Reviewer comments in black, author response in blue

The major comments from my previous review were about the data used, the assumption of a
constant feedback parameter and the length/prose of the paper. While the authors have tried to
address all, I am not yet satisfied with the solutions and | recommend another round of major
revisions. | still believe the manuscript will become a valuable piece in the discussion of climate
sensitivity, as it provides a comprehensive overview of modes of internal variability.

Major comments:

1. The authors still use HadCRUT4 as if it were a global average. They justified this by citing other papers
that have done the same. The Nicholls paper seems to make the same mistake as the authors. However, the
other paper does not. Liang et al. (2020) use HadCRUT4, but they do take into account that it is not a
global average and that there is missing data, especially around the poles. They use a mask of the CMIP
output so that the spatial coverage of the datasets is the same. This takes some work to implement, so |
suggest the authors choose any of the four datasets with global coverage. Instead of comparing HadCRUT4
with CW14 (f.i. in Table 1, Figure 12), the authors can compare CW14 with NOAAGIobalTemp v5.
Dropping HadCRUT4 from the manuscript completely also helps making the paper shorter.

HadCRUT4 uses HadSST3 for sea surface temperatures, which further shows slower warming due to
biases in ship measurements in comparison with HadSST4. As | understand it, even the incomplete (not
infilled) provisional version of HadCRUTS5 shows more warming than HadCRUT4. CW14 uses HadSST3
as well, potentially explaining why it warms more slowly compared to some other global averages.

We thank the reviewer for suggesting we change our primary data set in our manuscript. We have
decided to use the infilled, global version of HadCRUTS5 throughout as our main data set, which
was released in late 2020. Switching from HadCRUT4 to HadCRUTS changes the quantitative
details of our results in an important manner, as HadCRUTS5 exhibits more warming over the past
few decades than HadCRUT4. However, we still find that many of the CMIP6 GCMs warm too
quickly over the past few decades compared to empirical determination of the attributable
anthropogenic warming rate (AAWR), and that many of the GCMs exhibit higher values of ECS
compared to our empirical determination. Upon use of the HadCRUTS5 data record, we now find
that 7 of the 28 CMIP6 GCMs for which we can compute AAWR and ECS lie within the minimum
and maximum values of our empirical determination. This overlap is an incredibly important new
result that follows from our adoption of the HadCRUT5 data record and is illustrated in New Fig.
S17. We added the following text to the main manuscript on lines 854-862 to explain this new
result: We conclude this section by commenting on the relationship between ECS and AAWR
in our model framework. Eight of the CMIP6 GCMs (GFDL-ESM4, GISS-E2-1-G, INM-
CM5-0, INM-CM4-8, MIROC6, MIROC-ES2L, NorESM2-LM, and NorESM2-MM) exhibit
values of ECS and AAWR consistent with the minimum and maximum estimates based on
our EM-GC constrained by the HadCRUT5 GMST record (Table S5 and Fig. S17). An
analysis of the relationship between AAWR and ECS from the CMIP6 GCMs illustrates that
78% of the variance in ECS among the 28 CMIP6 GCMs that provide both quantities is
explained by AAWR (see Fig. S17). This result indicates CMIP6 GCMs that accurately
simulate the rise in observed AT over the past few decades exhibit values of ECS that are in
line with our empirically based estimate.
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New Figure S17. Values of ECS versus AAWR for the CMIP6 multi-model ensemble. The EM-GC
estimates of AAWR and ECS based on training to the HadCRUT5 GMST record are plotted as a box and
whisker. The box shows the average 25", 50", and 75" percentiles for the five OHC records shown for
HadCRUTS5 in Fig. 6 and Fig. 7. The whiskers represent the average 5™ and 95" percentiles. The stars denote
the average minimum and maximum values of AAWR or ECS. The eight CMIP6 GCMs that obtain values
of AAWR and ECS that are both within the minimum and maximum estimates provided by the EM-GC are
identified on the figure. Values of AAWR explain about 78% of the variance in ECS among the CMIP6
GCMs.

Upon switching to HadCRUTS5, we noticed the uncertainties for the GMST anomaly decreased
dramatically compared to those provided with the HadCRUT4 record (New Figure S4c versus S4e).
The difference is especially noticeable in the beginning of the temperature record. If we use the
HadCRUTS5 uncertainties in our current model framework, the EM-GC is not able to achieve a
value less than or equal to 2 for y?atm or y¥°recen. The fits between the observed and modeled
GMST are visually good fits, but the values of 2 that are calculated never fall below 2 due to the
incredibly small uncertainties of the HadCRUTS5 record. We could either increase our constraint
limit to admit simulations with values of 2 less than or equal to 4 or 8, adjust the HadCRUT5
uncertainties in some manner to be more “realistic”, or use the HadCRUT4 uncertainties for the
HadCRUTS temperature record. After much internal debate and considerable analysis not shown in
this reply, we decided to adopt the HadCRUT4 uncertainties for all of the GMST records. Our deep
dive into the GMST records, highlighted in New Figs. S4, S5 and New Table 1, have led us to
conclude the uncertainties for GMST provided by HadCRUT4 are more realistic than those
provided by HadCRUTS5. As explained below, the comparisons are complicated by the provision of
GMST anomalies for different baselines by various data centers. Finally, our adoption of
HadCRUT4 has a great benefit of allowing the uncertainty in all of the quantities found using data
from various centers, such as AAWR, ECS, and the probability of achieving certain global warming
limits, to now be treated in a consistent manner.

We have added the following text to the supplement beginning on line 66 to explain our use of the
HadCRUT4 uncertainties for all of the GMST data records. Figure S4 shows values of AT for the
seven individual GMST records (GISTEMP, BEG, HadCRUT4, CW14, HadCRUTS5,
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NOAAGT, and JMA) with their corresponding 16 and 26 uncertainties. A horizontal line at
zero denotes the time period of the baseline for each record. The multi-record mean,
excluding the data set that is plotted, is also shown. Since the multi-record mean and
individual AT record are plotted on the same baseline, the data sets closely match over this
time period. Panels (a), (b), (e), and (f) illustrate that the uncertainties for these GMST
records are not large enough to encompass the multi-record mean over 1850-2019. The multi-
record mean in panel (a) is below the GISTEMP 16 uncertainty range between 1880 and 1900,
and again between 1980 to 2019. In panel (b), the multi-record mean is above the BEG 1c¢
range from 1850 until 1865, 1880 to 1895, and below the 16 uncertainty range from 2000 to
2019. The multi-record mean in panel (e) is below the HadCRUTS5 16 uncertainty range from
1990 until 2019. In panel (f), the multi-record mean is above the NOAAGT 16 uncertainty
range from 1920 until 1955. The IMA GMST record does not provide an uncertainty
estimate. We therefore use the HadCRUT4 uncertainty estimate for JMA in panel (g). The
multi-record mean lies at the edge of the 16 uncertainty range from 1891 until 2000. After
2000, the multi-record mean falls above the 16 and 26 HadCRUT4 uncertainty range. The
HadCRUT4 uncertainty time series shown in panel (c) is the only uncertainty estimate large
enough to cover the spread in the various GMST records.

Figure S5 shows AT based on all seven GMST records and the multi-record mean relative to
three baseline periods. The 16 and 26 uncertainties from HadCRUT4 are plotted about the
multi-record mean. Panels (a) and (d) show the GMST records relative to 1891-1920, which
are the first 30 years all of the data sets have in common. Between 1850-1970, all of the data
sets fall within the 16 uncertainty. After 1970, the GMST records start to deviate and some
fall outside of the 16 uncertainty and remain within the 2¢ uncertainty, except for JIMA which
falls outside of the 26 uncertainty. Panels (b) and (e) show the GMST records relative to the
HadCRUT baseline period of 1961-1990. We see similar behavior as in panels (a) and (d),
where the GMST records largely fall within the 16 uncertainty until about 1970. Panels (C)
and (f) show the GMST records forced to match HadCRUTS5 from 2010-2019, which is
baselined to 1961-1990. In these two panels, we see a large spread between the GMST records
from the beginning of the time period until 2005.

Table S1 shows the percentage of AT annual values since 1940 from all seven data records
that lie within the 16 and 26 of the multi-record mean, found using the HadCRUT4
uncertainties. Year 1940 is used to be consistent with the definition of our y?recent parameter.
Depending on the choice of baseline period, the number of data points within the uncertainty
range varies. For a baseline of 1891-1920, 80% of the data points for all seven records are
within the 16 uncertainty and 95% of the data points are within the 2o limit. For a baseline of
1961-1990, 88% and 93% of data points are within the 16 and 26 HadCRUT4 uncertainties,
respectively. If the AT records are forced to match the average value of the HadCRUT?5 data
set over the last decade, 72% of the data points are within the 16 uncertainty and 88% are
within the 26 uncertainty. This analysis shows that depending on which baseline is used, the
percentage of points within the 16 or 26 uncertainty ranges varies. Overall, these comparisons
support the utility of the HadCRUT4 uncertainty for GMST, since the 16 and 26 uncertainty
ranges capture a percentage of points approximately correct for a pure Gaussian distribution.
Therefore, we have adopted the HadCRUT4 uncertainties in GMST for all of the analyses in
the main paper. The uncertainties published by other data centers tend to be smaller than the
HadCRUT4 uncertainties. Since only the HadCRUT4 uncertainties span the range of values
for AT from the seven data records in a somewhat realistic fashion, we have decided to use
these uncertainties uniformly throughout the analysis.
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New Figure S4. Annual GMST (AT) anomaly for seven data records relative to their individual baseline and the
multi-record mean. The multi-record mean does not include the data set that is being shown. The 16 and 26
uncertainties for each GMST record are shown, and the horizontal like for AT=0 spans the baseline used for the
specific panel. (a) GISTEMP. (b) BEG. (¢) HadCRUT4. (d) CW14. () HadCRUT5. (f) NOAAGT. (g) JMA. Since
the JMA data provider does not provide an uncertainty time series, the HadCRUT4 uncertainty is used.
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New Figure S5. Annual GMST anomaly relative to several baseline periods for seven data records. The 1o
(shaded grey) and 2c (dotted grey) HadCRUT4 uncertainties are plotted about the multi-model record mean
(black). (a) Baseline of 1891-1920 plotted from 1850-2019. (b) Same as (a) using a baseline of 1961-1990.
(c) Same as (a) except all of the AT records are forced to match the average AT anomaly over 2010-2019
given by HadCRUTS that is relative to 1961-1990. (d) — (f) Same as (a) — (c) except plotted from 1940-20109.

New Table S1. Percentage of annual values between 1940-2019 of the GMST record within the 1o or 2¢
HadCRUT4 uncertainties about the multi-record mean for each baseline period.

Baseline: 1891-1920 lo 20
NwiITHIN NroTAL NwiITHIN NroTAL

HadCRUT4 77 = 96% 80 80 = 100% 80
HadCRUT5 42 =53% 80 80 = 100% 80
Cwi4 80 = 100% 80 80 = 100% 80
BEG 71 =89% 80 80 = 100% 80
GISTEMP 73 =91% 80 80 = 100% 80
NOAAGT 76 = 95% 80 80 = 100% 80
JMA 29 = 36% 80 54 = 68% 80
AVERAGE 80% 95%




Baseline: 1961-1990

HadCRUT4 80 = 100% 80 80 =100% 80
HadCRUT5 68 = 85% 80 80 = 100% 80
Cwi4 80 = 100% 80 80 = 100% 80
BEG 80 = 100% 80 80 = 100% 80
GISTEMP 75=94% 80 80 = 100% 80
NOAAGT 80 = 100% 80 80 = 100% 80
JMA 27 =34% 80 48 = 60% 80
AVERAGE 88% 93%

Match 2010-2019

HadCRUT4 68 = 86% 80 80 = 100% 80
HadCRUT5 47 =59% 80 86 = 95% 80
Cw14 78 = 98% 80 80 = 100% 80
BEG 77 =96% 80 80 = 100% 80
GISTEMP 47 =59% 80 79 =99% 80
NOAAGT 73=91% 80 80 = 100% 80
JMA 11=14% 80 18 =23% 80
AVERAGE 2% 88%

We have included New Figs. S4, S5, and New Table S1 in the supplement to provide an explanation
for why we use the HadCRUT4 uncertainties for all seven GMST data records. We added the
following text on lines 270-273 of the main manuscript to direct the reader to the supplement for the
explanation for using the HadCRUT4 uncertainties: We use the uncertainty time series from
HadCRUT4 for all GMST records because the HadCRUT4 uncertainty provides a realistic
description of the variation in GMST among the seven records (see the supplement, Figs. S4
and S5, and Table S1 for more information).

2. The authors have developed an application of EM-GC with blended observations, but temperature output
of CMIPG to test whether EM-GC has predictive power for future temperatures. This is not quite what |
intended with my comment, but I admit I wasn’t clear before. | had hoped the authors would develop a pure
model-based test of predictive power. The outcome of the blended result shows that EM-CG often
underestimates ECS, but the authors claim in the body of the text that it is a very good predictor.

We thank the reviewer for elaborating on their previous comment. Since our application of using
the EM-GC with the CMIP6 multi-model output was not what the reviewer was referring to, we
have removed this analysis from the supplement and the corresponding text from the main
manuscript, which has made this revised paper shorter than the prior version.

In response to the prior review from the other reviewer, we created a model-based test of predictive
power by altering the training period of the GMST to forecast future AT. We had, in the prior
revision, included Fig. S2 of the supplement to make the point that altering the training period of
our model has a small effect on our results

For this revision, we have modified Fig. S2 to show results for training of our model for various
periods of time and included New Fig. S3 to address the reviewer’s suggestion that we “develop a
pure model-based test of predictive power”. Both figures are included below, for convenience.
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We project relatively similar results for end of century warming for training periods that start in
1850 and end in either 2009 or 2019. The “shape” of our model parameter space is similar for
training periods ending in 1999, 2009, or 2019. The training period that ends in 1989 (Fig. S2a)
yields a different “shape” of model parameter space for which good fits to the climate record can be
obtained, compared to the other training periods. The different shape for this shorter training period
is due to the formulation of the ocean component of our model. In training to 1989, we are only
considering 35 years of the observed OHC record. We are able to calculate good fits to the OHC
record over this shorter time period that diverge from the OHC record after 1989. Also, for this
shorter time period, aerosol radiative forcing of climate cools in a manner that nearly mirrors the
warming due to rising GHGs, resulting in a wider range of model parameters that lead to a “good
fit” of the climate record, compared to model simulations constrained by data that extend closer to
present-day. The highest values of AT2100 in Fig. S2a are associated with the largest values of As,
which in our model corresponds to excessively high values of k that we can rule out, based on OHC
data collected during 1990 to 2019.

We added New Fig. S3 and the following text on lines 41-52 of the supplement to illustrate the
predictive power of the EM-GC: Figure S3 shows the observed (HadCRUTS5) and modeled AT
anomaly from 1945-2060 for the four different training periods described above. Each panel
contains three projections of future AT for SSP4-3.4: projection using the value of climate
feedback that provides the best fit to the historical climate record for a value of AER RF2011 =
-0.9 W m2, the lowest value of climate feedback that provides a good fit to the observed AT
record for a value of AER RF2011 = -0.1 W m=, and the highest value of climate feedback that
provides a good fit to the historical climate record (the associated value of AER RF2011 varies
depending on the training period). As more years are added to the training period, the range
of projection for future temperature decreases (Fig. S3a vs S3d). All of the best fit projections
(solid line) and highest value of climate feedback (upper dashed line) closely follow the mid-
point of the data, regardless of the training period. Given the nature of this test (i.e.,
predicting GMST out to 2019 for a series of trainings that stop in either 1989, 1999, or 2009),
Figure S3 supports the quantitative accuracy of our approach for simulating and projecting
future AT.
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Figure S2. ATx00 as a function of climate feedback parameter and tropospheric aerosol radiative forcing in 2011
using the EM-GC trained with the HadCRUTS3 AT record for SSP4-3.4. (a) Training period of 1850-1989. The region
outside of the AER RF2011 range provided by IPCC 2013 is shaded (grey). Colors denote the GMST change in year
2100 relative to pre-industrial. The color bar is the same across all four panels for comparison. (b) Training period of
1850-1999. (c¢) Training period of 1850-2009. (d) Training period of 1850-2019, which is the normal training period
used in our analysis.
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New Figure S3. Observed and modeled GMST anomaly relative to 1850-1900 from 1945-2060 for four training
periods. (a) Observations from HadCRUT5 (black), the EM-GC GMST anomaly simulation for a training period of
1850-1989 (orange) of HadCRUT5, and the EM-GC projections for SSP4-3.4 out to 2060. Three EM-GC projections
are shown in red: The best estimate of climate feedback for AER RF2011 = —0.9 W m 2, the lowest value of climate
feedback that satisfies the ¥? constraints for AER RFz011 = -0.1 W m2, and the highest value of climate feedback that
satisfies the ¢ constraints (value of AER RF011 varies depending on training period). The IPCC 2013 likely range of
warming is denoted as the black trapezoid. (b) Training period of 1850-1999. (c¢) Training period of 1850-2009. (d)
Training period of 1850-2019.

3. The authors now examine a time-varying feedback parameter, which varies with radiative forcing. They
do not give justification for why they integrate a time-varying feedback like that. Global feedback is
thought to change because of cloud feedbacks above a slow- changing ocean. A delay of a couple of
decades between radiative forcing and the change of feedback is therefore expected. Disregarding the
physics lead to a biased outcome, as the model is trying to fit the rise in the feedbacks too early, and it is
only natural that would fail. Scaling with RF would mean that there is barely any feedback in the first half
of the twentieth century, which is also unphysical.



Different formulations for time-varying global feedback exist for simple models, such as (Armour et al.,
2013; Geoffroy et al., 2013; Goodwin, 2018). All of these formulations have in common that the feedback
only changes some time after radiative forcing, with different lags. I think the Goodwin approach is most
suitable for adjustment into EM-GC. Goodwin, also using a data-driven model, shows that the upper range
of climate sensitivity is extremely sensitive to the time-scale. | further believe that getting an optimal global
constant by fitting, and then adjusting the model to include time-varying feedbacks will tend to favour the
former. Ideally, the fitting is done simultaneously.

We thank the reviewer for this suggestion on how to improve our analysis of a time-varying climate
feedback. We examined the Goodwin (2018) study as suggested. In the Goodwin (2018) analysis,
he separated the radiative forcing due to greenhouse gases into several terms, such as the radiative
forcing due to CO», CH4, and N20O. Goodwin (2018) also partitioned the climate feedback into
several terms based on the length of time it would take for the various feedbacks to respond to a
change in radiative forcing.

We have applied the idea from Goodwin (2018) that there is a delay in the response of the climate
feedback due to a change in radiative forcing within our model framework. In the revised paper, we
now incorporate a 20-year delay between the change in radiative forcing and our new calculation of
the time variant lambda time series. We chose the 20-year delay because this delay is included in
Table 1 of Goodwin (2018) as an estimate of the adjustment timescale between a change in
radiative forcing and the cloud-spatial SST adjustment feedback. This feedback is the longest delay
between the radiative forcing and climate feedback. The other forms of climate feedback such as
water and lapse rate, fast cloud feedback, and snow and sea ice albedo feedback occur with
response delays of several days to several months (Goodwin, 2018).

New Figure 14 shows the change in observed and modeled GMST under four assumptions
regarding 1. First, the value of 1! is constant over time (New Figs. 14a, €). Second, the value of
A1 varies by 50% between 1850-2100 (New Figs. 14b, ). The third assumption involves A
varying over time while y?recent is always less than or equal to two (New Figs 14c, g). Fourth, A
varies over time while y?atm is always less than or equal to two (New Figs. 14d, h). The 20-year
delay results in better fits to the observed change in GMST for a 50% increase in lambda (New Fig.
14b) than if the instantaneous response is used (New Fig. S23b). The 20-year delay allows larger
variations in lambda over time that still lie below our reduced chi squared constraints (New Fig.
14c, d versus New Fig. 23 c, d). If there truly is time varying climate feedback that responds to a
change in radiative forcing with a 20-year delay, then our projections of future GMST may increase
up to 1.5°C above the estimates obtained assuming time invariant feedback. If climate feedback
varies with a 20-year delay due to the change in radiative forcing and rises over time as suggested
by some of the CMIP6 (Rugenstein et al., 2020) and CMIP5 GCMs (Marvel et al., 2018), our
projections of global warming would be a few tenths of a degree warmer than our current best
estimate, as indicated by the difference between the red line and black circle in 2100 for New Fig.
14b. If we changed the 20 year delay to the shorter delays used in Goodwin (2018), than our results
would be between those from the instantaneous response of climate feedback to a change in RF to
the 20-year delay in response of climate feedback to a change in RF.
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New Figure 14. Change in GMST from 1850-1900 for observations from HadCRUTS5 (black) and 1850-2100 for
modeled (red) using SSP4-3.4 and the residual between modeled and observations incorporating a 20 year delay
between A1 and a change in RF. The black circles denote the amount of warming when A% is time invariant. (a)
Rise in GMST assuming a constant value of . (b) Rise in GMST allowing A! to increase by 50%. (c) Rise in
GMST allowing A ! to vary while the value of y?recent is kept below 2. (d) Rise in GMST allowing X! to vary

while the value of y2aTm is kept below 2. (e) Residual between modeled and observed rise in GMST from 1850-2019
for constant 12, (f) Same as (e) but for increasing A1 by 50%. (g) Same as (f) but for varying ™! while the value of

y%recent is kept below 2. (h) same as (g) but for varying A~* while the value of y?arm is kept below 2.
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New Figure S23. Change in AT from 1850-2019 for observations from HadCRUT5 (black) and 1850-2100 for
modeled (red) using SSP4-3.4 and the residual between modeled and observations using an instantaneous time
variant A1, (a) Rise in GMST assuming a constant value of A%, (b) Rise in GMST allowing A * to increase by 50%.
(c) Rise in GMST allowing A ! to vary while the value of y’recent is kept below 2. (d) Rise in GMST allowing A ™! to
vary while the value of ¥?arwm is kept below 2. (e) Residual between modeled and observed rise in GMST from 1850-
2019 for constant A1, (f) Same as (e) but for increasing A by 50%. (g) Same as () but for varying A~ while the
value of y’recent is kept below 2. (h) same as (g)but for varying 1! while the value of y?atm is kept below 2.

We have updated Fig. 14 in our revised manuscript to include the 20-year delay between the change
in radiative forcing and the time varying climate feedback. We added the following text starting at
line 1160 to the main manuscript to explain our new method: In all cases for time varying
feedback, we also assume the value of 1! has the same shape as the SSP4-3.4 RF time series
along with a lag of 20 years and that the new time series for A~ maintains an average value
over the observational record identical to the constant value for A7 of 0.63 °C / W m=2. We
chose a lag of 20 years to represent the longest delay in response of climate feedback to a
change in RF suggested by Goodwin (2018). If we use the shorter delays represented in
Goodwin (2018), then our results would be between those from the instantaneous response of
climate feedback to a change in RF (Fig. S23) and the 20-year delay. Finally, in the
simulations described below, the value of A1 is assumed to continue to rise into the future at
the same proportionality to AT aTm,HUmAN as the prior increase.
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We included New Fig. S23 to show how our results differ if we use an instantaneous response of A
to the change in RF.

4.1 don’t see how the authors determined the uncertainty around the carbon cycle. I cannot find a mention
of 10% of Friedlingstein (which concluded that emission-driven simulations warm a tad more than
concentration-driven simulations in CMIP5). Ten percent seems low, but this is not my expertise.

Thank you for this comment and alerting us that we need to better describe the uncertainty around
the carbon cycle. The uncertainty we consider for our estimates of transient climate response to
cumulative emissions (TCRE) is much larger than 10%. The largest variation in our estimates of
TCRE is driven by the uncertainty in AER RF. This uncertainty is incorporated into the probability
of achieving the Paris Agreement target and upper limit through the aerosol weighting method. New
Figure S21 shows the rise in AT from pre-industrial for SSP5-8.5 versus the cumulative emissions
of COg, in Gt C, since 1870. The colored lines denote the probability of reaching at least that
temperature by the end of century. The large spread in projections of future AT is driven by the
uncertainty in AER RF. The computed probabilities are based on the aerosol weighting method, so
the uncertainty in AER RF is considered when determining the likelihood of achieving the Paris
Agreement target of 1.5°C and upper limit of 2.0°C.

We also incorporate the uncertainty in how atmospheric CO will respond to the prescribed carbon
emissions, for the overall uncertainty of TCRE. We examined Fig. 2 and Table 3 (both included
below) from Friedlingstein et al. 2014 and determined that the multi-model average of CO;
concentrations in 2100 from emission driven runs of CMIP5 coupled carbon cycle models was 985
ppm with a standard deviation of 97 ppm, which is about 10% of the average. We used this 10%
value to represent the 1c uncertainty in the response of atmospheric CO> to prescribed carbon
emissions, which is a component of the overall uncertainty in TCRE. We also examined Fig. 9b
from Murphy et al., 2014 (below) to calculate an estimate in the uncertainty of emissions driven
runs of the coupled carbon climate models from CMIP5. We also estimated an uncertainty of about
10%.

Finally, based on our desire to be sure 10% was realistic for this portion of the overall uncertainty in
TCRE, we examined the very highly cited, albeit older study by Friedlingstein et al. 2006. Their
Figure 1a (below) shows the rise in atmospheric CO> over time simulated by 11 coupled
atmospheric / carbon cycle models. The mean estimate of atmospheric CO in 2100 determined by
reading values from the figure is 850 ppm with a 1o sigma uncertainty of 89 ppm. Consequently,
we again find a value close to 10%. Even though an uncertainty of 10% may seem low, this
numerical value has been determined by three independent studies.

The 10% uncertainty is included in our determination of the carbon budgets for each probability of
achieving the Paris Agreement target and upper limit. We have updated the main text of the
manuscript and the supplement to better describe the uncertainties in the carbon cycle within the
EM-GC framework. We have updated the following text on lines 1047-1049 of the main manuscript
to better describe the uncertainties in the carbon cycle within the EM-GC framework: The largest
variation in our carbon budget estimates is driven by the uncertainty in AER RF, which is
incorporated into the probability of achieving the Paris Agreement target and upper limit (see
Fig. S21 and the supplement).
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We have added the following text beginning on line 277 of the supplement to further explain the
uncertainties in our carbon budget estimates: Figure S21 shows the rise in AT from pre-industrial for
SSP5-8.5 versus the cumulative emissions of COz, in Gt C, since 1870. The colored lines denote the
probability of reaching at least that temperature by the end of century. The large spread in
projections of future AT is driven by the uncertainty in AER RF. The computed probabilities are
based on the aerosol weighting method, so the uncertainty in AER RF is considered when
determining the likelihood of achieving the Paris Agreement target of 1.5°C and upper limit of 2.0°C
for the cumulative carbon emissions.

We use the uncertainty suggested by coupled atmospheric / carbon cycle models in how
atmospheric CO2 will respond to the prescribed carbon emissions. Examination of Fig. 2 and Table 3
from Friedlingstein et al. (2014) and Fig. 9b from Murphy et al. (2014) led to our determination that
the uncertainty in estimates of atmospheric CO2 from emissions driven runs of CMIP5 coupled
atmospheric / carbon cycle models is about 10% (16). We include this 10% uncertainty in our
determination of the carbon budgets for each probability of achieving the Paris Agreement target

and upper limit shown in Table 2.
EM-GC Probability

TT T T[T T T T Trrd T T 11 TT T T[T 1] 0.00
6
SSP5-8.5 0.10
g 5 0.20
-.g - 0.30
24 -
§ - 0.40
o
£ 3 = 0.50
2 -
w oo - - £ L — - o060
1 =
<] ] 0.80
0 _: 0.90
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yC0,™*° from 1870 (Gt C)
New Figure S21. Transient climate response to cumulative CO, emissions for SSP5-8.5 using the EM-GC.
Simulations of the rise in AT versus cumulative CO, emissions in units of Gt C. The orange line is observations of
AT from HadCRUTS plotted against cumulative carbon emissions from the Global Carbon Budget project
(Friedlingstein et al., 2019). The dotted and dashed lines denote the Paris Agreement target and upper limit,
respectively. The EM-GC projections represent the probability that the future value of AT will rise to the indicated
level, considering only acceptable fits to the climate record. The probabilities were determined using the aerosol
weighting method. The light grey, dark grey, and black curves denote the 95, 66, and 50% probabilities of either the
Paris target (intersection of dotted horizontal lines) or upper limit (intersection of dashed lines with curves) being
achieved.
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Friedlingstein et al., 2014

CO, concentration (ppm)

1200 r T T T 7 T T T T
100l @ Atmospheric CO, concentration b Global-Mean Surface Air Temperature
| d 6l /./
1000 4
/ 51 ﬂ,»é
aoo|  CMIPS: CMIPS5: Pl
sﬁ/__{r(; Emission-Driven 41+ ~ Emission-Driven .
800 =_m=_. Concentration-Driven Default ‘:f-,f’:’ Concentration-Driven
700 + g '
8
600 18 27
1
w
500 b {241
400 e
20
=
300 o s |
200 t + + t S t t t t
©
1100} © Atmospheric CO, concentration 4 “é.’ 6l d Global-Mean Surface Air Temperature |
@
1000 =
g5 ]
gogf  CMIP3 & CAMIP Emulation: z CMIP3 & CAMIP Emulation:
) 5 4l
800 | 68% Ranges 8 68% Ranges
L L'y
700 - Concentration-Driven Default g 3 0%
600 - 2F
500 - 1}
400 ¢ g
oF
e
300‘._-------'--- 8
=1
200 1 1 1 1 1 1 1 1
1850 1900 1950 2000 2050 2100 1850 1900 1950 2000 2050 2100

F1G. 2. Range of (a) simulated atmospheric CO; (ppm) and (b) global surface temperature change (K) from the 11 ESMs E-driven (blue

lines) and C-driven (red lines) simulations. Also shown is the full range of (c¢) simulated atmospheric CO, (ppm) and (d) global surface
temperature change (K) simulated by MAGICC6 when emulating all 19 CMIP3 climate models and 10 C*MIP climate—carbon cycle
models. The red-line curve in (a) and (c) is the baseline estimate from MAGICC6.

TABLE 3. Twenty-first-century atmospheric CO, (2100), global surface warming (2081-99 relative to 1986-2003), cumulative land and
ocean uptake (1850-2100) for the E-driven simulations and global surface warming (2081-99 relative to 1986-2005) for the C-driven
simulations (where atmospheric CO; reaches 941 ppm by 2100). Also shown are the multimodel mean and range (1) as well as the same
quantities simulated by MAGICC6 in its reference setting.

E-driven E-driven
cumulative cumulative
E-driven CO- E-driven land C uptake ocean C uptake C-driven delta
(ppm) delta 7' (°C) (PgC) (PgC) T(°C)
CanESM2 1048 5.0 161 455 4.5
GFDL-ESM2G 997 29 167 550 2.8
HadGEM2-ES 998 43 352 543 4.7
IPSL-CM5A-LR 926 4.5 300 555 4.5
MIROC-ESM 1149 56 —165 544 4.7
MPI-ESM-LR 969 37 231 412 36
CESM1-BGC 1142 4.1 —145 541 36
NorESM1-M 934 38 —-173 649 34
BCC-CSM-1* 967 335 471% 490 33
INM-CM4.0* 914 2.5 201 861 2.6
MRI-ESM1# 794 29 758 528 33
Models average 985 = 97 3909 91 = 218%* 557 = 112 3707
MAGICC6 941 4.0 204 617 4.0

# F1 . estimated as no simulated LUC carbon flux in these ESMs.
#% Multimodel average for land carbon is only based on the eight ESMs simulating F;. HadGEM2-ES and GFDL-ESM2G simulations
start in 1860 and 1861, respectively. Note that BCC-CSM-1 simulations end in 2099; the 2099 — 2098 atmospheric CO, difference was
used to infer atmospheric CO; by 2100.
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Murphy et al., 2014
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Fig. 9 a Future global mean surface air temperature (SAT) changes
for 2080-2099 relative to 1980-1999 for members of the ESPPE and
CMIP3 ensembles, plotted against corresponding historical changes
for 1980-1999 relative to 19001949, Future forcing is from the A1B
scenario, with CO, changes prescribed as emissions in the ESPPE,
and atmospheric concentrations in CMIP3. Grey shading indicates the
range for the median plus or minus two standard deviations of the
observed historical change in SAT, obtained using 100 alternative
realisations from the HadCRUT4 dataset. ESPPE model variants are

historical and future CO; concentrations corresponding to the ESPPE
simulations in a. The average observed global mean CO, concentra-
tion for the period 1980-1999 is indicated by the dotted line (Masarie
and Tans 1995). ¢ The average fraction of emitted CO, remaining in
the atmosphere for the periods 1980-1999 and 2080-2099 for the
ESPPE simulations in a. Grey shading corresponds shows the median
plus or minus two standard deviation uncertainty range for average
airborne CO» fraction for 1980-1999, derived from the observational
estimates of Sabine et al. (2004)

colour-coded by simulated historical change in SAT. b Average

Friedlingstein et al., 2006
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5. The paper is still quite long. In the minor comments | will make another set of suggestions to make the
paper easier to understand. This will not be an exhaustive list. There are good guides on the internet for
writing concisely, that have helped me become a better writer. For instance:
https://writingcenter.gmu.edu/guides/writing-concisely.

We thank the reviewer for pointing us to some guides on writing concisely. We agree that the paper
is long and have attempted to shorten the manuscript. We moved the description of the Gregory et
al. (2004) method for computing ECS from the CMIP6 GCMs in Sect. 2.4 to the supplement. We
added a sentence on lines 593-594 of the supplement: For the estimate of ECS from the CMIP6
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multi-model ensemble, we use the method described by Gregory et al. (2004) (See the
supplement and Fig. 15 for more information).

We removed some of the discussion of Table 1 and Table 2. We also moved Fig. S13 and the
description of Fig. 13 to the supplement. In the main paper, we added a sentence on lines 1026-1027
to refer the reader to the supplement for Fig. 13 (which is now Fig. S21): We use the probabilistic
forecasts in Fig. S21 to determine the carbon budgets in Table 2.

6. The EM-GC model does not model the carbon cycle explicitly, and discussion of the carbon cycle may
also be an option to remove. I don’t see the value of showing all SSPs in f.i. Figure 9. Consider dropping
those with few CMIP6 models.

Discussion of the carbon cycle in lines 987-992 of the previous version of the revised paper
(included here for reference) was added upon request by the reviewer: Examination of
(Friedlingstein et al., (2014); and Murphy et al., (2014) led to our determination that the
uncertainty in estimates of atmospheric CO2 from emissions driven runs of CMIP5 coupled
atmospheric / carbon cycle models is about 10% (1-sigma). We therefore use 10% as the
uncertainty in how atmospheric CO2 will respond to the prescribed carbon emissions. We
apply the 10% uncertainty estimate to the future remaining carbon budget.

We have shortened the text and added more information into supplement. We have added the
following text on lines 1049-1053 to the main manuscript: We include a 10% uncertainty,
determined from examination of CMIP5 coupled atmospheric / carbon cycle models from
Friedlingstein et al. (2014) and Murphy et al. (2014) (see the supplement for more
information), within each probability of attaining the Paris goals to represent how
atmospheric CO2 will respond to the prescribed carbon emissions.

See our response to the previous comment on the information we added to the supplement to
address the uncertainties in our carbon budget estimates.

We would like to keep all four panels of Fig. 9, because they illustrate the CMIP6 GMST
projections for the four SSP scenarios analyzed in the main part of the manuscript. The multi-model
mean, minimum, and maximum displayed in this figure for the four SSPs are shown again in Fig.
11. We would like to retain all panels of Fig. 9 so that the reader can see how we derived the
CMIP6 multi-model mean, minimum, and maximum shown in Fig. 11.

Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D. J. L., & Tytéca, S. (2013). Transient
climate response in a two-layer energy-balance model. Part Il: Representation of the efficacy of deep-ocean
heat uptake and validation for CMIP5 AOGCMs. Journal of Climate, 26(6), 1859-1876.
https://doi.org/10.1175/JCLI-D-12-00196.1

Goodwin, P. (2018). On the Time Evolution of Climate Sensitivity and Future Warming. Earth’s Future,
6(9), 1336-1348. https://doi.org/10.1029/2018EF000889

Armour, K. C., Bitz, C. M., & Roe, G. H. (2013). Time-Varying Climate Sensitivity from Regional
Feedbacks. Journal of Climate, 26(13), 4518-4534. https://doi.org/10.1175/JCLI-D-12-00544.1
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Minor comments:

79: Replace ‘to designate future’ with “for the’: future and scenarios are redundant

Change made.

101: ‘land-use change’: check hyphens throughout the entire paper

We have ensured all instances of land-use change include a hyphen.

131: remove ‘of climate’

Change made.

132: remove ‘because’, start new sentence at ‘this’
Change made.
142: consider removing ‘Bony et al.” sentence, I don’t see the use

The sentence has been removed.

150: due to this update, our model is

Change made.

186: which update

We have modified this paragraph based on our update to use HadCRUTS5 as the main data set, so
the corresponding sentence has been removed.

202-205: long sentence

We have split this sentence into two separate sentences. The new sentences are as follows: The
equation for all three formulations of x? is based on annual averages, rather than monthly
time series. We calculate x2 with annual values because the autocorrelation functions of ATogs
and ATwmoL display similar shapes using annual averages, and do not match utilizing monthly
averages (see supplement of Canty et al. (2013) for further explanation).

209: ‘that is our primary data source’, maybe replace with: ‘which we use as default’

We have changed the sentence to be: The average of five OHC data sets, which we use as our
primary OHC series, extends from 1955-2017, a total of 63 years.

220: rung—panel
18



Change made.

235-237: unnecessary sentence

This sentence does seem unnecessary as written, but it is referring to the dotted black line on Fig.
le. We have changed the sentence to make it clear what we are referring to. The new sentence is:
Furthermore, the contribution of AMOC to the rise in GMST over 1975-2014 (the same time
period used to define AAWR) is also specified on Fig. 1le (dotted black line).

240: reword: for this simulation, kappa =1.28, W/m”2/C fits the OHC data best

Change made.

242: remove ‘the’ before ‘10D’

Change made.

243: remove ‘temporal variations in’

Change made.

245: slight -> small

Change made.

343: remove ‘consequently’

Change made.

347: remove ‘multiplicative’: factor is by definition multiplicative

Change made.

348: split sentence after ‘2015’

Change made.

354: remove ‘thus’

Change made.

367: remove sentence, already clear

Change made.
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379: remove ‘scientific’: what else?

We have removed the words “slight” and “scientific”.

408: consider replacing ‘upon’ with ‘on’ throughout: make it easy for your reviewers and readers to read
your text

Change made.

419: consider using the improved HadSST4, which removes biases in the ship measurements.

We will replace HadSST3 with HadSST4 to derive the AMOC time series used in the regression,
since we are using HadCRUTS5 as our primary data set.

420: remove ‘variations in the strength’?

Change made.

421: I’'m not sure whether it’s appropriate to detrend using RF. Temperature lags RF quite a bit, especially
in oceans.

Thank you for this inquiry. The Atlantic multidecadal variability (AMV) that we use as a proxy for
AMOC is the change in SST between the equator and 60° N. The SSTs represent the upper ocean,
or top 100 m. The response of the upper ocean to a change in radiative forcing is almost
instantaneous, so a time delay is not needed.

Several studies (Mann and Emanuel, 2006; Ting et al., 2009; Trenberth and Shea, 2006) are critical
of using linear detrending to remove the forced trend in the AMV index. This method assumes that
the forced trend is linear over time, which may not be correct. Ting et al. (2009) say that the use of
the linear detrending method of the AMV index may result in including a global warming signal
into the index. All three studies suggest using a detrending method of regressing SST against the
AMV index to remove the forced trend over time. We derived an anthropogenic detrending method
to remove the influence of anthropogenic activities on SST in the North Atlantic. We achieve
similar results if we use the anthropogenic or SST detrending methods (Response Fig. 1) but get
different results if we use the linear detrending method.
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Response Figure 1. GMST anomaly in 2100 from pre-industrial as a function of climate feedback parameter
and AER RF011 for SSP4-3.4. (a) AMV index was detrended using the anthropogenic detrending option. (b)
AMYV index was detrended using the SST detrending method. (c) AMV index was detrended using the linear
detrending method.

Response Figure 2 shows that some of the global warming signal is probably being aliased into the
AMOC signal when using the linear detrending method. The AMOC contribution of the rise in
GMST from 1975-2014 is 0.025°C/decade when using the anthropogenic detrending method but is
0.037°C when using the linear detrending method. The value of AAWR decreases from 0.167 to
0.160°C/decade upon switching from the anthropogenic to linear detrending method.
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Response Figure 2. Measured and modeled GMST anomaly (AT) relative to a pre-industrial (1850-1900) baseline.
(a) Observed (black) and modeled (red) AT from 1850-2019. (b) Contributions from total human activity. This panel
also denotes the best estimate value of the attributable anthropogenic warming rate from 1975-2014 (black dashed) as
well as the 26 uncertainty in the slope for a model run that uses the best estimate of AER RFz011 of -0.9 W m=2. (c)
TSI (purple) and SAOD (light blue). (d) Influences from ENSO on AT. (e¢) Contributions from AMOC to AT and to
observed warming from 1975-2014 using the Linear detrending option. (f) Influences from PDO (blue) and 10D
(pink) on AT. (g) Measured (black) and modeled (red) ocean heat content (OHC) as a function of time for the
average of five data sets (see text), the value of y?ocean for this run, as well as the ocean heat uptake efficiency, «,
needed to provide the best-fit to the OHC record.

433: remove everything between brackets

Change made.

435: surely the numbers are altered. I cannot imagine that the feedback parameter isn’t dependent on
AMOC in the fit.

Thank you for prompting us to make this sentence clearer. Our major scientific conclusions are not
altered if we neglect AMV as a regression variable. As explained in the first author response, our
value of As only changes slightly when we neglect AMV, 10D, and PDO as regression variables.
The value of ¥?atm substantially increases. The increase in the value of y>atm indicates there will be
less combinations of Az and AER RF2o11 that provide a good fit to the historical climate record. This
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would narrow our range of parameter space (Fig. 10), and slightly change our future temperature
projections, AAWR, and ECS. However, we will still arrive at the same conclusions, that the
CMIP6 GCMs warm too quickly, and the EM-GC provides more optimistic probabilities of
achieving the Paris Agreement target and upper limit.

We have added some clarifying text to this sentence, Sect. 2.3 where we mention the impact of the
inclusion of AMV on AAWR, and New Figure S11 to supplement (shown below) to show that
AAWR does not change if AMOC is or is not included in the regression. The new text is: We
stress, as explained in Sect. 2.3, none of our major scientific conclusions are altered if we

neglect AMV as a regression variable.
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New Figure S11. Measured (HadCRUT5) and modeled GMST anomaly (AT) relative to a pre-industrial (1850-1900)
baseline without AMOC, PDO, and IOD. (a) Observed (black) and modeled (red) AT from 1850-2019. This panel also
displays the values of As and ¥?atm (see text) for this best-fit simulation. (b) Contributions from total human activity.
This panel also denotes the numerical value of the attributable anthropogenic warming rate from 1975-2014 (black
dashed) as well as the 2c uncertainty in the slope. The estimates of AAWR show similar results if AMOC is or is not
included (see Fig. 1). (c) Solar irradiance (light blue) and major volcanoes (purple). (d) Influences from ENSO on AT.
(e-f) Contributions from AMOC, PDO, and IOD to AT are set to zero (g) Measured (black) and modeled (red) ocean
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heat content (OHC) as a function of time for the average of five data sets (see text), the value of y?ocean for this run,
as well as the ocean heat uptake efficiency, k, needed to provide the best-fit to the OHC record. The error bars (blue)
denote the uncertainty in OHC used in this analysis (see Sect. 2.2.8).

438: consider using ‘use’ throughout instead of ‘utilising’

Thank you for this suggestion. We have decided to retain both “use” and “utilize” in the manuscript,
so the text is not repetitive with “use” repeated multiple times in one sentence.

453: is this old factor still valid?

Thank you for this question. An article posted on climate.gov website published in August of 2020
explains that warming in the ocean below 700 m accounted for 30% of the total increase in OHC
from 1971 — 2010 (https://www.climate.gov/news-features/understanding-climate/climate-change-
ocean-heat-content). This estimate of 30% is from chapter 3 of IPCC 2013. If the ocean below 700
m accounts for 30% of the heat, then we can infer that the upper 700 m of the ocean holds 70% of
the heat. We have verified this estimate ourselves by comparing the OHC in the upper 700 m to the
OHC below 700 m from the Cheng et al. (2017) OHC record we use in our analysis. Response
Figure 3 shows the change in OHC from 1955-2017 from the Cheng et al. (2017) OHC record for
the upper 700 m and above 2000 m. We can divide the OHC in the upper 700 m by the OHC above
2000 m to obtain the ratio between the two time series, and average these values to determine the
mean difference between the value of OHC in the upper 700 m and above 2000 m. If we exclude
the baseline period (1991-2005) from the calculation, we determine that the ratio is 0.68, indicating
the upper 700 m holds about 68% of the heat in the world’s oceans. This result supports the
assumption of the upper 700 m of the world’s oceans holding 70% of the heat in our analysis.
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Cheng 2017 700 m
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Response Figure 3. Change in OHC (10?2 J) from 1955-2017 relative to 1991-2005 for the upper
700 m and above 2000 m from Cheng et al. (2017).

455: remove sentence ‘since ... whole atmosphere’, redundant.
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https://www.climate.gov/news-features/understanding-climate/climate-change-ocean-heat-content
https://www.climate.gov/news-features/understanding-climate/climate-change-ocean-heat-content

Thank you for this suggestion. We would like to retain this sentence for clarity, to ensure the reader
understands our method.

459: remove ‘temporal’

Change made.

481: remove ‘however’

Change made.

505: equal to—of

Thank you for this suggestion. We would like to retain the sentence as currently written to avoid
using several instances of the word “of” in one sentence.

510: upon consideration of—by including

Change made.

534: colouring seems to be off in figure S10

We are not exactly sure what the reviewer is referring to here. We have reviewed Fig. S10 and the
displayed colors seem fine on our monitors.

539: remove ‘the computation of’

Change made.

552: remove sentence, redundant

Change made.

Section 3.1: move methodology to methodology section 2.2.1 (the bit about blending)

We moved the methodology on the blending effect to Sect. 2.3 where we discuss our method to
calculate AAWR.

Figure 8: what interval is plotted for each study?

Thank you for bringing this to our attention. The confidence intervals/percentiles for each of the
studies that are plotted are as follows: Lewis and Grunwald 2018 — 5™ to 95" percentile, Skeie et al.
(2018) — 90% confidence interval, Otto et al. (2013) — 5™ to 95" confidence interval, Nijsse et al.
(2020) — 5™ to 95" % confidence interval, Cox et al. (2018) — 95% confidence limits, Dessler et al.
(2018) — minimum and maximum, Armour (2018) — 90% confidence interval, Sherwood et al.
(2020) — 5 to 95% confidence intervals, Rugenstein et al. (2020) — minimum and maximum,
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Tokarska et al. (2020) — 5" and 95" percentiles, IPCC 2013 — 66% confidence interval, Proistosescu
and Huybers (2017) — 5to 95% confidence interval, and Zelinka et al. (2020) — minimum and
maximum. We have decided to include this information in supplement, so the interested reader can
find this information without making the main manuscript longer. There is a reference in the Fig. 8
caption to point the reader to the supplement that reads: See the supplement for the confidence
intervals shown for each study.

772: changed word order, it seems like we’re coupling a two-box model to 2.6

Change made.

793: Cox et al. based on CMIP5

Change made.

834: remove ‘indicated on each plot’, redundant

Change made.

834-835: remove sentence, the reader will know how to do a global average

We would like to maintain this information for anyone trying to reproduce our results. We have
moved the sentence to the Fig. 9 caption to help shorten the manuscript.

858: I don’t think bimodality is clear here. There seems to be outliers, but not two roughly equal- sized
groups of models. With so few models, passing any statistical test on bimodality would be tough. Drop it?

We have replaced “bimodality” with “two groups” so the sentence reads: Figure 9 illustrates there
are two groups of CMIP6 multi-model projections of AT, with a few GCMs having future
values of AT that are considerably higher than others.

863: remove ‘apparent in figure 9°, redundant

Change made

918: remove ‘our’, redundant

Change made: “our” was replaced with “the”.

Figure 12: choose bigger bin size: CMIP models displayed weirdly

The bin size in Fig. 12 is consistent between the PDF for the EM-GC and PDF for the CMIP6
GCMs. The CMIP6 PDF looks different from the EM-GC because results are available for only 6 to
33 GCMs depending on the scenario. Conversely, thousands of simulations for the EM-GC allow
rigorous sampling of the parameter space.
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We prefer to keep the bin size the same between the EM-GC and CMIP6 PDFs. Response Fig. 4
shows the PDF for SSP4-3.4 with a bigger bin size for the CMIP6 GCMs. The bigger bin size looks
awkward and makes the figure look like there are only 3 GCMs for SSP4-3.4, whereas there are

actually 6.
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Response Figure 4. Probability density functions (PDF) for AT2100 found using the EM-GC with the
CW14 temperature record (dark blue) and CMIP6 multi-model results (red).

934: three significant digits not justified, two better

Change made.

Table 1: same

Change made.

991-1003: you seem to be repeating the table, making the prose difficult to read, condense to half the size?

We have eliminated some of the discussion of the table, so we are not repeating the same
information.

1015: since -> from / from ... onwards

We have changed “since” to “after” so the sentence reads: Their analysis indicates only 228 Gt C
can be released after 2010 to have a 66% probability of achieving the Paris Agreement target
of limiting the rise in AT below 1.5°C in 2100.

1023: I don’t think either of them studied the entire climate system. Instead, those studies were
about the atmosphere.
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Upon the changes from switching to HadCRUTS5 for our primary GMST data record, this sentence
was deleted.

In our revised supplement, Fig. S1 has slightly changed. The figure shows output from the EM-GC
that is trained using the HadCRUT4 GMST record but is adjusted to be on the HadCRUT?5 pre-
industrial baseline, to be consistent with other figures in the manuscript. The new baseline causes
the values of AT2100 Shown on the left panel to increase a negligible amount. We fixed a small
indexing error in the plotting code used to make Fig. S1, which causes the maximum value of
AT2100 Shown on the right panel to decrease slightly.
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Reviewer comments are in black, author responses in blue

After a careful reading of the manuscript, | found the authors have addressed most of my
comments and questions, and the revised manuscript has been improved. However, there is still
one issue that deserves more attention. In the previous review, | asked about the comparison of
the AAWRs that are obtained from EM-GC and CMIP6 models. My concern was whether the
AAWR from the EM-GC and the AAWR from the CMIP6 can be compared fairly, as the
AAWRs were calculated by different methods (For EM-GC, using Eq. (9); For CMIP6 models,
using REG method). The authors have revised this part, but if I understand correctly, they
compared the AAWR from REG method with the AAWR from LIN method. There is no direct
comparison between the REG method and the method used in EM-GC. The confidence in using
REG method comes from the "close agreement of AAWR" found using both the REG and the
LIN methods, which | find not very convincing. | would suggest that, if possible, the authors
may apply the REG method to the EM-GC simulations (Note, do not use the coefficient C1 from
Eq. (2). Use the new coefficient obtained from the REG method). Then, compare the AAWR
from the REG method and the AAWR calculated from Eg. (9).

We thank the reviewer for taking the time to read through our changes and are delighted
to read that the reviewer finds the manuscript improved.

To address the remaining concern, we applied the REG method to the EM-GC
simulations as suggested by the reviewer. We regressed the modeled GMST time series
output from the EM-GC against SAOD (after applying a 6-month lag) and a linear
function used to represent the anthropogenic effect on temperature from 1975-2014. New
Fig. S13 below shows the resulting simulations of AT.

The value of AAWR from the EM-GC determined using the REG method is
0.188°C/decade, compared to 0.167°C/decade using Eq. (9) in the main paper (New Fig.
S13c and Fig. 1). There is a 0.021°C/decade difference between these two estimates of
AAWR. This difference arises because the REG method, when applied to the EM-GC
modeled AT time series, includes the contribution of AMOC in the value of AAWR
(New Fig. S13c). Figure 1 of our paper shows that AMOC contributes about
0.025°C/decade to the rise in AT from 1975-2014. If the effect of AMOC is not removed
before applying the REG method to the output from the EM-GC, then the influence of
AMOC will be erroneously included in the value of AAWR. These results shown on the
left hand panels of Fig. S13 are similar to the approach by Foster and Rahmstorf (2011),
who included the effect of AMOC by taking the linear fit of a residual. If we include
AMOC as a regressor variable to the REG method, we obtain a value of AAWR of
0.161°C/decade (Fig. S13g). This new value of AAWR is within the uncertainty estimate
of AAWR using Eqg. 9, which is 0.167 + 0.007°C/decade.

The close agreement of values of AAWR from the REG method once we account for
AMOC and that found using Eq. (9) supports the validity of the REG method to
determine AAWR from CMIP6 output. We do not explicitly use AMOC as a regressor
variable when applying the REG method to CMIP6 GCMs for two reasons. The first
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reason is that GCMs have been shown to underestimate key aspects of the Atlantic
multidecadal oscillation and are unable to simulate the many oceanic and atmospheric
footprints of AMOC (Kavvada et al., (2013). The second reason is that CMIP6 GCM
historical runs do not use prescribed SSTs. If the CMIP6 GCMs are representing AMOC,
it is a random signal that is averaged out when we analyze the 50 GCMs in order to
calculate AAWR.

We have included New Fig. S13 in the supplement and added the following text on lines
541-543 to Sect. 2.3 of the main paper in reference to this figure:

Figure S13 and the supplement compare values of AAWR found using the REG
method applied to EM-GC output with values of AAWR found using Eq. (9), as
support for the validity of using the REG method to determine AAWR from

CMIP6 output.
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New Figure S13. The change in GMST relative to 1961-1990 from observations and modeled output. (a)
Change in GMST from HadCRUT5 and EM-GC simulation. (b) The residual in the change of GMST
from the EM-GC simulation after subtracting the contribution of SAOD determined by the REG method
(grey) and the change in GMST due to humans from the REG method (orange). (c) The change in GMST
due to humans from the REG method (orange) and from the EM-GC (blue). The values of AAWR
determined using the REG method and Eq. (9) are shown. (d) The contribution of SAOD to GMST. (e)
Same as (a). (f) Same as (b) but also subtracting the contribution of AMOC determined by the REG
method. (g) Same as (c) but using AMOC as a regressor variable. (h) Same as (d) and also including the
contribution of AMOC to AT determined by the REG method.



We have added the following text beginning on line 203 to the supplement to explain our
justification of the use of the REG method for the determination of AAWR from the GCMs:

We applied the REG method to the EM-GC simulations to check the validity
of the REG method. We regressed the modeled AT time series from the EM-GC for
an AER RF2011 = -0.9 W m=2 simulation with SAOD and applied a 6 month lag. A
linear function is used to represent the anthropogenic effect on temperature from
1975-2014. Fig. S13 shows the results of using the REG method on output of the EM-
GC.

The value of AAWR from the EM-GC determined using the REG method is
0.188°C/decade, compared to 0.167°C/decade using Eq. (9) (Fig. S13c and Fig. 1).
There is a 0.021°C/decade difference between the two methods. This difference arises
because the REG method, when applied to the EM-GC modeled AT time series,
includes the contribution of AMOC in the value of AAWR (Fig. S13c). Figure 1 of our
paper illustrates that AMOC contributes about 0.025°C/decade to the rise in AT. If
we include AMOC as a regressor variable to the REG method, we obtain a value of
AAWR of 0.161°C/decade from the output of the EM-GC (Fig. S13g).

The close agreement of values of AAWR from the REG method once we
account for AMOC and Eqg. (9) supports the validity of the REG method to determine
AAWR from CMIP6 output. We do not explicitly use AMOC as a regressor variable
when applying the REG method to CMIP6 GCMs for two reasons. The first reason is
that GCMs have been shown to underestimate key aspects of the Atlantic
multidecadal oscillation and are unable to simulate the many oceanic and
atmospheric footprints of AMOC (Kavvada et al., 2013). The second reason is that
CMIP6 GCM historical runs do not use prescribed SSTs. If the CMIP6 GCMs are
representing AMOC, it is a random signal that is averaged out when we analyze the
50 GCMs in order to calculate AAWR.

In our revised supplement, Fig. S1 has slightly changed. The figure shows output from the EM-
GC that is trained using the HadCRUT4 GMST record but is adjusted to be on the HadCRUT5
pre-industrial baseline, to be consistent with other figures in the manuscript. The new baseline
causes the values of AT2100 Shown on the left panel to increase a negligible amount. We fixed a
small indexing error in the plotting code used to make Fig. S1, which causes the maximum value
of AT2100 shown on the right panel to decrease slightly.
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Abstract.

The sixth phase of the Coupled Model Intercomparison Project (CMIP6) is the latest modeling effort for
general circulation models to simulate and project various aspects of climate change. Many of the general
circulation models (GCMs) participating in CMIP6 provide archived output that can be used to calculate
equilibrium climate sensitivity (ECS) and forecast future temperature change based on emissions
scenarios from several Shared Socioeconomic Pathways (SSPs). Here we use our multiple linear
regression energy balance model, the Empirical Model of Global Climate (EM-GC), to simulate and
project changes in global mean surface temperature (GMST), calculate ECS, and compare to results from
the CMIP6 multi-model ensemble. An important aspect of our study is comprehensive analysis of
uncertainties due to radiative forcing of climate from tropospheric aerosols (AER RF) in the EM-GC
framework. We quantify the attributable anthropogenic warming rate (AAWR) from the climate record
using the EM-GC and use AAWR as a metric to determine how well CMIP6 GCMs replicate human-
driven global warming over the last forty years. The CMIP6 multi-model ensemble indicates a median
value of AAWR over 1975-2014 of 0.221°C/decade (range of 0.151 to 0.299°C/decade; all ranges given
here are for 51" and 95" confidence intervals), which is notably faster warming than our median estimate
for AAWR of 0.135157°C/decade (range of 0.697-120 to 0.195°C/decade) inferred from analysis of the
Hadley Center Climatic Research Unit VVersion 5 data record for GMST. Estimates of ECS found using
the EM-GC (best estimate 2.6133°C; range of 1.12-40 to -4.123.57°C) are generally consistent with the
range of ECS of 1.5 to 4.5°C given by IPCC’s Fifth Assessment Report. The CMIP6 multi-model
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ensemble exhibits considerably larger values of ECS (median 3.74°C; range of 2.19- to 5.65°C). The
dominant factor in the uncertainty for our empirical determinations of AAWR and ECS is imprecise
knowledge of AER RF for the contemporary atmosphere. We calculate the likelihood of achieving the
Paris Agreement target (1.5°C) and upper limit (2.0°C) of global warming relative to pre-industrial for
seven of the SSPs using both the EM-GC and the CMIP6 multi-model ensemble. In our model framework,
SSP1-2.6 isthe 1.5°Cpathway-withhas a 64.853% probability of limiting warming at-thislevelat or below
the Paris target by the end of century and SSP4-3.4 is-the-2.0°C-pathway-withhas a 74-064% probability

of achieving the Paris upper limit. These estimates are based on the assumptions that climate feedback

has been and will remain constant over time since the prior temperature record can be fit so well assuming
constant climate feedback.- In addition, we quantify the sensitivity of future warming to the curbing of
the current rapid growth of atmospheric methane and show major near-term limits on the future growth
of methane are especially important for achievement of the 1.5°C goal of future warming. We also
quantify warming scenarios assuming climate feedback will rise over time, a feature common among
many CMIP6 GCMs; under this assumption, it becomes more difficult to achieve any specific warming
target. Finally, we assess warming projections in terms of future anthropogenic emissions of atmospheric
carbon. In our model framework, humans can emit only another 268-150 + 91-79 Gt C after 2019 to have
a 66% likelihood of limiting warming to 1.5°C, and another 565-400 + 126-104 Gt C to have the same
probability of limiting warming to 2.0°C. Given the estimated emission of 11.7 Gt C per year for 2019
due to combustion of fossil fuels and deforestation, our EM-GC simulations suggest the 1.5°C warming
target of the Paris Agreement will not be achieved unless carbon and methane emissions are severely

curtailed in the next twe-decades10 years.

1 Introduction

The goals of the Paris Agreement, negotiated in December of 2015, are to keep global warming below
2.0°C relative to the start of the Industrial Era and pursue efforts to limit global warming to 1.5°C. General
circulation models (GCMs) project future temperature change using various evolutions of greenhouse

gases and determine the likelihood of achieving the goals of the agreement. Many GCMs are participating
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in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to quantify how the models
represent different aspects of climate change (Eyring et al., 2016). Having-aceurate Accurate projections
of future temperature is-are critical for achieving the goals of the Paris Agreement. Chapter 11 of IPCC’s
Fifth Assessment Report shows that some of the previous generations of these models participating in
phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012) tended to
overestimate the increase in global mean surface temperature (GMST) for the 21% century (Kirtman et
al., 2013). In this analysis we use a multiple linear regression energy balance model to quantify the change
in GMST from 1850-2019, project future changes in GMST, compare to the CMIP6 multi-model
ensemble, and determine the likelihood of achieving the goals of the Paris Agreement.

Several prior studies have used a multiple linear regression approach to model the GMST anomaly
in order to quantify the impact of anthropogenic and natural factors on climate (Foster and Rahmstorf,
2011; Lean and Rind, 2008, 2009; Zhou and Tung, 2013). Typically, total solar irradiance, volcanoes,
and EI Nifio southern oscillation (ENSO) are the natural components represented in the multiple linear
regression;-. and-gGreenhouse gases and aerosols are the anthropogenic factors. We use multiple linear
regression, in connection with a dynamic ocean module that accounts for the export of heat from the
atmosphere to the ocean, to represent the natural and anthropogenic components of the climate system.
In addition to the typical natural factors listed above, we include the Atlantic meridional overturning
circulation (AMOC), Pacific decadal oscillation (PDO), and Indian Ocean dipole (IOD) to provide a
robust representation of the natural climate system (Canty et al., 2013; Hope et al., 2017). Our
anthropogenic components also include the effect of lane-useland-use change (i.e., deforestation) on
Earth’s albedo and the export of heat from the atmosphere to the ocean as the atmosphere warms.

Our analysis builds on the work of Canty et al. (2013) and Hope et al. (2017) and includes several
key updates. One is the extension back in time of our analysis to 1850. The Hadley Center Climatic
Research Unit (Morice et al., 2012, 2021), Berkley Earth Group (Rohde and Hausfather, 2020), and
Cowtan and Way (2014) provide GMST records starting in 1850, which now allows for-a simulations of
GMST that covers 170 years. The second update is the use of the Shared Socioeconomic Pathways (SSPs)
(O’ Neill et al., 2017) as our climate scenarios to-designate-futurefor -evelution-ef-greenhouse gas and

aerosol abundances. The third is the adoption of an upper ocean to our model, formulated in a manner
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that matches the equations of Bony et al. (2006) and Schwartz (2012). A description of the model, the
various input parameters used, and the updates listed above is given in Sect. 2. Section 3 prevides-shows
results of CMIP6 and EM-GC eemparing-comparisons to the historical climate record, estimations of
equilibrium climate sensitivity (ECS), as well as comparisons of our model and CMIP6 projections of

future GMST change. Discussion of these results is provided in Sect. 4, along with concluding remarks.

2 Data and Methodology

2.1 Empirical model of global climate

In this analysis we use the empirical model of global climate (EM-GC), which provides a multiple linear
regression, energy balance simulation of GMST. As detailed in the following paragraphs, the EM-GC
solves for ocean heat uptake efficiency (k) and six regression coefficients to minimize the cost function
in Eq. (1).

Cost Function = Z?:A;ONTHS a+ (ATOBSi - ATMDLi)Z 1)
OBSi

In this equation, AToss represents a time series of observed monthly GMST anomalies, ATmpL is the
modeled monthly change in GMST, coss is the 1-sigma uncertainty associated with each temperature
observation, i is the index for each month, and Nmonths is the total number of months used in the analysis.
For this analysis, we trained the model from 1850-2019. The observed GMST anomalies are blended near
surface air and sea surface temperature differences relative to the GMST anomaly over 1850-1900, which
is assumed to represent pre-industrial conditions.

We consider several anthropogenic and natural factors as components of ATmpL. The radiative
forcing (RF) due to greenhouse gases (GHGS), anthropogenic aerosols (AER), fand-useland-use change
(LUC), and the export of heat from the atmosphere to the world’s oceans are the anthropogenic
components of ATwmpL. The influence on GMST from total solar irradiance (TSI), El Nifio southern
oscillation (ENSO), the Atlantic meridional overturning circulation (AMOC), volcanic eruptions that
reach the stratosphere and enhance stratospheric aerosol optical depth (SAOD), the Pacific decadal
oscillation, (PDO) and the Indian Ocean dipole (IOD) are the natural components of ATwmpL. Equation (2)
shows how we calculate ATwmpL, the modeled monthly change in GMST.
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Cy X TSI;_1 + C3 X ENSO;_, + C, X AMOC; + Cs X PDO; + C4 x 10D; (2)
In Eq. (2), GHG ARFi, AER ARFj, and LUC ARF;j represent monthly time series of the increase

ATwpLi = {GHG ARF,; + AER ARF, + LUC ARF, — Qpcpan i} + Co + Cy X SAOD;_¢ +

in the stratospheric adjusted values of the RF of climate (Solomon, 2007) since 1750. The parameter Ap
represents the response of a blackbody to a perturbation in the absence of climate feedback (3.2 W m=,
(Bony et al., 2006)). The SAOD, TSI, and ENSO are lagged by 6, 1, and 2 months respectively. The lag
of 6 months for SAOD is representative of the time needed for the surface temperature to respond to a
change in the aerosol loading due to a volcanic eruption (Douglass and Knox, 2005). This lag is the same
as used by Lean and Rind (2008) and Foster and Rahmstorf (2011). The 1 month delay for TSI yields the
maximum value of C», the solar irradiance regression coefficient. Lean and Rind (2008) and Foster and
Rahmstorf (2011) also use a 1 month lag for TSI in their analyses. The 2 month delay for the response of
GMST to ENSO is the lag needed to obtain the largest value of the correlation coefficient of the
Multivariate ENSO Index version 2 (MEI.v2) (Wolter and Timlin, 1993; Zhang et al., 2019) versus the
value of Tenso calculated by Thompson et al. (2009). In Thompson et al. (2009), Tenso is the simulated
response of GMST to variability induced by ENSO, taking into consideration the effective heat capacity
of the atmospheric-ocean mixed layer. Lean and Rind (2008) used a 4-month lag for ENSO.

The term AMOC; represents the influence of the change in the strength of the thermohaline
circulation on GMST (Knight et al., 2005; Medhaug and Furevik, 2011; Stouffer et al., 2006; Zhang and
Delworth, 2007). We use the Atlantic multidecadal variability, based on the area weighted monthly mean
sea surface temperature (SST) in the Atlantic Ocean between the equator and 60°N (Schlesinger and
Ramankutty, 1994), as a proxy for the strength of AMOC. A strong AMOC is characterized by northward
flow of energy that would otherwise be radiated to space, which occurs in both the ocean and atmosphere
and leads to particularly warm summers in Europe (Kavvada et al., 2013) as well as a number of other
well documented influences in other climatic regions (Nigam et al., 2011). The total anthropogenic RF of
chmate-is used to detrend the AMOC signal-because. Tthis method provides a more realistic approach to
infer the changes in the strength of AMOC and its effect on GMST than other detrending options (Canty
etal., 2013).
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The dimensionless parameter y represents the sensitivity of the global climate to feedbacks that
occur due to a change in the RF of GHGs, AER, and LUC. We relate y to the climate feedback
parameter, Ax, as shown in Eq. (3).

1+y=

where Az = X all climate feedbacks 3)
1.€., Ax = Awater Vapor + ALapse Rate + Aclouds T Asurface Albedo
The relation between As and y in Eq. (3) is commonly used in the climate modeling community (Sect. 8.6
of Solomon (2007)). ' i
chimate-feedback-parameter—Our value of s is related to the IPCC’s Fifth Assessment Report ((Stocker
et al., 2013), hereafter IPCC 2013) definition of A via Ax = Ap — A.

Our model explicitly accounts for the export of heat from the atmosphere to the world’s oceans

(i.e., ocean heat export or OHE). The quantity Qocean in Eq. (2) represents OHE. In our previous analyses
(Canty et al., 2013; Hope et al., 2017), Qocean Was subtracted outside of the climate feedback
multiplicative term (1+y)/Ap. We have rewritten Eq. (2) to be comparable to the formulation for this term

used by Bony et al. (2006) and Schwartz (2012). The-effectef-this-update resulisin-eur-model-being-able

teDue to this update, our model fits the historical climate record with higher values of climate feedback,

especially for strong aerosol cooling (see Fig. S1 and supplement for more information). We calculate

Qocean by simulating the long-term trend in observed ocean heat content (OHC) as shown in Eq. (4) and
Eq. (5).

Qoceani = K(A Tarm pumani — ATOCEAN,HUMANL') (4)
OHE X At

K= tEND (5)

1ty . . , _ i-72
fSTART([ p {GHG RF;_7,+AER RF;_7,+LUC RF1—72}] [foXo "“ QocEan] ) dt

The « term is the ocean heat uptake efficiency (W m= °C1) and is based on the definition used in Raper
et al. (2002), where « is the ratio between the atmosphere and ocean temperature difference that best fits
observed OHC data (Sect. 2.2.8 describes the OHC data records used in our analysis). The value of « is
determined based upen-on the best fit (described below) between Qocean and the observed OHC record.

The term ATocean,HumAN represents the temperature response of the well-mixed, top 100 m of the ocean

6
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due to the total anthropogenically driven rise in OHC. This formulation of ATocean,Human allows the
model ocean to warm in response to an atmospheric warming. We use a 6 year lag (72 months) for Qocean
to account for the time needed for the energy leaving the atmosphere to heat the upper ocean and penetrate
to depth, based on Schwartz (2012). Our analysis of modeled GMST is insensitive to whether this 6 year
lag or the 10 year lag from Lean and Rind (2009) is used. The tstarT and tenp limits on the integral in Eq.
(5) are the start and end years; associated with each OHC record. The start and end years vary between
the 5 OHC records (see supplement for the different start and end years). The constant fo term in Eq. (5)
is a combination of the heat capacity of ocean water, the fraction of total ocean volume in the surface
layer, and the fraction of total Qocean that warms the surface layer, and is equal to 8.76x10° °C m? W-1,
We represent the global ocean as being 1 km deep for 10% of the ocean area (representing the continental
shelves) and 4 km deep for the remaining area, which approximates the average depth of the actual world’s
oceans to within 3%; 3.7 km compared to 3.682-3.814 km from Charette and Smith (2010). Based upon
on our analysis of decadal ocean warming as a function of depth extracted from CMIP5 GCMs, we have
determined that 13.7% of the rise in total OHC occurs in the well mixed, upper 100 m of the ocean, the
term represented by AToceanHuman In equation (4). The bottom rung-panel of Fig. 1 compares our
modeled OHC to the observed OHC record based upoen-on the average of five data sets; the value of k
resulting in the best simulation of observed OHC is shown.

We use the reduced chi-squared (x?) metric to define the goodness of fit between the modeled and
measured GMST anomaly for the atmosphere and also between simulated and observed OHC. Equation
(6) and Eq. (7) show the calculations for 2 for the atmosphere, and Eq. (8) shows the calculation for 2
for the ocean. As-noted-abeve—mMinimization of the difference between the measured and modeled
GMST anomaly results in the EM-GC being able to replicate the observed rise in temperature over the
past 170 years quite well, as shown in Fig. 1. We have added two additional new features to the model to

assure accurate representation of the rise in OHC as well as the rise in GMST since 1940. The first new

feature, Eq. (7), was added _to ensure all simulations matched the past 80 years of observations well
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constraint, which-caused-some solutions te-yieldwith a value of y?arwm less than or equal to 2 have visually

poor simulations of the rise in GMST over the past 4 to 5 decades. The second new feature, Eq. (8), was
added because for-in the original model formulation some selections of the radiative forcing due to

tropospheric aerosols (AER ARF;j in Eq. (2)) converged;-the-eriginal-medel-formulation-was-converging
butin a way that predueing-produced simulations of OHC that seemed physically improper; based on

visual inspection of observed and modeled OHC. As a result of these two issues, all calculations shown
here are subject to three goodness-of-fit constraints, described by Eqg. (6) to (8):

2
Xirm = - * YIVEARS —— ((ATypsj) — (ATyp;)) (6)

Nygars—NFITTING PARAMETERS —1 (ooBsj)?
2 1 ZN YEARS,REC 1 ( 2
= *x Y ———— ((ATppsi) — (ATypLi) 7
XRECENT NyEARS,REC—NFITTING PARAMETERS—1 J=1 (ooBsj)? ( 0BSj MDLj ) (7)
2 1 Nygarsoonc 1 2
X = * Y ———((OHCpps;) — (OHC ) 8
OCEAN ™ Nygars—NFITTING PARAMETERS—1 J=1 (ooBsj)? ( 0BS] MDLj ) ( )

Here, <ATogs>, <ATwmpL>, and <coss> in EQ. (6) and Eq. (7) represent the annually averaged observed,
modeled, and uncertainty in the GMST anomaly, respectively. The variable NritTinG PARAMETERS IS €qual
to 9 for typical simulations, the sum of 7 (the number of regression coefficients) plus 2 (model output
parameters y and «). In Eq. (8), <OHCogs> and <OHCwmpL> represent the annual averaged observed and
modeled OHC. The oogs term in Eq. (8) is the uncertainty in the OHC record (see Sect. 2.2.8 for more
information). The equation for all three formulations of y? is based on annual averages, rather than

monthly time series;-. because-tWe calculate ¥ with annual valueshe because the autocorrelation functions

of AToss and ATwmpL display similar shapes using annual averages, and do not match utilizing monthly
averages (see supplement of Canty et al. (2013) for further explanation). The Hadley Center Climate
Research Unit (HadCRUT) version 4 uncertainties for GMST are used for the oops in Eq. (6) to (8) for

all of the GMST records analyzed here (see Sect. 2.2.1 and the supplement for more information). For

Eq. (6) to (8), we define an acceptable fit to the climate record as ¥* < 2. The number of years (Nyears)
varies across the three equations. Equation (6) uses the total number of years in the GMST record, which
for HadCRUTS is 170 years. The number of years in Eq. (8), Nvears,oHc, depends on the OHC data set
used, as each data set spans a different range. The average of five OHC data sets-that-is-ourprimary,
which we use as our primary data-seureeOHC series, extends from 1955-2017, a total of 63 years. The

value of y%ocean found using Eq. (8) is displayed on the bottom rung-panel of Fig. 1. All model simulations
8
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shown throughout this paper have y?ocean < 2, representing a good fit to the observed rise in OHC over
the time of the data record.

The calculation of y?recent shown in Eq. (7) is used to constrain the model to match the observed
changes in GMST over the time frame 1940-2019, a total of 80 years (Nyears,rec equals 80). This time
frame was chosen to include a full cycle of AMOC, as the strength of the thermohaline circulation tends
to vary on a period of 60-80 years (Chen and Tung, 2018; Kushnir, 1994; Schlesinger and Ramankutty,
1994). As noted above, the y?recent constraint was added to our model framework because without this

constraint the model is able to provide numerically good but poor visual fits to the GMST anomaly under

certain conditions

recent-timepertod-(i.e. the red line in the top rung-panel of Fig. 1 starts to strongly deviate from the black

line beginning in about 2000 under certain conditions). All model simulations shown below have y?recent

<2 representing a good fit to the observed rise in GMST over the past 80 years, which results in modeled

GMST that replicates observed GMST for the entire time series.
Figure 1 shows the observed (HadCRUT5) and modeled GMST anomaly from 1850-2019, and
the various anthropogenic and natural components that constitute modeled GMST-{see-Fig-S3forresults

2047)). Figure 1a shows the value of climate feedback, 1.38-62 W m=2 °C-%, that is needed to achieve a
best fit to the climate record for this simulation, resulting in values of y?atm = 0.72-80 and y%ocean =
0.3231. Figure 1b is the total contribution of human activity to variations in GMST, which includes
GHGs, AER, LUC, and the export of heat from the atmosphere to the ocean. For the simulation shown,
the aerosol radiative forcing is -0.9 W m=2, the best estimate given by IPCC 2013 (Myhre et al., 2013).
This panel also notes the best estimate of the time rate of change of GMST attributed to humans from
1975-2014, or the attributable anthropogenic warming rate (AAWR (see Sect. 2.3)). Figure 1c illustrates
the contribution to the GMST anomaly from TSI {Selar}-and SAOD {\eleano}-over the 170-year period.
The influences of ENSO and AMOC are indicated in Figs. 1d and 1e, respectively. Furthermore, Fthe
contribution of AMOC to the rise in GMST over 1975-2014 (the same time period used to define AAWR)
is also specified on Fig. le (dotted black line). Figure 1f indicates the small effect of IOD and PDO on

9
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GMST in our model framework. The last panel, Fig. 1g, shows the time series of observed OHC based
upen-on the average of five data sets for the upper 700 m of the ocean (black points and blue error bars;
see Sect. 2.2.8) and the modeled value of OHC (red line). For this simulation, the ©HC-data-is-best-fitfor
a value of k equal to 1.28-17 W m=2 °C! fits the OHC data best.; -whieh-This value of « falls within the

range of empirical estimates for this parameter given by Raper et al. (2002). The sum of the contributions
of human activity, TSI, SAOD, ENSO, AMOC, PDO and the-IOD to temperal-variations-n-the GMST
anomaly shown in Fig. 1b to 1f plus the value of Co equals the modeled GMST anomaly, shown by the
red line in Fig. 1a.

Altering the training period of our model has a slight effect on our results (see Fig. S2, S3, and
the supplement for information on various training periods). We project relatively similar results for end
of century warming for training periods that start in 1850 and end in either 2009 or 1999, compared to
results shown throughout the paper for a training period of 1850 to 2019, indicating the stability of our
approach. As detailed in the supplement, we do find some differences from the results shown in the paper
upon use of a training period of 1850 to 1989 due to the reduction in the number of years considered from

the available OHC records.

10
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Figure 1. Measured and modeled GMST anomaly (AT) relative to a pre-industrial (1850-1900) baseline. (a)
Observed (black) HadCRUT5 and modeled (red) AT from 1850-2019. This panel also displays the values of A5 and
v’atm (see text) for this best-fit simulation. (b) Contributions from total human activity. This panel also denotes the
best estimate rumerical-value of the attributable anthropogenic warming rate from 1975-2014 (black dashed) as
well as the 26 uncertainty in the slope for a model run that uses the best estimate of AER RFz011 0f -0.9 W m~2. ()
Selar- TS| Hradianee-(Hght-bluepurple) and majorvoleaneesSAOD -(purplelight blue). (d) Influences from ENSO
on AT. (e) Contributions from AMOC to AT and to observed warming from 1975-2014. (f) Influences from PDO
(blue) and 10D (pink) on AT. (g) Measured (black) and modeled (red) ocean heat content (OHC) as a function of
time for the average of five data sets (see text), the value of x2ocean for this run, as well as the ocean heat uptake
efficiency, k, needed to provide the best-fit to the OHC record. The error bars (blue) denote the uncertainty in OHC
used in this analysis (see Sect. 2.2.8).

2.2 Model Inputs
2.2.1 Temperature data

11
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We use five-seven global mean surface temperature anematiesanomaly records. These records include
from-the Hadley Centre Climatic Research Unit version 4 (HadCRUT4, (Morice et al., 2012)) and version
5 (HadCRUTS5 (Morice et al., 2021)) from 1850-2019, National Centers for Environmental Information
NOAAGIobalTemp v5 (NOAAGT, (Smith et al., 2008; Zhang et al., 2019)) from 1880-2019, NASA
Goddard Institute of Space Studies Surface Temperature Analysis v4 (GISTEMP, (Hansen et al., 2010))
from 1880-2019, Berkeley Earth Group (BEG, (Rohde and Hausfather, 2020)) from 1850-2019, and
Cowtan and Way (2014) (CW14: i
from 1850-2019, and the Japanese Meteorological Agency (JMA (Ishihara, 2006)) from 1891-2019. We
use the uncertainty time series from HadCRUT4 for all GMST records because the HadCRUT4

uncertainty provides a realistic description of the variation in GMST among the seven records (see the

supplement, Figs. S4 and S5, and Table S1 for more information). Our analysis primarily uses the
HadCRUTS GMST data set, be ;

{tlang-et-al 2020 Nichols-etal-2020a,-2020b);-but in some sections; results are shown for al-five-the

other data sets. All temperature anomalies are with respect to a pre-industrial baseline (1850-1900). To

alter each data record so that the temperature anomaly is relative to the same pre-industrial baseline, we
adjust all data sets relative to the HadCRUTS baseline of 1961-1990. because-we-primarty—use-the
HadCRUTdata—record—in-this—analysis—We then adjust each data set by the same amount to the
HadCRUTYS pre-industrial baseline; as described in the methods-section-of Hope-etal{2017supplement.

2.2.2 Shared Socioeconomic Pathways

For this analysis, we use the estimates of the future abundances of greenhouse gases and aerosols provided
by the SSPs. There are twenty-six scenarios, five baseline pathways and twenty-one mitigation scenarios.
The baseline pathways follow specific narratives for factors such as population, education, economic
growth, and technological developments of sources of renewable energy (Calvin et al., 2017; Fricko et
al., 2017; Fujimori et al., 2017; Kriegler et al., 2017; van Vuuren et al., 2017) to represent several possible
futures spanning different challenges for adaptation and mitigation to climate change as illustrated in Fig.
1 of O’Neill et al. (2014). The twenty-one mitigation scenarios follow one of the baseline pathways but

include specific climate policy to reach a designated radiative forcing at the end of the century.

12
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As part of CMIP6, the ScenarioMIP experiment (O’Neill et al., 2016) includes eight SSPs (SSP1-
1.9, SSP1-2.6, SSP4-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0, SSP5-8.5, and SSP5-3.4-0S) that GCMs use to
project future GMST. The first number is the reference pathway that the scenario follows (i.e. SSP1
follows the first SSP narrative) and the numbers after the dash are the target radiative forcing at the end
of the century (i.e. SSP1-2.6 reaches around 2.6 W m~2 in 2100). The ScenarioMIP experiment designates
Tier 1 and Tier 2 scenarios. The Tier 1 scenarios are SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 , and
the Tier 2 scenarios are SSP1-1.9, SSP4-3.4, SSP4-6.0, and SSP5-3.4-OS (an overshoot pathway that
follows SSP5-8.5 until around 2040, where carbon dioxide emissions drastically decrease and become
negative in 2065). Our analysis includes seven of the eight ScenarioMIP SSPs: all but the overshoot
pathway. We highlight four in the main paper: two Tier 1 (SSP1-2.6 and SSP2-4.5) and two Tier 2 (SSP1-
1.9 and SSP4-3.4) scenarios. Analysis of the other three SSPs is included in the supplement. Figure 2
shows the time-evelution-of-the-atmospheric abundance of the three major anthropogenic GHGs (carbon
dioxide, methane, and nitrous oxide) for each of the seven SSPs we consider as well as observations of
the global mean atmospheric abundance for these gases to the end of 2019 (Dlugokencky, 2020;
Dlugokencky and Tans, 2020).
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Figure 2. Observed and projected greenhouse gas mixing ratios. (a) Carbon dioxide abundances from observations
(black) and seven of the ScenarioMIP SSPs (colors, as indicated). (b) Methane abundances from observations and
ScenarioMIP SSPs. (c) Nitrous oxide abundances from observations and ScenarioMIP SSPs.

2.2.3 Greenhouse gases

The historical values of GHG mixing ratios were provided by Meinshausen et al. (2017) from 1850-2014.

We used the equations from Myhre (1998) to calculate the change in RF due to carbon dioxide (CO>),

methane (CHa), nitrous oxide (N2O), ozone depleting substances (ODS), hydrofluorocarbons,
13
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perfluorocarbons, and sulfur hexafluoride relative to RF in year 1850. We also used the updated pre-
industrial values of CH4 and N2O from IPCC 2013 and the radiative efficiencies from WMO (2018). The
radiative forcing of CHj4 also includes the 15% enhancement from the increase in stratospheric water
vapor due to rising atmospheric CHs (Myhre et al., 2007). Values of GHG mixing ratios, other than ODSs,
from 2015-2100 are from the SSP Database (Calvin et al., 2017; Fricko et al., 2017; Fujimori et al., 2017;
Kriegler et al., 2017; Rogelj et al., 2018; van Vuuren et al., 2017) and are provided on a decadal basis.
These mixing ratios were interpolated onto a monthly time scale. We used the estimates of future ODS
abundances provided in Table 6-4 of the 2018 Ozone Assessment Report (Carpenter et al., 2018), because
the SSP database did not provide these estimates. We also include tropospheric ozone (03™°") as a GHG,
because tropospheric ozone rivals N2O as the third most important anthropogenic GHG (Fig 8.15 of
Myhre et al. (2013)). The RF due to O3™°" from the RCPs provided by the Potsdam Institute for Climate
Impact Research (Meinshausen et al., 2011) is used, because the SSP database does not provide estimates.
Values of RF due to Os"?°" from RCP2.6, RCP4.5, RCP6.0, and RCP8.5 are substituted in for SSP1-2.6,
SSP2-4.5, SSP4-6.0, and SSP5-8.5, respectively. We created new time series for the RF due to O3"™° for
SSP4-3.4 and SSP3-7.0 using linear combinations of RF time series from RCP2.6 and RCP8.5, with
weights based on the end of century total RF value due to all GHGs of the respective time series. Finally,
the RF time series for O3"R%" from RCP2.6 was also used for SSP1-1.9. Figure S5-S6 shows the ozone
RF time series used in this analysis and the supplement provides more information about the creation of

the time series for the RF due to O3"RP.

2.2.4 Aerosol radiative forcing

The value of the change in total aerosol radiative forcing (direct and indirect) in 2011 relative to pre-

industrial (AER RF2o11) is highly uncertain. Chapter 8 of the IPCC 2013 report gives a best estimate of
AER RF211 as -0.9 W m2, a likely range between -0.4 and -1.5 W m=2, and a 5" to 95" percent
confidence interval between -0.1 and — 1.9 W m=2 (Myhre et al., 2013). This substantial range in AER
RF2011 results in a large spread in future projections of global GMST. Figure 3 shows the effect of varying
the value of AER RF2011 on projections of GMST in our EM-GC framework, for the same SSP4-3.4 GHG
scenario. The middle panel on Figs. 3a, 3b, and 3c shows the contribution to GMST of GHGs, LUC,
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AER, as well as net human activities. As the value of AER RF2011 decreases and aerosols cool more
strongly, the value of climate feedback (model parameter As) rises, and the net contribution of human
impact on GMST by the end of the century increases. Depending on which value of AER RF2o11 is used,
the rise in GMST by year 2100 for the SSP4-3.4 pathway could range from 1.35°C (Fig. 3a) to 2.68°C
(Fig. 3c) relative to pre-industrial. Strong aerosol cooling offsets a substantial fraction of GHG-induced
warming, and a large value of climate feedback (As = 2.32-41 W m=2 °C~1) is needed to fit the historical
climate record (Fig. 3c). In this case, future warming is large, well above the goals of the Paris Agreement
by the end of the century. Conversely, weak aerosol cooling offsets only a small fraction of GHG-induced
warming, resulting in a small value of climate feedback (s = 8-73-1.08 W m~2 °C?) needed to fit the
observed GMST record (Fig. 3a). The use of any of the values of AER RF2011 in Fig. 3 can result in a
very good fit to the climate record (i.e., y?atm < 2, x?recent < 2, and x%ocean < 2).

We use the total aerosol RF time series provided by the SSP database for each SSP scenario. The
database provides AER RF from 2005-2100, with values for all SSPs nearly identical until about 2010
(Riahi et al., 2017; Rogelj et al., 2018). In the EM-GC, we calculate temperature projections over the
entire observational period, beginning in 1850. Consequenthy—~we\We create AER RF time series that
begin in 1850 and span the range of uncertainty given by Chapter 8 of IPCC 2013. We use historical
estimates of AER RF from 1850-2014 for the four RCPs provided by the Potsdam Institute for Climate
Research (Meinshausen et al., 2011). The AER RF value in 2014 from the appropriate historical estimate
(i.e. RCP 4.5 is used for SSP2-4.5) is scaled by a constant multiphicative-factor, such that the historical
RCP value at the end of 2014 matches the SSP time series at the start of 2015.; This scaling yielding
yields a continuous time series for the RF of climate due to tropospheric aerosols. This scaled time series
has AER RFzo11 nearly equal to -1.0 W m=2, which we take as the SSP-based best estimate of the change
in total aerosol radiative forcing in 2011 relative to pre-industrial. Next, the single continuous time series
is scaled, again by a constant multiplicative factor, to match the IPCC 2013 best estimate and range of
uncertainty for AER RF211 (Myhre et al., 2013). This procedure results in five additional time series of
AER RF. Six time series of AER RF are thus-created for each SSP, having values of AER RF2011 equal
to -0.1, -0.4, -0.9, -1.0, -1.5, and -1.9 W m~2. Figure S7 shows these six AER RF time series for SSP1-

15



370

375

2.6 and SSP4-3.4. In the EM-GC framework, we further scale these six time series to create a total of 400

AER RF time series to fully analyze the range of AER RF2011 given by Myhre et al. (2013).
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Figure 3. Measured (HadCRUTS5) and EM-GC simulated GMST anomaly (AT) relative to a pre-industrial (1850-
1900) baseline, as well as projected AT to end of century for SSP4-3.4. Top panel of each plot displays observed
(black) and simulated (red) AT, as well as the values of As and y?arw for each model run. The Paris Agreement
target (1.5°C) and upper limit (2.0°C) are shown (gold circles). The second panel shows the contribution of GHGs,
aerosols, and land-useland-use change to AT, as well as the net human component. The bottom panel compares
observed (black) and modeled (red) values of OHC for simulations constrained by the average of five data sets (see
text) and also provides the numerical values of k needed to obtain best-fits to the OHC record as well as best-fit
values of y?ocean. The only difference between (a), (b), and (c) is the time series for RF due to tropospheric aerosols
used to constraln the EM-GC; values of AER RFz011 for each time series are (a) 0.4 W m™2, (b) 0.9 W m2, (c)

1~ xxT

2.2.5 Total solar irradiance and stratospheric aerosol optical depth
We use the TSI time series provided for the CMIP6 models from 1850-2014 (Matthes et al., 2017) and
append values from the Solar Radiation and Climate Experiment (SORCE) (Dudok de Wit et al., 2017)
for 2015 to the end of 2019. The values of TSl; used in Eq. (2) are differences of monthly mean values
minus the long-term average (i.e., TSI anomalies). Consistent with prior studies (e.g., Lean and Rind
(2008) and Foster and Rahmstorf (2011)) variations in solar irradiance due to the 11-year solar cycle have
a small but noticeable effect on the EM-GC simulation of the GMST anomaly (Fig. 1c). For projections
of future warming, we set the term TSI; in Eq. (2) equal to zero from the start of 2020 until 2100-{-e--we
The time series for SAOD is a combination of values computed from extinction coefficients for
the CMIP6 GCMs (Arfeuille et al., 2014) from 1850-1978 and the Global Space-based Stratospheric
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Aerosol Climatology (GIoSSAC v2.0) (Thomason et al., 2018) from 1979-2018. Extinction coefficients
at 550 nm were integrated from the tropopause to 39.5 km and averaged over the globe using a cosine of
latitude weighting. The CMIP6 and GIoSSAC extinction coefficients span 80°S to 80°N. To extend the
SAOD time series to the end of 2019, we use the level 3, gridded SAOD product from the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (Vaughan et al., 2004). Time series of
globally averaged SAOD from CALIPSO have a very similar shape to the GIoSSAC time series over the
period of overlap (2006-2018); with a slight offset because GIoSSAC uses estimates of CALIPSO data
for SAOD. To append the CALIPSC-SAOD ferafter 2018-2019, we took the average difference between
the two time series for the overlapping months and then adjusted the CALIPSO time series by this offset.
This slight adjustment to the CALIPSO record has no bearing on our setentifie-results, since the effect of

volcanic activity on GMST has been small over the past 2 decades (Fig. 1¢). We set the term SAOD; in
Eq. (2) equal to the value in December 2019 from the start of 2020 until 2100.

2.2.6 El Nifio southern oscillation, Pacific decadal oscillation, and Indian Ocean dipole

We use the MEL.v2 (Wolter and Timlin, 1993; Zhang et al., 2019) to characterize the influence of ENSO
on GMST. In order to obtain a time series that spans the entire training period of our model, 1850-2019,
we append three time series to create an MEIL.v2 index over the full-time extent of our model training
period. The MEL.v2 provides two month averages of empirical orthogonal functions of five different
climatic variables from 1979 to present (Zhang et al., 2019). To have the ENSO index extend back to
1850, we compute differences in SST anomalies over the tropical Pacific basin as defined by the MEI.v2
from 1850-1870 using HadSST3 (Kennedy et al., 2011). Our internal computation of this surrogate for
the MEI index is then appended to the MEl.ext of Wolter and Timlin (2011), which extends from 1871-
1978, and the MEI.v2 index of (Zhang et al., 2019) (1979-2019). This full time series provides a
representation of ENSO that covers from 1850 to present. Consistent with prior regression-based
approaches (Foster and Rahmstorf, 2011; Lean and Rind, 2008), we find a significant portion of the
monthly and at times annual variation in GMST is well explained by ENSO (Fig. 1d). As for the other
natural terms, we assume ENSQ; in Eq. (2) is zero for 2020-2100.
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The Pacific decadal oscillation is the leading principal component of North Pacific monthly SST
variability poleward of 20°N (Barnett et al., 1999). The PDO index maintained by the University of
Washington provides monthly values from 1900-2018. The PDO varies on a multidecadal time scale and
affects climate in the North Pacific and North America, and has secondary effects in the tropics (Barnett
et al., 1999). In our model framework, the expression of PDO on GMST is dependent on the model
specification of the AER RF time series, as shown in Fig. S6S8. At low values of AER RF2o11, such as
-0.1 W m~, the effect of PDO on GMST is negligible and the contribution from AMOC dominates. At
high values of AER RFz011 (-1.5 W m2), the effect of PDO on GMST is equal to the contribution from
AMOC. At high values of AER RF2011, we obtain results similar to findings from England et al. (2014)
and Trenberth and Fasullo (2013) that shows the PDO exhibits an appreciable influence on GMST,
especially for the 2000-2010 time period.

The Indian Ocean dipole is based upen—on the difference in the anomalous sea surface
temperatures (SST) between the western equatorial Indian Ocean (50°-70° E and 10° S-10° N) and the
south eastern equatorial Indian Ocean (90° E-110° E & 10° S-0° N) as defined in Saji et al. (1999). We
use 1° x 1° SSTs from the Centennial in situ Observation-Based Estimate (COBE) (Ishii et al., 2005) to
create an 10D index from 1850-2019. As noted above and shown on Fig. 1f, the regression coefficients
for PDO and 10D are quite small. We find little influence of either PDO or 10D in the HadCRUTS5 time
series of GMST, but these terms are retained for completeness. We assume PDO;and 10D; in Eq. (2) are

zero after the start of 2019 and 2020, respectively.

2.2.7 Atlantic meridional overturning circulation

We use the Atlantic multidecadal variability (AMV) index as the area weighted, monthly mean SST from
HadSST3-HadSST4 (Kennedy et al., 2019){Kennedy-et-al—2011), between the equator and 60° N in the
Atlantic Ocean (Schlesinger and Ramankutty, 1994) to characterize the influence of variations—in-the
strength—ef-the AMOC on GMST. The AMV index is detrended using the RF anomaly due to

anthropogenic activity over the historical time frame of the analysis, as discussed in Sect. 3.2.3 of Canty

et al. (2013), because this detrending option removes the influence of long-term global warming on the
AMYV index. The detrended AMV index serves as a proxy for variations in the strength of the AMOC
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(Knight et al., 2005; Medhaug and Furevik, 2011; Zhang and Delworth, 2007), which has particularly
noticeable effects on climate in the Northern Hemisphere (Jackson et al., 2015; Kavvada et al., 2013;
Nigam et al., 2011). For this analysis, the index has been Fourier filtered to remove frequencies above 9
yr! to retain only the low frequency, high amplitude component of the thermohaline circulation (Canty
et al., 2013). As noted above and shown in Fig. 1, a considerable portion of the long-term variability in
GMST is attributed to variations in the strength of AMOC, including about 0.636025°C/decade over the
1975-2014 time period. There is considerable debate about the validity of the use of a proxy such as the
AMV index as a surrogate for the climatic effects of AMOC that is centered mainly around how much of
the variability of the index is either internal {i.eratural-variabiity}-or externally forced {ke—driven-by
anthrepegenic-factors)-(Haustein et al., 2019; Knight et al., 2005; Medhaug and Furevik, 2011; Stouffer
etal., 2006). We stress, as explained belowin Sect. 2.3, none of our major scientific conclusions are altered

if we neglect AMV as a regression variable.

2.2.8 Ocean heat content records

Ocean heat content data records from five recent and independent papers are used in this study. We utilize
OHC data from Balmaseda et al. (2013), Carton et al. (2018), Cheng et al. (2017), Ishii et al. (2017), and
Levitus et al. (2012), as well as the average of the records to model the export of heat (OHE) from the
atmosphere to the ocean. Figure S8-S9 shows these five OHC records as well as the multi-measurement
average. While most of these data sets have a common origin, they differ in how extensive temporal and
spatial gaps in the coverage of ocean temperatures have been handled, ranging from data assimilation
(Carton et al., 2018) to an iterative radius of influence mapping method (Cheng et al., 2017). The five
data sets are all set to zero in 1986, which is the midpoint of the multi-measurement time series, by
applying an offset for visual comparison. Since OHE, in units of W m~2, is based upen-on the slope of
each OHC data set, this offset has no impact on the computation of OHE from OHC that is central to our
study. For the computation of OHE from OHC, we use a value of the surface area of the world’s oceans
equal to 3.3 x 10'* m? (Domingues et al., 2008). The OHC records we analyze are for the upper 700 m of
the ocean. To calculate the OHE for the whole ocean, we multiply the OHE by 1/0.7 to account for the
fact that the upper 700 m of the ocean holds 70% of the heat (Sect. 5.2.2.1 (Solomon, 2007)). When we
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subtract the amount of heat going into the ocean in Eg. 2 (Qocean), we also must account for the difference
in surface area between the global atmosphere and the world’s oceans. Since the Qocean term is computed
for the surface area of the ocean, but the forcing is applied to the whole atmosphere, we multiply the
Qocean term by the ratio of the surface area of the ocean to the surface area of the atmosphere, which is
0.67.

As noted above, the calculation of y?ocean shown in Eg. (8) is used to constrain our model
representation of the temperatrise in OHC. Only model runs that provide a good fit to the observed OHC
record are shown below. For these five OHC data sets, uncertainty estimates are not always provided.
Furthermore, some studies that do provide uncertainties give estimates that seem unreasonably small (see
Fig. S9-S10 and the supplement). Because of the discrepancy in uncertainties between OHC records, we
create a new uncertainty time series using both the 1-sigmac standard deviation of the average of the five
OHC records and the uncertainties from the Cheng et al. (2017) (hereafter Cheng 2017) OHC record. We

create this new uncertainty from 1955-2019 by a monthly time step and use either the 1-sigmac standard
deviation of the average of the five OHC records or the uncertainties from the Cheng 2017 OHC record,
whichever is larger, for that month. We use the Cheng 2017 OHC uncertainties because these estimates
are the largest of the five data sets. Additionally, the standard deviation from the mean of the five OHC
records is very low in the 1980s, which is an artifact of our normalization treatment, not inherent to any
of the records. This combined uncertainty estimate is substituted in for each individual data set and the
average, resulting in our use of the same time varying uncertainty in OHC for all data sets. Figure S9-S10
and the supplement provide more detail on the creation of this time dependent uncertainty estimate for
OHC.

The choice of OHC record has only a small effect on future projections of GMST using the EM-
GC. Figure 4 illustrates the effect of varying OHC record on future temperature. The bottom panels show
the observed and modeled OHC, the value of k needed to best fit the OHC data record, as-weH-as-theand
the resulting value of ¥?ocean. Of the two OHC records shown, Balmaseda et al. (2013) (Fig. 4a) yields
the lowest value of k and Ishii et al. (2017) (Fig. 4b) results in the highest estimate of k. For the same
value of AER RF2011 (i.€., -0.9 W m~2) and GHG scenario (SSP4-3.4), we find a difference of 0.25°C in

the modeled rise in GMST in year 2100 for these two simulations (red lines on top panels). For most of
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the remaining analysis, we use the multi-measurement average of the five OHC data records. Hewever;
#-In Sects. 3.1 and 3.2 we quantify the effect of OHC data record on both attributable anthropogenic

warming rate and equilibrium climate sensitivity.
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Figure 4. Measured (HadCRUT5) and EM-GC simulated GMST change (AT) from 1850-2019, as well as projected
AT to year 2100 for SSP4-3.4. Top panel of each plot shows observed (black) and simulated (red) AT, the As and
y’atm Values, and the Paris Agreement target and upper limit. The second panel displays the contribution of GHGs,
aerosols, and fand-useland-use change on AT. The bottom panel compares the observed (black) and modeled (red)
OHC for two different OHC records and displays the value of k needed to provide best-fits to the OHC record, as
well as best-fit values of ¥?ocean. Both use an aerosol RF in 2011 of —0.9 W m 2. (a) OHC record from Balmaseda
et al. (2013). (b) OHC record from Ishii et al. (2017).
495

2.3 Attributable anthropogenic warming rate

The attributable anthropogenic warming rate, or AAWR, is the time rate of change of GMST due to

humans from 1975-2014. We use AAWR as a metric in the EM-GC framework to quantify the human

influence on global warming over the past few decades, and most importantly to also assess how well the
500 CMIP6 GCMs can replicate this quantity. This analysis is motivated by the study of Foster and Rahmstorf

(2011), who examined the human influence on the time rate of change of GMST from 1979-2010 using

a residual method. We extend the end year of our analysis to 2014 because this is the last year of the

CMIP6 Historical simulation. We pushed the start year back to 1975 so that our analysis covers a forty-
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year period, over which the effect of human activity on GMST rose nearly linear with respect to time
(Fig. 1b and Fig. S10c).
We calculate AAWR utilizing the EM-GC by computing a linear fit to the ATHuman,aT™ term:

ATyra numani = % {(GHG ARF; + AER ARF; + LUC ARF; — Qocgan) )

for a regression that spans 1850-2019. The ATHuman,aTm term represents the net impact of the change in
GMST due to RF of climate by anthropogenic GHGs, tropospheric aerosols, as well as the variation in
surface reflectivity due to fand-useland-use change (deforestation), taking into account that for each model
time step, a portion of the human-induced climate forcing is exported to the world’s oceans. For each
simulation, the slope of the linear least squares fit to the 480 monthly values of ATHuman,aTMm IS Used to
determine AAWR. For the time period 1975-2014, a value for AAWR of 0.144 + 0.005 °C/decade is
found using a value of AER RFz11 equal to 0.9 W m~2, where the uncertainty corresponds to the 2-
sigmac standard error of a linear least squares fit. The computation of AAWR found by fitting monthly
values of ATHuman,aTMm IS INsensitive to modest changes in start and end year for the AAWR calculation
(see Table S1).; -The value of A5, and therefore AAWR, is also insensitive whether as-weH-as-whether-or
not the AMOC, PDO, or IOD terms are included in the regression framework (Canty et al., 2013; Hope

etal., 2017). We are able to fit the climate record better (i.e. smaller values of ¥ in Egs. (6), (7), and (8))
upen-censideratienby including efthe AMOC term. However, computed values of AAWR are insensitive
to whether this-termAMOC is used in the regression because whatever contributions the variation in the
strength of the thermohaline circulation may have had on GMST are not considered in Eq. (9) (See Sect:
2-3-of Hope-etal{2017)Fig. S11 for further explanation).

The determination of AAWR from historical CMIP6 near surface air temperature output involves
conducting -a regression of deseasonalized, globally averaged, monthly AT (ATPESCLB) from each GCM
(Hope et al., 2017), termed the REG method. The archived CMIP6 Historical runs are constrained by
observed variations in SAOD and influenced by other factors such as internal model generated ENSOs.
The ATPESCLB time series for all of the runs from each CMIP6 GCM are averaged together to obtain one
time series of ATPESCLE for each GCM. This average ATPESCLB time series is used to compute AAWR.

The regression approach is used to compute the influence of SAOD on GMST from CMIP6 GCMs. The
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time needed for GMST to respond to a change in the aerosol loading in the stratosphere due to a volcanic
eruption in each GCM can exhibit a significant difference compared to the empirically determined
response time of 6 months discussed in Sect. 2.1. A lag was determined for each GCM by calculating the
value of the monthly delay between volcanic eruptions and the surface temperature response that resulted
in the largest regression coefficient for SAOD. We regress the ATPESCLE against SAOD and the
anthropogenic effect on temperature, which is approximated as a linear function from 1975-2014. The
value of AAWR is the slope of the anthropogenic effect on temperature. Figure S16-S12 illustrates the
REG method used to determine AAWR from the CMIP6 GCMs. Table S2-S3 depicts the slight effect on
values of AAWR for the CMIP6 GCMs of changing the start or end year for the regression. At the time
of analysis, there are 50 CMIP6 GCMs with the necessary archived output to calculate AAWR, with the
values of AAWR found using REG shown in Table S3. Figure S13 and the supplement compare values
of AAWR found using the REG method applied to EM-GC output with values of AAWR found using
Eq. (9), as support for the validity of using the REG method to determine AAWR from CMIP6 output.

We also use a second method to extract the value of AAWR from the CMIP6 multi-model
ensemble. This method, termed LIN, involves the-computation-of-a linear regression of global, annual
average values of GMST from the CMIP6 multi-model ensemble (Hope et al., 2017). For LIN, we exclude
the years of obvious volcanic influence on the rise in GMST from the CMIP6 multi-model ensemble
Historical simulations: i.e. data for 1982 and 1983 (following the eruption of EI Chichén) and 1991 and
1992 (following the eruption of Mount Pinatubo) are excluded. Archived global, annual average values
of GMST covering 1975-2014, excluding these four years, are fit using linear regression, with the AAWR
set equal to the slope of the fit. Values of AAWR for 1975-2014 found using LIN are also shown in Table
S3-5S4 for each GCM. Analysis of AAWR for these 50 GCMs of LIN versus REG (see Fig. S11514)
results in a correlation coefficient (r?) of 0.995 and a mean ratio of 1.009 + 0.015, with LIN-based AAWR
exceeding REG-based AAWR by about 1%. The close agreement of AAWR found using both methods
provides strong evidence for the accurate determination of AAWR from the CMIP6 GCMs. We use the
REG method in this analysis because it provides a more rigorous technique to remove the influence of
SAOD on GMST from the CMIP6 multi-model ensemble compared to the LIN method. AH-ef-eur
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The CMIP6 multi-model ensemble provides simulations of near surface air temperature (TAS),

which we use to calculate AAWR. The EM-GC uses blended near surface air temperature to determine

values of AAWR. Cowtan et al. (2015) provide a method to create blended near surface air temperature

output from the GCMs. The CMIP6 multi-model ensemble contains archived fields of TAS and the

temperature at the interface of the atmosphere and the upper boundary of the ocean (TOS) (Griffies et al.,

2016), whereas only a subset of GCM groups provide the archived land fraction needed to calculate

blended near surface air temperature using the Cowtan et al. (2015) method. Cowtan et al. (2015) compare

the modeled and measured trend in global temperature over 1975-2014 and found a 4.0% difference in

the trend upon the use of blended temperature from CMIP5 GCMs, rather than global modeled TAS.

Their analysis focused on a comparison of modeled and measured temperature, not just the anthropogenic

component. We have used the method of Cowtan et al. (2015) to create blended CMIP6 temperature
output, for the CMIP6 GCMs that provide TAS, TOS, and the land fraction. Upon our use of blended
CMIP6 temperature output for these GCMs, and calculation of AAWR for 1975-2014, we find that
AAWR based on blended CMIP6 temperature is 3.5% lower than AAWR found when using only TAS.
Tokarska et al. (2020) estimate an effect of 0.013°C/decade in the trend of CMIP6 temperature output

upon the use of blended CMIP6 temperature instead of TAS, while Cowtan et al. (2015) report a

difference of 0.030°C/decade between the trend in observations and modeled output. Since the difference

between values of AAWR found using blended CMIP6 temperature output and TAS is so small and does

not affect any of our conclusions, we use TAS output from the CMIP6 multi-model archive because this

choice allows many more GCMs to be examined.

2.4 Equilibrium climate sensitivity

The equilibrium climate sensitivity (ECS), which represents the warming that would occur after climate
has equilibrated with atmospheric CO> at the 2xpre-industrial level (Kiehl, 2007; Otto et al., 2013,
Schwartz, 2012) is also used to compare results of our EM-GC to CMIP6 multi-model output. To calculate
ECS from the EM-GC, we use the following equation:
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ECS =¥ x 535 Wm™2 x In(2) (10)

That represents the rise in GMST for a doubling of CO,, assuming no other perturbations as well as
equilibrium in other components of the climate system (i.e., Qocean = 0) (Mascioli et al., 2013). The
expression for the radiative forcing of CO: is from Myhre (1998). The quantity y in Eq. (10), which
represents the sensitivity of the GMST to feedbacks within the climate system, is the only variable
component of ECS. We only use values of y that result in good fits (y* < 2 for Eq. (6) to (8)) between
modeled and observed GMST and modeled and observed OHC.

For the estimate of ECS from the CMIP6 multi-model ensemble, we use the method described by

Gregory et al. (2004) (See the supplement and Fig. S15 for more information). At the time of this analysis,

28 models released the necessary output to the CMIP6 archive (see Table S5 for the list of models and

individual values of ECS). There have been some recent analyses that suggest the Gregory method may

underestimate ECS (Rugenstein et al., 2020). However, YWwe use the Gregory method to calculate ECS
from the CMIP6 GCMs because this procedure is preferred by Eyring et al. (2016) for the use by CMIP6.
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2.5 Aerosol weighting method
Probabilistic forecasts of the future rise in GMST for various SSPs are an important part of our analysis.
Probabilities of AAWR and ECS are computed by considering the uncertainty in AER RF2011. We also
provide probabilistic estimates of AAWR and ECS. All of these quantities are computed by incorporating
the uncertainty in the radiative forcing of climate due to tropospheric aerosols within results of our EM-
GC simulations. We use an asymmetric Gaussian to assign weights to the value of GMST, AAWR or
ECS found for various time series of radiative forcing by aerosols associated with particular values of
AER RF2011. Figure 5a shows the asymmetric Gaussian function we use to maximize the values of AAWR
or ECS at the best estimate of AER RF2011 of -0.9 W m~2, accomplished by giving these values the highest
weighting. The IPCC 2013 “likely” range limits of AER RF2011 of 0.4 and -1.5 W m2 (Myhre et al.,
2013) are assigned to the ene-1sigmac values of the Gaussian, and the AAWR or ECS estimates occurring
at the “likely” range AER RFz11 limits are given the same weighting. The -0.1 and -1.9 W m~ limits of
the AER RF2011 range are assigned as the two-2sigmac values of the asymmetric Gaussian, based tpon
on the IPCC 2013 description of these two values as being 5 and 95% uncertainty limits (Myhre et al.,
2013). The Gaussian we use is asymmetric due to the fact that the distribution of the likely range and 5%
and 95" percentiles of the values of AER RF011 are not distributed symmetrically from the best estimate
of -0.9 W m=2. For example, the likely ranges of AER RFzo11 are given as —0.4 W m 2 and —1.5 W m™?;
the —0.4 W m2 value is 0.5 W m~2 from the best estimate whereas —1.5 W m 2 is 0.6 W m2 from the
best estimate. We fit a Gaussian to the likely range and 5™ and 95" percentiles that has slightly different
shape on either side of the best estimate, as shown in Fig. 5a.

Figure 5b shows the value of AAWR in °C/decade as a function of the climate feedback parameter,
Az, and AER RF2011. We are able to find more good fits to the observed GMST for small values of AER
RF2011 than at larger values of AER RF2011. Therefore, we bin values of AAWR (Fig. 5b), ECS (Fig. 5¢),
or future GMST (described in Sect. 3.3) by AER RF2011 and find the probability distribution for values of
AAWR, ECS, or future GMST within each bin. The resulting probability distributions are assigned the
weights associated with each value of AER RFzo11 in the bins to arrive at the probabilistic estimates of
AAWR or ECS shown in Sect. 3. If we did not use this procedure and instead simply averaged all of the

values for AAWR and ECS shown in Fig. 5, undue emphasis would be given to model results that occur
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at small AER RF2o11 (see Fig. S14-S16 for unweighted ECS values). This aerosol weighting method
allows the expert assessment of the likely range of RF due to tropospheric aerosols given in Chapter 8 of
IPCC 2013 (Myhre et al., 2013) to be quantitatively incorporated into our computations of AAWR, ECS,
and GMST.
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Figure 5. Aerosol weighting method. (a) The weights assigned to an asymmetric Gaussian distribution of AER
RF2011 based on values provided by chapter 8 of IPCC 2013. The five black circles indicate the assigned weights
for the AER RF2011 best estimate of —0.9 W m 2, likely range of —0.4 and —1.5 W m 2, and the 5" and 95" confidence
intervals of —0.1 and —1.9 W m™. (b) Values of AAWR in °C/decade as a function of climate feedback parameter,
Az, and the value of AER RF11 associated with various time series for the RF of climate due to tropospheric
aerosols. The colors denote the-varieus values of AAWR calculated from 1975-2014 using the EM-GC trained with
the HadCRUTS AT record. (¢) ECS in °C as a function of Az and the value of AER RF2o11. The colors denote-various
values of ECS found using the EM-GC. For panels (b) and (c), model results are shown only for combinations of
Az and RF due to tropospheric aerosols for which good fits to the climate record could be achieved.

3 Results
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3.1 AAWR, comparison to CMIP6 multi-model ensemble

An important measure of any climate model is the ability to accurately simulate the human influence on

the global mean surface temperature (GMST) anomaly. We use the attributable anthropogenic warming
rate (AAWR) found by our highly constrained Empirical Model of Global Climate (EM-GC) to quantify
how well the CMIP6 multi-model ensemble (see Table S5-S7 for a list of CMIP6 GCMs analyzed in this

study) is able to simulate the human influence on global warming over the past several decades. Fhe EM-

Figure 6 compares values of AAWR from 1975-2014 computed using our EM-GC with AAWR
found utilizing archived output from the CMIP6 multi-model ensemble.-Five Seven GMST data sets and
five OHC records can be used to estimate AAWR with the EM-GC-. for-For each choice, AAWR exhibits
sensitivity to the variation of the time series of radiative forcing due to tropospheric aerosols. Each box
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and whisker plot found using our EM-GC shows, for a particular choice of GMST and OHC data record,
the 25", 50", and 75" percentiles of AAWR (box), and 5" and 95™ percentiles (whiskers) found using the
aerosol weighting method described in Sect. 2.5. The star symbol indicates the minimum and maximum
values of AAWR for each value of GMST data set and OHC record. The choice of OHC record and
GMST data set has a slight effect on AAWR, as shown by the colored EM-GC symbols in Fig. 6. Fer

_— : . s that

and-changing-the GMSTrecord-from-Had CRUTto-C\WA14-The averages of the five 25", 50" and 75"
percentiles of AAWR found using the HadCRUT5S data set for GMST are 0.115138, 0.435157, and

0.160176°C/decade, respectively. The 5" and 95™ percentile values of AAWR from HadCRUT?5 are 0.097
120 and 0.195°C/decade.
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Figure 6. AAWR from the EM-GC and CMIP6 multi-model ensemble for 1975-2014. Five-Seven temperature
data sets and five ocean heat content records are used to compare values of AAWR computed from the EM-GC.
The box represents the 25", 50", and 75" percentiles, the whiskers denote the 5" and 95" percentiles, and the stars
show the minimum and maximum values of AAWR from the EM-GC based upen-on the aerosol weighting method
described in Sect. 2.5. The red box labeled “CMIP6” shows the 25™, 50", and 75" percentiles, the whiskers
represent the 5" and 95" percentiles, and the stars denote the minimum and maximum values of AAWR from the
50 member CMIP6 multi-model ensemble.

The box and whisker symbol labeled CMIP6 in Fig. 6 shows the 5™, 25 50 75 and 95"
percentiles of AAWR calculated from 50 GCMs, also from 1975-2014, as described in Sect. 2.3. The
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stars denote the minimum and maximum values of AAWR from the GCMs. Two CMIP6 models exhibit
values of AAWR similar to the median values we infer from the HadCRUT4, CW14, NOAAGT, BEG,
BEG,-GISTEMP, and HadCRUT5,-NOAAGT,and-C\W1A4- data records using the EM-GC-. lin particular
INM-CM5-0 (Volodin and Gritsun, 2018) yields 0.147°C/decade and MIROC6 (Tatebe et al., 2019)
results in 0.157°C/decade (Table S3-S4 provides values of AAWR for all individual CMIP6 GCMs). The
median value of AAWR from the CMIP6 multi-model ensemble is 0.221°C/decade, about 6640% larger
than the 50" percentile value of AAWR found using the HadCRUTS5 data set for GMST-neted-above. The
5t 25t 75M and 95" percentiles of AAWR from the CMIP6 multi-model ensemble are 0.151, 0.192,
0.245, and 0.299°C/decade, respectively. Some CMIP6 GCMs exhibit values of AAWR that are almost

0.14°C/decade larger than our largest empirical estimates for 1975-2014; the maximum value of AAWR
from the GCM s is 0.354 °C/decade. The maximum value of AAWR based off the historical climate record
using the EM-GC is 0.257213°C/decade (NOAAGT-HadCRUTS data set using the Cheng-Ishii et al.
(2017) OHC record and a time series for RF due to tropospheric aerosols consistent with AER RF2o11
equal to -1.6-5 W m2). The- 95" percentilesof all-All of the EM-GC based values of AAWR in Fig. 6 are
below the 75-50" percentile of AAWR from the CMIP6 multi-model ensemble of 0.245221°C/decade,
supporting the notion that CMIP6 GCMs tend to exhibit a faster rate of anthropogenic warming over the
past four decades than the actual atmosphere.

Our determination that the rate of global warming from the CMIP6 multi-model ensemble over
the time period 1975-2014 significantly exceeds the rise in GMST attributed to human activity is aligned
with a similar finding highlighted in Figure 11.25b of chapter 11 of the IPCC 2013 report that CMIP5
models tend to warm too quickly compared to the actual climate system over the time period 1975-2014
(Kirtman et al., 2013). The values of AAWR from the CMIP6 multi-model ensemble from our analysis
present a similar finding as Tokarska et al. (2020) and {CONSTRAIN; (2020), that some of the CMIP6
models over estimate recent warming trends.; with-Tokarska et al. (2020) examingeing the trend in the
human component of GMST from 1981-2014. We arrive at a similar conclusion_as these studies that
CMIP6 medels-GCMs overestimate the rate of global warming for the 1982-2014 time period of AAWR
as shown in Table S2 and 2S3. Our results, the finding by the IPCC 2013 report,-and Tokarska et al.
(2020), and CONSTRAIN (2020) appear to be quite different than the conclusion of Hausfather et al.
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(2020) that past climate models have matched recent temperature observations quite well. The Hausfather
et al. (2020) study does not examine CMIP5 GCMs, let alone CMIP6 GCMs, and the last two rows of
their Table 1 indicate that the skill of climate models forecasting the change in GMST over time decreased
considerably between the Third Assessment Report (TAR) and the Fourth Assessment Report (AR4). The
change in temperature over time for the TAR and AR4 only span 17 and 10 years, respectively (Hausfather
et al., 2020). In Fig. 6, we examine the ability of the GCMs to simulate the rise in GMST attributed to
humans over a 40 year time period, which provides a better measure of how well the models simulate the
observations than when-using-athe shorter time period. The temperature change over time for the TAR
and AR4 examined by Hausfather et al. (2020) ends in 2017, which was right after a very strong ENSO,
so their analysis may be influenced by the 2015 to 2016 ENSO event. In contrast, our analysis of AAWR
is not influenced by natural variability such as ENSO because we examine the human component of global
warming after explicitly accounting for and removing the influence of ENSO on GMST. Consequently,
our determination of AAWR from observations (Table S15S2) and GCMs (Table S2S3) depends only to a
small extent on the specification of start year (for values ranging from 1970 to 1984) and end year (2004
to 2018). Our analysis shows that upon quantification of the human driver to global warming within both
the data record and climate models, the CMIP6 GCMs warm faster than observed GMST over the past

four decades, regardless of precise specification of start and end year.

3.2ECS

Equilibrium climate sensitivity (ECS) is a metric often used to compare the sensitivity of warming among
GCMs, as well as with warming inferred from the historical climate record. Figure 7 shows values of ECS
inferred from the climate record using our EM-GC, five-seven GMST data sets, and five OHC records.
As for AAWR, the largest variation in ECS is driven by uncertainty in AER RF2011. The colored circles
represent the ECS values found using the IPCC 2013 best estimate of AER RFz11 of -0.9 W m=2 (Myhre
et al., 2013). The ECS values found utilizing the EM-GC are displayed using a box and whisker symbol.
The middle line represents the median values of ECS, and the box is bounded by the 25" and 75%
percentiles. The whiskers connect to the 5 and 95" percentiles, and the stars denote the minimum and

maximum values. We use the aerosol weighting method described in Sect. 2.5 to calculate the percentiles
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for ECS; values of ECS found without aerosol weighting are shown in Fig. S14S16. Varying the choice
of GMST data record has a slight effect on the value of ECS, whereas the choice of OHC record has a
larger effect, as indicated by the various heights of the box and whiskers and the maximum values of
ECS. In the EM-GC framework, the ocean heat export term (Qocean) represents disequilibrium in the
climate system. We compute values of Qocean from various records of OHC. If the current value of
Qocean is as large as suggested by the Cheng 2017 and Ishii et al. (2017) OHC records, then Earth’s
climate will exhibit a larger rise in GMST to reach equilibrium than if the value of Qocean inferred from
the OHC record of Balmaseda et al. (2013) is correct. The averages of the 25", 50", and 75" percentiles
of ECS found using the HadCRUTY5 data set for GMST are 1.4974, 1.852.12, and 2.5067°C, respectively.
The average best estimate of ECS using the HadCRUTS5 data set and an AER RFzo11 value of -0.9 W m~2
is 2.61433°C.
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Figure 7. ECS from the EM-GC and the CMIP6 multi-model ensemble. Five-Seven GMST data sets and five ocean
heat content records are used to compare values of ECS computed from the EM-GC. The box represents the 25,
50", and 75" percentiles, the whiskers denote the 5 and 95" percentiles, and the stars indicate the minimum and
maximum values of ECS using the EM-GC based #pea-on the weighting method described in Sect. 2.5. The circles
denote the value of ECS associated with the best estimate of AER RFz011 of —0.9 W m™2. The red box labeled
“CMIP6” represents the 25™, 501, and 75" percentiles, the whiskers denote the 5" and 95" percentiles, and the
stars indicate the minimum and maximum values of ECS from the 28 member CMIP6 multi-model ensemble.

The box and whisker symbol labeled CMIP6 in Fig. 7 shows the 25" 50%", 75", and 5" and 95"

percentiles of ECS calculated from output of 28 CMIP6 models, as described in Sect. 2.4. Minimum and

maximum values are represented by the stars. The values of ECS from the CMIP6 multi-model ensemble
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are larger than the majority of values inferred from the climate record using the EM-GC. The height of
the box for the CMIP6 multi-model ensemble estimate of ECS is larger than the height of the boxes for
ECS inferred from the climate record using the EM-GC, indicating that the GCMs exhibit a wide range
of ECS values. The 25" and 75" percentiles of ECS from the CMIP6 multi-model ensemble are 2.84°C
and 4.93°C, respectively. The 5™ percentile of ECS from the CMIP6 multi-model ensemble is 2.19°C,
and the 95" percentile is 5.65°C (see Table S4 for ECS values for specific models). In contrast, the average
5t and 95" percentiles from the EM-GC are 1.1240°C and 4-123.57°C, respectively. The median value
of ECS from the CMIP6 multi-model ensemble is 3.74°C, mere—than—double-1.6 times the median
valuebest estimate of 4.852.33°C found using the HadCRUTS5 temperature record.
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Figure 8. Values of ECS from the EM-GC (black) trained using the HadCRUT5 GMST record, our analysis of
the CMIP6 multi-model ensemble (black), and 13 other studies grouped by type of analysis. The studies are listed
by lead author (first initial of their first name and first initial of their last name) and the year of publication, unless
there are only two authors, in which case initials of both authors are listed. Historical analysis includes Lewis and
Grinwald (2018) NL+PG18, Otto et al. (2013) AO13, and Skeie et al. (2018) RS18. Constrained GCM output
includes Armour (2017) KA17, Cox et al. (2018) PC18, Dessler et al. (2018) AD18, Nijsse et al. (2020) FN20,
Rugenstein et al. (2020) MR20, Sherwood et al. (2020) SS20, Stocker et al. (2013) IPCC 2013, and Tokarska et
al. (2020) KT20. GCM output includes Proistosescu and Huybers (2017) CP+PH17 and Zelinka et al. (2020)
MZ20._See the supplement for the confidence intervals shown for each study.
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Figure 8 summarizes values of ECS found utilizing the analysis of the century and a half long

climate record using our EM-GC, our examination of a 28 member CMIP6 GCM ensemble, and 13 other
recent studies. The studies are divided into three categories: those that estimated ECS based on
observations (Historical Analysis), others that used GCM output but constrained the output in some way
(Constrained GCM Output), and studies that examined raw GCM output (GCM Output). We obtain a best
estimate for ECS of 2.0433°C using the HadCRUT5 data record and a value of AER RFz011 = -0.9 W m~2
with a range of ECS of 1.1240-4.123.57°C (5" and 95™ percent confidence interval). This estimate of
ECS largely falls within the range provided by IPCC 2013 of 1.5°C to 4.5°C for ECS and is supported by
three other derivations of ECS from the empirical climate record: 2.0°C (range of 1.2-3.9°C) given by
Otto et al. (2013), 1.87°C (range of 1.1-4.05°C) given by Lewis and Grinwald (2018), and 2.0°C (range
of 1.2-3.1°C) given by Skeie et al. (2018) (all range values are for the 5" and 95" percent confidence
interval). Our estimate of ECS covers the-samea similar range of values given by Cox et al. (2018), Dessler
et al. (2018), and Nijsse et al. (2020), as illustrated in Fig. 8. Our determination of ECS from the CMIP6
GCMs resembles that from Proistosescu and Huybers (2017) and Zelinka et al. (2020) as indicated in the
GCM Output category of Fig. 8.

Recent studies have shown that the CMIP6 multi-model ensemble exhibits higher values of ECS
than the CMIP5 models because of larger, positive cloud feedbacks within the latest models (Gettelman
etal., 2019; Meehl et al., 2020; Sherwood et al., 2020; Zelinka et al., 2020). The IPCC 2013 report gives
a likely range of 1.5°C to 4.5°C for ECS (Stocker et al., 2013), and some of the CMIP6 GCMs analyzed
in this study have values of ECS more than 1°C above this range. However, some in the climate
community seem to currently doubt whether the very large values of ECS are representative of the real
world (CONSTRAIN, 2020; Forster et al., 2020; Lewis and Curry, 2018; Tokarska et al., 2020).
Gettelman et al. (2019) found that the newest version of the Community Earth System Model (CESM2)
has a higher value of ECS than CESM1 (5.3°C versus 4.0°C) and urge the climate community to work

together to determine the plausibility of such high values of ECS. Zhu et al. (2020) found that the high
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values of ECS in CESM2 and other GCMs is not supported by the paleoclimate record and are biased too
warm. An analysis by Nijsse et al. (2020) coupled the CMIP6 multi-model ensemble to a two-box energy
balance model and the climate record and ebtains-obtained a median value of ECS frem-the- CMHRE6-multi-
model-ensemble-of 2.6°C and range of 1.52-4.03°C (5" and 95" percentiles)-coupled-to-a two-box-energy
balanee-modeland-theclimaterecord. Similarly, Sherwood et al. (2020) conclude cooling during the Last

Glacial Maximum provides strong evidence against ECS being greater than 4.5°C and conclude ECS lies

within the range of 2.3 to 4.7°C at the 5" to 95™ percent confidence intervals.

We obtain a wide range of ECS values from our EM-GC simulations of the climate record due to
consideration of the uncertainty in the radiative forcing of climate due-tefrom tropospheric aerosols (Figs.
5c and 87). However, under one circumstance, we find values of ECS using the EM-GC that are similar
to the maximum value of ECS from the CMIP6 multi-model ensemble. Our very-large estimate of ECS
occurs if we assume that anthropogenic aerosols have exhibited wery-strong cooling and offset a large
amount of greenhouse gas warming, such that the observed GMST record can only be well simulated
under the condition of large climate feedback (i.e., values of Az in EQ. (3) greater than or equal to 2.5-45
W m~2°C™). If aerosols have truly strongly cooled the climate, offsetting the vast majority of the rise in
RF due to greenhouse gases as suggested by Shen et al. (2020), the actual value of ECS may lie close to
5°C or larger. Under the more-Hikehy-scenario that aerosols have not cooled this strongly (as-suggested-by
Bond et al., {2013)), then it is more-feasible that ECS lies well below 5°C. The highest values of ECS
found using our analysis (red portion of Fig 5c) are assigned low weights due to the assessment by Myhre
et al. (2013) that the large AER RF2011 associated with these ECS values is unlikely.

Four empirical determinations of ECS (our study plus Lewis and Griinwald (2018), Otto et al.
(2013), and Skeie et al. (2018)) and the CMIP5 or CMIP6-constrained estimates of Cox et al. (2018),
Dessler et al. (2018), and Nijsse et al. (2020) are in slight contrast with the 2.3-4.7°C range for ECS (5"
and 95" confidence interval) published recently by Sherwood et al. (2020) (Fig 8). As noted above,
Sherwood et al. (2020) use paleoclimate data to rule out the high range of ECS. They rely on a
determination that the feedback due to clouds is moderately to strongly positive to rule out the low range
of ECS found by our analysis and the studies noted above. We caution that knowledge of the cloud
feedback from observations is generally limited to databases such as the International Satellite Cloud
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Climatology Project (ISCCP) (Schiffer and Rossow, 1983) and Pathfinder Atmospheres Extended
(PATMOS-x) (Foster and Heidinger, 2013). that-\Wwhile these databases are monumental in terms of

complexity and scope, they cover only a fairly short (i.e., about 36 years) part of the century and a half
climate record (Klein et al., 2017; Sherwood et al., 2020). Most assessments of total cloud feedback rely
on some combination of observations such as ISCCP, PATMOS-X, or other satellite records together with
the results of regression analysis, GCM projections, and large eddy simulations that are able to resolve
some of the convective processes involved in cloud formation (Klein et al., 2017; Sherwood et al., 2020).
The most important component of the global cloud feedback is tropical low clouds, which Sherwood et
al. (2020) consider to exert a positive feedback on climate based largely on the results of Klein et al.
(2017). The determination by Klein et al. (2017) of a likely positive feedback for tropical low altitude
clouds is based on the mean and standard deviation of the central value of this feedback determined by
five studies, even though four of these studies exhibit uncertainties that encompass zero feedback and the
fifth nearly reaches zero (their Fig. 3). This fact, combined with the recent study by Weaver et al. (2020)
who report no long term statistically significant trend in global cloud reflectivity at 340 nm averaged
between 45° S and 45° N based on analysis of data collected by a variety of NOAA and NASA satellite
instruments, causes us to suggest the true value of ECS may lie below the 2.3°C lower limit given by
Sherwood et al. (2020).

In our model framework, the largest uncertainty in ECS is driven by imprecise knowledge of the
radiative forcing of climate by tropospheric aerosols. As shown in Fig. 5c, a wide range of ECS values
can be inferred from the century and a half long climate record. We stress that each value of ECS shown
in Fig. 5¢ is based upen-on a simulation for which y?arwm, ¥?recen, and y’ocean are all less than or equal
to 2. Better knowledge of AER RF for the contemporary atmosphere would lead to a reduction in the
uncertainty of ECS. Numerous studies of the climate record, including our century and a half simulations,
infer the possibility of lower values of ECS than was given by a recent analysis of studies that involve
examination of data from compendiums such as ISCCP and PATMOS-x (Sherwood et al., 2020).

However, the analysis by Sherwood et al. (2020) did not examine consistency of the inferred value of

ECS with the ability of models to accurately simulate the GMST anomaly between 1850 and present or

over the past 40 years.
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We conclude this section by commenting on the relationship between ECS and AAWR in our
model framework. Eight of the CMIP6 GCMs (GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, INM-CM4-
8, MIROC6, MIROC-ES2L, NorESM2-LM, and NorESM2-MM) exhibit values of ECS and AAWR
consistent with the minimum and maximum estimates based on our EM-GC constrained by the
HadCRUTS GMST record (Table S5 and Fig. S17). An analysis of the relationship between AAWR and
ECS from the CMIP6 GCMs illustrates that 78% of the variance in ECS among the 28 CMIP6 GCMs
that provide both quantities is explained by AAWR (see Fig. S17). This result indicates CMIP6 GCMs

that accurately simulate the rise in observed AT over the past few decades exhibit values of ECS that are

in line with our empirically based estimate.

3.3 Future projections

3.3.1 CMIP6

The CMIP6 multi-model archive provides future projections of the GMST anomaly relative to pre-
industrial (AT) using the ScenarioMIP Shared Socioeconomic Pathways (SSPs). Figure 9 shows the
CMIP6 multi-model ensemble projections of AT for the four SSPs (SSP1-1.9, SSP1-2.6, SSP4-3.4, and
SSP2-4.5) highlighted in our analysis. Each SSP scenario has varying amounts of gridded, monthly mean

TAS projections submitted to the CMIP6 archive by GCMsﬁndwa%eeLenﬂeaehqelet} @4@4@&#%%%%
#ag—The global,

monthly AT time series for all of the runs for each CMIP6 GCM were averaged together to obtain one
time series of AT. The varying amount of GCM output available for each SSP scenario is due to the fact
that: a) SSP1-2.6 and SSP2-4.5 are Tier 1 scenarios (O’Neill et al., 2016) and are designated as priority
over the other SSPs (as described in Sect. 2.2.2), and b) not all GCMs have provided results to the CMIP6
archive at the time of the analysis. More CMIP6 multi-model output will likely become available as
modeling groups who have not submitted output to the CMIP6 archive finalize their results. However, we
do not expect additional GCM simulations will affect our conclusions unless the GCM output is
significantly different than that currently available.

The red trapezoid in Fig. 9 labeled as the IPCC 2013 likely range is the same trapezoid as that
displayed on Figure 11.25b from chapter 11 of the IPCC 2013 report (Kirtman et al., 2013). AH-eftThe
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recent observations of AT from HadCRUTYS lie within-towards the top of the likely range of warming

designated by this trapezoid. Many of the projections of the rise in AT from the CMIP6 multi-model
ensemble lie above the IPCC 2013 likely range of warming. The Paris Agreement target of 1.5°C and
upper limit of 2.0°C are shown as yellow circles, included to allow for comparison of the future
projections of AT from the CMIP6 multi-model ensemble with the goals of the agreement. The thick blue
line on each plot is the CMIP6 multi-model mean of AT, and the dashed blue lines are the minimum and
maximum AT projections from the CMIP6 multi-model ensemble. For SSP1-1.9, the multi-model mean
projection of AT in 2100 from the CMIP6 GCMs lies just above the Paris Agreement target at 1.6°C,
whereas for SSP1-2.6 the CMIP6 multi-model mean reaches the Paris Agreement upper limit of 2.0°C at
the end of this century. For both SSP4-3.4 and SSP2-4.5, the end of century CMIP6 multi-model mean
lies above the Paris Agreement upper limit at 3.0°C and 3.1°C, respectively.

Figure 9 illustrates there is-a-bimedalityare two groups of CMIP6 multi-model projections of AT,
with a few GCMs having future values of AT that are considerably higher than others. This divergence
for GCM projections of AT is especially evident in Fig. 9a, ¢, and d. The two CMIP6 GCMs that have the
highest values of AT across the four SSPs are CanESM5 (Swart et al., 2019) and UKESM1 (Sellar et al.,
2020). The CanESM5 and UKESM1 GCMs have the highest values of AAWR (0.354°C/decade and
0.299°C/decade, respectively), large values of ECS (5.70°C and 5.40°C, respectively), and exceed
observed AT reported by HadCRUT?5 for the past few decades-{apparentin-Fig-—9).
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Figure 9. Historical simulations and future projections of GMST from the CMIP6 multi-model ensemble for several
SSP scenarios. () GCM simulations from the Historical experiment, and future model projections from SSP1-1.9.
Observations (black) are from HadCRUT-HadCRUTS to the end of 2019. The IPCC 2013 likely range of warming
(red) is from Figure 11.25b from chapter 11 of the IPCC 2013 report. The CMIP6 multi-model mean (thick, blue)
and minimum and maximum (dashed, blue) lines are shown. Global, monthly AT was created by averaging the TAS
output over the globe with a cosine latitude weighting. The Paris Agreement target of 1.5°C and upper limit (yellow)

of 2.0°C are included to demonstrate how the GCM projections compare. (b) Future GMST projections from SSP1-
2.6. (¢) Future GMST projections from SSP4-3.4. (d) Future GMST projections from SSP2-4.5.

3.3.2EM-GC

The EM-GC is also used to project future changes in AT using the SSPs. Figure 10 shows the GMST
anomaly in 2100 from pre-industrial (AT2100) as a function of the climate feedback parameter and AER
RF2011, for the four SSPs highlighted throughout. Only model runs from the EM-GC that achieved a good
fit to the climate record (x*atm < 2, y?recent < 2, y?ocean < 2) are shown. The EM-GC runs that satisfy
these three %2 constraints but fall outside of the IPCC 2013 range for AER RFz011 (Myhre et al., 2013) are
shaded grey (left hand side of each panel). We do not consider the EM-GC projections that lie outside of
the IPCC 2013 range for AER RF2o11 in our projections of AT, yet these results are shown to illustrate
that the EM-GC can fit the climate record with estimates of the RF due to tropospheric aerosols that lie
below (i.e., less cooling) of the 5 confidence interval of -0.1 W m™2 for AER RFz11 given by IPCC
2013. We cannot establish any good fits of the-chmate HadCRUTS5 GMST record for AER RF2011 with a
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cooling stronger than about -1.6-55 W m~2. The range of AT2100 We compute using the EM-GC for SSP1-
1.9, SSP1-2.6, SSP4-3.4, and SSP2-4.5 are 0.6575-2.1606°C, 0.8296-2.7858°C, 1.6018-3.2801°C, and
1.2145-3.7847°C, respectively. Results for SSP4-6.0, SSP3-7.0, and SSP5-8.5 are shown in Fig. S15518:
915 ATo00 ranges are 1.4170-4.4702°C, 1.842.26-5.564.93°C, and 2.1362-6-756.02°C for these three

scenarios.
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Figure 10. ATx00 as a function of climate feedback parameter and tropospheric aerosol radiative forcing in 2011
using the EM-GC trained with the HadCRUTS AT record. (a) Future GMST change for SSP1-1.9. The region
outside of the AER RFz011 range provided by IPCC 2013 is shaded (grey). Colors denote the GMST change in year
2100 relative to pre-industrial. The color bar is the same across all four panels for comparison. (b) GMST anomaly
for SSP1-2.6. (c) Future temperature change for SSP4-3.4. (d) GMST anomaly for SSP2-4.5.

The large range of AT2100 found for any given SSP scenario-(i.e-afacterof 3. 1-difference between
the-smaHest-and-argestend-ofcentury-warming-for- SSP2-4-5) is caused by the fact that the climate record

can be fit nearly equally well by a considerably large combination of the climate feedback parameter (our

920 Azx) and scenarios for radiative forcing due to tropospheric aerosols. The more aerosols have cooled,

offsetting the relatively well-known warming due to GHGs, the larger A= must be to fit the climate record.
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Since the RF of aerosols is set to diminish in the future due largely to public health concerns (Lelieveld
et al., 2015; Shindell et al., 2016; Smith and Bond, 2014), the part of our model ensemble requiring
relatively large values of Ax to achieve a good fit to the climate record will result in higher values of
AT2100 than other members of our model ensemble with small values of Az Most GCMs sample only a

small portion of the possible combinations of Ax and AER RF2011 shown in Figs. 10 and S8S18.

3.3.3 Comparing CMIP6 and EM-GC

Time series of future projections of AT from the EM-GC can be illustrated as probabilistic
forecasts. Figure 11 shows the change in future AT for SSP1-1.9, SSP1-2.6, SSP4-3.4, and SSP2-4.5
colored by the probability of reaching at least that rise in AT by the end of the century. The EM-GC
probabilities are computed from ensemble members for model runs constrained by the HadCRUTS data
records for GMST and the average of 5 OHC data records (Fig. S8S9) based upen-on the aerosol
weighting method, described in Sect. 2.5. The trapezoid from chapter 11 of IPCC 2013 (Kirtman et al.,
2013) is shown on Fig. 11 in black to highlight that the EM-GC projections of the future rise in AT lie
within the IPCC 2013 likely range of warming. The Paris Agreement target and upper limit are included
to compare the EM-GC projections of future AT to the Paris Agreement goals. The white shaded region
is the EM-GC’s median estimate of future AT for each SSP scenario. The median estimate for AT2100 for
simulations using SSP1-1.9 and SSP1-2.6 falls below the Paris Agreement target at 1.01°C and 1.34°C,
respectively. The median estimate of ATzi0 from the EM-GC for SSP4-3.4 is between the Paris
Agreement target and upper limit at 1.68°C. For SSP2-4.5 the median estimate of AT2100 is 2.1°C, which

is just just-belowabove the Paris Agreement upper limit-at+-1-9°C. The CMIP6 minimum, multi-model

mean, and maximum projections of AT, based on the ensembles identicalto-these-in Fig. 9, are also shown

in Fig. 11. The CMIP6 minimum projection of the rise in AT falls near the EM-GC median estimate of
AT for each SSP scenario. The CMIP6 multi-model mean value of the future change in AT falls below
the EM-GC maximum value of AT, while the CMIP6 maximum value is far above the maximum
projections of the future rise in AT using the EM-GC. Results for SSP4-6.0, SSP3-7.0, and SSP5-8.5 are
provided in Fig. S16S519.
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Figure 11. Probabilistic forecasts of the future rise in AT from the EM-GC trained using the HadCRUTS5 AT record
for several SSPs. (a) Future projections of AT for SSP1-1.9. Observations (orange) are from HadCRUTS. The IPCC
2013 likely range of warming (black) is from Figure 11.25b of chapter 11 of IPCC 2013. The Paris Agreement
target and upper limit (yellow) are shown for comparison to EM-GC projections. The CMIP6 minimum, multi-
model mean, and maximum values of AT are shown to compare to EM-GC projections. Colors denote the
probability of reaching at least that temperature by the end of the century. (b) Future projections of AT for SSP1-
2.6. (c) Future projections of AT for SSP4-3.4. (d) Future projections of AT for SSP2-4.5.

Figure 12 compares probability distribution functions (PDFs) for the projection of AT2100 utilizing
the EM-GC with the HadCRUTS GMST record and average of the five OHC data sets and-the- C\W14

GMSTrecord-combined-with-the Cheng-2017-OHCrecerd-and the CMIP6 multi-model ensemble. Fhe
1 E l IS SIIE Wh-o IIIHSH ate Elle Sllgllt S%IiSiEiv}Ey ef ot pfej%eHGﬂS—ef—A:PAgg%irh&ehme&ef—GMSI
and-OHC-recerds—For the CMIP6 multi-model results, we compute the probabilities of achieving the

Paris Agreement target of 1.5°C and upper limit of 2.0°C (at the end of the century) by calculating how

Year

many of the GCMs participating in each scenario have projections of AT2100 below the target or upper
limit. lr-contrast-the-The probabilities for the projections of AT2100 Using eu-the EM-GC are computed
using the aerosol weighting method, described in Sect. 2.5. The height of each histogram represents the
probability that a particular range of AT2100, defined by the width of each line segment, will occur. The
left-hand y-axis displays the probability of ATz using the EM-GC, while the right-hand y-axis
represents the probability of AT2100 using the CMIP6 multi-model simulations. The values on the CMIP6
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multi-model ensemble y-axis are double the values on the EM-GC y-axis, for visual comparison. The
solid black line denotes the Paris Agreement target and the dotted black line signifies the upper limit on
each panel. The PDFs for SSP4-6.0, SSP3-7.0, and SSP5-8.5 are shown in Fig. S17520.
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Figure 12. Probability density functions (PDF) for AT2100 found using the EM-GC with-the- Had CRUT-temperature
record-{dark-blue}the EM-GC-trained with the SA/44-HadCRUTS temperature record (Hghi-dark blue); and
CMIP6 multi-model results (red). (a) PDF for EM-GC results and CMIP6 multi-model results for SSP1-1.9. The

left-hand y-axis is for EM-GC probabilities and the righthand y-axis is for the CMIP6 multi-model ensemble
probabilities. (b) PDF for SSP1-2.6. (c) PDF for SSP4-3.4. (d) PDF for SSP2-4.5.

Numerical values of probabilities for staying at or below the Paris Agreement target for SSP1-2.6

or upper limit for SSP4-3.4 foral-sevenare given for SSP-scenarios-are-giventnthe seven GMST records
using the EM-GC and CMIP6 multi-model ensemble in Table 1. Projections of AT2100 based on the EM-

GC provide more optimism for achieving the Paris Agreement goals than the CMIP6 multi-model
ensemble, regardless of which GMST data record is used. For simulations constrained using the
HadCRUTS record, Fthe SSP1-2.6 scenario provides a 53% (Table 1) likelihood of AT>109 Staying at or
below 1.5°C and SSP4-3.4 results in a 64% likelihood of limiting warming to 2.0°C by end of century.
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The probability of achieving the Paris Agreement target or upper limit increases upon using HadCRUT4
rather than HadCRUT5 in the EM-GC framework. The probability of achieving the 1.5°C target for SSP1-
2.6 and 2.0°C upper limit for SSP4-3.4 using the HadCRUT4 GMST record are 64% and 74%,

respectively (Table 1). This decline in attainment of the goals of the Paris Agreement upon use of

HadCRUTS5 reflects more rapid warming of this data record compared to HadCRUT4 (Fig. S4e versus

S4c). The rapid warming in HadCRUTS5 is driven by more accurate buoy records for SST and a statistical

gap filling procedure to attain global coverage (Morice et al., 2021). The impact on the likelihood of

achieving the Paris Agreement goals of for the other SSP scenarios upon using the HadCRUT4 or
HadCRUTS5 data records is detailed in Table S6.
Ananalysis SSPIL9cconarigrecilic tnan 8410 prababibibe ol Mo e Stavingatorbelow L 5°C

A Q04 alithood of aloh A ming ala or-halma ° a anad o aYa
Swas SASLS OPai A4 ety c S A" v °

004 likelihood-o Ta¥a or_halo\w ha D i Aareaman
0 000 S

\V/aWalaYd Tala a D A ala
v S oty O—atO Sa O c

15°Cpathway-th-our-modeHramework-tnstead-of- SSPA-1.9-by This-resultis-supported-by-Tokarska et
al. (2020) supports our finding of a higher likelihood of attaining the goals of the Paris Agreement than
suggested by the CMIP6 multi-model ensemble. Tokarska et al. (2020) —whe-filter the CMIP6 multi-
model output on the level of agreement with observations to show that the SSP1-2.6 scenario has a likely
range of warming at 1.33-1.99°C above preindustrial by end of century..—based-upen-fittering-CMIPE

utput-on-the-level of agreemen with-the-observed-climaterecord. Previous studies suggested that
a 2.6 W m~2 scenario was in line with the 2.0°C goal (Kriegler et al., 2014, 2015; O’Neill et al., 2016;
Riahi et al., 2015). Hewever—oOur analysis suggests the 2.6 W m~2 scenario provides between between-a

57-65a 86-98% probability of limiting warming to 2.0°C and a 53-78% probability of achieving the more
stringent 1.5°C target, depending on the GMST record (Table 1)-depending-onthe-choice- o GMSTand

44



1000

1005

1010

1015

1020

OHC data—records..—and If GHGs were to follow SSP4-3.4, we find a 19-58% probability of limiting
warming to 1.5°C andthat-a-3-4-W-m—2-scenario—(i-e—SSP4-3-4)-is-inline-with-the-2.0°C-goal-and-has

about-a 70-7464-87% probability of limiting warming to 2.0°C{TFable-1}-depending-en-the-cheiceof the

same-data-records. We therefore-designate SSP4-3-4-as-the 2.0°Cpathway-Significant climate mitigation
efforts will be required to keep the growth of CO2, CHa, and N2O below the trajectories shown for SSP1-

2.6 LB Cnathway-iourode-lrameworls and SSP4-3.4 (20" Cpathwey-(Fig. 2).Resuliswiizing-the

Table 1. Probability of achieving the Paris Agreement target (SSP1-2.6) or upper limit (SSP4-3.4) for seven GMST
records usmq the EM- GC and the CMIP6 multi- model ensemble —I:FSt—GféSP—SGGH&HGS—&H&l—y—ZEd—H%—t—hJS—S&Hd—y—&Hd

G\ALL#GMSL@G@FdﬁHd—G#H}g—Z@H—QH@dataseL The probabllltles usmg the EM GC are computed usmg the

aerosol weighting method. The probabilities using the CMIP6 models are computed by calculating how many of
the models for that scenario are below the temperature limits compared to the total number of models.

Probability of Staying at or Below 1.5°C Probability of Staying at or Below 2.0°C

SSP1-2.6 SSP4-3.4 SSP1-2.6 SSP4-3.4
CMIP6 18% 0% 47% 17%
HadCRUTS 53% 19% 86% 64%
GISTEMP 25% 20% 88% 69%
CW1i4 60% 29% 89% 11%
NOAAGT 61% 21% 90% 14%
BEG 62% 26% 98% 16%
HadCRUT4 64% 35% 90% 14%
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3.3.4 Fransient-climateresponse-and-cCarbon budgets

The transient climate response to cumulative emissions (TCRE) relates the rise in AT to the cumulative
amount of carbon released into the atmosphere by human activities. We illustrate TCRE from the EM-

GC as probabilistic forecasts, as shown in Fig. 13521, to analyze future projections of AT. \We use the
probabilistic forecasts in Fig. S21 to determine the carbon budgets in Table 2. Figure-13-displays-the
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Table 2 contains estimated carbon budgets frem-euranabysis-in the form of the total CO2 emissions
(Gt C) since 1870 that result in a 95%, 66%, and 50% probability of the future rise in AT staying below

the Paris Agreement target of 1.5°C and upper limit of 2.0°C and the future CO, emissions since 2019.

{-ecarbon-eyele-modelsis-about-10%(1-sigma)—The largest variation in our carbon budget estimates is

driven by the uncertainty in AER RF, which is incorporated into the probability of achieving the Paris
Agreement target and upper limit (see Fig. S21 and the supplement). We therefore-useinclude a 10% as

the-uncertainty, determined from examination of CMIP5 coupled atmospheric / carbon cycle models from

Friedlingstein et al. (2014) and Murphy et al. (2014) (see the supplement for more information), within

each probability of attaining the Paris goals to represent-t# how atmospheric CO2 will respond to the

prescribed carbon emissions.
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into-the-atmesphere—Fora-66% likelihood of limiting the rise in future AT below 1.5°C, only 966-790 +
9179 Gt C can be released.~whte-fora 50% probabithity-874-+ 97 G Crtotalcan-be-emitted: To-haveFor

into-the-atmesphere—er-a-66% likelihood of the rise in AT staying below the 2.0 °C upper limit, 1,203
040 + 120-104 Gt C can be emitted—~whereasfora-50%likelihood1,323+ 132 Gt Ccan-bereleased. To

place these numbers in their proper perspective, about 638-640 Gt C have been released from 1870
through the end of 2019 due to land-useland-use change, fossil fuel emissions, gas flaring, and cement
production according to the Global Carbon Budget project (Friedlingstein et al., 2019). In our model
framework, after 2019 society can therefore only emit anether108-+75,-268-150 + 9179 Gt C; 6+ 336+
97-Gt-C-to have either-a 95%,-66%;-0+50% chance of limiting warming to 1.5°C. Fhese-This future
emissions estimates rises to t6-295+93, 565400 + 120104 Gt C; and-685+132 G+ C-to have a 95%,-66%;

or-50% chance of limiting warming to 2.0°C.

Table 2. Total cumulative and future carbon emissions that will lead to crossing the Paris temperature thresholds
based on the EM-GC trained using the HadCRUTS5 AT record. Estimates of XCO2EMISSIONS that would cause global
warming to stay below indicated thresholds for 95%, 66%, and 50% probabilities and are rounded to the nearest 10
Gt C. The values in the top half of the table are the estimates of total cumulative carbon emissions that will lead to
crossing the Paris Agreement thresholds with the 10% uncertainty for how atmospheric CO2 responds to prescribed
carbon emissions (see text) includedwith-the-10% uncertainby-inehuded. The values in the bottom half of the table
are the estimates of future cumulative carbon emissions after 2019 that will lead to crossing the Paris Agreement
thresholds, with the same 10% uncertainty. The range of years given represents when the Paris Agreement
thresholds will be passed based upen-on the rate of emissions from SSP5-8.5 or continuing the 2019 rate of
emissions of 11.7 Gt C yr* (Friedlingstein et al., 2019).

Total XCQ2EMISSIONS gince 1870 from the EM-GC

95% 66%0 50%
15°C 446-730+ 75 906-790+9179 974830 +9783
' 73GtC GtC GtC
20°C 933920+ 93 12031040 + 120 13231110+ 132
' 92GtC 104 GtC 111 GtC

Future XCO2EMISSIONS (3ssuming 638640 Gt C released
between 1870-2019)
95% 66%0 50%
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090

108-90 + 75-73

GtC 268-150 + 9479  336-190 + 9783
. (2022°2021%- Gt C (20322025- Gt C (20362027-
15°C 203290319 20422035) 20452038)
(2021°- (20342026- (20392029-
2034°2033) 20492039) 20562043)
205280 +93 565400+ 120 685470+ 132
92GtC 104 GtC 111 GtC
2.0°C (2-9333L33a- (2046&_ (%%M'
' 2043°2043%) 20562049) 20612052)
(2036°2036"- (20572045- (20662050-
2052°2051") 20772063) 20882069)

% Year the 1.5°C target or 2.0°C upper limit will be exceeded
assuming the rate of emission inferred from SSP5-8.5 and the 1-
sigmao uncertainty. Applies to the 66% and 50% probabilities.
b Year the 1.5°C target or 2.0°C upper limit will be exceeded
assuming the 2019 rate of emission of 11.7 Gt C yr* and the 1-
sigmao uncertainty Applies to the 66% and 50% probabilities.

An analysis by van Vuuren et al. (2020) assesses FSRE-remaining carbon budgets based on

cumulative emissions after 2010. Their analysis indicates only 228 Gt C can be released since-after 2010
to have a 66% probability of achieving the Paris Agreement target of limiting the rise in AT below 1.5°C
in 2100. They base this estimate on an analysis of climate sensitivity and carbon cycle components,
including an adjustment to TCRE for the tendency of CMIP5 GCMs to warm too quickly that had been
suggested by Millar et al. (2017). tr-ourmodelframewerk—w\We find a 66% probability of limiting
warming to 1.5°C upon the release of 369-250 + 91-79 Gt C between 2010 and 2100. H-is-not-surprising

o

results are similar to the findings in van Vuuren et al. (2020). Regardless,between-Between 2010 and

2019, about 161-100 Gt C has been released to the atmosphere (Friedlingstein et al., 2019), so the
remaining budget after 2019 for limiting warming to 1.5°C is about 127128 Gt C according to van Vuuren
et al. (2020). The remaining budget from our analysis is 150 + 79 Gt C. Our analysis and that by van
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Vuuren et al. (2020) suggest Aat the pace of emissions in 2019 of 11.7 Gt C yr (Friedlingstein et al.,

2019), society will cross this threshold in about-a-decadethe next 10 years. Our-modelframeweork-suggests

3.3.5 Blended methane

Atmospheric abundances of methane will likely continue to increase as society expands natural gas
production and agriculture, making it important to analyze the impact of various methane scenarios on
the rise of GMST. It is unlikely future atmospheric methane abundances will progress as indicated by
SSP1-2.6 (see Fig. 2), a low radiative forcing scenario. Current observations shown in Fig. 2 illustrate
that the methane mixing ratio is following SSP2-4.5 and has missed the initial decline needed to follow
the SSP1-2.6 pathway. To analyze the effect varying future methane abundance pathways will have on
GMST, we have generated linear interpolations of the SSP1-2.6 and SSP3-7.0 methane future-abundances
and created four alternate scenarios (see Fig. S18522), which we call blended methane scenarios. We can
substitute one of the blended methane scenarios into the EM-GC instead of using the projection of
methane specified by the SSP database to quantify the sensitivity of future warming to various evolutions
of methane on the rise in GMST.

Figure 24-13 shows the probability of staying at or below the Paris Agreement target (gold colors)
or upper limit (purple colors) for SSP1-2.6 (solid) and SSP4-3.4 (dotted) as a function of the methane
mixing ratio in 2100. The lowest atmospheric methane mixing ratio value in 2100 of 1.15 ppm is from
the SSP1-2.6 methane pathway, the highest mixing ratio in 2100 of 3.20 ppm is from the SSP3-7.0
methane pathway;-. and-tThe four in between are the blended methane scenarios. As the atmospheric
methane abundance increases, the likelihood of achieving the goals in the Paris Agreement decreases. For
SSP1-2.6, the probability of limiting the rise in GMST below the 1.5°C target begins at 6553% for
HadCRUTS using the SSP1-2.6 designated methane pathway and decreases as the blended scenarios are
considered. The probability of achieving the Paris Agreement target declines to just-under5630% if
methane reaches 2.4 ppm in 2100 and to 3416% if methane increases to 3.2 ppm in 2100. Even though
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we-have-labeled-SSP1-2.6 the-1.5°C—pathwayin-our-medel-frameworkcan have a 53% probability of
limiting warming to 1.5°C, Hmiting-future-warming-to-thischallenging-ameuntachieving this goal can

likely only be achieved-attained by strict limits on both emissions of carbon dioxide and methane.
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Figure 2413. Probability of staying at or below the Paris Agreement target and upper limit for SSP1-2.6 and SSP4-
3.4 as a function of varying methane scenarios using the EM-GC trained with the HadCRUTS5 AT record. The
atmospheric methane scenarios are calculated using linear combinations of methane abundances from SSP1-2.6
and SSP3-7.0 to span the range of future methane abundances.

In Sect. 3.3.3, we showed that if all GHGs follow the SSP4-3.4 scenario there would be a 7464%
1125 probability of limiting warming to 2.0°C. If the methane pathway instead follows SSP1-2.6, which has an

end of century mixing ratio of only 1.15 ppm, then the probability of achieving the Paris Agreement goal

rises to 8277%. However-lif the methane pathway follows SSP3-7.0 and the end of century mixing ratio
increases to 3.2 ppm, then the probability of achieving the Paris Agreement goal declines to 6550%.

Reducing the future anthropogenic emissions of methane might be more challenging than

]\130 controlling future emissions of carbon dioxide, skmply-because methane has such a wide variety of sources

related to energy, agriculture, and ruminants (Kirschke et al., 2013). Given the current widespread use of

methane as a source of energy in the United States and parts of Europe (Saunois et al., 2020), combined

with the continued growth in the global number of ruminants (Wolf et al., 2017), it seems unrealistic for

atmospheric methane to follow the peak and sharp decline starting in 2025 of the SSP1-2.6 pathway (Fig.
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3b). Our analysis suggests failure to limit methane to the SSP1-2.6 trajectory will have a larger impact on
the achievement of the 1.5°C Paris goal compared to the 2.0°C upper limit. Figure £4-13 is designed to
provide some perspective on the importance of future-contrels-on-limiting the growth of methane in the

atmosphereen-projections-of-end-of-century-warming.

3.3.6 Climate feedback

In our analysis above, we have assumed the value of As (and thus A, see Eq (3) and corresponding text in
Sect. 2.1) is constant over time. Time-constant Ax is the simplest assumption one can make. The climate
record can be fit very well based on this conjecture, as shown in Fig. la-and-Fig—S3a. However, many
GCMs suggest that climate feedback may vary over time (Marvel et al., 2018; Rugenstein et al., 2020).

An analysis by {Goodwin; (2018) finds there is a delay in the response of climate feedback to a change in

radiative forcing, on the order of a few days to several decades. In our EM-GC framework, we are able

to conduct calculations allowing the value of As to vary over time with a delay between the change in

radiative forcing and the response of As (see Fig. S23 and the supplement for results without the time

delay), and to project future temperature with such an assumption. Up until this point, our simulations
have used time-invariant As to be consistent with how our model results had been presented in prior
publications (Canty et al., 2013; Hope et al., 2017). Recall from Sect. 2.1 that As = Ap — A. T0 assess the

effect of time varying climate feedback on our projections of global warming, we examine the sensitivity
in terms of A1, because this quantity scales proportionally with AT and a!se-our use of the inverse A allows
for direct comparison to the results of Marvel et al. (2018) and Rugenstein et al. (2020).

Figure 15-14 shows the change in observed and modeled GMST under several-four assumptions

regarding A1, Fhefirst-assumption-is-thatFirst, the value of A1 is constant over time (Figs. 15al4a, e).
Second, the value of A* varies by 50% between 1850-2100 (Figs. 14b, f: further discussion of Fig. 14b

and f will occur at the end of the section). The third assumption involves A~ varying over time while

y°recent is always less than or equal to two (Figs 14c, g). Fourth, A~! varies over time while y?atm is

always less than or equal to two (Figs. 14d, h).- In all cases for time varying feedback, we also assume

the value of A~! has the same shape as the SSP4-3.4 RF time series along with a lag of 20 years and that

the new time series for L' maintains an average value over the observational record identical to the
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constant value for A' of 0.63 °C / W m~2. We chose a lag of 20 years to represent the longest delay in

response of climate feedback to a change in RF suggested by Goodwin (2018). If we use the shorter delays

represented in Goodwin (2018), then our results would be between those from the instantaneous response

of climate feedback to a change in RF (Fig. S23) and the 20-year delay. Finally, in the simulations

described below, the value of A1 is assumed to continue to rise into the future at the same proportionality

to ATatmHUMAN aS the prior increase.
We-are-able-to-fit-the-climate-record-over-the-past-170-years(arm)-and-past-80-years{ Recent)
extremely-well-for constant-x*—To-simulate-variations-of x*-over-timewe-alter runsfrom-the EM-GG
G%m%%%%%‘*ﬁ%%m@@%&%%ﬂm%%md—a{%
I . . : | _1 heol | L ” I
to-the-constant»~-valueIn-simulations-deseribed below;-the value-of A~ -is-assumed-to-continue to-rise

We fit the climate record over the past 170 years (y*atm) and past 80 years (y?recent) extremely

well for constant 1. If we allow the value of A1 to scale with anthropogenic forcing such that the

maximum value of %°arw y’recent is always less than or equal to 2two, we obtain the result shown in Fig.
15b14c. This scaling of A~* results in a value of AT2100 0f 2.8°C, about 50%1.0°C higher than when a
constant value of A1 is used and an increase in A by nearly a factor of 2two-5-at-the-end-ofcentury in
2100. The modeled change in GMST starts to deviate from the observations around year 20602010. This

deviation is seen in the residual between modeled and observed GMST in Fig. 15f14q. If we allow the
value of 1! to scale with anthropogenic forcing so that the maximum value of 3*recent4°atm is less than

or equal to 2two, we arrive at the result shown in Fig. 15¢14d-. This variation in A" yielding-yields a

value of AT2100 0f 3.5°C that is nearly doubles the estimate of ATz100 for the time invariant A-* (Fig 14a)
and ever-two-and-a-halfcenturies-and-a rise in A~ over two and a half centuries by a factor of 43.5. The
modeled change in GMST starts to deviate dramaticathy-from observations around year 19962005. This
starke deviation is seen in the residual between modeled and observed GMST in Fig. 15g14h. The ¥*atm

v’recent Value in Fig. 45¢-14h is 3.6385, which does not satisfy our reduced chi-squared constraints;-and
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Several other studies have investigated the degree of change in A-1. Marvel et al. (2018) suggest
that the median value of ECS from the CMIP5 GCMs may inerease-rise from-1.8-t0-2.3°C-or1.810-3.1°C
due to time varying A-1-which-correspends-to-an increasinge in—x*-from 1850-2100 ef-by 28 to 72%;
respeetively. Rugenstein et al. (2020) estimates a median increase of 17% for values of ECS from CMIP6
GCMs when examining millennial length simulations compared to the 150-year Gregory et al. (2004)
method, which is consistent with about an 11% rise in A~ (Fig. 2b of Rugenstein et al. (2020)). A doubling
(Fig. 45b14c) or guadrupling-tripling of A (Fig. £5¢14d) over two and a half centuries is faster than the
increase indicated by Marvel et al. (2018) and the millennia order timescale in Sect. 12.5.3 of IPCC 2013
and Rugenstein et al. (2020). AAn increase of 50% #nerease-or lower in A1 (Fig. 45d14b) is in line with
the estimate of the change in ECS due to time-variant A~! indicated by Marvel et al. (2018) and Rugenstein

et al. (2020). The use of a 20-year delay in the response of the feedback to a change in RF results in good

fits to the HadCRUT5 GMST record (Fig. 14b). However, we are not able to achieve as low values of

y?recenT and y2atwm to this record for time variant feedback if we assume an instantaneous response (Fig.
14 a-d versus Fig. S23 a-d).

The assumption of constant feedback within the EM-GC framework is reasonable because there

is no strong evidence from the climate record for a noticeable increase in A-! on the multidecadal time
scale associated with the simulations -shewn-in Fig. 1514. If the true value of A-* actually rises over time
as suggested by some of the CMIP6 (Rugenstein et al., 2020) and CMIP5 GCMs (Marvel et al., 2018),
our projections of global warming would be a few tenths of a degree warmer than our current best
estimates assuming constant A%, as shown in Fig. 15d14b. Interestingly-iIncreasing At by 50% results in

a similar value of AT2100 as when utilizing a higher value of AER RF2o11 (i.e. AER RF2011 less than -0.9
W m~2) in the EM-GC framework-{see-Fig—3).
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Figure 1514. Change in GMST from 1850-2019 for observations from HadCRUTFHadCRUTS (black) and 1850-
2100 for modeled (red) using SSP4-3.4 and the residual between modeled and observations incorporating a 20 year
delay between A~! and a change in RF (@) Rise in GMST assummg a constant value of A1, (b) Rise in GMST
allowing A" to increase by 50%. Ri o : se-otfa? pru-iskept below 2 (c)
Rise in GMST allowing X! to vary while the value of YPRECENT IS kept below 2 (d) Rise-in- GMST-allowing X o
inerease-by-50%- Rise in GMST allowing A~! to vary while the value of y%au is kept below 2. -(e) Residual between
modeled and observed rise in GMST from 1850-2019 for constant A~%. (f) Same as (e) but for increasing A~ by
50%but-forvarying k-while the-value of 52 any-is kept below 2. (g) Same as () but for varying X! while the value
of y2recent is kept below 2. (h) same as (g) -but for varying A" while the value of y%aru is kept below 2butfor

. e At bt 5006,

4 Conclusions

In this paper we use a multiple linear regression energy balance model (EM-GC), to analyze and project
changes in the future rise in global mean surface temperature (GMST), calculate the attributable

anthropogenic warming rate (AAWR, the component of the rise in GMST caused by human activities)
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over the past four decades, and compute the equilibrium climate sensitivity (ECS, the rise in GMST that
would occur after climate has equilibrated with atmospheric CO. at the 2xpre-industrial level).
Projections of the rise in GMST (AT) are conducted for seven of the Shared Socioeconomic Pathway
(SSP) projections of GHGs (O’Neill et al., 2017). We compare computations of AAWR, ECS, and
projections of AT to values for each quantity computed from archived output provided by GCMs as part
of CMIP6 (Eyring et al., 2016). A critical component of our study is comprehensive analysis of
uncertainties in AAWR, ECS, and projections of AT in our EM-GC framework, due to the rather large
uncertainty in radiative forcing of climate from tropospheric aerosols (AER RF).

The best-estimate-efmedian values of AAWR from 1975-2014 computed using our EM-GC
constrained by the century and a half long record for GMST provided by the HadCRUT-HadCRUT5data
record-(Cowtan-and-Way,2014) is 0.135157°C/decade and the 5™, and 95" percentiles are 0.697-120 and
0.195°C/decade, respectively. The median value of AAWR from the CMIP6 multi-model ensemble is
0.221°C/decade and the 5", and 95" percentiles are 0.151 and 0.299°C/decade, respectively. We show
that the component of GMST attributed to human activity within the CMIP6 multi-model ensemble
warms considerably faster than observations over the past four decades, a result that is consistent with a
recent analysis—analyses of output from the CMIP6 multi-model ensemble (CONSTRAIN, 2020;
Tokarska et al., 2020) as well as output from CMIP5 GCMs assessed in AR5 (i.e, Fig. 11.25b of Kirtman
et al. (2013)). This finding differs from the conclusion of Hausfather et al. (2020), who showed fairly
good agreement between projections of global warming from GCMs and observed AT. As detailed in
Sect. 3.1, this paper examined GCMs that proceeded CMIP5 and examined AT for a time period that ends
in 2017, a time when global temperature was influenced by a strong ENSO event that ended in 2016. The
majority of the uncertainty in our EM-GC based estimate of AAWR is due to imprecise knowledge of the
true value of AER RF.

In our model framework, the best estimate of ECS is 2.6433°C and the 5™ and 95" percentiles are
1.22-40 and 4-123.57°C, respectively. The median value of ECS from the CMIP6 multi-model ensemble
is 3.74°C, which is almest-deublearound 1.6 times the best estimate value of ECS inferred from the

observed climate record. The 5" and 95" percentiles of ECS from the CMIP6 multi-model ensemble are
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2.19 and 5.65°C, respectively. We obtain a wide range of ECS values using the EM-GC because of the
uncertainty in AER RF. With an AER RF2011 equal to -1.6 W m~2, the EM-GC calculates a value of ECS
similar to the maximum value of ECS from the CMIP6 multi-model mean. We cannot rule out the very
high value of ECS, but we assign a low probability based on the IPCC 2013 low likelihood for the needed
value of AER RF2o11. Our empirically based determination of ECS is in good overall agreement with the
recent empirical determinations of Lewis and Griinwald (2018) (1.87°C, range of 1.1-4.05°C) and Skeie
et al. (2018) (2.0°C, range of 1.2-3.1°C) and the slightly older empirically determination reported by Otto
et al. (2013) (2.0°C, range of 1.2-3.9°C) (all range values are for the 5™ and 95™ percent confidence
interval). A recent review of climate feedback and climate sensitivity published by Sherwood et al. (2020)
reported ECS lies within the range of 2.3 to 4.7°C at the 5™ to 95" percent confidence intervals; their
lower bound for ECS is quite a bit higher than the lower bound found in our analysis, as well as by Cox
et al. (2018), Dessler et al. (2018), Lewis and Grinwald (2018), Nijsse et al. (2020), Otto et al. (2013),
Skeie et al. (2018), and Tokarska et al. (2020).

We also examined the probability of limiting the future rise in GMST below the Paris Agreement
target of 1.5°C and upper limit of 2.0°C. Our probabilistic forecasts of projections of AT include a
comprehensive treatment of the uncertainty in AER RF, a capability outside the scope of the GCM
intercomparisons conducted for CMIP6. Our analysis indicates that if GHGs were to follow the the-SSP1-
2.6 pathway, there would be seenarie-is-the-1.52Cpathway,providing-between-a 57-0-64-853% likelihood
of keepingthat the the-end-ef-century-rise in AT would remain below the Paris Agreement target of 1.5°C
(relative to pre-industrial) by the end of century based on HadCRUT5-depending-on-the-choice-of GMST

and-OHCrecerd. We find that the SSP4-3.4 scenario is-the-2.0°C-pathway,-as-this-seeparto-provides a
69.6-74-064% likelihood of limiting global warming to below the Paris Agreement upper limit of 2.0°C

by end of century. These probabilities have declined upon our use of HadCRUTS5 compared to the GMST
record of HadCRUT4 to 64% and 74% for the SSP1-2.6 and SSP4-3.4 scenarios, respectively. In contrast,
the CMIP6 multi-model mean only suggests aa 15-28% probability of achieving the Paris Agreement
target for SSP1-2.6 and a 16.-77% probability of attaining the Paris Agreement goal for SSP4-3.4. This

resuktThe lower probabilities suggested by the CMIP6 multi-model ensemble is not surprising, given the
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tendency of most CMIP6 GCMs to warm faster than-has-been-observedvations over the past four decades.

Our projections of AT using a physically based model tied to observations of ocean heat content,
quantification of natural as well as anthropogenic drivers of variations in GMST, and consideration of
uncertainty in AER RF are shown to be remarkably similar to the expert assessment of the future rise in
GMST that was sketched out in Fig. 11.25b of AR5 (Kirtman et al., 2013), and the empirically-based
filtering of CMIP6 model output recently published by Tokarska et al. (2020). Finally and most
importantly, our estimates are based on the assumption that climate feedback has been and will continue
to remain constant over time, since the prior temperature record can be fit so well under this assumption.
As described in Section 3.3.6, if climate feedback rises over time, larger warming will be realized than
that found under the-this assumption of temporally invariant feedback.

We also quantify the sensitivity of the probability of achieving the Paris Agreement target (1.5°C)
or upper limit (2.0°C) to future atmospheric abundances of methane. The end of century mixing ratio of
methane in the SSP1-2.6 scenario is 1.15 ppm, considerably less than the contemporary abundance of
1.88 ppm. The likelihood of attaining the 1.5°C target for SSP1-2.6 decreases as future methane emissions
increase, declines to just-under5030% if methane reaches 2.4 ppm in 2100 and to 3416% if methane
increases to 3.2 ppm at end of century. Our analysis described in Sect. 3.3.5 demonstrates that major near-
term limits on the future growth of methane are especially important for achievement of the 1.5°C limit
to future warming that constitutes the goal of the Paris Agreement.

Finally, we have also quantified in the EM-GC framework the remaining budgets of carbon (i.e.,
CO») emissions that can occur while attaining either the goal or upper limit of the Paris Agreement. We
find that after 2019, society can only emit another 168-+75.268-150 + 9179;-6r336-+97 Gt C to have
etther-a 95%-66%;-6r50% chance-likelihood of limiting warming to 1.5°C. Fhese-This future emissions
estimates rises to 295+93,565-400 + 120104 -and-685+132 Gt C to have a -95%-66%-0r50% chance
probability of limiting warming to 2.0°C. Given the anthropogenic emissions of carbon due to combustion
of fossil fuels, cement production, gas flaring, and fand-useland-use change are-were about 11.7 Gt C per
year in 2019 (Friedlingstein et al., 2019), our study indicates that the target (1.5°C warming) of the Paris

Agreement will not be achieved unless carbon emissions are severely curtailed in the next twe-decades10

years.
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We conclude by noting that the CMIP6 multi-model ensemble provides many useful parameters
such as sea level rise, sea ice decline, and precipitation changes, that provide a great societal
understanding of the impact of climate change. We do not mean to undermine the importance of the
CMIP6 GCMs by this analysis. Rather, we hope that studies such as this, along with other recent
evaluations of CMIP6 multi-model output such as Nijsse et al. (2020) and Tokarska et al. (2020) will
provide improved use of the CMIP6 multi-model ensemble for policy decisions. Our EM-GC was built
to specifically simulate and project changes in GMST; we do not examine numerous other components
of the climate system that affect society. Our-study-indicates-that-unless-seciety\We emphasize that our
projections show that unless society can implement steep reductions in the emissions of carbon (CO2) and
methane (CHj4) ratherseonin the next 10 years, 1.5°C global warming goal of thethe Paris Agreement will
fatl-tenot be achieved. W js—sh }

5 Acronyms

AAWR — Attributable anthropogenic warming rate

AR4 — Fourth Assessment Report

AER — Anthropogenic aerosols

AER RF2011 — Radiative forcing due to anthropogenic aerosols in 2011
AMOC — Atlantic meridional overturning circulation

AMYV - Atlantic multidecadal variability

BEG — Berkley Earth Group

CALIPSO — Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
CMIP5 — Coupled Model Intercomparison Project Phase 5

CMIP6 — Coupled Model Intercomparison Project Phase 6

COBE - Centennial in situ Observation-Based Estimate

CW14 — Cowtan and Way (2014) temperature record

ECS — Equilibrium climate sensitivity
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EM-GC — Empirical Model of Global elimateClimate

ENSO — El Nifio seuthern-Southern esetHationOscillation

GCM - General Circulation Model

GHG — Greenhouse gas

GISTEMP — Goddard Institute for Space Studies Surface Temperature Analysis v4
GloSSAC — Global Space-based Stratospheric Aerosol Climatology
GMST - Global mean surface temperature

HadCRUT — Hadley Center Climatic Research Unit

IPCC — Intergovernmental Panel on Climate Change

ISCCP — International Satellite Cloud Climatology Project

10D — Indian Ocean dipole

LIN — Linear method

LUC — Land-useLand-use change

MEI — Multivariate ENSO index

NOAAGT — National Center for Environmental Information NOAAGIlobalTemp v5
ODS - Ozone depleting substances

OHC — Ocean heat content

OHE — Ocean heat export

PATMOS-X - Pathfinder Atmospheres Extended

PDO - Pacific decadal oscillation

RCP — Representative concentration pathway

REG — Regression method

RF — Radiative forcing

SAOD - Stratospheric aerosol optical depth

SORCE - Solar Radiation and Climate Experiment

SSP — Shared Socioeconomic Pathway

SST — Sea surface temperature

TAR — Third Assessment Report
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TAS — Near surface air temperature
TCRE — Transient climate response to cumulative emissions
TOS — Temperature at the interface of the atmosphere and the upper boundary of the ocean

TSI — Total solar irradiance
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10 Data availability

All data used as inputs into the EM-GC are available from resources on the web. We have provided the
links to the resources below. The data are also available along with the EM-GC output data used in this
analysis at 10.5281/zen0d0.4300780 10-5281/zenedo-3908407-(McBride et al., 2021) on Zenodo.org.

I0D: The COBE SST data is provided by the NOAA ESRL physical sciences division from their web
site https://www.esrl.noaa.gov/psd/.

Tropospheric ozone RF: http://www.pik-potsdam.de/~mmalte/rcps/ .
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MEL.v2 and MEI.ext: https://psl.noaa.gov/enso/mei/data/meiv2.data and
https://psl.noaa.gov/enso/mei.ext/table.ext.ntml

PDO: http://research.jisao.washington.edu/pdo/PDO.latest.txt
SAOD: https://eosweb.larc.nasa.gov/project/glossac/glossac
TSI: http://lasp.colorado.edu/home/sorce/data/tsi-data/

OHC Records:
Balmaseda: http://www.cgd.ucar.edu/cas/catalog/ocean/OHC700m.tar.gz
Carton: https://www.atmos.umd.edu/~ocean/index_files/soda3_readme.htm
Cheng: http://159.226.119.60/cheng/
Ishii: http://159.226.119.60/cheng/
Levitus: https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/

SSP Database: All information for the SSPs obtained from the SSP database is at
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about .

CMIPG6 Input Data:
https://docs.google.com/document/d/1pU9liJvPIJwRvIgVaSDdJ400Jeorv_2ekEtted34K9cA/edit#headi
ng=h.jdoykiw7tpen

CMIP6 Model Output Archive: https://esgf-node.lIinl.gov/search/cmip6/
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Supplement

Section 2.1 states “The effect of this update results in our model being able to fit the historical climate
record with higher values of climate feedback, especially for strong aerosol cooling (see Fig. S1 and
supplement for more information)”. Figure S1 illustrates the impact of updating Eq. (2) in our model to be
comparable to the formulation in Bony et al. (2006) and Schwartz (2012). This figure displays the change in
GMST anomaly in 2100 relative to pre-industrial (AT2100) as a function of As and AER RFzo11 for the two
formulations of Eq. (2). Figure S1a uses the previous version of the EM-GC, where Qocean Was subtracted
outside of the climate feedback multiplicative term, and Fig. 1b uses the new version of the EM-GC where
Qocean is subtracted within the climate feedback multiplicative term.

In the EM-GC framework, we calculate our value of Qocean by finding the k needed to multiply the
temperature difference between the atmosphere and the ocean to fit the observed OHC record. The model
iterates over the ocean module, specifically the value of AToceanHuman in Eq. (4), until the EM-GC
converges on an estimate of k for a single OHC record and value of AER RF2o11. Figure S1 illustrates that
the effect of changing Eqg. (2) in the EM-GC impacts our estimates of the rise in AT2100 at high values of AER
RF2011. Strong aerosol cooling results in the ocean taking up more heat from the atmosphere than in the
previous version of the EM-GC. The larger value of Qocean results in a higher value of climate feedback
needed to fit the historical climate record, because both AER RF2011 and Qocean are acting to cool the climate
system. The higher values of climate feedback increase our maximum value of AT2100. This change brings
some of the projections of AT2100 from the EM-GC closer to values of AT2100 from the CMIP6 multi-model

ensemble.

Section 2.1 states “Altering the training period of our model has a slight effect on our results (see Fig.
S2, S3, and the supplement for information on various training periods).” Figure S2 shows the end of century
projected warming as a function of As and AER RFzo11, for four different training periods: 1850-1989 (Fig.
S2a), 1850-1999 (Fig. S2b), 1850-2009 (Fig. S2c) and 1850-2019 (Fig. S2d), which is the normal training
period used in our analysis. Values of AT2100 are shown only for combinations of Az and AER RF2o11 that
lead to good fits (> < 2) to the climate record. We project relatively similar results for end of century warming
for the training periods that end in 2019;- and 2009;ar6-1999. Our results using the training period from
1850-1999 are similar to observations and other reduced complexity models (Nicholls et al., 2020). The
training period that ends in 1989 (Fig. S2a) yields a different “shape” of model parameter space for which
good fits to the climate record can be obtained, compared to the other training periods. The different shape

for this shorter training period is due to two factors. First, the formulation of the ocean component of our

model for the training period that stops in 1989 uses —t-training-to-1989,-we-are-onhy-considering-35 years
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of the observed OHC record. We are able to calculate good fits to the OHC record over this shorter time
period that diverge from the OHC record after 1989. Also, for this shorter time period, aerosol radiative
forcing of climate cools in a manner that nearly mirrors the warming due to rising GHGs, resulting in a wider
range of model parameters that lead to a “good fit” of the climate record, compared to model simulations
constrained by data that extend closer to present-day. The highest values of AT2100 in Fig. S2a are associated
with the largest values of As, which in our model corresponds to excessively high values of «k that we can rule
out, based on OHC data collected during 1990 to 20202019.

Figure S3 shows the observed (HadCRUT5) and modeled AT anomaly from 1945-2060 for the four

different training periods described above. Each panel contains three projections of future AT for SSP4-3.4:

projection using the value of climate feedback that provides the best fit to the historical climate record for a

value of AER RF11 = -0.9 W m=, the lowest value of climate feedback that provides a good fit to the

observed AT record for a value of AER RF2011 = -0.1 W m~2, and the highest value of climate feedback that

provides a good fit to the historical climate record (the associated value of AER RF2011 varies depending on

the training period). As more vears are added to the training period, the range of projection for future

temperature decreases (Fig. S3a vs S3d). All of the best fit projections (solid line) and highest value of climate

feedback (upper dashed line) closely follow the mid-point of the data, regardless of the training period. Given

the nature of this test (i.e., predicting GMST out to 2019 for a series of trainings that stop in either 1989,

1999, or 2009), Figure S3 supports the guantitative accuracy of our approach for simulating and projecting
future AT.

Section 2.2.1 states “We use the uncertainty time series from HadCRUT4 for all GMST records (see the

supplement, Figs. S4 and S5, and Table S1 for more information)”. Figure S4 shows values of AT based on
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the seven individual GMST records (GISTEMP, BEG, HadCRUT4, CW14, HadCRUT5, NOAAGT, and

JMA) with their corresponding 1o and 2c uncertainties. A horizontal line at zero denotes the time period of

the baseline for each AT record. The multi-record mean, excluding the data set that is plotted, is also shown.

Since the multi-record mean and individual AT record are plotted on the same baseline, these two quantities

closely match over this time period. Panels (a), (b), (e), and (f) illustrate that the uncertainties for these GMST

records are not large enough to encompass the multi-record mean over 1850-2019. The multi-record mean in

panel (a) is below the GISTEMP 1c uncertainty range between 1880 and 1900, and again between 1980 to
2019. In panel (b), the multi-record mean is above the BEG 1o range from 1850 until 1865, 1880 to 1895,

and below the 1c uncertainty range from 2000 to 2019. The multi-record mean in panel (g) is below the

HadCRUTS5 1o uncertainty range from 1990 until 2019. In panel (f), the multi-record mean is above the
NOAAGT 1o uncertainty range from 1920 until 1955. The JMA GMST record does not provide an

uncertainty estimate. We therefore use the HadCRUT4 combined uncertainty (measurement, sampling, bias,

and coverage uncertainties (Morice et al., 2012)) estimate for JMA in panel (g). The multi-record mean of

AT for all data sets other than JMA lies at the edge of the 1o uncertainty range from 1891 until 2000. After
2000, the multi-record mean falls above both the 16 and 26 HadCRUT4 uncertainty range. The HadCRUT4

uncertainty time series shown in panel (c) is the only uncertainty estimate large enough to cover the spread

in the various GMST records.

Figure S5 shows AT based on all seven GMST records and the multi-record mean relative to three

baseline periods. The 1o and 2c uncertainties from HadCRUT4 are plotted about the multi-record mean.
Panels (a) and (d) show the GMST records relative to 1891-1920, which are the first 30 years all of the data

sets have in common. Between 1850-1970, all of the data sets fall within the 16 HadCRUT4 uncertainty.

After 1970, the GMST records start to deviate and some fall outside of the 1c uncertainty but within the 2c

uncertainty, and JMA falls outside of the 2c uncertainty. Panels (b) and (e) show the GMST records relative
to the HadCRUT baseline period of 1961-1990. We see similar behavior as in panels (a) and (d), where the
GMST records largely fall within the HadCRUT4 1c uncertainty until about 1970. Panels (c) and (f) show
the GMST records forced to match HadCRUTS from 2010-2019, which is baselined to 1961-1990. In these
two panels, we see a large spread between the GMST records from the beginning of the time period until
2005.

Table S1 shows the percentage of AT data points that lie within the 16 or 26 HadCRUT4 uncertainty

about the multi-record mean for all seven data records since 1940. Year 1940 is used to be consistent with

the definition of our ¥?recent parameter. Depending on the choice of baseline period, the number of data

points within the uncertainty range varies. For a baseline of 1891-1920, 80% of the data points for all seven

records are within the 1o uncertainty and 95% of the data points are within the 2c. For a baseline of 1961-

1990, 88% and 93% of data points are within the 1c and 2c HadCRUT4 uncertainties, respectively. If the
3
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AT records are forced to match the average value of the HadCRUTD5 data set over the last decade, 72% of the

data points are within the 1o uncertainty and 88% are within the 2c uncertainty. This analysis shows that

depending on which baseline is used, the percentage of points within the 1o or 2c uncertainty ranges varies.

Overall, these comparisons support the utility of the HadCRUT4 uncertainty for the GMST, since the 1o and

2c uncertainty ranges capture a percentage of points approximately correct for a pure Gaussian distribution.

Therefore, we have adopted the HadCRUT4 uncertainties in GMST for all of the analyses in the main paper.

The uncertainties published by other data centers tend to be smaller than the HadCRUT4 uncertainties. Since

only the HadCRUT4 uncertainties span the range of values for AT from the seven data records in a somewhat

realistic fashion, we have decided to use these uncertainties uniformly throughout the analysis.

Section 2.2.1 also says “We then adjust each data set to the HadCRUTS5 pre-industrial baseline as
described in the supplement”. The mean of the HadCRUT5 GMST record from 1850-1900 is —0.3589°C. We
add 0.3589°C to each value of the HadCRUTS5 record to adjust the data set onto the pre-industrial baseline.

We use this same offset for all of the other data sets. We add 0.3589°C to each value of AT from the siX data
sets to match the HadCRUTS5 1850-1900 baseline.

Section 2.2.3 states “Figure S5-S6 shows the ozone RF time series used in this analysis and the
supplement provides more information about the creation of the time series for the RF due to O3"R°P”. Figure
S5-5S6 displays the time series of tropospheric ozone RF used in our analysis for the various SSPs.
Tropospheric ozone is an important GHG that rivals nitrous oxide as the third most important anthropogenic
GHG. We include the RF due to tropospheric ozone (Os"™°F) in our model for completion, even though the
SSP database does not provide RF estimates for the various SSPs. We use values from the RCP scenarios
provided by the Potsdam Institute for Climate Impact Research (Meinshausen et al., 2011). The values of the
RF due to O3™%" for SSP1-1.9 and SSP1-2.6 are from the RCP2.6 pathway. The RCP4.5 time series of
03P s used for SSP2-4.5, the RCP6.0 time series is used for SSP4-6.0, and the RCP8.5 time series is used
for SSP5-8.5. We create linear combinations of RCP2.6 and RCP8.5 to generate two new time series of the
RF due to O3™R°P for SSP4-3.4 and SSP3-7.0. There is a large gap between the time series of the RF due to
03O for RCP6.0 (shown as SSP4-6.0) and RCP8.5 (shown as SSP5-8.5) in Fig. S556. We created a time
series that would split the difference between the two RCPs to represent the RF due to O3™R°P for SSP3-7.0.
The SSP4-3.4 time series of the RF due to O3™R°" that was created lies in between the RCP2.6 (shown as
SSP1-2.6) and RCP4.5 (shown as SSP2-4.5) time series in Fig. S5S6.
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Section 2.2.8 states “Figure S8-S9 shows the five OHC records as well as the multi-measurement
average”. Figure S8-S9 displays the five OHC content data sets, as well as the multi-measurement average,
plotted as a function of time and normalized to year 1986. This figure illustrates how the shapes of the
different OHC records compare. Each of the time series represents the amount of heat stored in the top 700
m of the world’s oceans for that specific data set. Carton et al. (2018) is the shortest data set, and only spans
36 years (1982-2017). The second shortest record is Balmaseda et al. (2013a), which spans 52 years (1958.5-
2009.5). Ishii et al. (2017) is the record in the middle with a range of 63 years (1955-2017). Both Cheng et
al. (2017) and Levitus et al. (2012) have records that span 65 years (1955-2019). The length of the data set
and the shape of the curve affect the estimate of ocean heat export (OHE), because we calculate OHE by
taking a linear fit to the full OHC time series. Balmaseda et al. (2013a) has the lowest estimate of OHE
because the slope of the curve is relatively shallow, due to the fact that it slightly rises, then decreases at the
start of the record. Carton et al. (2018) has the highest estimate of OHE because the slope of the curve is the

steepest of the five records.

Section 2.2.8 also says “For these five OHC data sets, uncertainty estimates are not always provided.
Furthermore, some studies that do provide uncertainties give estimates that seem unreasonably small (see Fig
$9-510 and the supplement)” and “Figure S9-S10 and the supplement provide more detail on the creation of
this time dependent uncertainty estimate for OHC”. Figure S9-S10 shows the multi-measurement average as
well as the five OHC data records as a function of time, the uncertainty for each corresponding data set, and
the combined uncertainty used in this analysis. Panel (a) shows the multi-measurement OHC average with
the standard deviation of the mean plotted around the average time series. The standard deviation is large at
the beginning of the time series, due to the spread in the estimates of OHC between the different records
(illustrated in Fig. S8S9). The standard deviation decreases as the various OHC records converge near a
similar estimate. The standard deviation is zero in 1986 because we normalized all of the time series to zero
in this year to create the multi-measurement average. Because of this normalization, the standard deviation
of the mean is not a realistic measure of uncertainty for the five OHC time series.

Panels (b), (c), (d), (e), and (f) display the uncertainty estimates for the five OHC data records. We
use the standard deviation of the mean of five ensemble members of the European Centre for Medium-Range
Weather Forecasts Ocean ReAnalysis System 4 (ORSA) (Balmaseda et al., 2013b) for the Balmaseda et al.
(2013a) record. The standard deviation is plotted in panel (b) as the dotted blue line. The standard deviation
is small at the beginning of the record, because the five ensemble members started at similar values of OHC
in 1958 and diverged over time. The combined uncertainty of the standard deviation of the average of the
five OHC records and the Cheng et al. (2017) estimate is plotted as a dashed blue line. Panel (c) shows the

Levitus et al. (2012) time series for the top 700 m updated to the end of 2019. The Levitus time series utilizes
5
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the standard error over the whole ocean for their uncertainty estimate and is plotted as the dotted light blue
line. The standard error is a very small uncertainty estimate compared to the other OHC data records, which
is unreasonable considering the large variations in OHC between the different records. We use the standard
deviation of eight reanalysis experiments to represent the uncertainty associated with the Carton et al. (2018)
OHC record and is plotted as a dotted orange line in panel (e). The standard deviation of the eight reanalysis
experiments is rather small, which also is unrealistic. Panel (f) displays the Cheng et al. (2017) OHC record
updated through the end of 2019 with the 1c-sigma uncertainty. This uncertainty does not vary much
throughout the data record, making it more realistic as an estimate for such an uncertain quantity as OHC.
We created the combined uncertainty estimate of the standard deviation of the average of the five OHC
records and the Cheng et al. (2017) 1o-sigma uncertainty to have the largest uncertainty possible due to the
fact that OHC varies between the different records. The EM-GC cannot achieve x?ocean < 2 for Balmaseda
et al. (2013a), Levitus et al (2012), and Carton et al. (2018) using their own respective estimates of
uncertainty. Creating one uncertainty estimate to be used for all of the OHC records provides consistency

and allows the EM-GC to achieve good fits between the observed and modeled OHC.

Section 2.3 states “Figure S10-S12 illustrates the REG method used to determine AAWR from the
CMIP6 GCMs”-and-““Analysis-of AAWR for these 50-GCMs-of EIN-versus REG{see Fis—S11)-—2. Figure
S$16-512 shows the change in ATGMST from 1975-2014 from the CMIP6 GCMs and the contribution of
SAOD from 1975-2014. There was about a 6 month lag between the response of ATGMST and enhancements
of SAOD following the eruption of Mount Pinatubo in June 1991 (Douglass and Knox, 2005; Thompson et
al., 2009); a 6 month delay for the response of ATGMST to SAOD is commonly used in regression analyses
of the actual temperature record (Foster and Rahmstorf, 2011; Lean and Rind, 2008). The time needed for
ATGMST to respond to a change in the aerosol loading in the stratosphere due to a volcanic eruption in each
GCM can exhibit a significant difference compared to this empirically determined response time. Therefore,
a lag was determined for each GCM by calculating the value of the monthly delay that resulted in the largest
regression coefficient for SAOD (versus ATGMST). Due to the difference in model physics between the
various GCMs, the value of the delay between the volcanic forcing and surface temperature response ranged
from 0 to 11 months. The effect of SAOD on ATGMST for the 50 GCMs is shown in Fig. S104S12d. Figure
S10b-S12b shows the residual in ATGMST after removing the influence of SOAD, and the median value of
AAWR from the CMIP6 multi-model ensemble is plotted as a linear line. Figure S18¢-S12c shows the human
component of global warming, ATatmHuman, from the EM-GC. A linear fit and quadratic fit are shown to
illustrate that ATaTtmHuman IS almost nearly linear from 1975-2014, supporting the approximation of

ATaTtmHumAN as a linear function from 1975-2014 for the REG calculation.
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Section 2.3 also states “Figure S13 and the supplement compare values of AAWR found using the
REG method applied to EM-GC output with values of AAWR found using Eg. (9), as support for the validity
of using the REG method to determine AAWR from CMIP6 output”. We applied the REG method to the

EM-GC simulations to check the validity of the REG method. We regressed the modeled AT time series from
the EM-GC for an AER RF2011 = -0.9 W m~2 simulation with SAOD and applied a 6 month lag. A linear

function is used to represent the anthropogenic effect on temperature from 1975-2014. Fig. S13 shows the
results of using the REG method on output of the EM-GC.

The value of AAWR from the EM-GC determined using the REG method is 0.188°C/decade,
compared to 0.167°C/decade using Eq. (9) (Fig. S13c and Fig. 1). There is a 0.021°C/decade difference

between the two methods. This difference arises because the REG method, when applied to the EM-GC
modeled AT time series, includes the contribution of AMOC in the value of AAWR (Fig. S13c). Figure 1 of
our paper illustrates that AMOC contributes about 0.025°C/decade to the rise in AT. If we include AMOC as

a regressor variable to the REG method, we obtain a value of AAWR of 0.161°C/decade from the output of
the EM-GC (Fig. S13q).

The close agreement of values of AAWR from the REG method once we account for AMOC and Eq.
(9) supports the validity of the REG method to determine AAWR from CMIPG6 output. We do not explicitly

use AMOC as a regressor variable when applying the REG method to CMIP6 GCMs for two reasons. The

first reason is that GCMs have been shown to underestimate key aspects of the Atlantic multidecadal

oscillation and are unable to simulate the many oceanic and atmospheric footprints of AMOC (Kavvada et
al., 2013). The second reason is that CMIP6 GCM historical runs do not use prescribed SSTs. If the CMIP6
GCMs are representing AMOC, it is a random signal that is averaged out when we analyze the 50 GCMs in
order to calculate AAWR.

Section 2.3 also says “Analysis of AAWR for these 50 GCMs of LIN versus REG (see Fig. S14)...”.
Figure S11-S14 shows the similarity between the values of AAWR determined using the LIN and REG
methods. The ratio between the values of AAWR determined utilizing LIN and REG is 1.009, indicating
there is only about a 0.9% difference in the values of AAWR using the two methods. Figure S11-S14 also

shows the values of AAWR that are below the maximum value of AAWR determined by the EM-GC utilizing
the HadCRUTS temperature record (blue) and the values that are above the maximum (red). About-Less than
half of the GCMs result in values of AAWR less than the maximum value from the EM-GC and hal-more
than half of the GCMs result in values of AAWR greater than the maximum value from the EM-GC utilizing
the HadCRUT5S5 GMST record.
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Section 2.4 states “For the estimate of ECS from the CMIP6 multi-model ensemble, we use the

method described by Gregory et al. (2004) (See the supplement and Fig. S15 for more information)”. To

use the Gregory method, near surface air temperature output from the Abrupt 4xCO> and piControl

simulations, as well as net downward radiative flux output from the Abrupt 4xCO» simulation is used to

calculate ECS. The near surface air temperature and net downward radiative flux was converted from

monthly gridded output to annual global averages. We calculate the temperature change for the Abrupt

4xCQO, simulation by subtracting the piControl near surface air temperature (Chen et al., 2019) (Fig. S15).

This computed temperature anomaly is then regressed against the net downward radiative flux, with the x-

intercept vielding the equilibrium response of AT to a quadrupling of CO». This equilibrium response is

then divided by two (Jones et al., 2019) to arrive at the equilibrium climate sensitivity (Fig. S15).

Section 2.5 states “See Fig. S14-S16 for unweighted ECS values and Section 3.2 states “See Fig S14
S16 for results without aerosol weighting”. Figure S+4-S16 displays the values of ECS using the EM-GC and
the CMIP6 multi-model ensemble. The EM-GC box contains the 25", 501", and 75" percentiles, the whiskers
denote the 5™ and 95™ percentiles, and the stars represent the minimum and maximum values of ECS. The
box labeled CMIP6 is unchanged from Fig. 87. The values of ECS are not treated with the aerosol weighting
described in Sect. 2.5. This figure shows that most of the estimates of ECS found using the EM-GC are
concentrated towards small values of ECS, due to the fact that the majority of the EM-GC model runs with
good fits to the climate record (y?atm, x*recent, and y?ocean) have weak aerosol cooling and low values of
As (Fig. 5b). We use the aerosol weighting method to assign the same weights for the IPCC 2013 “likely”
range limits of AER RF2011 of —0.4 and —1.5 W m™2 at the one sigma values of a Gaussian, and the —0.1 and

—-1.9 W m™2 are at the two sigma values of a Gaussian. Using the aerosol weighting method adjusts our

estimates of ECS so that the calculated percentiles occur at higher values.
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Section 3.2 in the Fig. 8 caption says, “See supplement for the confidence intervals plotted for each study”.

All of the studies except Dessler et al. (2018), Rugenstein et al. (2020), IPCC 2013, and Zelinka et al. (2020)

have the 5 to 95% confidence intervals shown. The 66% confidence intervals are shown for IPCC 2013, and

the minimum and maximum are shown for Dessler et al. (2020), Rugenstein et al. (2020) and Zelinka et al.

(2020).

Section 3.3.4 states “see Fig. S21 and the supplement” and ‘“‘see the supplement for more

information”. Figure S21 shows the rise in AT from pre-industrial for SSP5-8.5 versus the cumulative

emissions of COy, in Gt C, since 1870. The colored lines denote the probability of reaching at least that

temperature by the end of century. The large spread in projections of future AT is driven by the uncertainty

in AER RF. The computed probabilities are based on the aerosol weighting method, so the uncertainty in

AER RF is considered when determining the likelihood of achieving the Paris Agreement target of 1.5°C and

upper limit of 2.0°C for the cumulative carbon emissions.

We use the uncertainty suggested by coupled atmospheric / carbon cycle models in how atmospheric

CO» will respond to the prescribed carbon emissions. Examination of Fig. 2 and Table 3 from Friedlingstein

et al. (2014) and Fig. 9b from Murphy et al. (2014) led to our determination that the uncertainty in estimates

of atmospheric CO», from emissions driven runs of CMIP5 coupled atmospheric / carbon cycle models is

about 10% (1c). We include this 10% uncertainty in our determination of the carbon budgets for each

probability of achieving the Paris Agreement target and upper limit shown in Table 2.

Section 3.3.6 states “see Fig. S23 and the supplement for results without the time delay”. Figure S23

shows the effect of time variant A~! with an instantaneous response between A™! and a change in radiative

forcing. The instantaneous response causes the modeled AT to deviate more from the observed temperature

than the results using the 20 year delay in the response (Fig. S23g, h versus Fig. 14qg, h). The deviation

between the modeled and observed AT does not allow for a large change in A~ over time to still achieve the

v’atm and y’recent constraints. The deviation between modeled and observed AT in Fig. 23d resembles the

behavior of some CMIP6 GCMs (see Fig. 9 and Tokarska et al. (2020)).
9
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Figure S1. GMST anomaly in 2100 relative to pre-industrial (AT2100) as a function of climate feedback parameter
and AER RFo11 for two versions of the EM-GC trained with the HadCRUT4 AT record. (a) The change in AT2i00 for
SSP4-3.4 using the original formulation of Eq. (2) where Qocean is subtracted outside of the feedback multiplicative
term. (b) The change in ATa100 for SSP4-3.4 using the updated formulation of Eq. (2) where Qocean is subtracted
within the feedback multiplicative term similar to Bony et al. (2006) and Schwartz (2012). The EM-GC is able to fit
higher values of As at strong aerosol cooling (around —1.5 W m2) for the new Eq. (2) compared to the original
formulation in Canty et al. (2013) and Hope et al. (2017). The maximum value of future warming has increased due
to the higher As values.
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Figure S2. ATzi00 as a function of climate feedback parameter and tropospheric aerosol radiative forcing in 2011 using
the EM-GC trained with the HadCRUT5 AT record for SSP4-3.4. (a) Training period of 1850-1989. The region outside
of the AER RF2011 range provided by IPCC 2013 is shaded (grey). Colors denote the GMST change in year 2100
relative to pre-industrial. The color bar is the same across all four panels for comparison. (b) Training period of 1850-
1999. (c) Training period of 1850-2009. (d) Training period of 1850-2019, which is the normal training period used in
our analysis.
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Figure S3. Observed and modeled GMST anomaly relative to 1850-1900 from 1945-2060 for four training periods.

(a) Observations from HadCRUT5 (black), the EM-GC AT simulation for a training period of 1850-1989 (orange) of
HadCRUTS5, and the EM-GC projections for SSP4-3.4 out to 2060. Three EM-GC projections are shown in red: The
320  best estimate of climate feedback for AER RF211 = -0.9 W m~, the lowest value of climate feedback that satisfies the
v2 constraints for AER RF211 = -0.1 W m~2, and the highest value of climate feedback that satisfies the ¥? constraints
(the value of AER RF2011 varies for each training period). The IPCC 2013 likely range of warming is denoted as the
black trapezoid. (b) Training period of 1850-1999. (c) Training period of 1850-2009. (d) Training period of 1850-2019.
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Figure S4. Annual GMST (AT) anomaly for seven data records relative to their individual baseline and the multi-

record mean. The multi-record mean does not include the data set that is being shown. The 1c and 2c uncertainties

for each GMST record are shown. and the horizontal line for AT=0 spans the baseline used for the specific panel. (a)

GISTEMP. (b) BEG. (c) HadCRUTA4. (d) CW14. (e) HadCRUTS5. (f) NOAAGT. (g9) JIMA. Since the JMA data

provider does not provide an uncertainty time series, the HadCRUT4 uncertainty is used.
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Figure S5. Annual GMST (AT) anomaly relative to several baseline periods -for seven data records. The 1c (shaded
grey) and 2¢ (dotted grey) HadCRUT4 uncertainties are plotted about the multi-model record mean (black). (a)
Baseline of 1891-1920 plotted from 1850-2019. (b) Same as (a) using a baseline of 1961-1990. (c) Same as (a) except
all of the AT records are forced to match the average AT anomaly over 2010-2019 given by HadCRUTS5 that is relative
t0 1961-1990. (d) — (f) Same as (a) — (c) except plotted from 1940-2019.
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Table S1. Percentage of annual values between 1940-2019 of the GMST record within the 1 sigma or 2 sigma
HadCRUT4 uncertainties about the multi-record mean for each baseline period.

Baseline: 1891-1920 1o 20

NwitHin  NtotaL % NwitHin ~ NtotaL %
HadCRUT4 77 80 96 80 80 100
HadCRUT5 42 80 53 80 80 100
cwi4 80 80 100 80 80 100
BEG 71 80 89 80 80 100
GISTEMP 73 80 91 80 80 100
NOAAGT 76 80 95 80 80 100
JMA 29 80 36 54 80 68
AVERAGE 80% 95%
Baseline: 1961-1990
HadCRUT4 80 80 100 80 80 100
HadCRUT5 68 80 85 80 80 100
Cwi4 80 80 100 80 80 100
BEG 80 80 100 80 80 100
GISTEMP 75 80 94 80 80 100
NOAAGT 80 80 100 80 80 100
JMA 27 80 34 48 80 60
AVERAGE 88% 93%
Match 2010-2019
HadCRUT4 68 80 86 80 80 100
HadCRUT5 47 80 59 76 80 95
Cwi4 78 80 98 80 80 100
BEG 7 80 96 80 80 100
GISTEMP 47 80 59 79 80 99
NOAAGT 73 80 61 80 80 100
JMA 11 80 14 18 80 23
AVERAGE 72% 88%
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| Figure S5S6. Radiative forcing of tropospheric ozone for the various SSPs analyzed in our study. The time series
labeled SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5 are from the corresponding RCP scenarios. We created the time
series from SSP4-3.4 and SSP3-7.0 using linear combinations of the SSP1-2.6 and SSP5-8.5 time series.
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Figure S7. Radiative forcing time series due to tropospheric aerosols. (a) The RF time series due to tropospheric
aerosols for SSP1-2.6. The solid grey circle denotes the value of AER RFz11 given by the SSP database. The solid grey
lined labeled the —1.0 W m™ time series is the AER RF time series given by the SSP database for SSP1-2.6. We
appended a historical AER RF time series from the RCP scenarios and created five additional AER RF time series as
described in Sect. 2.2.4. (b) Anthropogenic aerosol radiative forcing time series for SSP4-3.4.
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Figure S68. Measured (HadCRUTS5) and modeled GMST anomaly (AT) relative to a pre-industrial (1850-1900)
baseline for an AER RFz011 = -0.1 W m=2 and -1.5 W m2. (a) Observed (black) and modeled (red) AT from 1850-
2019. This panel also displays the values of As and y2atm (see text) for this best-fit simulation. (b) Contributions from
total human activity. This panel also denotes the numerical value of the attributable anthropogenic warming rate from
1975-2014 (black dashed) as well as the 26 uncertainty in the slope. (c) Solar irradiance (light blue) and major
volcanoes (purple). (d) Influences from ENSO on AT. (e) Contributions from AMOC to AT and to observed warming
from 1975-2014. (f) Influences from PDO (blue) and IOD (pink) on AT. (g) Measured (black) and modeled (red) ocean
heat content (OHC) as a function of time for the average of five data sets (see text), the value of y?ocean for this run,
as well as the ocean heat uptake efficiency, k, needed to provide the best-fit to the OHC record. The error bars (blue)
denote the uncertainty in OHC used in this analysis (see Sect. 2.2.8). (h)-(n) Same as (a)-(g), except for AER RF11 =
-1.5Wm=,
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Figure S8S9. Ocean heat content time series. The five ocean heat content data records used in this analysis, normalized
to the year 1986 because this year is in the middle of the average time series. The grey shaded region is the combined
uncertainty estimate used in this analysis, centered around the average of the five data sets. The average of the ocean
heat content records (1955 — 2017) is computed when there are three or more data sets available for a given year.
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Figure S9S10. The ocean heat content records and uncertainty estimates analyzed in this study. (a) The average OHC
record along with the standard deviation of the mean represented by the dotted black line, and the combined uncertainty
of the 1o-sigma standard deviation of the average of the five OHC records and the Cheng et al. (2017) estimates shown
as the dashed black line. (b) Balmaseda OHC record with the standard deviation of the five ORSA ensemble members
as the dotted line, and the combined uncertainty as the dashed line. (c) Levitus OHC record with the standard error as
the native uncertainty, and the combined uncertainty. (d) Carton OHC record with the standard deviation of the mean
of multiple ensemble members, and the combined uncertainty. (€) Cheng OHC record with the 1o native uncertainty

and the combined uncertainty. (f) Ishii OHC record with the combined uncertainty as the dashed line.
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Figure S11. Measured (HadCRUT5) and modeled GMST anomaly (AT) relative to a pre-industrial (1850-1900)
baseline without AMOC, PDO, and IOD. (a) Observed (black) and modeled (red) AT from 1850-2019. This panel also
displays the values of As and y?atm (see text) for this best-fit simulation. (b) Contributions from total human activity.
This panel also denotes the numerical value of the attributable anthropogenic warming rate from 1975-2014 (black
dashed) as well as the 2c uncertainty in the slope. The estimates of AAWR show similar results if AMOC is or is not
included (see Fig. 1b). (c) Solar irradiance (light blue) and major volcanoes (purple). (d) Influences from ENSO on
AT. (e-f) Contributions from AMOC, PDO, and 10D to AT are set to zero (g) Measured (black) and modeled (red)
ocean heat content (OHC) as a function of time for the average of five data sets (see text), the value of y?ocean for this
run, as well as the ocean heat uptake efficiency, k, needed to provide the best-fit to the OHC record. The error bars
(blue) denote the uncertainty in OHC used in this analysis (see Sect. 2.2.8).
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Figure S10S12. The change in GMST (AT) relative to 1961-1990 from the CMIP6 GCMs and the contribution from
SAOD from 1975-2014. (a) ATFhe-change-in-GMST from the 50 CMIP6 GCMs. (b) The residual in the change of
GMST from the 50 CMIP6 GCMs after subtracting the contribution of SAOD determined by the updated REG method.
The median value of AAWR is written on this panel and plotted in red. (c) The human component of global warming,
ATatmHuman, from the EM-GC. A linear fit (black) and quadratic fit (red) are plotted on top to show that AT atm,HUMAN
is almost exactly linear. (d) The contribution of SAOD in the 50 CMIP6 GCMs using a lag month calculated for each
model.
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Figure S13. The change in GMST (AT) relative to 1961-1990 from observations and modeled output. (a) AT from
HadCRUT5 and EM-GC simulation. (b) The residual in AT from the EM-GC simulation after subtracting the
contribution of SAOD determined by the REG method (grey) and AT due to humans from the REG method (orange).
(c) AT due to humans from the REG method (orange) and from the EM-GC (blue). The values of AAWR determined

110  using the REG method and Eq. (9) are shown. (d) The contribution of SAOD to AT. (e) Same as (a). (f) Same as (b)
but also subtracting the contribution of AMOC determined by the REG method. (g) Same as (c) but using AMOC as a
regressor. (h) Same as (d) also showing the contribution of AMOC to AT found using the REG method.
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Figure S11514. Values of AAWR for 50 CMIP6 GCMs using the LIN and REG methods. The solid black line is the
1:1 line and the vertical and horizontal dashed lines are the maximum value of AAWR determined using the EM-GC
and the HadCRUT temperature record. The CMIP6 GCMs that have values of AAWR less than the maximum value
from the EM-GC are blue, and the CMIP6 GCMs that have values of AAWR greater than the maximum value from
the EM-GC are red. The slope, 1o standard deviation, and R? of the values of AAWR from the CMIP6 GCMs are
shown.
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425

Table S21. Values of AAWR calculated using the EM-GC as a function of start and end year. The value of AAWR
from 1975-2014 used in the main manuscript is shown in red. Each model run uses the best estimate of AER RFzo11
(-0.9 W m™), the average of five OHC records, and the HadCRUTS GMST record. The impact on varying the start
and end year on AAWR is slight, except when a short record is used (i.e. 1984-2004, a 21 year span). A two-decade
time span is not long enough to calculate an accurate estimate of AAWR. The value of AAWR is more sensitive to the
choice of OHC or temperature record used than the chosen time span.

Start Year
AAWR
(-Cldecade) 1970 1973 1975 1979 1982 1984
2004 0.454-181+ 0.153180+ 0453180+ 0.145169+ 0438159+ 0.130-149 +
0.006007 0.007009 0.008010 0.009011 0.010013 0.010012
2006 0450177+ 0149175+ 0149174+ 0241163+ 0434153+ 0126143+
0.008008 0.007009 0.008010 0.009011 0.009012 0.009011
2008 0148173+ 0.146171+ 0146169+ 0.138159+ 0431150+ 0.124-141+
0.006007 0.006008 0.007009 0.008010 0.008010 0.007009
End 2010 0147172+ 0145169+ 0144167+ 0137158+ 0431150+ 0.125143+
Year 0.005007 0.008008 0.007008 0.007008 0.007009 0.006008
2012 0446171+ 0.144168+ 0144167+ 0137158+ 0432152+ 0.128145+
0.005006 0.005007 0.006008 0.006008 0.006008 0.006007
2014 0146171+ 0.145168+ 0144167+ 0239160+ 0434154+ 0.130-149+
0.004005 0.005006 0.005007 0.005007 0.006007 0.005007
2016 0447171+ 0145169+ 0145168+ 0.140-161+ 0437157+ 0.134153+
0.004005 0.004006 0.005006 0.005006 0.005007 0.005007
2018 0147171+ 0146170+ 0146169+ 0.142163+ 0439159+ 0.137156+
0.003005 0.004005 0.004006 0.005006 0.005006 0.005006
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| Table S32. Average values of AAWR calculated from the CMIP6 multi-model results using the regression method as
a function of start and end year. The uncertainty corresponds to the 1o standard deviation of AAWR found from the

430 50 GCMs. The value of AAWR from 1975-2014 used in the main manuscript is shown in red. The values of AAWR
from the CMIP6 multi-model ensemble is more sensitive to the choice of start and end year than the EM-GC due to
the small number of models. We use the same start and end year, 1975-2014, for the determination of AAWR for both
the EM-GC and the CMIP6 multi-model ensemble for consistency.

Start Year
¢ éﬁ;’é’;e) 1970 1973 1975 1979 1982 1984
2004 0.85 0196 0200 0208 0224 0230
2006 092 0203 0207 0216 0232 0238
End Year
2008 096 0207 0211 0220 0234 0241
2010 0200 0209 0214 022 0236 0241
2012 0204 0213 0218 0226 0239 0244
2014 0208 0217 0222 0230 0242 0247
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Figure S12515. Steps for the calculation of ECS using the Gregory et al. (2004) method, using GISS-E2-1-H (Kelley
et al., 2020) as an example. (a) The change in Abrupt 4xCO, GMST (variable: tas) from the piControl experiment for
150 years. (b) Abrupt 4xCO- net downward radiative flux (variable: rtmt) versus the Abrupt 4xCO, GMST change
from the piControl experiment for 150 years. The x-intercept of the orthogonal linear least squares fit of the GCM
output shown in panel (b), divided by two yields the equilibrium climate sensitivity, which in this case is 3.09°C.
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| Table S43. Values of AAWR from 1975-2014 for the 50 CMIP6 multi-model Historical simulations available
at time of the analysis (April 2020) for both the REG and LIN methods. The asterisk symbol (*) indicates there
445 is only one run used to compute the value of AAWR for that GCM. No asterisk indicates the AAWR value
shown in the table is the average of the values of AAWR for all runs of that model. The average ratio of LIN
| to REG for all 50 models is 1.009 + 0.015, shown at the bottom of the table and in Fig. S1421. The correlation
coefficient (r?) of 0.995 is also shown. We conclude our determination of AAWR from the CMIP6 multi-model
ensemble is accurate to £1%, which is much smaller than the difference between the CMIP6 multi-model

450 ensemble values of AAWR and those found using the EM-GC framework.
AAWR, AAWR, AAWR, AAWR,
Model REG LIN Model REG LIN
(°Cldecade) (°C/decade) (°Cldecade) (°C/decade)

ACCESS-CM2 0.211 0.216 GFDL-CM4* 0.243 0.250
ACCESS-ESM1-5 0.238 0.246 GFDL-ESM4 0.203 0.224
AWI-CM-1-1-MR 0.215 0.220 GISS-E2-1-G 0.194 0.198
BCC-CSM2-MR 0.217 0.228 GISS-E2-1-G-CC 0.204 0.213
BCC-ESM1 0.241 0.249 GISS-E2-1-H 0.237 0.244
CAMS-CSM1-0 0.131 0.138 HadGEM3-GC31-LL 0.283 0.292
CanESM5 0.354 0.361 HadGEM3-GC31-MM  0.227 0.234
CanESM5-CanOE 0.323 0.334 INM-CM4-8* 0.173 0.181
CAS-ESM2-0 0.196 0.204 INM-CM5-0 0.146 0.156
CESM2 0.240 0.243 IPSL-CM6A-LR 0.230 0.236
CESM2-FV2 0.221 0.224 KACE-1-0-G 0.254 0.260
CESM2-WACCM 0.273 0.291 MCM-UA-1-0 0.225 0.231
CESM2-WACCM-FV2 0.231 0.235 MIROC6 0.157 0.168
CIESM 0.245 0.251 MIROC-ES2L 0.163 0.167
CNRM-CM6-1 0.202 0.196 MPI-ESM1-2-HAM 0.180 0.186
CNRM-CM6-1-HR* 0.172 0.178 MPI-ESM1-2-HR 0.195 0.203
CNRM-ESM2-1 0.170 0.172 MPI-ESM1-2-LR 0.192 0.197
E3SM-1-0 0.267 0.278 MRI-ESM2-0 0.203 0.210
E3SM-1-1* 0.283 0.285 NESM3 0.242 0.253
E3SM-1-1-ECA* 0.275 0.274 NorCPM1 0.180 0.185
EC-Earth3* 0.299 0.310 NorESM2-LM 0.167 0.182
EC-Earth3-Veg* 0.214 0.223 NorESM2-MM* 0.151 0.154
FGOALS-f3-L 0.218 0.226 SAMO-UNICON* 0.245 0.250
FGOALS-g3 0.176 0.191 TalESM1* 0.273 0.283
FIO-ESM-2-0 0.229 0.237 UKESM1-0-LL 0.299 0.312
Ratio = 1.009 £+ 0.015 R? =0.995
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Figure S16. Values of ECS found using the EM-GC and the CMIP6 multi-model ensemble without the aerosol
weighting method. Values of ECS utilizing the EM-GC are calculated using seven temperature data sets and five
ocean heat content records (as indicated). The box represents the 25", 50" and 75" percentiles of the values of ECS
and the whiskers denote the 5" and 95" percentiles for the different OHC records and each temperature record
without using the aerosol weighting method (unweighted). The stars indicate the minimum and maximum values of
ECS. The circles are the values of ECS associated with the best estimate of AER RF2011 of —0.9 W m 2. The box
labeled CMIP6 is the 25" 50" and 75" percentiles of the values of ECS from the CMIP6 multi-model ensemble, the
whiskers indicate the 5" and 95" percentiles, and the stars represent the minimum and maximum values of ECS from

the CMIP6 multi-model ensemble.
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465  Table S54. Equilibrium climate sensitivity (ECS) from 28 CMIP6 GCMs. We can only calculate ECS for GCMs that
provide Abrupt 4xCO; near surface air temperature (output variable: tas), net downward radiative flux (output
variable: rtmt), and piControl near surface air temperature (output variable: tas) to the CMIP6 archive at time of the
analysis (April 2020). All estimates are for one model run except for CanESM5, which is the average of two runs.

Model ECS (K)
ACCESS-CM2 4.93
ACCESS-ESM1-5 3.63
BCC-CSM2-MR 3.16
BCC-ESM1 3.74
CanESM5 5.70
CESM2 5.32
CESM2-FV2 5.06
CESM2-WACCM 4.73
CESM2-WACCM-FV2 4.56
E3SM-1-0 5.28
EC-Earth3-Veg 4.34
GFDL-CM4 3.78
GFDL-ESM4 2.61
GISS-E2-1-G 2.71
GISS-E2-2-G 2.25
GISS-E2-1-H 3.09
HadGEM3-GC31-LL 5.65
INM-CM4-8 2.32
INM-CM5-0 2.39
IPSL-CM6A-LR 497
MCM-UA-1-0 3.68
MIROC6 2.84
MIROC-ES2L 2.83
NorESM2-LM 2.19
NorESM2-MM 2.15
SAMO-UNICON 3.53
TalESM1 4.33
UKESM1-0-LL 5.40
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Figure S17. Values of ECS versus AAWR for the CMIP6 multi-model ensemble. The EM-GC estimates of AAWR
and ECS based on training to the HadCRUT5 GMST record are plotted as a box and whisker. The box shows the
average 25", 50", and 75" percentiles for the five OHC records shown for HadCRUTS5 in Fig. 6 and Fig. 7. The
whiskers represent the average 5" and 95" percentiles. The stars denote the average minimum and maximum values
of AAWR or ECS. The eight CMIP6 GCMs that obtain values of AAWR and ECS that are both within the minimum
and maximum estimates provided by the EM-GC are identified on the figure. Values of AAWR explain about 78% of
the variance in ECS among the CMIP6 GCMs.
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Figure S15518. GMST anomaly in 2100 from pre-industrial (AT2100) as a function of climate feedback parameter
and AER RFz011 found using the EM-GC trained with AT from HadCRUTS. (a) AT2100 for SSP4-6.0. The region
outside of the tropospheric aerosol radiative forcing rage provided by IPCC 2013 (Myhre et al., 2013) is shaded grey.
Colors denote the change in AT2100. (b) AT2100 for SSP3-7.0. (C) AT2100 for SSP5-8.5.
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Figure S16S19. Probabilistic forecasts of future projections of AT using the EM-GC trained with AT from HadCRUTS5
for the SSP4-6.0, SSP3-7.0, and SSP5-8.5 scenarios. (a) Future projections of AT for SSP4-6.0. Observations (orange)
are from CRUHadCRUTS. The IPCC 2013 likely range of warming (black) is from Figure 11.25b of chapter 11 of the
IPCC 2013 report. The Paris Agreement target and upper limit (yellow) are shown for comparison to projections of AT
using the EM-GC. The CMIP6 minimum, multi-model mean, and maximum values of the rise in AT are shown to
compare to projections from the EM-GC. Colors denote the probability of reaching at least that temperature by the end
of the century and are computed using the aerosol weighting method (see Sect. 2.5). (b) Future projections of AT for
SSP3-7.0. (¢) Future projections of AT for SSP5-8.5.
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Figure S17520. Probability density functions (PDF) for the increase in AT2ig0 using the EM-GC and the CMIP6 multi-
model ensemble. (a) PDF for EM-GC (blue) results trained with AT from HadCRUTS5 and CMIP6 multi-model results
(red) for SSP4-6.0. The left-hand y-axis is for EM-GC probabilities and the righthand y-axis is for GCM probabilities.
%00 (b) PDF for SSP3-7.0. (c) PDF for SSP5-8.5.
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Table S6. Probabilities of achieving the Paris Agreement target and upper limit for the various SSP scenarios based
on the EM-GC using the HadCRUT4 or HadCRUT5 GMST data set and the CMIP6 multi-model ensemble. The
probabilities using the EM-GC are computed using the aerosol weighting method. The probabilities using the CMIP6
GCMs are computed by calculating how many of the models for that scenario are below the temperature limits

compared to the total number of models.

Probability of Staying at or Below Probability of Staying at or Below
15°C 2.0°C
HadCRUT4 HadCRUT5 CMIP6 HadCRUT4 HadCRUTS5 CMIP6

SSP1-1.9 84% 81% 90% 99% 98% 80%
SSP1-2.6 64% 93% 18% 90% 86% 47%
SSP4-3.4 35% 19% 0% 4% 64% 17%
SSP2-4.5 9% 0% 0% 52% 33% 3%
SSP4-6.0 0% 0% 0% 26% 8% 0%
SSP3-7.0 0% 0% 0% 1% 0% 0%
SSP5-8.5 0% 0% 0% 0% 0% 0%
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Figure S21. Transient climate response to cumulative CO, emissions for SSP5-8.5 using the EM-GC trained with the
HadCRUTS5 AT record. Simulations of the rise in AT versus cumulative CO» emissions in units of Gt C. The orange
line is observations of AT from HadCRUT5 plotted against cumulative carbon emissions from the Global Carbon
Budget project (Friedlingstein et al., 2019). The dotted and dashed lines denote the Paris Agreement target and upper
limit, respectively. The EM-GC projections represent the probability that the future value of AT will rise to the indicated
level, considering only acceptable fits to the climate record. The probabilities were determined using the aerosol
weighting method. The light grey, dark grey, and black curves denote the 95, 66, and 50% probabilities of either the
Paris target (intersection of dotted horizontal lines) or upper limit (intersection of dashed lines with curves) being
achieved.
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| Figure $18522. Blended methane mixing ratios. The dotted lines are linear combinations of the time series of methane
520  abundances using SSP1-2.6 and SSP3-7.0 to span the range of values of future methane. The solid lines are the SSP1-
2.6 and SSP3-7.0 methane mixing ratio time series.
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Figure S23. Change in GMST (AT) from 1850-2019 for observations from HadCRUTS5 (black) and 1850-2100 for
25  modeled (red) using SSP4-3.4 and the residual between modeled and observations using an instantaneous time variant

L. (a) AT assuming a constant value of A%, (b) AT allowing A"' to increase by 50%. (c) AT allowing A" to vary

while the value of y%recent is kept below 2. (d) AT allowing A~ to vary while the value of y2atm is kept below 2. (e)

Residual between modeled and observed AT from 1850-2019 for constant A2, (f) Same as (e) but for increasing A~

by 50%. (g) Same as (f) but for varying A~* while the value of y?recent is kept below 2. (h) same as (g)but for varying
530 A1 while the value of y2atwm is kept below 2.
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Table S557. Details of the CMIP6 GCMs used in this study.

Institution Model Model Output
AS-RCEC TalESM1 No reference provided
AWI AWI-CM-1-1-MR (Semmler et al., 2018a, 2018b, 2018c, 2019a, 2019b)
(Wu et al., 2018a, 2018b, 2018c; Xin et al., 2019a, 2019b,
BCC-CSM2-MR 2019¢. 2019d
BCC ¢, 2019d)
BCC-ESM1 (Zhang et al., 2018a, 2018b, 2019)
CAMS CAMS-CSM1-0 (Rong, 2019a, 2019b, 2019c, 2019d, 2019, 2019f)
CAS-ESM2-0 (Chai, 2019)
CAS FGOALS-f3-L (YU, 2019a, 2019b, 2019c, 2019d, 2019¢)
FGOALS-g3 (Li, 2019a, 2019b, 2019c, 2019d, 2019¢)
(Swart et al., 2019f, 2019g, 2019h, 2019i, 2019j, 2019k, 2019,
CanESMS 2019m, 2019n, 2019
ccCma m, 2019n, 20190)

CNRM-CERFACS

CSIRO

CSIRO-ARCCSS

E3SM-Project

E3SM-Project RUBISCO

EC-Earth-Consortium

CanESM5-CanOE

CNRM-CM6-1

CNRM-CM6-1-HR

CNRM-ESM2-1

ACCESS-ESM1-5

ACCESS-CM2

E3SM-1-0

E3SM-1-1-ECA

E3SM-1-1

EC-Earth3

EC-Earth3-Veg

(Swart et al., 2019a, 2019b, 2019c, 2019d, 2019¢)

(Voldoire, 2018, 2019c, 2019d, 2019e, 2019f)

(Voldoire, 2019a, 2019b, 2020a, 2020b)

(Seferian, 2018; Voldoire, 2019g, 2019h, 2019i, 2019j, 2019k,
2019I)

(Ziehn et al., 2019a, 2019b, 2019c, 2019d, 2019e, 2019f,
20190)

(Dix et al., 2019a, 2019b, 2019c¢, 2019d, 2019e, 2019f, 20199)

(Bader et al., 2018, 2019a, 2019b)

(Bader et al., 2020)

(Bader et al., 2019c)

(EC-Earth Consortium (EC-Earth), 2019i, 2019j, 2019k,
20191, 2019m)

(EC-Earth Consortium (EC-Earth), 2019a, 2019b, 2019c,
2019d, 2019e, 2019f, 2019g, 2019h)
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FIO-QLNM

HAMMOZ-Consortium

INM

IPSL

MIROC

MOHC

MOHC NERC

MOHC, NERC, NIMS-KMA,
NIWA

MPI-M AWI

MPI-M DWD DKRZ

MRI

NASA-GISS

NCAR

FIO-ESM-2-0

MPI-ESM1-2-HAM

INM-CM4-8

INM-CM5-0

IPSL-CMGA-LR

MIROC6

MIROC-ES2L

HadGEM3-GC31-MM

HadGEM3-GC31-LL

UKESM1-0-LL

MPI-ESM1-2-LR

MPI-ESM1-2-HR

MRI-ESM2-0

GISS-E2-1-G

GISS-E2-1-G-CC

GISS-E2-2-G

GISS-E2-1-H

CESM2-WACCM-FV2

(Song et al., 2019a, 2019b, 2019c, 2019d)

(Neubauer et al., 2019)

(Volodin et al., 2019a, 2019b, 2019c, 2019d, 2019e, 2019f,
2019g)

(Volodin et al., 2019m, 2019h, 2019n, 2019i, 2019j, 2019k
20191)

(Boucher et al., 2018a, 2018b, 2018¢c, 2019a, 2019b, 2019c,
2019d, 2019e, 2019f, 2019g)

(Shiogama et al., 2019a, 2019b, 2019c, 2019d, 2019¢, 2019f,
2019g; Tatebe and Watanabe, 2018a, 2018b, 2018c)

(Hajima et al., 2019; Tachiiri et al., 2019a, 2019b, 2019c,
2019d, 2019¢)

(Ridley et al., 2019c)

(Good, 2019, 2020a, 2020b; Ridley et al., 2018, 2019a, 2019b)

(Byun, 2020; Good et al., 2019a, 2019b, 2019c, 2019d, 2019,
2019f; Tang et al., 2019a, 2019b, 2019c)

(Wieners et al., 2019a, 2019b, 2019c, 2019d, 2019¢)

(Jungclaus et al., 2019; Schupfner et al., 2019a, 2019b, 2019c,
2019d; Steger et al., 2019)

(Yukimoto et al., 2019a, 2019b, 2019¢, 2019d, 2019, 2019f,
2019g, 2019h)

(NASA Goddard Institute for Space Studies (NASA/GISS),
2018a, 2018b, 2018c, 2020a, 2020b, 2020c, 2020d)

No reference provided

(NASA Goddard Institute for Space Studies (NASA/GISS),
2019a)

(NASA Goddard Institute for Space Studies (NASA/GISS),
2018d, 2019b, 2019c)

(Danabasoglu, 2019d, 2019¢, 2020a)
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NCC

NIMS-KMA

NOAA-GFDL

NUIST

SNU

THU

UA

CESM2

CESM2-FV2

CESM2-WACCM

NorCPM1

NoreESM2-LM

NorESM2-MM

KACE-1-0-G

GFDL-CM4

GFDL-ESM4

NESM3

SAMO-UNICON

CIESM

MCM-UA-1-0

(Danabasoglu, 2019c, 2019d, 2019e, 2019f, 2019g, 2019h;
Danabasoglu et al., 2019)

(Danabasoglu, 2019b, 2019c, 2020b)

(Danabasoglu, 2019f, 2019g, 2019h, 2019a, 2019i, 2019j,
2019K)

(Bethke et al., 2019a, 2019b, 2019c)

(Seland et al., 2019a, 2019b, 2019c, 2019d, 2019, 2019f,
20190)

(Bentsen et al., 2019a, 2019b, 2019c, 2019d, 2019, 2019f,
20199)

(Byun et al., 2019a, 2019b, 2019c, 2019d, 2019e)

(Guo et al., 2018a, 2018b, 2018c, 2018d, 2018e)

(John et al., 2018a, 2018b, 2018c, 2018d, 2018e; Krasting et
al., 2018a, 2018h, 2018c)

(Cao, 2019a, 2019h, 2019c; Cao and Wang, 2019)

(Park and Shin, 2019a, 2019b, 2019c)

(Huang, 2019a, 2019b, 2020a, 2020b)

(Stouffer, 2019a, 2019b, 2019c, 2019d, 2019e, 2019f, 2019g)
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