AAWR) found by our highly constrained Empirical Model of Global Climate (EM-GC) to quantify 650 

how well the CMIP6 multi-model ensemble (see Table S5 S7 for a list of CMIP6 GCMs analyzed in this 

study) is able to simulate the human influence on global warming over the past several decades. The EM-

GC results in Fig. 6 have been constrained by blended near surface air temperature (TAS) and the 

temperature at the interface of the atmosphere and the upper boundary of the ocean (TOS) (Griffies et al., 

2016). The CMIP6 multi-model output contains archived fields of TAS and TOS, whereas only a subset 655 

of GCM groups provide the archived land fraction needed to calculate blended near surface air 

temperature. Cowtan et al. (2015) compare the modeled and measured trend in global temperature over 

1975-2014 and found a 4.0% difference in the trend upon the use of blended temperature from CMIP5 

GCMs, rather than global modeled TAS. Their analysis focused on a comparison of modeled and 

measured temperature, not just the anthropogenic component. We have used the method of Cowtan et al. 660 

(2015) to create blended CMIP6 temperature output, for the CMIP6 GCMs that provide TAS, TOS, and 

the land fraction. Upon our use of blended CMIP6 temperature output for these GCMs, and calculation 

of AAWR for 1975-2014 as described in Sect. 2.3, we find that AAWR based upon blended CMIP6 

temperature is 3.5% lower than AAWR found when using only TAS. Tokarska et al. (2020) estimate an 

effect of 0.013°C/decade in the trend of CMIP6 temperature output upon the use of blended CMIP6 665 

temperature instead of TAS, while Cowtan et al. (2015) report a difference of 0.030°C/decade between 

the trend in observations and modeled output. Since the difference between values of AAWR found using 

blended CMIP6 temperature output and TAS is so small and does not affect any of our conclusions, we 

use TAS output from the CMIP6 multi-model archive because this choice allows the behavior of many 

more GCMs to be examined. 670 

  Figure 6 compares values of AAWR from 1975-2014 computed using our EM-GC with AAWR 

found utilizing archived output from the CMIP6 multi-model ensemble. Five Seven GMST data sets and 

five OHC records can be used to estimate AAWR with the EM-GC; . for For each choice, AAWR exhibits 

sensitivity to the variation of the time series of radiative forcing due to tropospheric aerosols. Each box 
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and whisker plot found using our EM-GC shows, for a particular choice of GMST and OHC data record, 675 

the 25th, 50th, and 75th percentiles of AAWR (box), and 5th and 95th percentiles (whiskers) found using the 

aerosol weighting method described in Sect. 2.5. The star symbol indicates the minimum and maximum 

values of AAWR for each value of GMST data set and OHC record. The choice of OHC record and 

GMST data set has a slight effect on AAWR, as shown by the colored EM-GC symbols in Fig. 6. For 

example, switching from using the HadCRUT record to the CW14 record increases the values of λΣ that 680 

result in good fits to the climate record, which in turn affects the values of AAWR. The estimate of the 

value of AAWR increases from 0.143°C/decade to 0.153°C/decade when using the Cheng OHC record 

and changing the GMST record from HadCRUT to CW14. The averages of the five 25th, 50th, and 75th 

percentiles of AAWR found using the HadCRUT5 data set for GMST are 0.115138, 0.135157, and 

0.160176°C/decade, respectively. The 5th and 95th percentile values of AAWR from HadCRUT5 are 0.097 685 

120 and 0.195°C/decade. 

The box and whisker symbol labeled CMIP6 in Fig. 6 shows the 5th, 25th, 50th, 75th, and 95th 

percentiles of AAWR calculated from 50 GCMs, also from 1975-2014, as described in Sect. 2.3. The 

Figure 6. AAWR from the EM-GC and CMIP6 multi-model ensemble for 1975-2014. Five Seven temperature 

data sets and five ocean heat content records are used to compare values of AAWR computed from the EM-GC. 

The box represents the 25th, 50th, and 75th percentiles, the whiskers denote the 5th and 95th percentiles, and the stars 

show the minimum and maximum values of AAWR from the EM-GC based upon on the aerosol weighting method 

described in Sect. 2.5. The red box labeled “CMIP6” shows the 25th, 50th, and 75th percentiles, the whiskers 

represent the 5th and 95th percentiles, and the stars denote the minimum and maximum values of AAWR from the 

50 member CMIP6 multi-model ensemble. 
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stars denote the minimum and maximum values of AAWR from the GCMs. Two CMIP6 models exhibit 

values of AAWR similar to the median values we infer from the HadCRUT4, CW14, NOAAGT, BEG, 690 

BEG, GISTEMP, and HadCRUT5, NOAAGT, and CW14  data records using the EM-GC, . Iin particular 

INM-CM5-0 (Volodin and Gritsun, 2018) yields 0.147°C/decade and MIROC6 (Tatebe et al., 2019) 

results in 0.157°C/decade (Table S3 S4 provides values of AAWR for all individual CMIP6 GCMs). The 

median value of AAWR from the CMIP6 multi-model ensemble is 0.221°C/decade, about 6040% larger 

than the 50th percentile value of AAWR found using the HadCRUT5 data set for GMST noted above. The 695 

5th, 25th, 75th, and 95th percentiles of AAWR from the CMIP6 multi-model ensemble are 0.151, 0.192, 

0.245, and 0.299°C/decade, respectively. Some CMIP6 GCMs exhibit values of AAWR that are almost 

0.14°C/decade larger than our largest empirical estimates for 1975-2014; the maximum value of AAWR 

from the GCMs is 0.354 °C/decade. The maximum value of AAWR based off the historical climate record 

using the EM-GC is 0.257213°C/decade (NOAAGT HadCRUT5 data set using the Cheng Ishii et al. 700 

(2017) OHC record and a time series for RF due to tropospheric aerosols consistent with AER RF2011 

equal to −1.6 5 W m−2). The 95th percentiles of all All of the EM-GC based values of AAWR in Fig. 6 are 

below the 75th 50th percentile of AAWR from the CMIP6 multi-model ensemble of 0.245221°C/decade, 

supporting the notion that CMIP6 GCMs tend to exhibit a faster rate of anthropogenic warming over the 

past four decades than the actual atmosphere.  705 

Our determination that the rate of global warming from the CMIP6 multi-model ensemble over 

the time period 1975-2014 significantly exceeds the rise in GMST attributed to human activity is aligned 

with a similar finding highlighted in Figure 11.25b of chapter 11 of the IPCC 2013 report that CMIP5 

models tend to warm too quickly compared to the actual climate system over the time period 1975-2014 

(Kirtman et al., 2013). The values of AAWR from the CMIP6 multi-model ensemble from our analysis 710 

present a similar finding as Tokarska et al. (2020) and (CONSTRAIN, (2020), that some of the CMIP6 

models over estimate recent warming trends., with Tokarska et al. (2020) examineing the trend in the 

human component of GMST from 1981-2014. We arrive at a similar conclusion as these studies that 

CMIP6 models GCMs overestimate the rate of global warming for the 1982-2014 time period of AAWR 

as shown in Table S2 and 2S3. Our results, the finding by the IPCC 2013 report, and Tokarska et al. 715 

(2020), and CONSTRAIN (2020) appear to be quite different than the conclusion of Hausfather et al. 
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(2020) that past climate models have matched recent temperature observations quite well. The Hausfather 

et al. (2020) study does not examine CMIP5 GCMs, let alone CMIP6 GCMs, and the last two rows of 

their Table 1 indicate that the skill of climate models forecasting the change in GMST over time decreased 

considerably between the Third Assessment Report (TAR) and the Fourth Assessment Report (AR4). The 720 

change in temperature over time for the TAR and AR4 only span 17 and 10 years, respectively (Hausfather 

et al., 2020). In Fig. 6, we examine the ability of the GCMs to simulate the rise in GMST attributed to 

humans over a 40 year time period, which provides a better measure of how well the models simulate the 

observations than when using athe shorter time period. The temperature change over time for the TAR 

and AR4 examined by Hausfather et al. (2020) ends in 2017, which was right after a very strong ENSO, 725 

so their analysis may be influenced by the 2015 to 2016 ENSO event. In contrast, our analysis of AAWR 

is not influenced by natural variability such as ENSO because we examine the human component of global 

warming after explicitly accounting for and removing the influence of ENSO on GMST. Consequently, 

our determination of AAWR from observations (Table S1S2) and GCMs (Table S2S3) depends only to a 

small extent on the specification of start year (for values ranging from 1970 to 1984) and end year (2004 730 

to 2018). Our analysis shows that upon quantification of the human driver to global warming within both 

the data record and climate models, the CMIP6 GCMs warm faster than observed GMST over the past 

four decades, regardless of precise specification of start and end year. 

 

3.2 ECS 735 

Equilibrium climate sensitivity (ECS) is a metric often used to compare the sensitivity of warming among 

GCMs, as well as with warming inferred from the historical climate record. Figure 7 shows values of ECS 

inferred from the climate record using our EM-GC, five seven GMST data sets, and five OHC records. 

As for AAWR, the largest variation in ECS is driven by uncertainty in AER RF2011. The colored circles 

represent the ECS values found using the IPCC 2013 best estimate of AER RF2011 of −0.9 W m−2 (Myhre 740 

et al., 2013). The ECS values found utilizing the EM-GC are displayed using a box and whisker symbol. 

The middle line represents the median values of ECS, and the box is bounded by the 25th and 75th 

percentiles. The whiskers connect to the 5th and 95th percentiles, and the stars denote the minimum and 

maximum values. We use the aerosol weighting method described in Sect. 2.5 to calculate the percentiles 
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for ECS; values of ECS found without aerosol weighting are shown in Fig. S14S16. Varying the choice 745 

of GMST data record has a slight effect on the value of ECS, whereas the choice of OHC record has a 

larger effect, as indicated by the various heights of the box and whiskers and the maximum values of 

ECS. In the EM-GC framework, the ocean heat export term (QOCEAN) represents disequilibrium in the 

climate system. We compute values of QOCEAN from various records of OHC. If the current value of 

QOCEAN is as large as suggested by the Cheng 2017 and Ishii et al. (2017) OHC records, then Earth’s 750 

climate will exhibit a larger rise in GMST to reach equilibrium than if the value of QOCEAN inferred from 

the OHC record of Balmaseda et al. (2013) is correct. The averages of the 25th, 50th, and 75th percentiles 

of ECS found using the HadCRUT5 data set for GMST are 1.4974, 1.852.12, and 2.5067°C, respectively. 

The average best estimate of ECS using the HadCRUT5 data set and an AER RF2011 value of −0.9 W m−2 

is 2.0133°C. 755 

 The box and whisker symbol labeled CMIP6 in Fig. 7 shows the 25th, 50th, 75th, and 5th and 95th 

percentiles of ECS calculated from output of 28 CMIP6 models, as described in Sect. 2.4. Minimum and 

maximum values are represented by the stars. The values of ECS from the CMIP6 multi-model ensemble 

Figure 7. ECS from the EM-GC and the CMIP6 multi-model ensemble. Five Seven GMST data sets and five ocean 

heat content records are used to compare values of ECS computed from the EM-GC. The box represents the 25th, 

50th, and 75th percentiles, the whiskers denote the 5th and 95th percentiles, and the stars indicate the minimum and 

maximum values of ECS using the EM-GC based upon on the weighting method described in Sect. 2.5. The circles 

denote the value of ECS associated with the best estimate of AER RF2011 of −0.9 W m−2. The red box labeled 

“CMIP6” represents the 25th, 50th, and 75th percentiles, the whiskers denote the 5th and 95th percentiles, and the 

stars indicate the minimum and maximum values of ECS from the 28 member CMIP6 multi-model ensemble. 
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are larger than the majority of values inferred from the climate record using the EM-GC. The height of 

the box for the CMIP6 multi-model ensemble estimate of ECS is larger than the height of the boxes for 760 

ECS inferred from the climate record using the EM-GC, indicating that the GCMs exhibit a wide range 

of ECS values. The 25th and 75th percentiles of ECS from the CMIP6 multi-model ensemble are 2.84°C 

and 4.93°C, respectively. The 5th percentile of ECS from the CMIP6 multi-model ensemble is 2.19°C, 

and the 95th percentile is 5.65°C (see Table S4 for ECS values for specific models). In contrast, the average 

5th and 95th percentiles from the EM-GC are 1.1240°C and 4.123.57°C, respectively. The median value 765 

of ECS from the CMIP6 multi-model ensemble is 3.74°C, more than double 1.6 times the median 

valuebest estimate of 1.852.33°C found using the HadCRUT5 temperature record.  

 We tested our approach of calculating ECS utilizing the EM-GC to CMIP6 GCMs by altering the 

EM-GC framework to include CMIP6 output (see the supplement for details). Our results in Fig. S13 

Figure 8. Values of ECS from the EM-GC (black) trained using the HadCRUT5 GMST record, our analysis of 

the CMIP6 multi-model ensemble (black), and 13 other studies grouped by type of analysis. The studies are listed 

by lead author (first initial of their first name and first initial of their last name) and the year of publication, unless 

there are only two authors, in which case initials of both authors are listed. Historical analysis includes Lewis and 

Grünwald (2018) NL+PG18, Otto et al. (2013) AO13, and Skeie et al. (2018) RS18. Constrained GCM output 

includes Armour (2017) KA17, Cox et al. (2018) PC18, Dessler et al. (2018) AD18, Nijsse et al. (2020) FN20, 

Rugenstein et al. (2020) MR20, Sherwood et al. (2020) SS20, Stocker et al. (2013) IPCC 2013, and Tokarska et 

al. (2020) KT20. GCM output includes Proistosescu and Huybers (2017) CP+PH17 and Zelinka et al. (2020) 

MZ20. See the supplement for the confidence intervals shown for each study. 
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show the validity of our approach. We obtain similar values of ECS for the CMIP6 GCMs using the EM-770 

GC framework as the Gregory method. The EM-GC method is insensitive to which OHC record is used, 

as indicated in Fig. S13a and S13b. 

Figure 8 summarizes values of ECS found utilizing the analysis of the century and a half long 

climate record using our EM-GC, our examination of a 28 member CMIP6 GCM ensemble, and 13 other 

recent studies. The studies are divided into three categories: those that estimated ECS based on 775 

observations (Historical Analysis), others that used GCM output but constrained the output in some way 

(Constrained GCM Output), and studies that examined raw GCM output (GCM Output). We obtain a best 

estimate for ECS of 2.0133°C using the HadCRUT5 data record and a value of AER RF2011 = −0.9 W m−2 

with a range of ECS of 1.1240-4.123.57°C (5th and 95th percent confidence interval). This estimate of 

ECS largely falls within the range provided by IPCC 2013 of 1.5°C to 4.5°C for ECS and is supported by 780 

three other derivations of ECS from the empirical climate record: 2.0°C (range of 1.2-3.9°C) given by 

Otto et al. (2013), 1.87°C (range of 1.1-4.05°C) given by Lewis and Grünwald (2018), and 2.0°C (range 

of 1.2-3.1°C) given by Skeie et al. (2018) (all range values are for the 5th and 95th percent confidence 

interval). Our estimate of ECS covers the samea similar range of values given by Cox et al. (2018), Dessler 

et al. (2018), and Nijsse et al. (2020), as illustrated in Fig. 8. Our determination of ECS from the CMIP6 785 

GCMs resembles that from Proistosescu and Huybers (2017) and Zelinka et al. (2020) as indicated in the 

GCM Output category of Fig. 8. 

 Recent studies have shown that the CMIP6 multi-model ensemble exhibits higher values of ECS 

than the CMIP5 models because of larger, positive cloud feedbacks within the latest models (Gettelman 

et al., 2019; Meehl et al., 2020; Sherwood et al., 2020; Zelinka et al., 2020). The IPCC 2013 report gives 790 

a likely range of 1.5°C to 4.5°C for ECS (Stocker et al., 2013), and some of the CMIP6 GCMs analyzed 

in this study have values of ECS more than 1°C above this range. However, some in the climate 

community seem to currently doubt whether the very large values of ECS are representative of the real 

world (CONSTRAIN, 2020; Forster et al., 2020; Lewis and Curry, 2018; Tokarska et al., 2020). 

Gettelman et al. (2019) found that the newest version of the Community Earth System Model (CESM2) 795 

has a higher value of ECS than CESM1 (5.3°C versus 4.0°C) and urge the climate community to work 

together to determine the plausibility of such high values of ECS. Zhu et al. (2020) found that the high 
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values of ECS in CESM2 and other GCMs is not supported by the paleoclimate record and are biased too 

warm. An analysis by Nijsse et al. (2020) coupled the CMIP6 multi-model ensemble to a two-box energy 

balance model and the climate record and obtains obtained a median value of ECS from the CMIP6 multi-800 

model ensemble of 2.6°C and range of 1.52-4.03°C (5th and 95th percentiles) coupled to a two-box energy 

balance model and the climate record. Similarly, Sherwood et al. (2020) conclude cooling during the Last 

Glacial Maximum provides strong evidence against ECS being greater than 4.5°C and conclude ECS lies 

within the range of 2.3 to 4.7°C at the 5th to 95th percent confidence intervals. 

We obtain a wide range of ECS values from our EM-GC simulations of the climate record due to 805 

consideration of the uncertainty in the radiative forcing of climate due tofrom tropospheric aerosols (Figs. 

5c and 87). However, under one circumstance, we find values of ECS using the EM-GC that are similar 

to the maximum value of ECS from the CMIP6 multi-model ensemble. Our very large estimate of ECS 

occurs if we assume that anthropogenic aerosols have exhibited very strong cooling and offset a large 

amount of greenhouse gas warming, such that the observed GMST record can only be well simulated 810 

under the condition of large climate feedback (i.e., values of λΣ in Eq. (3) greater than or equal to 2.5 45 

W m−2 °C−1). If aerosols have truly strongly cooled the climate, offsetting the vast majority of the rise in 

RF due to greenhouse gases as suggested by Shen et al. (2020), the actual value of ECS may lie close to 

5°C or larger. Under the more likely scenario that aerosols have not cooled this strongly (as suggested by 

Bond et al., (2013)), then it is more feasible that ECS lies well below 5°C. The highest values of ECS 815 

found using our analysis (red portion of Fig 5c) are assigned low weights due to the assessment by Myhre 

et al. (2013) that the large AER RF2011 associated with these ECS values is unlikely. 

Four empirical determinations of ECS (our study plus Lewis and Grünwald (2018), Otto et al. 

(2013), and Skeie et al. (2018)) and the CMIP5 or CMIP6-constrained estimates of Cox et al. (2018), 

Dessler et al. (2018), and Nijsse et al. (2020) are in slight contrast with the 2.3-4.7°C range for ECS (5th 820 

and 95th confidence interval) published recently by Sherwood et al. (2020) (Fig 8). As noted above, 

Sherwood et al. (2020) use paleoclimate data to rule out the high range of ECS. They rely on a 

determination that the feedback due to clouds is moderately to strongly positive to rule out the low range 

of ECS found by our analysis and the studies noted above. We caution that knowledge of the cloud 

feedback from observations is generally limited to databases such as the International Satellite Cloud 825 
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Climatology Project (ISCCP) (Schiffer and Rossow, 1983) and Pathfinder Atmospheres Extended 

(PATMOS-x) (Foster and Heidinger, 2013). that, Wwhile these databases are monumental in terms of 

complexity and scope, they cover only a fairly short (i.e., about 36 years) part of the century and a half 

climate record (Klein et al., 2017; Sherwood et al., 2020). Most assessments of total cloud feedback rely 

on some combination of observations such as ISCCP, PATMOS-x, or other satellite records together with 830 

the results of regression analysis, GCM projections, and large eddy simulations that are able to resolve 

some of the convective processes involved in cloud formation (Klein et al., 2017; Sherwood et al., 2020). 

The most important component of the global cloud feedback is tropical low clouds, which Sherwood et 

al. (2020) consider to exert a positive feedback on climate based largely on the results of Klein et al. 

(2017). The determination by Klein et al. (2017) of a likely positive feedback for tropical low altitude 835 

clouds is based on the mean and standard deviation of the central value of this feedback determined by 

five studies, even though four of these studies exhibit uncertainties that encompass zero feedback and the 

fifth nearly reaches zero (their Fig. 3). This fact, combined with the recent study by Weaver et al. (2020) 

who report no long term statistically significant trend in global cloud reflectivity at 340 nm averaged 

between 45° S and 45° N based on analysis of data collected by a variety of NOAA and NASA satellite 840 

instruments, causes us to suggest the true value of ECS may lie below the 2.3°C lower limit given by 

Sherwood et al. (2020). 

In our model framework, the largest uncertainty in ECS is driven by imprecise knowledge of the 

radiative forcing of climate by tropospheric aerosols. As shown in Fig. 5c, a wide range of ECS values 

can be inferred from the century and a half long climate record. We stress that each value of ECS shown 845 

in Fig. 5c is based upon on a simulation for which χ2
ATM, χ2

RECENT, and χ2
OCEAN are all less than or equal 

to 2. Better knowledge of AER RF for the contemporary atmosphere would lead to a reduction in the 

uncertainty of ECS. Numerous studies of the climate record, including our century and a half simulations, 

infer the possibility of lower values of ECS than was given by a recent analysis of studies that involve 

examination of data from compendiums such as ISCCP and PATMOS-x (Sherwood et al., 2020).  850 

However, the analysis by Sherwood et al. (2020) did not examine consistency of the inferred value of 

ECS with the ability of models to accurately simulate the GMST anomaly between 1850 and present or 

over the past 40 years. 
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We conclude this section by commenting on the relationship between ECS and AAWR in our 

model framework. Eight of the CMIP6 GCMs (GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, INM-CM4-855 

8, MIROC6, MIROC-ES2L, NorESM2-LM, and NorESM2-MM) exhibit values of ECS and AAWR 

consistent with the minimum and maximum estimates based on our EM-GC constrained by the 

HadCRUT5 GMST record (Table S5 and Fig. S17). An analysis of the relationship between AAWR and 

ECS from the CMIP6 GCMs illustrates that 78% of the variance in ECS among the 28 CMIP6 GCMs 

that provide both quantities is explained by AAWR (see Fig. S17). This result indicates CMIP6 GCMs 860 

that accurately simulate the rise in observed ΔT over the past few decades exhibit values of ECS that are 

in line with our empirically based estimate. 

 

3.3 Future projections 

3.3.1 CMIP6 865 

The CMIP6 multi-model archive provides future projections of the GMST anomaly relative to pre-

industrial (ΔT) using the ScenarioMIP Shared Socioeconomic Pathways (SSPs). Figure 9 shows the 

CMIP6 multi-model ensemble projections of ΔT for the four SSPs (SSP1-1.9, SSP1-2.6, SSP4-3.4, and 

SSP2-4.5) highlighted in our analysis. Each SSP scenario has varying amounts of gridded, monthly mean 

TAS projections submitted to the CMIP6 archive by GCMs (indicated on each plot). Global, monthly ΔT 870 

was created by averaging the TAS output over the globe with a cosine latitude weighting. The global, 

monthly ΔT time series for all of the runs for each CMIP6 GCM were averaged together to obtain one 

time series of ΔT. The varying amount of GCM output available for each SSP scenario is due to the fact 

that: a) SSP1-2.6 and SSP2-4.5 are Tier 1 scenarios (O’Neill et al., 2016) and are designated as priority 

over the other SSPs (as described in Sect. 2.2.2), and b) not all GCMs have provided results to the CMIP6 875 

archive at the time of the analysis. More CMIP6 multi-model output will likely become available as 

modeling groups who have not submitted output to the CMIP6 archive finalize their results. However, we 

do not expect additional GCM simulations will affect our conclusions unless the GCM output is 

significantly different than that currently available. 

 The red trapezoid in Fig. 9 labeled as the IPCC 2013 likely range is the same trapezoid as that 880 

displayed on Figure 11.25b from chapter 11 of the IPCC 2013 report (Kirtman et al., 2013). All of tThe 
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recent observations of ΔT from HadCRUT5 lie within towards the top of the likely range of warming 

designated by this trapezoid. Many of the projections of the rise in ΔT from the CMIP6 multi-model 

ensemble lie above the IPCC 2013 likely range of warming. The Paris Agreement target of 1.5°C and 

upper limit of 2.0°C are shown as yellow circles, included to allow for comparison of the future 885 

projections of ΔT from the CMIP6 multi-model ensemble with the goals of the agreement. The thick blue 

line on each plot is the CMIP6 multi-model mean of ΔT, and the dashed blue lines are the minimum and 

maximum ΔT projections from the CMIP6 multi-model ensemble. For SSP1-1.9, the multi-model mean 

projection of ΔT in 2100 from the CMIP6 GCMs lies just above the Paris Agreement target at 1.6°C, 

whereas for SSP1-2.6 the CMIP6 multi-model mean reaches the Paris Agreement upper limit of 2.0°C at 890 

the end of this century. For both SSP4-3.4 and SSP2-4.5, the end of century CMIP6 multi-model mean 

lies above the Paris Agreement upper limit at 3.0°C and 3.1°C, respectively.  

 Figure 9 illustrates there is a bimodalityare two groups of CMIP6 multi-model projections of ΔT, 

with a few GCMs having future values of ΔT that are considerably higher than others. This divergence 

for GCM projections of ΔT is especially evident in Fig. 9a, c, and d. The two CMIP6 GCMs that have the 895 

highest values of ΔT across the four SSPs are CanESM5 (Swart et al., 2019) and UKESM1 (Sellar et al., 

2020). The CanESM5 and UKESM1 GCMs have the highest values of AAWR (0.354°C/decade and 

0.299°C/decade, respectively), large values of ECS (5.70°C and 5.40°C, respectively), and exceed 

observed ΔT reported by HadCRUT5 for the past few decades (apparent in Fig. 9). 

  900 
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3.3.2 EM-GC 

The EM-GC is also used to project future changes in ΔT using the SSPs. Figure 10 shows the GMST 

anomaly in 2100 from pre-industrial (ΔT2100) as a function of the climate feedback parameter and AER 

RF2011, for the four SSPs highlighted throughout. Only model runs from the EM-GC that achieved a good 

fit to the climate record (χ2
ATM ≤ 2, χ2

RECENT ≤ 2, χ2
OCEAN ≤ 2) are shown. The EM-GC runs that satisfy 905 

these three χ2 constraints but fall outside of the IPCC 2013 range for AER RF2011 (Myhre et al., 2013) are 

shaded grey (left hand side of each panel). We do not consider the EM-GC projections that lie outside of 

the IPCC 2013 range for AER RF2011 in our projections of ΔT, yet these results are shown to illustrate 

that the EM-GC can fit the climate record with estimates of the RF due to tropospheric aerosols that lie 

below (i.e., less cooling) of the 5th confidence interval of −0.1 W m−2 for AER RF2011 given by IPCC 910 

2013. We cannot establish any good fits of the climate HadCRUT5 GMST record for AER RF2011 with a 

Figure 9. Historical simulations and future projections of GMST from the CMIP6 multi-model ensemble for several 

SSP scenarios. (a) GCM simulations from the Historical experiment, and future model projections from SSP1-1.9. 

Observations (black) are from HadCRUT HadCRUT5 to the end of 2019. The IPCC 2013 likely range of warming 

(red) is from Figure 11.25b from chapter 11 of the IPCC 2013 report. The CMIP6 multi-model mean (thick, blue) 

and minimum and maximum (dashed, blue) lines are shown. Global, monthly ΔT was created by averaging the TAS 

output over the globe with a cosine latitude weighting. The Paris Agreement target of 1.5°C and upper limit (yellow) 

of 2.0°C are included to demonstrate how the GCM projections compare. (b) Future GMST projections from SSP1-

2.6. (c) Future GMST projections from SSP4-3.4. (d) Future GMST projections from SSP2-4.5. 
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cooling stronger than about −1.6 55 W m−2. The range of ΔT2100 we compute using the EM-GC for SSP1-

1.9, SSP1-2.6, SSP4-3.4, and SSP2-4.5 are 0.6575-2.1606°C, 0.8296-2.7858°C, 1.0018-3.2801°C, and 

1.2145-3.7847°C, respectively. Results for SSP4-6.0, SSP3-7.0, and SSP5-8.5 are shown in Fig. S15S18: 

ΔT2100 ranges are 1.4170-4.4702°C, 1.842.26-5.564.93°C, and 2.1362-6.756.02°C for these three 915 

scenarios. 

The large range of T2100 found for any given SSP scenario (i.e., a factor of 3.1 difference between 

the smallest and largest end of century warming for SSP2-4.5) is caused by the fact that the climate record 

can be fit nearly equally well by a considerably large combination of the climate feedback parameter (our 

) and scenarios for radiative forcing due to tropospheric aerosols. The more aerosols have cooled, 920 

offsetting the relatively well-known warming due to GHGs, the larger  must be to fit the climate record. 

Figure 10. ΔT2100 as a function of climate feedback parameter and tropospheric aerosol radiative forcing in 2011 

using the EM-GC trained with the HadCRUT5 ΔT record. (a) Future GMST change for SSP1-1.9. The region 

outside of the AER RF2011 range provided by IPCC 2013 is shaded (grey). Colors denote the GMST change in year 

2100 relative to pre-industrial. The color bar is the same across all four panels for comparison. (b) GMST anomaly 

for SSP1-2.6. (c) Future temperature change for SSP4-3.4. (d) GMST anomaly for SSP2-4.5. 
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Since the RF of aerosols is set to diminish in the future due largely to public health concerns (Lelieveld 

et al., 2015; Shindell et al., 2016; Smith and Bond, 2014), the part of our model ensemble requiring 

relatively large values of  to achieve a good fit to the climate record will result in higher values of 

T2100 than other members of our model ensemble with small values of .  Most GCMs sample only a 925 

small portion of the possible combinations of  and AER RF2011 shown in Figs. 10 and S8S18. 

 

3.3.3 Comparing CMIP6 and EM-GC  

Time series of future projections of ΔT from the EM-GC can be illustrated as probabilistic 

forecasts. Figure 11 shows the change in future ΔT for SSP1-1.9, SSP1-2.6, SSP4-3.4, and SSP2-4.5 930 

colored by the probability of reaching at least that rise in ΔT by the end of the century. The EM-GC 

probabilities are computed from ensemble members for model runs constrained by the HadCRUT5 data 

records for GMST and the average of 5 OHC data records (Fig. S8S9) based upon on the aerosol 

weighting method, described in Sect. 2.5. The trapezoid from chapter 11 of IPCC 2013 (Kirtman et al., 

2013) is shown on Fig. 11 in black to highlight that the EM-GC projections of the future rise in ΔT lie 935 

within the IPCC 2013 likely range of warming. The Paris Agreement target and upper limit are included 

to compare the EM-GC projections of future ΔT to the Paris Agreement goals. The white shaded region 

is the EM-GC’s median estimate of future ΔT for each SSP scenario. The median estimate for ΔT2100 for 

simulations using SSP1-1.9 and SSP1-2.6 falls below the Paris Agreement target at 1.01°C and 1.34°C, 

respectively. The median estimate of ΔT2100 from the EM-GC for SSP4-3.4 is between the Paris 940 

Agreement target and upper limit at 1.68°C. For SSP2-4.5 the median estimate of ΔT2100 is 2.1°C, which 

is just just belowabove the Paris Agreement upper limit at 1.9°C. The CMIP6 minimum, multi-model 

mean, and maximum projections of ΔT, based on the ensembles identical to those in Fig. 9, are also shown 

in Fig. 11. The CMIP6 minimum projection of the rise in ΔT falls near the EM-GC median estimate of 

ΔT for each SSP scenario. The CMIP6 multi-model mean value of the future change in ΔT falls below 945 

the EM-GC maximum value of ΔT, while the CMIP6 maximum value is far above the maximum 

projections of the future rise in ΔT using the EM-GC. Results for SSP4-6.0, SSP3-7.0, and SSP5-8.5 are 

provided in Fig. S16S19. 
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Figure 12 compares probability distribution functions (PDFs) for the projection of ΔT2100 utilizing 

the EM-GC with the HadCRUT5 GMST record and average of the five OHC data sets and the CW14 950 

GMST record combined with the Cheng 2017 OHC record, and the CMIP6 multi-model ensemble. The 

CW14 PDF is shown to illustrate the slight sensitivity of our projections of ΔT2100 to the choice of GMST 

and OHC records. For the CMIP6 multi-model results, we compute the probabilities of achieving the 

Paris Agreement target of 1.5°C and upper limit of 2.0°C (at the end of the century) by calculating how 

many of the GCMs participating in each scenario have projections of ΔT2100 below the target or upper 955 

limit. In contrast, the The probabilities for the projections of ΔT2100 using our the EM-GC are computed 

using the aerosol weighting method, described in Sect. 2.5. The height of each histogram represents the 

probability that a particular range of ΔT2100, defined by the width of each line segment, will occur. The 

left-hand y-axis displays the probability of ΔT2100 using the EM-GC, while the right-hand y-axis 

represents the probability of ΔT2100 using the CMIP6 multi-model simulations. The values on the CMIP6 960 

Figure 11. Probabilistic forecasts of the future rise in ΔT from the EM-GC trained using the HadCRUT5 ΔT record 

for several SSPs. (a) Future projections of ΔT for SSP1-1.9. Observations (orange) are from HadCRUT5. The IPCC 

2013 likely range of warming (black) is from Figure 11.25b of chapter 11 of IPCC 2013. The Paris Agreement 

target and upper limit (yellow) are shown for comparison to EM-GC projections. The CMIP6 minimum, multi-

model mean, and maximum values of ΔT are shown to compare to EM-GC projections. Colors denote the 

probability of reaching at least that temperature by the end of the century. (b) Future projections of ΔT for SSP1-

2.6. (c) Future projections of ΔT for SSP4-3.4. (d) Future projections of ΔT for SSP2-4.5. 
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multi-model ensemble y-axis are double the values on the EM-GC y-axis, for visual comparison. The 

solid black line denotes the Paris Agreement target and the dotted black line signifies the upper limit on 

each panel. The PDFs for SSP4-6.0, SSP3-7.0, and SSP5-8.5 are shown in Fig. S17S20. 

Numerical values of probabilities for staying at or below the Paris Agreement target for SSP1-2.6 

or upper limit for SSP4-3.4 for all sevenare given for SSP scenarios are given inthe seven GMST records 965 

using the EM-GC and CMIP6 multi-model ensemble in Table 1. Projections of ΔT2100 based on the EM-

GC provide more optimism for achieving the Paris Agreement goals than the CMIP6 multi-model 

ensemble, regardless of which GMST data record is used. For simulations constrained using the 

HadCRUT5 record, Tthe SSP1-2.6 scenario provides a 53% (Table 1) likelihood of ΔT2100 staying at or 

below 1.5°C and SSP4-3.4 results in a 64% likelihood of limiting warming to 2.0°C by end of century. 970 

Figure 12. Probability density functions (PDF) for ΔT2100
 found using the EM-GC with the HadCRUT temperature 

record (dark blue), the EM-GC trained with the CW14 HadCRUT5 temperature record (light dark blue), and 

CMIP6 multi-model results (red). (a) PDF for EM-GC results and CMIP6 multi-model results for SSP1-1.9. The 

left-hand y-axis is for EM-GC probabilities and the righthand y-axis is for the CMIP6 multi-model ensemble 

probabilities. (b) PDF for SSP1-2.6. (c) PDF for SSP4-3.4. (d) PDF for SSP2-4.5. 
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The probability of achieving the Paris Agreement target or upper limit increases upon using HadCRUT4 

rather than HadCRUT5 in the EM-GC framework. The probability of achieving the 1.5°C target for SSP1-

2.6 and 2.0°C upper limit for SSP4-3.4 using the HadCRUT4 GMST record are 64% and 74%, 

respectively (Table 1). This decline in attainment of the goals of the Paris Agreement upon use of 

HadCRUT5 reflects more rapid warming of this data record compared to HadCRUT4 (Fig. S4e versus 975 

S4c). The rapid warming in HadCRUT5 is driven by more accurate buoy records for SST and a statistical 

gap filling procedure to attain global coverage (Morice et al., 2021). The impact on the likelihood of 

achieving the Paris Agreement goals of for the other SSP scenarios upon using the HadCRUT4 or 

HadCRUT5 data records is detailed in Table S6.  

An analysis SSP1-1.9 scenario results in an 84.1% probability of ΔT2100 staying at or below 1.5°C, 980 

while SSP1-2.6 gives a 64.8% likelihood of global warming staying at or below 1.5°C by end of century 

(Table 1) using the HadCRUT temperature record. The probabilities decrease to 82.4% and 57.0% upon 

the use of the CW14 temperature record and OHC from Cheng 2017. The SSP1-1.9 scenario involves 

extreme climate mitigation that is unlikely to happen in the next few years with atmospheric CO2 peaking 

close to present day values (Fig. 2a). The SSP1-2.6 scenario requires less climate mitigation than SSP1-985 

1.9 (though still requires net negative emissions towards the end of the century) and provides greater than 

a 50% likelihood of staying at or below the Paris Agreement target, thus we designate SSP1-2.6 as the 

1.5°C pathway in our model framework instead of SSP1-1.9. by This result is supported by Tokarska et 

al. (2020) supports our finding of a higher likelihood of attaining the goals of the Paris Agreement than 

suggested by the CMIP6 multi-model ensemble. Tokarska et al. (2020) , who filter the CMIP6 multi-990 

model output on the level of agreement with observations to show that the SSP1-2.6 scenario has a likely 

range of warming at 1.33-1.99°C above preindustrial by end of century., based upon filtering CMIP6 

GCM output on the level of agreement with the observed climate record. Previous studies suggested that 

a 2.6 W m−2 scenario was in line with the 2.0°C goal (Kriegler et al., 2014, 2015; O’Neill et al., 2016; 

Riahi et al., 2015). However, oOur analysis suggests the 2.6 W m−2 scenario provides between between a 995 

57-65a 86-98% probability of limiting warming to 2.0°C and a 53-78% probability of achieving the more 

stringent 1.5°C target, depending on the GMST record (Table 1) depending on the choice of GMST and 
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OHC data records., and If GHGs were to follow SSP4-3.4, we find a 19-58% probability of limiting 

warming to 1.5°C andthat a 3.4 W m−2 scenario (i.e., SSP4-3.4) is in line with the 2.0°C goal and has 

about a 70-7464-87% probability of limiting warming to 2.0°C (Table 1) depending on the choice of the 1000 

same data records. We therefore designate SSP4-3.4 as the 2.0°C pathway. Significant climate mitigation 

efforts will be required to keep the growth of CO2, CH4, and N2O below the trajectories shown for SSP1-

2.6 (1.5°C pathway in our model framework) and SSP4-3.4 (2.0°C pathway) (Fig. 2).Results utilizing the 

EM-GC and HadCRUT GMST combined with the average OHC are shown in the top half of the table, 

and probabilities using the CW14 GMST and Cheng 2017 OHC records are shown in the bottom half. 1005 

The CMIP6 multi-model projections exhibit lower probabilities of achieving the goals of the Paris 

Agreement than the projections using the EM-GC. In the creation of ScenarioMIP, SSP1-2.6 was designed 

to be a scenario that achieved the Paris Agreement goals and likely (greater than 66% probability (Stocker 

et al., 2013)) limited warming below 2.0°C, and was expected to produce a future rise in ΔT2100 of 1.7°C 

(O’Neill et al., 2016). The CMIP6 multi-model probability of SSP1-2.6 to stay at or below 2.0°C is 51.5%, 1010 

as shown in Table 1. Based on our analysis, the CMIP6 multi-model ensemble does not indicate SSP1-

2.6 as being a 2.0°C pathway, because it will only provide about a 50:50 likelihood of limiting warming 

below 2.0°C.  

Table 1. Probability of achieving the Paris Agreement target (SSP1-2.6) or upper limit (SSP4-3.4) for seven GMST 

records using the EM-GC and the CMIP6 multi-model ensemble..List of SSP scenarios analyzed in this study and 1015 

the probabilities of achieving the Paris Agreement target or upper limit based on the EM-GC using the HadCRUT4 

GMST data set and average of the five OHC records and the CMIP6 multi-model ensemble. The second half of the 

table shows the probabilities of achieving the Paris Agreement target or upper limit based on the EM-GC using the 

CW14 GMST record and Cheng 2017 OHC data set. The probabilities using the EM-GC are computed using the 

aerosol weighting method. The probabilities using the CMIP6 models are computed by calculating how many of 1020 

the models for that scenario are below the temperature limits compared to the total number of models. 

 Probability of Staying at or Below 1.5°C Probability of Staying at or Below 2.0°C 

 SSP1-2.6 SSP4-3.4 SSP1-2.6 SSP4-3.4 

CMIP6 18% 0% 47% 17% 

HadCRUT5 53% 19% 86% 64% 

GISTEMP 55% 20% 88% 69% 

CW14 60% 29% 89% 71% 

NOAAGT 61% 27% 90% 74% 

BEG 62% 26% 98% 76% 

HadCRUT4 64% 35% 90% 74% 
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JMA 78% 58% 95% 87% 

   

SSP1-1.9 82.4%   97.5% 

SSP1-2.6 57.0%   85.5% 

SSP4-3.4 28.1%   69.6% 

SSP2-4.5 4.2%   43.2% 

SSP4-6.0 0.0%   17.4% 

SSP3-7.0 0.0%   0.0% 

SSP5-8.5 0.0%   0.0% 

 

3.3.4 Transient climate response and cCarbon budgets 

The transient climate response to cumulative emissions (TCRE) relates the rise in ΔT to the cumulative 

amount of carbon released into the atmosphere by human activities. We illustrate TCRE from the EM-1025 

GC as probabilistic forecasts, as shown in Fig. 13S21, to analyze future projections of ΔT. We use the 

probabilistic forecasts in Fig. S21 to determine the carbon budgets in Table 2. Figure 13 displays the 

GMST anomaly from pre-industrial versus the cumulative emissions of CO2, in Gt C, since 1870. The 

orange line represents observations of ΔT from HadCRUT plotted against cumulative carbon emissions 

from the Global Carbon Budget project (Friedlingstein et al., 2019). The colors represent the probability 1030 

that ΔT will rise to the indicated level, considering only acceptable fits to the climate record, for the EM-

GC ensemble run constrained to match GMST from HadCRUT and the mean OHC record from the five 

OHC data records (Fig. S8) and using the aerosol weighting method. The dotted and dashed horizontal 

lines are placed at ΔT values of 1.5°C and 2.0°C, the target and upper limit of the Paris Agreement. The 

intersections of the light grey curve with the dotted horizontal line represent the 95% probability of the 1035 

Paris Agreement target being achieved, and the intersections of the light grey curve with the dashed 

horizontal line represent the 95% probability of the Paris Agreement upper limit being achieved. The 

intersection of these horizontal lines with the dark grey and the black curves are the 66% and 50% 

probabilities, respectively of the Paris Agreement target or upper limit being attained. The SSP5-8.5 

scenario was used to calculate TCRE because this scenario has the highest cumulative carbon emissions 1040 

needed to provide the most complete relation between ΔT and future emissions. 
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 Table 2 contains estimated carbon budgets from our analysis in the form of the total CO2 emissions 

(Gt C) since 1870 that result in a 95%, 66%, and 50% probability of the future rise in ΔT staying below 

the Paris Agreement target of 1.5°C and upper limit of 2.0°C and the future CO2 emissions since 2019. 

Examination of Friedlingstein et al. (2014) and Murphy et al. (2014) led to our determination that the 1045 

uncertainty in estimates of atmospheric CO2 from emissions driven runs of CMIP5 coupled atmospheric 

/ carbon cycle models is about 10% (1-sigma). The largest variation in our carbon budget estimates is 

driven by the uncertainty in AER RF, which is incorporated into the probability of achieving the Paris 

Agreement target and upper limit (see Fig. S21 and the supplement). We therefore useinclude a 10% as 

the uncertainty, determined from examination of CMIP5 coupled atmospheric / carbon cycle models from 1050 

Friedlingstein et al. (2014) and Murphy et al. (2014) (see the supplement for more information), within 

each probability of attaining the Paris goals to represent in how atmospheric CO2 will respond to the 

prescribed carbon emissions.  

Figure 13. Transient climate response to cumulative CO2 emissions for SSP5-8.5 using the EM-GC. Simulations 

of the rise in ΔT versus cumulative CO2 emissions in units of Gt C. The orange line is observations of ΔT from 

HadCRUT plotted against cumulative carbon emissions from the Global Carbon Budget project (Friedlingstein et 

al., 2019). The dotted and dashed lines denote the Paris Agreement target and upper limit, respectively. The EM-

GC projections represent the probability that the future value of ΔT will rise to the indicated level, considering 

only acceptable fits to the climate record. The light grey, dark grey, and black curves denote the 95, 66, and 50% 

probabilities of either the Paris target (intersection of dotted horizontal lines) or upper limit (intersection of dashed 

lines with curves) being achieved. 



48 

 

We apply the 10% uncertainty estimate to the future remaining carbon budget. To obtain a a 95% 

likelihood of limiting the rise in future ΔT below 1.5°C, only 746 ± 75 Gt C since 1870 can be released 1055 

into the atmosphere. For a 66% likelihood of limiting the rise in future ΔT below 1.5°C, only 906 790 ± 

91 79 Gt C can be released., while for a 50% probability 974 ± 97 Gt C in total can be emitted. To haveFor 

a 95% probability of ΔT staying below the 2.0°C upper limit, 933 ± 93 Gt C since 1870 can be released 

into the atmosphere. For a 66% likelihood of the rise in ΔT staying below the 2.0 °C upper limit, 1,203 

040 ± 120 104 Gt C can be emitted, whereas for a 50% likelihood 1,323 ± 132 Gt C can be released. To 1060 

place these numbers in their proper perspective, about 638 640 Gt C have been released from 1870 

through the end of 2019 due to land useland-use change, fossil fuel emissions, gas flaring, and cement 

production according to the Global Carbon Budget project (Friedlingstein et al., 2019). In our model 

framework, after 2019 society can therefore only emit another 108 ± 75, 268 150 ± 9179 Gt C, or 336 ± 

97 Gt C to have either a 95%, 66%, or 50% chance of limiting warming to 1.5°C. These This future 1065 

emissions estimates rises to to 295 ± 93, 565 400 ± 120104 Gt C, and 685 ± 132 Gt C to have a 95%, 66%, 

or 50% chance of limiting warming to 2.0°C. 

Table 2. Total cumulative and future carbon emissions that will lead to crossing the Paris temperature thresholds 

based on the EM-GC trained using the HadCRUT5 ΔT record. Estimates of ΣCO2
EMISSIONS that would cause global 

warming to stay below indicated thresholds for 95%, 66%, and 50% probabilities and are rounded to the nearest 10 1070 

Gt C. The values in the top half of the table are the estimates of total cumulative carbon emissions that will lead to 

crossing the Paris Agreement thresholds with the 10% uncertainty for how atmospheric CO2 responds to prescribed 

carbon emissions (see text) includedwith the 10% uncertainty included. The values in the bottom half of the table 

are the estimates of future cumulative carbon emissions after 2019 that will lead to crossing the Paris Agreement 

thresholds, with the same 10% uncertainty. The range of years given represents when the Paris Agreement 1075 

thresholds will be passed based upon on the rate of emissions from SSP5-8.5 or continuing the 2019 rate of 

emissions of 11.7 Gt C yr−1 (Friedlingstein et al., 2019). 

Total ΣCO2
EMISSIONS since 1870 from the EM-GC 

 95% 66% 50% 

1.5°C 
746 730 ± 75 

73 Gt C 

906 790 ± 91 79 

Gt C 

974 830 ± 97 83 

Gt C 

2.0°C 
933 920 ± 93 

92 Gt C 

1203 1040 ± 120 

104 Gt C 

1323 1110 ± 132 

111 Gt C 

Future ΣCO2
EMISSIONS (assuming 638 640 Gt C released 

between 1870-2019) 

 95% 66% 50% 
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1.5°C 

108 90 ± 75 73 

Gt C 

(2022a2021a-

2032a2031a) 

268 150 ± 91 79 

Gt C (20322025-

20422035) 

336 190 ± 97 83 

Gt C (20362027-

20452038) 

(2021b-

2034b2033b) 

(20342026-

20492039) 

(20392029-

20562043) 

2.0°C 

295 280 ± 93 

92 Gt C 

(2033a2033a-

2043a2043a) 

565 400 ± 120 

104 Gt C 

(20462039-

20562049) 

685 470 ± 132 

111 Gt C 

(20512047-

20612052) 

(2036b2036b-

2052b2051b) 

(20572045-

20772063) 

(20662050-

20882069) 
a Year the 1.5°C target or 2.0°C upper limit will be exceeded 

assuming the rate of emission inferred from SSP5-8.5 and the 1-

sigmaσ uncertainty. Applies to the 66% and 50% probabilities. 
b Year the 1.5°C target or 2.0°C upper limit will be exceeded 

assuming the 2019 rate of emission of 11.7 Gt C yr-1 and the 1-

sigmaσ uncertainty Applies to the 66% and 50% probabilities. 

 

An analysis by van Vuuren et al. (2020) assesses TCRE remaining carbon budgets based on 

cumulative emissions after 2010. Their analysis indicates only 228 Gt C can be released since after 2010 1080 

to have a 66% probability of achieving the Paris Agreement target of limiting the rise in ΔT below 1.5°C 

in 2100. They base this estimate on an analysis of climate sensitivity and carbon cycle components, 

including an adjustment to TCRE for the tendency of CMIP5 GCMs to warm too quickly that had been 

suggested by Millar et al. (2017). In our model framework, wWe find a 66% probability of limiting 

warming to 1.5°C upon the release of 369 250 ± 91 79 Gt C between 2010 and 2100. It is not surprising 1085 

our analysis provides somewhat more latitude for the probabilistic forecasts of limiting warming to 1.5°C 

compared to estimates based on analyses of GCM output, given the tendency of CMIP5 GCMs (Hope et 

al., 2017) and CMIP6 GCMs (Sect. 3.1) to warm so much faster than the observed climate system. Our 

results are similar to the findings in van Vuuren et al. (2020). Regardless, between Between 2010 and 

2019, about 101 100 Gt C has been released to the atmosphere (Friedlingstein et al., 2019), so the 1090 

remaining budget after 2019 for limiting warming to 1.5°C is about 127 128 Gt C according to van Vuuren 

et al. (2020). The remaining budget from our analysis is 150 ± 79 Gt C. Our analysis and that by van 
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Vuuren et al. (2020) suggest Aat the pace of emissions in 2019 of 11.7 Gt C yr−1 (Friedlingstein et al., 

2019), society will cross this threshold in about a decadethe next 10 years. Our model framework suggests 

a remaining budget of 268 ± 91 Gt C (Table 2). Society has at most about 20 years, or 15-29 years based 1095 

on the 10% uncertainty, to severely limit carbon emissions to have a 66% probability to achieve the target 

of the Paris Agreement.  

 

3.3.5 Blended methane 

Atmospheric abundances of methane will likely continue to increase as society expands natural gas 1100 

production and agriculture, making it important to analyze the impact of various methane scenarios on 

the rise of GMST. It is unlikely future atmospheric methane abundances will progress as indicated by 

SSP1-2.6 (see Fig. 2), a low radiative forcing scenario. Current observations shown in Fig. 2 illustrate 

that the methane mixing ratio is following SSP2-4.5 and has missed the initial decline needed to follow 

the SSP1-2.6 pathway. To analyze the effect varying future methane abundance pathways will have on 1105 

GMST, we have generated linear interpolations of the SSP1-2.6 and SSP3-7.0 methane future abundances 

and created four alternate scenarios (see Fig. S18S22), which we call blended methane scenarios. We can 

substitute one of the blended methane scenarios into the EM-GC instead of using the projection of 

methane specified by the SSP database to quantify the sensitivity of future warming to various evolutions 

of methane on the rise in GMST. 1110 

 Figure 14 13 shows the probability of staying at or below the Paris Agreement target (gold colors) 

or upper limit (purple colors) for SSP1-2.6 (solid) and SSP4-3.4 (dotted) as a function of the methane 

mixing ratio in 2100. The lowest atmospheric methane mixing ratio value in 2100 of 1.15 ppm is from 

the SSP1-2.6 methane pathway, the highest mixing ratio in 2100 of 3.20 ppm is from the SSP3-7.0 

methane pathway, . and tThe four in between are the blended methane scenarios. As the atmospheric 1115 

methane abundance increases, the likelihood of achieving the goals in the Paris Agreement decreases. For 

SSP1-2.6, the probability of limiting the rise in GMST below the 1.5°C target begins at 6553% for 

HadCRUT5 using the SSP1-2.6 designated methane pathway and decreases as the blended scenarios are 

considered. The probability of achieving the Paris Agreement target declines to just under 5030% if 

methane reaches 2.4 ppm in 2100 and to 3416% if methane increases to 3.2 ppm in 2100. Even though 1120 
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we have labeled SSP1-2.6 the 1.5°C pathway in our model frameworkcan have a 53% probability of 

limiting warming to 1.5°C, limiting future warming to this challenging amountachieving this goal can 

likely only be achieved attained by strict limits on both emissions of carbon dioxide and methane.  

In Sect. 3.3.3, we showed that if all GHGs follow the SSP4-3.4 scenario there would be a 7464% 

probability of limiting warming to 2.0°C. If the methane pathway instead follows SSP1-2.6, which has an 1125 

end of century mixing ratio of only 1.15 ppm, then the probability of achieving the Paris Agreement goal 

rises to 8277%. However, Iif the methane pathway follows SSP3-7.0 and the end of century mixing ratio 

increases to 3.2 ppm, then the probability of achieving the Paris Agreement goal declines to 6550%. 

Reducing the future anthropogenic emissions of methane might be more challenging than 

controlling future emissions of carbon dioxide, simply because methane has such a wide variety of sources 1130 

related to energy, agriculture, and ruminants (Kirschke et al., 2013). Given the current widespread use of 

methane as a source of energy in the United States and parts of Europe (Saunois et al., 2020), combined 

with the continued growth in the global number of ruminants (Wolf et al., 2017), it seems unrealistic for 

atmospheric methane to follow the peak and sharp decline starting in 2025 of the SSP1-2.6 pathway (Fig. 

Figure 1413. Probability of staying at or below the Paris Agreement target and upper limit for SSP1-2.6 and SSP4-

3.4 as a function of varying methane scenarios using the EM-GC trained with the HadCRUT5 ΔT record. The 

atmospheric methane scenarios are calculated using linear combinations of methane abundances from SSP1-2.6 

and SSP3-7.0 to span the range of future methane abundances. 
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3b). Our analysis suggests failure to limit methane to the SSP1-2.6 trajectory will have a larger impact on 1135 

the achievement of the 1.5°C Paris goal compared to the 2.0°C upper limit. Figure 14 13 is designed to 

provide some perspective on the importance of future controls on limiting the growth of methane in the 

atmosphereon projections of end of century warming. 

 

3.3.6 Climate feedback 1140 

In our analysis above, we have assumed the value of λΣ (and thus λ, see Eq (3) and corresponding text in 

Sect. 2.1) is constant over time. Time-constant λΣ is the simplest assumption one can make. The climate 

record can be fit very well based on this conjecture, as shown in Fig. 1a and Fig. S3a. However, many 

GCMs suggest that climate feedback may vary over time (Marvel et al., 2018; Rugenstein et al., 2020). 

An analysis by (Goodwin, (2018) finds there is a delay in the response of climate feedback to a change in 1145 

radiative forcing, on the order of a few days to several decades. In our EM-GC framework, we are able 

to conduct calculations allowing the value of λΣ to vary over time with a delay between the change in 

radiative forcing and the response of λΣ (see Fig. S23 and the supplement for results without the time 

delay), and to project future temperature with such an assumption. Up until this point, our simulations 

have used time-invariant λΣ to be consistent with how our model results had been presented in prior 1150 

publications (Canty et al., 2013; Hope et al., 2017). Recall from Sect. 2.1 that λΣ = λP – λ. To assess the 

effect of time varying climate feedback on our projections of global warming, we examine the sensitivity 

in terms of λ−1, because this quantity scales proportionally with ΔT and also our use of the inverse λ allows 

for direct comparison to the results of Marvel et al. (2018) and Rugenstein et al. (2020). 

 Figure 15 14 shows the change in observed and modeled GMST under several four assumptions 1155 

regarding λ−1. The first assumption is thatFirst, the value of λ−1 is constant over time (Figs. 15a14a, e). 

Second, the value of λ−1 varies by 50% between 1850-2100 (Figs. 14b, f: further discussion of Fig. 14b 

and f will occur at the end of the section). The third assumption involves λ−1 varying over time while 

χ2
RECENT is always less than or equal to two (Figs 14c, g). Fourth, λ−1 varies over time while χ2

ATM is 

always less than or equal to two (Figs. 14d, h).. In all cases for time varying feedback, we also assume 1160 

the value of λ−1 has the same shape as the SSP4-3.4 RF time series along with a lag of 20 years and that 

the new time series for λ−1 maintains an average value over the observational record identical to the 
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constant value for λ−1 of 0.63 °C / W m−2. We chose a lag of 20 years to represent the longest delay in 

response of climate feedback to a change in RF suggested by Goodwin (2018). If we use the shorter delays 

represented in Goodwin (2018), then our results would be between those from the instantaneous response 1165 

of climate feedback to a change in RF (Fig. S23) and the 20-year delay. Finally, in the simulations 

described below, the value of λ−1 is assumed to continue to rise into the future at the same proportionality 

to ΔTATM,HUMAN as the prior increase. 

We are able to fit the climate record over the past 170 years (χ2
ATM) and past 80 years (χ2

RECENT) 

extremely well for constant λ−1. To simulate variations of  λ−1 over time, we alter runs from the EM-GC 1170 

that were conducted with constant λ−1, by modifying the ΔTATM,HUMAN component of these original EM-

GC simulations. The value of λ−1 takes the same shape as the SSP4-3.4 RF time series, scaled, and shifted 

so that the new time series maintains an average value of λ−1 over the observational record that is identical 

to the constant λ−1 value. In simulations described below, the value of λ−1 is assumed to continue to rise 

into the future, at the same proportionality to ΔTATM,HUMAN as the prior increase.  1175 

We fit the climate record over the past 170 years (χ2
ATM) and past 80 years (χ2

RECENT) extremely 

well for constant λ−1. If we allow the value of λ−1 to scale with anthropogenic forcing such that the 

maximum value of χ2
ATM χ

2
RECENT is always less than or equal to 2two, we obtain the result shown in Fig. 

15b14c. This scaling of λ−1 results in a value of ΔT2100 of 2.8°C, about 50%1.0°C higher than when a 

constant value of λ−1 is used and an increase in λ−1 by nearly a factor of 2two.5 at the end of century in 1180 

2100. The modeled change in GMST starts to deviate from the observations around year 20002010. This 

deviation is seen in the residual between modeled and observed GMST in Fig. 15f14g. If we allow the 

value of λ−1 to scale with anthropogenic forcing so that the maximum value of χ2
RECENT χ2

ATM is less than 

or equal to 2two, we arrive at the result shown in Fig. 15c14d, . This variation in λ−1 yielding yields a 

value of ΔT2100 of 3.5°C that is nearly doubles the estimate of ΔT2100 for the time invariant λ−1 (Fig 14a) 1185 

and over two and a half centuries and a rise in λ−1 over two and a half centuries by a factor of 43.5. The 

modeled change in GMST starts to deviate dramatically from observations around year 19902005. This 

starke deviation is seen in the residual between modeled and observed GMST in Fig. 15g14h. The χ2
ATM 

χ2
RECENT value in Fig. 15g 14h is 3.6385, which does not satisfy our reduced chi-squared constraints, and 
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interestingly appears to resemble the behavior of some CMIP6 GCMs (see Fig. 9 as well as Tokarska et 1190 

al. (2020)).  

Several other studies have investigated the degree of change in λ−1. Marvel et al. (2018) suggest 

that the median value of ECS from the CMIP5 GCMs may increase rise from 1.8 to 2.3°C or 1.8 to 3.1°C 

due to time varying λ−1, which corresponds to an increasinge in λ−1 from 1850-2100 of by 28 to 72%, 

respectively. Rugenstein et al. (2020) estimates a median increase of 17% for values of ECS from CMIP6 1195 

GCMs when examining millennial length simulations compared to the 150-year Gregory et al. (2004) 

method, which is consistent with about an 11% rise in λ−1 (Fig. 2b of Rugenstein et al. (2020)). A doubling 

(Fig. 15b14c) or quadrupling tripling of λ−1 (Fig. 15c14d) over two and a half centuries is faster than the 

increase indicated by Marvel et al. (2018) and the millennia order timescale in Sect. 12.5.3 of IPCC 2013 

and Rugenstein et al. (2020). AAn increase of 50% increase or lower in λ−1 (Fig. 15d14b) is in line with 1200 

the estimate of the change in ECS due to time-variant λ−1 indicated by Marvel et al. (2018) and Rugenstein 

et al. (2020). The use of a 20-year delay in the response of the feedback to a change in RF results in good 

fits to the HadCRUT5 GMST record (Fig. 14b). However, we are not able to achieve as low values of 

χ2
RECENT and χ2

ATM to this record for time variant feedback if we assume an instantaneous response (Fig. 

14 a-d versus Fig. S23 a-d). 1205 

 The assumption of constant feedback within the EM-GC framework is reasonable because there 

is no strong evidence from the climate record for a noticeable increase in λ−1 on the multidecadal time 

scale associated with the simulations  shown in Fig. 1514. If the true value of λ−1 actually rises over time 

as suggested by some of the CMIP6 (Rugenstein et al., 2020) and CMIP5 GCMs (Marvel et al., 2018), 

our projections of global warming would be a few tenths of a degree warmer than our current best 1210 

estimates assuming constant λ−1, as shown in Fig. 15d14b. Interestingly, iIncreasing λ−1 by 50% results in 

a similar value of ΔT2100 as when utilizing a higher value of AER RF2011 (i.e. AER RF2011 less than −0.9 

W m−2) in the EM-GC framework (see Fig. 3). 
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4 Conclusions 1215 

In this paper we use a multiple linear regression energy balance model (EM-GC), to analyze and project 

changes in the future rise in global mean surface temperature (GMST), calculate the attributable 

anthropogenic warming rate (AAWR, the component of the rise in GMST caused by human activities) 

Figure 1514. Change in GMST from 1850-2019 for observations from HadCRUT HadCRUT5 (black) and 1850-

2100 for modeled (red) using SSP4-3.4 and the residual between modeled and observations incorporating a 20 year 

delay between λ−1 and a change in RF. (a) Rise in GMST assuming a constant value of λ−1. (b) Rise in GMST 

allowing λ−1 to increase by 50%. Rise in GMST allowing λ−1 to vary while the value of χ2
ATM is kept below 2. (c) 

Rise in GMST allowing λ−1 to vary while the value of χ2
RECENT is kept below 2. (d) Rise in GMST allowing λ−1 to 

increase by 50%. Rise in GMST allowing λ−1 to vary while the value of χ2
ATM is kept below 2.  (e) Residual between 

modeled and observed rise in GMST from 1850-2019 for constant λ−1. (f) Same as (e) but for increasing λ−1 by 

50%but for varying λ−1 while the value of χ2
ATM is kept below 2. (g) Same as (f) but for varying λ−1 while the value 

of χ2
RECENT is kept below 2. (h) same as (g)  but for varying λ−1 while the value of χ2

ATM is kept below 2but for 

increasing λ−1 by 50%. 
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over the past four decades, and compute the equilibrium climate sensitivity (ECS, the rise in GMST that 

would occur after climate has equilibrated with atmospheric CO2 at the 2×pre-industrial level). 1220 

Projections of the rise in GMST (T) are conducted for seven of the Shared Socioeconomic Pathway 

(SSP) projections of GHGs (O’Neill et al., 2017). We compare computations of AAWR, ECS, and 

projections of T to values for each quantity computed from archived output provided by GCMs as part 

of CMIP6 (Eyring et al., 2016). A critical component of our study is comprehensive analysis of 

uncertainties in AAWR, ECS, and projections of T in our EM-GC framework, due to the rather large 1225 

uncertainty in radiative forcing of climate from tropospheric aerosols (AER RF). 

The best estimate ofmedian values of AAWR from 1975-2014 computed using our EM-GC 

constrained by the century and a half long record for GMST provided by the HadCRUT HadCRUT5data 

record (Cowtan and Way, 2014) is 0.135157°C/decade and the 5th, and 95th percentiles are 0.097 120 and 

0.195°C/decade, respectively. The median value of AAWR from the CMIP6 multi-model ensemble is 1230 

0.221°C/decade and the 5th, and 95th percentiles are 0.151 and 0.299°C/decade, respectively. We show 

that the component of GMST attributed to human activity within the CMIP6 multi-model ensemble 

warms considerably faster than observations over the past four decades, a result that is consistent with a 

recent analysis analyses of output from the CMIP6 multi-model ensemble (CONSTRAIN, 2020; 

Tokarska et al., 2020) as well as output from CMIP5 GCMs assessed in AR5 (i.e, Fig. 11.25b of Kirtman 1235 

et al. (2013)). This finding differs from the conclusion of Hausfather et al. (2020), who showed fairly 

good agreement between projections of global warming from GCMs and observed T. As detailed in 

Sect. 3.1, this paper examined GCMs that proceeded CMIP5 and examined T for a time period that ends 

in 2017, a time when global temperature was influenced by a strong ENSO event that ended in 2016. The 

majority of the uncertainty in our EM-GC based estimate of AAWR is due to imprecise knowledge of the 1240 

true value of AER RF.  

In our model framework, the best estimate of ECS is 2.0133°C and the 5th and 95th percentiles are 

1.12 40 and 4.123.57°C, respectively. The median value of ECS from the CMIP6 multi-model ensemble 

is 3.74°C, which is almost doublearound 1.6 times the best estimate value of ECS inferred from the 

observed climate record. The 5th and 95th percentiles of ECS from the CMIP6 multi-model ensemble are 1245 
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2.19 and 5.65°C, respectively. We obtain a wide range of ECS values using the EM-GC because of the 

uncertainty in AER RF. With an AER RF2011 equal to −1.6 W m−2, the EM-GC calculates a value of ECS 

similar to the maximum value of ECS from the CMIP6 multi-model mean. We cannot rule out the very 

high value of ECS, but we assign a low probability based on the IPCC 2013 low likelihood for the needed 

value of AER RF2011. Our empirically based determination of ECS is in good overall agreement with the 1250 

recent empirical determinations of Lewis and Grünwald (2018) (1.87°C, range of 1.1-4.05°C) and Skeie 

et al. (2018) (2.0°C, range of 1.2-3.1°C) and the slightly older empirically determination reported by Otto 

et al. (2013) (2.0°C, range of 1.2-3.9°C) (all range values are for the 5th and 95th percent confidence 

interval). A recent review of climate feedback and climate sensitivity published by Sherwood et al. (2020) 

reported ECS lies within the range of 2.3 to 4.7°C at the 5th to 95th percent confidence intervals; their 1255 

lower bound for ECS is quite a bit higher than the lower bound found in our analysis, as well as by Cox 

et al. (2018), Dessler et al. (2018), Lewis and Grünwald (2018), Nijsse et al. (2020), Otto et al. (2013), 

Skeie et al. (2018), and Tokarska et al. (2020).  

 We also examined the probability of limiting the future rise in GMST below the Paris Agreement 

target of 1.5°C and upper limit of 2.0°C. Our probabilistic forecasts of projections of T include a 1260 

comprehensive treatment of the uncertainty in AER RF, a capability outside the scope of the GCM 

intercomparisons conducted for CMIP6. Our analysis indicates that if GHGs were to follow the the SSP1-

2.6 pathway, there would be scenario is the 1.5°C pathway, providing between a 57.0-64.853% likelihood 

of keepingthat the the end of century rise in T would remain below the Paris Agreement target of 1.5°C 

(relative to pre-industrial) by the end of century based on HadCRUT5 depending on the choice of GMST 1265 

and OHC record. We find that the SSP4-3.4 scenario is the 2.0°C pathway, as this scenario provides a 

69.6-74.064% likelihood of limiting global warming to below the Paris Agreement upper limit of 2.0°C 

by end of century. These probabilities have declined upon our use of HadCRUT5 compared to the GMST 

record of HadCRUT4 to 64% and 74% for the SSP1-2.6 and SSP4-3.4 scenarios, respectively. In contrast, 

the CMIP6 multi-model mean only suggests aa 15.28% probability of achieving the Paris Agreement 1270 

target for SSP1-2.6 and a 16.77% probability of attaining the Paris Agreement goal for SSP4-3.4. This 

resultThe lower probabilities suggested by the CMIP6 multi-model ensemble is not surprising, given the 
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tendency of most CMIP6 GCMs to warm faster than has been observedvations over the past four decades. 

Our projections of T using a physically based model tied to observations of ocean heat content, 

quantification of natural as well as anthropogenic drivers of variations in GMST, and consideration of 1275 

uncertainty in AER RF are shown to be remarkably similar to the expert assessment of the future rise in 

GMST that was sketched out in Fig. 11.25b of AR5 (Kirtman et al., 2013), and the empirically-based 

filtering of CMIP6 model output recently published by Tokarska et al. (2020). Finally and most 

importantly, our estimates are based on the assumption that climate feedback has been and will continue 

to remain constant over time, since the prior temperature record can be fit so well under this assumption. 1280 

As described in Section 3.3.6, if climate feedback rises over time, larger warming will be realized than 

that found under the this assumption of temporally invariant feedback. 

We also quantify the sensitivity of the probability of achieving the Paris Agreement target (1.5°C) 

or upper limit (2.0°C) to future atmospheric abundances of  methane. The end of century mixing ratio of 

methane in the SSP1-2.6 scenario is 1.15 ppm, considerably less than the contemporary abundance of 1285 

1.88 ppm. The likelihood of attaining the 1.5°C target for SSP1-2.6 decreases as future methane emissions 

increase, declines to just under 5030% if methane reaches 2.4 ppm in 2100 and to 3416% if methane 

increases to 3.2 ppm at end of century. Our analysis described in Sect. 3.3.5 demonstrates that major near-

term limits on the future growth of methane are especially important for achievement of the 1.5°C limit 

to future warming that constitutes the goal of the Paris Agreement. 1290 

 Finally, we have also quantified in the EM-GC framework the remaining budgets of carbon (i.e., 

CO2) emissions that can occur while attaining either the goal or upper limit of the Paris Agreement. We 

find that after 2019, society can only emit another 108 ± 75, 268 150 ± 9179, or 336 ± 97 Gt C to have 

either a 95%, 66%, or 50% chance likelihood of limiting warming to 1.5°C. These This future emissions 

estimates rises to 295 ± 93, 565 400 ± 120104, and 685 ± 132 Gt C to have a  95%, 66%, or 50% chance 1295 

probability of limiting warming to 2.0°C. Given the anthropogenic emissions of carbon due to combustion 

of fossil fuels, cement production, gas flaring, and land useland-use change are were about 11.7 Gt C per 

year in 2019 (Friedlingstein et al., 2019), our study indicates that the target (1.5°C warming) of the Paris 

Agreement will not be achieved unless carbon emissions are severely curtailed in the next two decades10 

years.  1300 
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 We conclude by noting that the CMIP6 multi-model ensemble provides many useful parameters 

such as sea level rise, sea ice decline, and precipitation changes, that provide a great societal 

understanding of the impact of climate change. We do not mean to undermine the importance of the 

CMIP6 GCMs by this analysis. Rather, we hope that studies such as this, along with other recent 

evaluations of CMIP6 multi-model output such as Nijsse et al. (2020) and Tokarska et al. (2020) will 1305 

provide improved use of the CMIP6 multi-model ensemble for policy decisions. Our EM-GC was built 

to specifically simulate and project changes in GMST; we do not examine numerous other components 

of the climate system that affect society. Our study indicates that unless societyWe emphasize that our 

projections show that unless society can implement steep reductions in the emissions of carbon (CO2) and 

methane (CH4) rather soonin the next 10 years, 1.5°C global warming goal of thethe Paris Agreement will 1310 

fail tonot be achieved. We suggest there is slighly more time to achieve these steep reductions than 

indicated by the CMIP6 multi-model mean. The incredibly valuable output of the CMIP6 GCMs is 

important for determining the consequences for society of 1.5°C, 2.0°C, or even larger rises in GMST. 

 

5 Acronyms 1315 

AAWR – Attributable anthropogenic warming rate 

AR4 – Fourth Assessment Report 

AER – Anthropogenic aerosols 

AER RF2011 – Radiative forcing due to anthropogenic aerosols in 2011 

AMOC – Atlantic meridional overturning circulation 1320 

AMV – Atlantic multidecadal variability 

BEG – Berkley Earth Group 

CALIPSO – Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

CMIP5 – Coupled Model Intercomparison Project Phase 5 

CMIP6 – Coupled Model Intercomparison Project Phase 6 1325 

COBE - Centennial in situ Observation-Based Estimate 

CW14 – Cowtan and Way (2014) temperature record 

ECS – Equilibrium climate sensitivity 
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EM-GC – Empirical Model of Global climateClimate 

ENSO – El Niño southern Southern oscillationOscillation 1330 

GCM – General Circulation Model 

GHG – Greenhouse gas 

GISTEMP – Goddard Institute for Space Studies Surface Temperature Analysis v4 

GloSSAC – Global Space-based Stratospheric Aerosol Climatology 

GMST – Global mean surface temperature 1335 

HadCRUT – Hadley Center Climatic Research Unit 

IPCC – Intergovernmental Panel on Climate Change 

ISCCP – International Satellite Cloud Climatology Project 

IOD – Indian Ocean dipole 

LIN – Linear method 1340 

LUC – Land useLand-use change 

MEI – Multivariate ENSO index 

NOAAGT – National Center for Environmental Information NOAAGlobalTemp v5 

ODS – Ozone depleting substances 

OHC – Ocean heat content 1345 

OHE – Ocean heat export 

PATMOS-X - Pathfinder Atmospheres Extended 

PDO – Pacific decadal oscillation 

RCP – Representative concentration pathway 

REG – Regression method 1350 

RF – Radiative forcing 

SAOD – Stratospheric aerosol optical depth 

SORCE – Solar Radiation and Climate Experiment 

SSP – Shared Socioeconomic Pathway 

SST – Sea surface temperature 1355 

TAR – Third Assessment Report 



61 

 

TAS – Near surface air temperature 

TCRE – Transient climate response to cumulative emissions 

TOS – Temperature at the interface of the atmosphere and the upper boundary of the ocean 

TSI – Total solar irradiance 1360 
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10 Data availability 1770 

All data used as inputs into the EM-GC are available from resources on the web. We have provided the 

links to the resources below. The data are also available along with the EM-GC output data used in this 

analysis at 10.5281/zenodo.4300780 10.5281/zenodo.3908407 (McBride et al., 2021) on Zenodo.org. 

 

IOD: The COBE SST data is provided by the NOAA ESRL physical sciences division from their web 1775 

site https://www.esrl.noaa.gov/psd/. 

 

Tropospheric ozone RF: http://www.pik-potsdam.de/~mmalte/rcps/ . 

 

https://www.esrl.noaa.gov/psd/
http://www.pik-potsdam.de/~mmalte/rcps/
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MEI.v2 and MEI.ext: https://psl.noaa.gov/enso/mei/data/meiv2.data and 1780 

https://psl.noaa.gov/enso/mei.ext/table.ext.html 

 

PDO:  http://research.jisao.washington.edu/pdo/PDO.latest.txt 

 

SAOD: https://eosweb.larc.nasa.gov/project/glossac/glossac 1785 

 

TSI: http://lasp.colorado.edu/home/sorce/data/tsi-data/ 

 

OHC Records: 

 Balmaseda: http://www.cgd.ucar.edu/cas/catalog/ocean/OHC700m.tar.gz 1790 

 Carton: https://www.atmos.umd.edu/~ocean/index_files/soda3_readme.htm 

 Cheng: http://159.226.119.60/cheng/ 

 Ishii: http://159.226.119.60/cheng/ 

 Levitus: https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/ 

  1795 

 

SSP Database: All information for the SSPs obtained from the SSP database is at 

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about . 

 

CMIP6 Input Data: 1800 

https://docs.google.com/document/d/1pU9IiJvPJwRvIgVaSDdJ4O0Jeorv_2ekEtted34K9cA/edit#headi

ng=h.jdoykiw7tpen 

 

CMIP6 Model Output Archive: https://esgf-node.llnl.gov/search/cmip6/ 
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https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about

