
Review of "Assessment of a full-field initialised decadal climate prediction system 
with the CMIP6 version of EC-Earth”, by Bilbao et al. 
 
Review 1: Reply to Dr. Panos Athanasiadis: 
 
Specific Comments 
 
1. Line 5: It would be helpful to be admitted / clarified that the realistic initialization contains 
part of the externally forced trends as, for example, the oceans get warmer with global 
warming. Yes, there are also aerosols and CO2 which modify radiation and clouds during 
the 
simulations, but the warming signal is also contained in the initialized ocean state 
(progressively warmer). 
 
Reply: We agree with the reviewer’s comment. Certainly the initial conditions include a 
response to the external forcings, and can even correct part of the forced response that is 
misrepresented by the models and/or the forcings. To be more precise we have rewritten the 
sentence to simply say that most of the skill comes from the external radiative forcings.  
 
2. Line 6: “gets” → is 
 
Reply: corrected. 
 
3. Line 13: “in the surface” → at the surface...... the subsurface layer, 
 
Reply: corrected. 
 
4. Line 47-50: On this point, there is also another recent study using DCPP-A (Athanasiadis 
et al., 2020) that shows comparable (even higher) skill for the NAO using CESM-DPLE. 
 
Reply: The paragraph has been adjusted and the reference included. 
 
5. Line 61: “is initialisation” → is the realistic initialisation of the ocean state (or of the Earth 
system, if the authors prefer). 
 
Reply: suggestion accepted. 
 
6. Line 65: “especially in” → especially in the deep ocean and before modern instruments 
(such as ARGO floats) were introduced. 
 
Reply: suggestion accepted. 
 
7. Line 66: What is the meaning of the word “exclusively” in this sentence? Initial states are 
built from observations. 
 
Reply: The term “exclusively” has been removed. 
 
8. Line 95: “that take” → which take 



 
Reply: corrected. 
 
9. Line 115: “10 member” → 10-member 
 
Reply: corrected. 
 
10. Line 154: Has the word “cmorisation” been defined earlier? Perhaps it would be best to 
keep the “CMOR” part in capital letters. 
 
Reply: corrected. 
 
11. Line 155: “data was...” → data were systematically checked for their quality with... 
 
Reply: suggestion accepted. 
 
12. Line 174: I expect that the drift cannot affect equally all predictions (initialized in different 
years with different states, closer to or further from the model climatology). The drift is 
defined as the average tendency over many years, is not that so? 
 
Reply: The ‘mean drift correction’ that we apply assumes that drift is the same in all the 
forecasts, which may be a suitable approximation for certain variables. However, we agree 
with the reviewer’s comment that drift is unlikely equal in all predictions, in fact, in section 3.3 
we highlight how this is not the case for the AMOC and SPGSI. An inefficient drift removal 
may compromise the skill evaluation. In literature several drift correction methods have been 
proposed, but to date there is no clear advantage to using a particular method. We have 
rephrased the sentence to acknowledge that the underlying assumption (i.e. the insensitivity 
of the drift to the initial state) might not always hold. 
 
13. Line 199: “persisting it” → making it persist 
 
Reply: corrected. 
 
14. Line 219: “Equator-60” → Equator‒60 (not hyphen but en dash). 
 
Reply: corrected. 
 
15. Line 248: What do you mean by “phases”? The Reviewer guesses what the authors 
might mean. Please take into account the common use of “phase” as a verb 
(https://www.merriamwebster. 
com/dictionary/phase) and expand this sentence accordingly. 
 
Reply: The verb has been changed to ‘puts in phase’. 
 
16. Line 249: “equivalent” → comparable / similar 
 
Reply: corrected. 
 



17. Line 259: “influence of” → influence of the unpredictable part of 
 
Reply: corrected. 
 
18. Line 261: Here and elsewhere (where a similar expression is used as an adjective) use 
“lowfrequency”. 
 
Reply: corrected. 
 
19. Line 295: “is for the some” → is for some 
 
Reply: corrected. 
 
20. Line 319: “5f” is a reference to “Fig. 5f”? Please follow the instructions for authors of this 
journal – in any case, all references to figures should follow a standard way (same 
throughout 
the text). 
 
Reply: corrected. 
 
21. Line 344: “ranges(Figure” (add space) 
 
Reply: corrected. 
 
22. Line 351: “to aid” → so as to aid 
 
Reply: corrected. 
 
23. Line 356: “feature” → behaviour / relationship 
 
Reply: corrected. 
 
24. Line 359: “evolve” → evolves (singular) 
 
Reply: corrected. 
 
25. Line 363: Why should that be? Same model => same attractor. 
 
Reply: What we mean to say is that the model might have more than 1 attractor, which 
seems to be the case given the existence of two different states of Labrador Convection. We 
have rephrased for clarity. 
 
26. Line 389: The Reviewer questions the idea that PRED can reach (or come in the 
neighborhood of) the model's AMOC attractor in just 10 years. 
 
Reply: We agree with the reviewer that ten years may be insufficient time to reach the model 
attractor(s), in particular for the AMOC. We have rephrased the sentence taking it into 
account. 



 
27. Line 392: But could not it be that a surface-wind bias (likely associated with a bias in 
Greenland blocking frequency) favors the formation of sea ice in the Lab. sea, which 
subsequently blocks heat and moisture surface fluxes? If the authors agree that this is a 
plausible explanation, at least in part, the Reviewer would suggest to take a look at surface 
wind biases in that area. 
 
Reply: To answer the reviewers comment we have looked at the surface wind stress over 
the Labrador Sea (See Supporting Figure 1). The plot shows that the drift in PRED is too 
small in comparison with the one in other variables and therefore seems unlikely that the 
wind is responsible for the very rapid sea ice growth.  

 
 
Supporting Figure 1. FMA Windstress in the Labrador Sea in PRED for a) the meridional 
direction and b) zonal direction. Ensemble mean forecasts (10 members) of PRED  are 
shown from blue to red every 3 startdates. Panels b) and d) are the climatological values as 
a function of forecast time. 
 
28. Line 414: What does “their” refer to? 
 
Reply: corrected. 
 
29. Line 421: Here and elsewhere, please make “3” a superscript (exponent). Also, add 
some small spaces between values/numbers and units. 
 
Reply: corrected. 
 
30. Line 428: “simulation” → simulations 
 
Reply: corrected. 
 



31. Line 486: “varibility” → variability 
 
Reply: corrected. 
 
32. Line 491: Speaking of an “effect”, is this positive, or negative? What kind of effect? 
 
Reply: We refer to a negative effect on its regional skill. It’s been rephrased to clarify it. 
 
33. Line 498: Speaking of different members exhibiting different mean states, it is likely that 
the AMOC has a degree of non-stationarity and not necessarily a uni-modal distribution. If 
that is so, then the multi-member time average may not correspond to any real attractor 
(preferred state). 
 
Reply: We agree with the reviewer’s assessment. The fact that the historical ensemble mean 
might not represent a preferred state is now mentioned in the sentence.  
 
34. Line 501: “brings the predictions apart from” → carries the predictions away from 
 
Reply: suggestion accepted. 
 
35. Line 517: “prone” → likely A method is prone to errors, instead, the errors themselves 
are not “prone” to occur. 
 
Reply: corrected. 
 
FIGURE 2: In the caption please change the sentence referring to the hatching – what are 
significant are the ACC values, not the areas themselves. Also write: “Points with missing 
values...” as the masking is applied to an area. From a scientific view point: the lack of 
predictive skill in the subpolar gyre (south of Greenland) is an indication of likely poor NAO 
skill (see Athanasiadis et al., 2020). Have the authors assessed the NAO skill for this set of 
hindcasts? If the NAO skill is indeed poor, perhaps it would be fair and worth mentioning this 
possible connection. 
 
Reply: The caption of Figure 2 has been updated as suggested. We have looked at the NAO 
and we have low insignificant skill. The possible link between the low NAO skill and that of 
the SPNA OHC is now mentioned at the end of section 3.3. 
 
FIGURE 5: This, but also other figures, should be expanded so as to best use the available 
space. The overall figure width should, however, remain a bit narrower than the width of the 
main text (plenty of space until there). From a scientific view point: Why does HIST 
ensemble mean exhibit such a weak ENSO variability, in contrast to PRED, for the 1st year 
of the predictions? Arguably, because ENSO events are mainly out of phase across the 
HIST ensemble (as expected). The authors may want to mention this rather trivial 
explanation. 
 
Reply: The figures have been changed as suggested. The reviewer is correct, we have 
added a comment in the text.  
 



FIGURE 11: “Scatterplot diagram” → Scatter plot. 
 
Reply: corrected. 
Review 2: Reply to Dr. Steve Yeager: 
 
Specific Comments: 
 
My specific recommendations for improvement: 
 
1) Much of the paper elaborates on the negative effects of an “initialisation shock” in the 
subpolar Atlantic, and this term is even included in the abstract. While the authors offer a 
definition of what this phrase means (“abrupt changes that occur soon after initialisation as a 
result of the adjustment of the climate model to the initial state”), I felt that the precise 
meaning of this term (and its usefulness for understanding system behavior) faded as I read. 
Certainly, there is a pathological adjustment to initialization going on in this system, but the 
distinction between shock and drift is not clear, nor is it clear that the initial shock (enhanced 
Labrador Sea convection) causes the longer term drift (towards reduced convection and sea 
ice expansion, AMOC decline, etc.). Is the shock really the essential problem in EC-Earth, or 
is it the drift towards ice-covered Labrador Sea? I suspect the latter is the more fundamental 
problem. I recommend a reconsideration of the phraseology used throughout. 
 
Reply: This is a really good point. We agree that both the initialization shock and the mean 
drift are closely related in our predictions, and that is not possible to disentangle from our 
analysis if the problem is caused by the processes behind the initial adjustment or by those 
related to the long-term drift, which might be related. We have tried to improve the clarity of 
their definitions in the introduction and explain how they might relate with one another. We 
also specify now that initial adjustments or shocks, when they occur systematically across 
start dates, can be regarded as the initial stage of the model drift, and even condition its later 
evolution. We have also carefully revised the rest of the paper to mention both the shock and 
the drift as the ultimate causes of the lack of skill in the central SPNA. 
 
2) Related to above, the skill improvement with lead time for NASPG-OHC300 (Figs. 5k and 
S1k) is interpreted as reflecting initialization shock behavior. However, the later figures (in 
particular, Fig. 7) make me question whether the relatively high skill for later lead times (e.g., 
LY7-10) is real skill. I note that HIST_NoConv exhibits a reasonably high correlation with 
RECON for Western SPNA-OHC300 (Fig. 7c) which is almost certainly spurious—it appears 
to relate to a post-1990s spinup of the NASPG in those members (Fig. 6b) which in turn 
appears related to a transition from fully ice-covered Lab Sea to only partially-covered Lab 
Sea, with associated increase in convection (Fig.7). This mechanism for reproducing the late 
20th century warming of the SPG is unequivocally unrealistic, even though it might yield 
higher correlation scores for NASPG-OHC300 than HIST itself (could you check this?). At 
long lead times, PRED seems to show similar behavior as HIST_NoConv (as noted in the 
text, but also in terms of Lab Sea transition from ice-covered_no-convection to 
partially-ice-covered_some convection), suggesting that the better NASPG-OHC300 “skill” at 
long lead times is a spurious artifact of an unrealistic warming mechanism. If true, this 
changes the interpretation of what is happening in the prediction system (i.e., it is not 
“initialization shock” followed by skill recovery via better representation of real mechanisms). 



If not true, how do the authors explain the increase in NASPG-OHC300 skill with lead time 
(Fig. 5k)? 
 
Reply: This is a really interesting hypothesis, which we had not thought of. To check if the 
hypothesis is true we have looked in more detail at the East and West SPNA OHC in the 
upper 300m (see Supporting Figure 1). As suggested, we have divided the historical 
ensemble into those members which exhibit convection (Hist_Conv, 7 out of 10 simulations) 
and those with suppressed convection (Hist_NoConv, 3 out of 10). The reviewer correctly 
pointed out that the historical members with no convection have higher ACC values than 
those with convection (Figure 1c), at least in the West-SPNA (note that to avoid differences 
in skill due to differences in the verification period we have set a common verification period: 
1971-2008). This is because the members with no convection show a long-term warming 
trend which happens to coincide, in large part, with the observed one, even if it happens for 
the wrong reasons (that is the melting of Labrador Sea ice allowing for open ocean 
convection) . 
 
Even though PRED at the later forecast times reaches comparable ACC values  to 
Hist_NoConv, these do not seem to be explained by the same mechanism explaining the 
spurious OHC300 warming in Hist_NoConv (Figure 1c). Indeed, the timeseries in Supporting 
Figure 1b shows that the large improvement in skill at the longest forecast range with 
respect to the first forecast years comes from a good representation of the decadal 
variability, including the quick transition from cold to warm OHC anomalies that occurred 
during the mid-90s, with a radically different long-term evolution than in Hist_NoConv.  The 
lack of skill in PRED at the initial forecast times comes from a poor representation of the 
observed inter-annual variability, which in the forecast shows some ‘spikes’ (or abrupt 
transitions) that might well result from the initialization shocks.  
 
The respective plots for the eastern SPNA OHC300 can help explain the origin of the skill 
recovery at forecast years 7-10 over the whole SPNA. Indeed, they show that the eastern 
side of the region has rather constant predictive skill, comparable in PRED and both 
Historical ensembles, which implies that most of the skill might be forced. In terms of the 
mean gyre circulation, the eastern SPNA is upstream of the western side, and therefore the 
mean flow might be advecting the (skilfully) forecasted anomalies from the eastern into the 
western region, eventually substituting the unrealistic OHC anomalies generated in the first 
forecast years by the labrador convection collapse. If we take into account that the eastern 
SPNA maintains a similar level of skill all along the forecast, and that the western SPNA 
recovers it at the very end, we could then explain the increase in skill with lead time for the 
whole SPNA in Figure 5k. This is, of course, just one plausible hypothesis, but exploring it 
further would require extending the paper in a new direction, something that we would prefer 
not to do given that it is already lengthy and dense.  
 
A reduced version of Supporting Figure 1 has been included in the Supplement, and is now 
discussed in the text to explain our hypothesis behind the whole SPNA skill recovery. 
 
 



 
 
Supporting Figure 1: Timeseries and ACC skill of the West and East SPNA-OHC300             
anomalies (with respect to 1971-2018). The timeseries and ACC have been computed for             
the common period for all forecast ranges (i.e. 1970-2018). The first two columns show the               
observed (grey bars) and predicted (PRED in red, HIST in blue, HIST_Conv in green and               
HIST_NoConv in purple) timeseries for the 1-4 and 7-10 forecast years respectively. The             
third column shows the ACC for PRED (red), HIST (blue), HIST_Conv (green) and             
HIST_NoConv (purple). Statistically significant ACC values (at the 95% confidence level) are            
shown as empty circles. 
 
 
3) Figures 8 and 10 have many small thin lines of various colors and hues that are very hard 
to distinguish (this reviewer is slightly color blind). Can a revised version be developed that is 
easier to see, particularly Fig. 8? I recognize that “easy to see” is quite subjective, and that 
these figures contain lots of information that is hard to display any other way. Perhaps the 
answer is “the figures are as clear as they can reasonably be” and I am in a small minority 
that has trouble viewing them, but if others (reviewers, coauthors, colleagues) also have 
difficulty with these figures then please make an effort to improve them. 
 
Reply: The resolution and quality of the figures have been improved. In figures 8 and 10 the 
profiles now go down to 500m rather than 800m to allow for a better visualization of the 
near-surface differences. And in Figure 8 we now include two rows, one comparing PRED 
with RECON, and another comparing PRED with HIST, which reduces the amount of lines, 
and allows to see better the differences between RECON and PRED. 
 
Additional Comments (by line number) 
 
63: This is not a complete sentence. 



 
Reply: corrected. 
 
80: The meaning of “biases in the predictions” is not clear. Model mean bias is to be 
expected when using anomaly initialization. Do you mean “time-dependent biases in the 
predictions” (i.e. drift)? 
 
Reply: We have rephrased it now as “skill degradation in the predictions”. 
 
111: ORCA has not been defined 
 
Reply: Added information. 
 
124: There is no mention of how the land model component is initialized—can you please 
clarify? 
 
Reply: Added information of the land model component (HTESSEL) and the initialisation.  
 
205-207: Since sentence paragraphs are not advisable. 
 
Reply: the sentence has been deleted as it was not necessary. 
 
243: “signal” instead of “trend” to avoid awkward phrasing? 
 
Reply: suggestion accepted. 
 
264: “associated with” instead of “to” 
 
Reply: corrected. 
 
271: It would help to interpret Fig. 3 if the breakdown of MSSS into correlation and 
conditional bias terms were given explicitly (perhaps in section 2.3), and the corresponding 
relationships between Fig. 3 panels clarified (e.g., is panel a = panel d + panel g?). 
 
Reply: The description of the MSSS in section 2.3 has been extended. We now include two                
equations, the one we used for the computation, that it’s taken from Goddard et al. (2013;                
Eq. 5), and a more compact version that represents the numerator as the difference between               
two terms, one based on ACCs and another on conditional biases. Both equations are              
reproduced below. The re-arrangement in Equation 2 has allowed us to see that the middle               
and bottom plots in the former version of Figure 3 did not represent direct contributions to                
the MSSS. It is actually the differences in the squared ACCs/conditional biases that             
determine the final MSSS, and therefore those are the quantities that we now represent in               
the middle and bottom rows of Figure 3 to guide the interpretation of the MSSS. If we                 
disregard the denominator (which is just a scaling factor with no impact on the sign to                
produce a skill metric that goes from -1 to 1), we can interpret the values in the upper row as                    
the difference between the values on the second and the third row. The discussion on Figure                
3 has been modified according to the changes.  
 



Also, because positive values in the difference between the squared ACC in PRED and the               
squared ACC in HIST do not necessarily correspond to a beneficial effect of initialization on               
skill (e.g. if the ACC in PRED is negative, and positive in HIST) we have decided to keep the                   
plots on the differences in ACC from the former figure, which have been placed as a third                 
row in Figure 2. 
 
286: Missing “(Figure” 
 
Reply: corrected. 
 
302: There also seems to be noteworthy skill in the western tropical Pacific which should not 
be ignored. 
 
Reply: added to the text.  
 
315: I’m confused by this statement. Since both PRED and HIST show SER<1 in the first 
few months (Fig. 5c), aren’t they both overconfident (under-dispersed)? 
 
Reply: This has been corrected. 
 
Fig. 5: It’s unclear from the caption whether purple line (persistence forecast) is an ACC or 
MSSS score. 
 
Reply: It has been indicated in the caption that the purple line refers to the persistence 
based on the ACC. 
 
326, 340: It’s not clear to me that the HIST spread is “excessive” and “too large” (although it 
is certainly larger than PRED) since I’m unsure how the concept of reliability applies to 
uninitialized ensembles that aren’t expected to be able to predict internal variability. 
 
Reply: The spread-error-ratio is a measure of reliability that has been typically applied both 
to initialised and non-initialised forecasts (Ho et al. 2013; Robson et al. 2018). It evaluates if 
the typical distance between ensemble members is comparable to the typical distance 
between the individual members and the observations. Both terms are small at the beginning 
of an initialised forecast (because of initialization itself) and are expected to grow as the 
forecast progresses, although their ratio could vary, and converge to the one in the 
uninitialised experiments. That’s why we show them both. 
 
References: 
 
Ho CK, Hawkins E, Shaffrey L, Bröcker J, Hermanson L, Murphy JM, Smith DM, Eade R 
(2013) Examining reliability of seasonal to decadal sea surface temperature forecasts: the 
role of ensemble dispersion. Geophys Res Lett 40(21):5770–5775 
 
Robson, J., Polo, I., Hodson, D. L. R., Stevens, D. P., and Shaffrey, L. C.: Decadal 
prediction of the North Atlantic subpolar gyre in the HiGEM high-resolution climate model, 
Climate Dynamics, 50, 921–937, https://doi.org/10.1007/s00382-017-3649-2, 2018. 
 



360: “black” should be “green”? 
 
Reply: corrected. 
 
396: Fig. 7f is mislabelled as “e)” 
 
Reply: corrected. 
 
Fig. 8: I find it very hard to make out the relevant details in this figure even after magnifying 
to 400%. Can you devise a better graphic that is more legible for color challenged 
individuals? Same comment applies to Fig. 10. One simple option might be to just plot upper 
400m to magnify the key region of interest. Another might be to plot as differences from 
HIST. 
 
Reply: To improve the visibility of the relevant details we have increased the size of the 
figure, zoomed it to the upper 500m, and duplicated the panels to compare separately PRED 
and RECON (for which the lines are closer to each other), and PRED and HIST.  
 
431: Please double check the sign of the restoring freshwater fluxes. Fig. 8 suggests that 
RECON is saltier at the surface than HIST (less stratified by salinity) which implies that a 
positive SALT flux (ie, negative freshwater flux) is used in the restoring. 
 
Reply: This has been corrected. The freshwater fluxes are defined in the model as going out 
of the ocean, while the heat fluxes into the ocean. The figure has been modified so both 
fluxes are into the ocean and the text adjusted. 
 
451: Incorrect reference to figure 10 within this sentence. 
 
Reply: corrected. 
 
Fig. 11: I think the last sentence of caption should be “dark green cross”? 
 
Reply: corrected. 
 
501: Here and elsewhere, the distinction between “initialization shock” and model “drift” 
could be clarified. (also, what is the “expected trajectory”? a skillful one? one towards 
the model mean climatology?) 
 
Reply: The sentence and all the other mentions to the drift and initialization shock have been 
rewritten according to this comment and the first one. 
 
 
Review 3: Reply to Prof. Gerard Meehl: 
 
Specific comments: 
 



Line 42: Researchers at NCAR have documented the prediction of aspects of the IPO (e.g. 
Meehl et al. 2016) and have noted that the response to volcanic eruptions could explain in 
part why there is less overall predictability of the IPO compared to AMV (Meehl et al., 2015). 
 
Reply: These articles are now cited and have been added accordingly to the list of 
references.  
 
Line 83: A paper that should be referenced here that was important for documenting one of 
the main methods of bias adjustment that has subsequently been used is Doblas-Reyes, et 
al. 2013 (already in the reference list). 
 
Reply: The paper is now cited also in this part of the manuscript. 
 
Lines 279-281: The authors need to explain more clearly what a negative value of MSSS 
means. They say in passing that PRED has lower ACC values than HIST, but more 
explanation would be helpful for the reader to interpret this important result which produces 
strikingly large areas of negative values in Fig. 3. 
 
Reply: A more detailed description of MSSS, what it represents, and the equations used to 
compute it has been included in the methods section (subsection 2.3). We have also 
changed Fig. 3 to make it more easily interpretable, and adjusted the corresponding 
discussion accordingly. 
 
Lines 370-372: The authors note a very interesting feature in that their model drifts differently 
in two different periods. They should elaborate a bit more about this potentially very 
important aspect of their simulations that has profound implications for assessing prediction 
skill. 
 
Reply: We have expanded the paragraph to discuss more at depth these non-stationary 
drifts and the need to address them with better drift correction techniques.  
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Abstract. In this paper we present and evaluate the skill of the
::
an

:
EC-Earth3.3 decadal prediction system contributing to the

Decadal Climate Prediction Project - Component A (DCPP-A). This prediction system is capable of skilfully simulating past

global mean surface temperature variations at interannual and decadal forecast times as well as the local surface temperature

in regions such as the Tropical Atlantic, the Indian Ocean and most of the continental areas, although most of the skill comes

from the
:::::::::::
representation

::
of

:::
the

:
external radiative forcings. A benefit of initialisation in the predictive skill is evident in some5

areas of the Tropical Pacific and North Atlantic Oceans in the first forecast years, an added value that gets
:
is
:
mostly confined to

the south-east Tropical Pacific and the eastern Subpolar North Atlantic at the longest forecast times (6-10 years). The central

Subpolar North Atlantic shows poor predictive skill and a detrimental effect of the initialisation due to the occurrence of an

initialisation shock, itself related to a
::::::::::
initialisation

:::
that

:::::
leads

::
to

:
a
:::::
quick collapse in Labrador Sea convectionby the third forecast

year that leads to a rapid ,
::::::::
followed

::
by

::
a weakening of the Atlantic Meridional Overturning Circulation (AMOC) and excessive10

local sea ice growth. The shutdown in Labrador Sea convection responds to a gradual increase in the local density stratification

in the first years of the forecast, ultimately related to the different paces at which surface and subsurface temperature and

salinity drift towards their preferred mean state. This transition happens rapidly in
::
at

:
the surface and more slowly in the

subsurface, where, by the tenth forecast year, the model is still far from the typical mean states in the corresponding ensemble

of historical simulations with EC-Earth3. Our study thus highlights the importance of the Labrador Sea for initialisation , the15

relevance of reducing model bias by model tuning or, preferably, model improvement when using full-field initialisation, and

the need to identify
:::::::
Labrador

:::
Sea

:::
as

:
a
::::::
region

::::
that

:::
can

:::
be

:::::::
sensitive

::
to

::::::::
full-field

:::::::::::
initialisation

:::
and

:::::::
hamper

:::
the

::::
final

:::::::::
prediction

::::
skill,

::
a

:::::::
problem

::::
that

:::
can

:::
be

::::::::
alleviated

:::::::::
improving

:::
the

:::::::
regional

::::::
model

::::::
biases

::::::
through

::::::
model

:::::::::::
development

::::
and

::
by

::::::::::
identifying

::::
more

:
optimal initialisation strategies.

1
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1 Introduction

Interest in seasonal-to-decadal climate predictions has grown in recent years due to their potential to provide relevant cli-

mate information for decision making in different socio-economic sectors (e.g. Suckling, 2018; Solaraju-Murali et al., 2019;

Merryfield et al., 2020). Scientifically, climate predictions have provided novel ways of evaluating and comparing climate sim-

ulations with observations and improve our understanding of the intrinsic predictability of the climate system, including the25

key mechanisms operating at interannual-to-decadal timescales.

On these time-scales a large part of the predictable signal of climate variations during the observational period is attributable

to changes in external radiative forcings (i.e. changes in the climate system energy balance), which can be of natural (e.g. solar

irradiance, volcanic aerosols) or anthropogenic origin (e.g. greenhouse gas concentrations, land use changes and anthropogenic

aerosols). For example, at the global scale most of the surface temperature changes can be explained by the warming trend30

caused by the increasing atmospheric greenhouse gas concentrations, which is partly compensated by a parallel increase in

anthropogenic aerosols (e.g. Bindoff et al., 2013), and the sporadic cooling episodes that followed the major volcanic eruptions

of Mt Agung (1963), El Chichon (1982) and Pinatubo (1991) (e.g. Ménégoz et al., 2018; Hermanson et al., 2020). Estimates

of past changes in these radiative forcings are prescribed as boundary conditions to drive the so called historical climate

simulations, which investigate the influence of the forcings on the recent climate variations. These experiments are continued35

into the future as climate projections with imposed anthropogenic radiative forcings that follow different theoretically derived

socio-economic emission scenarios (O’Neill et al., 2016).

The other main source of predictability originates from internal variability, in particular in the slowly evolving components of

the climate system (i.e. the ocean) (e.g. Meehl et al., 2009). Beside
::::::
Besides being driven with external radiative forcings, climate

predictions are
::::
also initialised from the observed state to put the model in phase with observed internal variability. Predictive40

skill of real-time forecast systems is assessed by producing retrospective predictions (or hindcasts), that are then contrasted with

observations. At seasonal to annual timescales, hindcasts show high levels of predictive skill for El Niño-Southern Oscillation

(ENSO) (e.g. Barnston et al., 2019). On decadal timescales, many climate models have also shown the capacity to skillfully pre-

dict the Atlantic Multidecadal Variability (AMV) (e.g. García-Serrano et al., 2015), and to a lesser extent the Interdecadal Pa-

cific Oscillation (IPO) (e.g. Mochizuki et al., 2009; Chikamoto et al., 2015)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Mochizuki et al., 2009; Chikamoto et al., 2015; Meehl et al., 2015, 2016).45

The North Atlantic Ocean, and more precisely the Subpolar Gyre, has been identified as a region where different retrospective

prediction systems skillfully predict the evolution of sea surface temperatures (SST) and upper ocean heat content (OHC) (e.g.

Pohlmann et al., 2009; Keenlyside et al., 2008; Robson et al., 2018; Yeager et al., 2018), although these same systems show

limited capacity to predict the climate of the neighboring continents, which might be related to an inaccurate representation of

key teleconnection mechanisms (e.g. Goddard et al., 2013; Doblas-Reyes et al., 2013). Encouragingly, a recent paper
::::
study

:
by50

Smith et al. (2020) has shown that decadal predictions contributing to CMIP6 can be skillful at predicting the low-frequency

variations of the North Atlantic Oscillation (NAO), the leading mode of the winter atmospheric circulation in the Northern
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Hemisphere (Hurrell, 1996), when considering a large multi-model ensemble. The study concludes
:::::::
Similarly

:::::::::
promising

::::::
results

::
for

:::::::::
predicting

:::
the

:::::
NAO

::
at
:::::::::::

multi-annual
::::::::::

time-scales
:::
has

::::
also

:::::
been

::::::
shown

:::
for

:::
the

:::::::
Decadal

:::::::::
Prediction

::::::
Large

::::::::
Ensemble

:::::
from

::::::
NCAR

::::::::::::::::::::::
(Athanasiadis et al., 2020).

:::::::::::::::::::
Smith et al. (2020) also

::::::::
conclude that the NAO and

::
the

:
related climate signals over Europe55

might be more predictable than models suggest, and that large ensembles of predictions are necessary to circumvent an inherent

problem of
:::::
since current forecast systems , the fact that they can strongly underestimate the predictable signals

:::::
signal (Scaife

and Smith, 2018).

To reinforce the inter-comparability of the results and allow for the exploitation of large multi-model ensembles, the decadal

climate prediction community has promoted the development of coordinated climate prediction exercises. The Decadal Cli-60

mate Prediction Project (DCPP; Boer et al., 2016), as part of the Coupled Climate Model Intercomparison Project Phase 6

(CMIP6; Eyring et al., 2016), and building upon CMIP5 (Taylor et al., 2012) and the efforts of previous projects (e.g. SPECS,

ENSEMBLES), provides such a framework for addressing different aspects and current knowledge gaps of decadal climate

prediction. DCPP-A is the main component and consists of an ensemble of decadal hindcasts, initialised at yearly intervals

from 1960 up to 2018 using prescribed CMIP6 external radiative forcings.65

A crucial step to maximise the skill of decadal predictions is initialisation
::
the

:::::::
realistic

:::::::::::
initialisation

::
of

:::
the

::::::
climate

::::::
system. It

is of major importance to produce physically consistent initial conditions that reflect as faithfully as possible the observed state

of climate. In particular, for the 3-dimensional ocean temperature and salinity fields, which determine the basin-wide density

gradients and through them the large-scale ocean circulations and transports, which are essential for predictability on decadal

timescales (e.g., Meehl et al., 2014; Brune and Baehr, 2020)
:::::::::::::::::::::::::::::::::::::::
(e.g. Meehl et al., 2014; Brune and Baehr, 2020). However, obser-70

vational records are sparse in time and space, especially in the deep ocean
:::
and

:::::
before

:::::::
modern

::::::::::
instruments

:::::
(such

::
as

:::::::
ARGO

:::::
floats)

:::::
were

:::::::::
introduced, which posses a challenge to accurately constrain the initial state exclusively from observations. For

this reason, a typical approach in climate prediction is to use initial conditions from ocean and atmosphere reanalysis. These

are produced with data assimilation techniques that ensure a dynamically consistent estimation of the climate state that takes

into account observational uncertainties.75

Due to structural errors in climate models and biases in their climatologies, when initialised from the observed state, predic-

tions suffer from initial shocks and drifts (e.g. Magnusson et al., 2012; Sanchez-Gomez et al., 2016; Kröger et al., 2018; Meehl

et al., 2014). Initial shocks are
:::
We

::::
refer

::
to

::
as

:::::
initial

::::::
shocks

:::
to abrupt changes that occur soon after initialisation as a result of

the adjustment of the climate model to the initial state , while the drift represents
:::::
and/or

::
to

::::::::::::::
incompatibilities

:::::::
between

:::
the

:::::
initial

::::::::
conditions

:::
of

:::
the

:::::::
different

:::::::::::
components,

:::::
while

::::
with

:::::
model

::::
drift

:::
we

:::::
refer

::
to the mean evolution of the forecasts towards the

::
an80

imperfect mean model climate.
:
,
:::::
which

::
is

:::::
tightly

::::::
linked

::
to

::::
how

:::::::::
systematic

:::::
model

:::::
errors

:::::::
develop

:::::::::::::::::::::::::
(Sanchez-Gomez et al., 2016).

:::::
When

::::
their

::::::::::
occurrence

::
is

::::::::
consistent

::::::
across

::::
start

::::::
dates,

:::::
initial

::::::
shocks

::::::
(which

::::
are

:::
not

::::::
present

:::
in

::
all

::::::::
systems)

:::
are

::::
part

:::
of

:::
the

:::
drift

::::
and

:::
can

:::::
even

::::::::
condition

:::
its

:::::::::::
development.

:
Two main approaches of initialisation are often used; ‘full-field initialisation’

which uses directly observational estimates to initialise the model (e.g., Pohlmann et al., 2009)
::::::::::::::::::::::
(e.g. Pohlmann et al., 2009), and

‘anomaly initialisation’ that imposes the observational estimate anomalies on the model climatology (e.g., Smith et al., 2007; Keenlyside et al., 2008)
::::::::::::::::::::::::::::::::::::::
(e.g. Smith et al., 2007; Keenlyside et al., 2008).85

No clear advantage of one approach with respect to the other has been found in terms of forecast quality (e.g. Magnusson et al.,

2012; Weber et al., 2015; Boer et al., 2016). The latter was specifically designed to reduce the forecast drift, as it implies
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initialising from a state closer to the model climatology. However, incompatibilities between the imposed anomalies and the

typical model variability have been shown to cause dynamical imbalances leading to biases
::::
skill

:::::::::
degradation

:
in the predictions

(e.g., Magnusson et al., 2012; Hazeleger et al., 2013; Volpi et al., 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Magnusson et al., 2012; Hazeleger et al., 2013; Volpi et al., 2017).90

The occurrence of forecast drifts and biases compromises the quality of the predictions, a problem that can be partly circum-

vented by correcting the predictions a posteriori, for example by computing forecast-time dependent anomalies (e.g., Meehl et al., 2014; Goddard et al., 2013; Choudhury et al., 2017).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Meehl et al., 2014; Goddard et al., 2013; Choudhury et al., 2017).

With the objective of reducing initial shocks, several decadal forecast centres consider the production of in-house assimila-

tion experiments with the same model or model components used for the forecasts from which the initial states are derived.95

The simplest and commonly used assimilation framework consists in producing assimilation runs with individual model com-

ponents (referred to as ’weakly coupled’), typically of the ocean model, since it is the most important for the predictability on

decadal timescales (e.g., Sanchez-Gomez et al., 2016; Servonnat et al., 2015)
::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Sanchez-Gomez et al., 2016; Servonnat et al., 2015).

This method may benefit the initialisation of an individual model component, however initialisation shocks may occur due to in-

compatibilities among the initial conditions. For this reason, many forecast centres are moving towards fully coupled assimila-100

tion (referred to as ’strongly coupled’), which is more technically challenging but assures physical consistency of the initial con-

ditions of all the components, among other advantages (e.g., Brune and Baehr, 2020)
:::::::::::::::::::::::
(e.g. Brune and Baehr, 2020). For assimi-

lation, a range of different techniques have been used to produce the reconstructions, from classical nudging approaches based

on Newtonian relaxation (e.g., Sanchez-Gomez et al., 2016; Servonnat et al., 2015)
::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Sanchez-Gomez et al., 2016; Servonnat et al., 2015) to

more complex and computationally expensive methods like the Ensemble Kalman Filter approach (e.g., Counillon et al., 2014; Dai et al., 2020),105

that
::::::::::::::::::::::::::::::::::::
(e.g. Counillon et al., 2014; Dai et al., 2020),

::::::
which take into account aspects of the observational uncertainty.

The aim of this paper is to present and analyse a decadal prediction system within the EC-Earth3 model contributing to the

CMIP6 DCPP-A. The paper is organized as follows: section 2 provides a description of the EC-Earth3 forecast system, the

initialisation approach considered, the skill evaluation metrics and the observational datasets used. In section 3, we characterize

the predictive capacity for the surface temperatures and investigate the importance of the initialisation on surface temperatures,110

upper ocean heat content and several interannual-to-decadal indices of climate variability, followed by an analysis of the

predictive skill in the North Atlantic. This section illustrates that the low skill in the Central
:::::::
Subpolar

:
North Atlantic appears to

be related to a strong initial shock
:::
and

:::
the

:::::::::
subsequent

::::::
model

::::
drift. The final section summarizes the key results and conclusions

of this study.

2 Data and Methodology115

2.1 EC-Earth3 Decadal Forecast System

All experiments analysed in this study were performed with the CMIP6 version of the EC-Earth version 3 Atmosphere-Ocean

General Circulation Model (AOGCM) in its standard resolution (Döscher and the EC-Earth Consortium, in prep.). Its atmo-

spheric component is the Integrated Forecast System (IFS) from the European Centre for Medium-Range Weather Forecasts

(ECMWF), cycle cy36r4, with a T255 horizontal resolution (grid size approximately 80km) and 91 vertical levels. The
::::
land120
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::::::
surface

::::::
scheme

::::::::::
HTESSEL

::::::::::
(Hydrology

::::
Tiled

::::::::
ECMWF

:::::::
Scheme

:::
for

:::::::
Surface

:::::::::
Exchanges

::::
over

::::::
Land,

:::::::::::::::::::
(Balsamo et al., 2009))

::
is

::::::::
integrated

::
in

:::
IFS

::::
and

::
the

:::::::::
vegetation

:::::
fields

:::
are

:::::::::
prescribed

:::
and

::::
have

::::
been

:::::::
derived

::::
from

::
an

::::::::
EC-Earth

::::::::
historical

:::::::::
simulation

:::::::
coupled

::::
with

::
the

:::::::::::
LPJ-GUESS

:::::::
dynamic

:::::::::
vegetation

:::::
model

::::::::::::::::::::::::::
(LPJGuess; Smith et al., 2014).

:::
The

:
ocean component is the version 3.6 of the

Nucleus for European Modelling of the Ocean (NEMO; Madec and the NEMO Team, 2016), which is itself composed of the

ocean model OPA (Ocean PArallelise) and the Louvain-La-Neuve sea ice model (LIM3; Rousset et al., 2015), both run with an125

ORCA1 horizontal resolution (ca.
::::::::::
configuration

::
(a
:::::::
tripolar

::::
grid

::::::
defined

:::
for

::::::
NEMO

::::
with

:
1º

::::::::
horizontal

:
nominal resolution) and

75 vertical levels. The atmospheric and oceanic components are coupled through OASIS (Craig et al., 2017). The vegetation

fields are prescribed and have been derived from an EC-Earth historical simulation coupled with the LPJ-GUESS dynamic

vegetation model (LPJGuess; Smith et al., 2014).

Our decadal prediction system follows the CMIP6 DCPP-A protocol (Boer et al., 2016) and therefore consists of 10 member130

:::::::::
10-member

:
ensembles of 10-year long predictions initialised every year in November from 1960 to 2018 (referred to as PRED

hereafter). To determine the impact of initialisation, PRED is compared with an ensemble of 15 CMIP6 historical simulations

(1960-2015) (Eyring et al., 2016) continued with the SSP2-4.5 scenario simulations (2015-2100) (O’Neill et al., 2016) and

performed with the same model version as PRED. These experiments (referred to as HIST hereafter) correspond to the CMIP6

members (2,7,10,12,14,16-25), all the ones which were performed at the Barcelona Supercomputing Center (BSC). PRED135

and HIST are both performed with prescribed CMIP6 radiative forcing estimates (i.e., solar irradiance, and green house gas,

anthropogenic aerosol and volcanic aerosol concentrations) for the historical period (1960-2014) and the SSP2-4.5 scenario on

the subsequent years (Eyring et al., 2016).

In PRED, the different components (atmosphere,
::::
land, ocean and sea ice) have been initialised using full-field initialisation.

The atmospheric
:::
and

::::
land

:
initial conditions have been interpolated from ERA-40 reanalysis outputs (Uppala et al., 2005)140

for the period 1960-1978 and from ERA-Interim (Dee et al., 2011) for the period 1979-2018. The ERA-Interim
:::
land

:
surface

fields were replaced by the ERA-Interim/Land offline land surface reanalysis (Balsamo et al., 2015) driven by ERA-Interim

surface fields and bias-corrected using precipitation from the Global Precipitation Climate Project (GPCP, Adler et al., 2018).

The ocean and sea ice initial conditions come from a NEMO-LIM reconstruction, forced at the surface with fluxes from the

Drakkar Forcing Set v5.2 (DFS5.2 Brodeau et al., 2010) up to 2015 and with ERA-Interim (Dee et al., 2011) thereafter. In145

this reconstruction, ocean temperature and salinity fields from the ORAS4 reanalysis (Mogensen et al., 2012) are assimilated

through a standard surface nudging approach (e.g., Servonnat et al., 2015)
::::::::::::::::::::::
(e.g. Servonnat et al., 2015), using temperature and

salinity restoring coefficients of −40W/m2/K and −150mm/day, respectively. Even if no direct assimilation of sea ice

products is performed, the atmospheric surface fluxes combined with the surface ocean temperature nudging, are sufficient to

bring the initial sea ice state close to observations (e.g., Guemas et al., 2014)
::::::::::::::::::::
(e.g. Guemas et al., 2014). Below the mixed layer,150

a Newtonian relaxation term is also applied to assimilate 3D ORAS4 temperature and salinity fields. For this, a relaxation

timescale that increases monotonically with depth is used, which takes approximate values of 10 days at 1000m, 100 days

at 3000m and 330 days at 5000m. Subsurface relaxation is applied everywhere except within the 3ºS–3ºN band to prevent

spurious vertical velocity effects (Sanchez-Gomez et al., 2016).
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To generate the 10 members of PRED different strategies are followed depending on the model component. The ensemble155

spread for the atmospheric initial conditions is generated by adding infinitesimal random perturbations to the 3-dimensional

temperature field. For the ocean and sea ice initial conditions, five different reconstructions are performed following the nudging

strategy previously described, each assimilating one of the 5 members of ORAS4. The 5 ocean and sea-ice states generated are

combined with two different atmospheric initial conditions each to produce the 10 ensemble members.

All the simulations completed in this study were performed in the supercomputer Marenostrum IV, hosted at the BSC, using160

the Autosubmit workflow manager (Manubens-Gil et al., 2016), a Python toolbox specifically developed at the BSC to facilitate

the production of experimental protocols with EC-Earth. This toolbox can easily handle experiments with different members,

different start dates and different initial conditions. Autosubmit is hosted in the Gitlab repository of the BSC Earth Sciences

Department (https://earth.bsc.es/gitlab/es/autosubmit). The scripts to run the model and all subsidiary tools are also included

in the Gitlab repository under version control, and the tool that generates the perturbations saves the seed employed for each165

member, both contributing to guarantee the reproducibility of the experiments within the maximum fidelity permitted by the

model.

The raw model outputs were formatted following the Climate Model Output Rewriter (CMOR)/CMIP6 conventions to

ensure efficient use and dissemination with the scientific community. This was done with ’ece2cmor’ (https://github.com/EC-

Earth/ece2cmor3), a Python tool for post-processing and cmorisation
::::::::::::
CMORisation developed for EC-Earth3 which was im-170

plemented in the Autosubmit workflow. After re-formatting, the model data was
::::
were systematically quality checked

:::
for

::::
their

::::::
quality with various tools to ensure no missing files and scientific validity. Both PRED and HIST experiments are published

on the BSC data node of the Earth System Grid Federation (ESGF) where they are publicly available.

2.2 Observational Data for Verification

Various datasets are used as reference for estimating the forecast quality of the two EC-Earth3 ensembles HIST and PRED. To175

evaluate surface temperature we use the gridded temperature anomaly products NASA GISTEMPv4 (Lenssen et al., 2019) and

the Met Office HadCRUT4 (Morice et al., submitted). Both datasets combine near-surface air temperature (SAT) over land and

sea surface temperature over the ocean (SST). For indices related to SST only, we use the Met Office HadISSTv3 (Kennedy

et al., 2011). For upper-ocean heat content we use the Met Office EN4.2.1 gridded ocean temperature (Good et al., 2013). For

comparing spatial fields with observations, EC-Earth3 predictions and historical simulations are re-gridded to the observational180

grid in the case of the surface temperature variables corresponding to a 2ºx2º regular grid for NASA GISTEMP4 and a 5ºx5º

regular grid for HadCRUT4. Ocean heat content is re-gridded to a 2ºx2º regular grid. Model simulations are masked in regions

where and when observations have missing values. The regions with missing values in observations remain similar over the

investigated period, especially for NASA GISTEMPv4.

2.3 Forecast Drift Adjustment and Verification Metrics185

In the full-field initialisation approach, models are initialised close to the observed state and as the forecasts progress they

experience a drift towards the (imperfect) model attractor. This drift needs to be corrected to prevent systematic errors in the
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prediction. To avoid drift-related effects, the evaluation of climate predictions against observations is performed in the anomaly

space (e.g., Meehl et al., 2014)
:::::::::::::::::::
(e.g. Meehl et al., 2014). In this paper we use the ’mean drift correction’ method which consists

in computing the anomalies relative to the forecast time-dependent climatology, which for simplicity assumes .
::::
This

::::::
implies

:
that190

the drift is
:::::::
assumed

::
to

::
be

:
insensitive to the background climate state (e.g., García-Serrano and Doblas-Reyes, 2012; Goddard et al., 2013)

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. García-Serrano and Doblas-Reyes, 2012; Goddard et al., 2013),

which might not always hold.

Observed and HIST anomalies are computed with respect to their climatologies, in .
:::
In the case of HIST it is computed

from the ensemble mean. All climatologies are computed for the common reference period 1970-2018. This is the longest

period for which predictions at all forecast years (1 to 10) can be produced, and thus allows us to compute a climatology that195

is consistent across the whole forecast range. For forecast quality assessment purposes, we use the longest period available for

each forecast year (e.g. 1961-2018 for forecast year one, and 1970-2018 for forecast year ten), to produce in each case the most

accurate estimate of the predictive skill. This implies that the skill of PRED and HIST may change with the forecast time as

the verification period changes.

To measure the forecast quality we use the Anomaly Correlation Coefficient (ACC) and the Mean Square Skill Score200

(MSSS). The ACC measures the linear association between the predicted mean and the observations, but is insensitive to

the scaling. To determine the impact of the initialisation we compute
:::
The

::::::
MSSS

::::::
metric

:::::
takes

::::
into

:::::::
account

:::::::::
differences

:::
in

:::::::::
magnitude,

::
as

::
it

::::::::
compares

:::
the

::::::::::
mean-square

:::::
errors

::
of

::
a

::::
given

:::::::
forecast

::::
with

:::::
those

::::
from

:
a
::::::::::
benchmark

::::::::
prediction

::::
(e.g.

:::::::::::
persistence),

::::
both

::::::::
evaluated

::::::
against

:::::::::::
observations.

:::
The

::::::
impact

::
of

:::::::::::
initialisation

::
on

:::::::::
predictive

:::
skill

::
is
::::
first

:::::::
assessed

:::
by

:::::::::
computing the ACC differences between the decadal hind-205

casts and historical simulations. To determine whether these differences are statistically significant we follow
::::
These

::::::::::
differences

::
are

:::::::
deemed

::
to

::
be

::::::::::
statistically

:::::::::
significant

::::::::
according

::
to the methodology developed by Siegert et al. (2017), which corrects for the

independence assumption when two forecasts are strongly correlated. In addition to the differences in ACC, to investigate the

skill associated with the initialisation, we use the Mean Square Skill Score (MSSS = 1− (MSE_PRED/MSE_HIST );

where MSE_PRED and MSE_HISTare the mean square errors between observation and
:::
The

::::::
MSSS

:
is
:::::
used

::
as

::::
well

::
to

:::::::
evaluate210

::
the

::::::
impact

::
of

:::::::::::
initialization.

:::
To

::
do

:::
so,

:::
we

:::::::
compute

:
it
:::
for

::::::
PRED,

:::::
using

:::::
HIST

::
as

:::
the

::::::::
reference

::::::
forecast

::
to

:::::
beat.

::::::::
Following

::::::::
Equation

:
5
::::
from

:::::::::::::::::::
Goddard et al. (2013):

MSSS(P,H) =
ACC2

P − [ACCP − (σP /σO)]2 −ACC2
H + [ACCH − (σH/σO)]2

1−ACC2
H + [ACCH − (σH/σO)]2

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

:::::
where

::::::
ACCP::::

and
::::::
ACCH:::

are
:::::::::::
respectively

:::
the

::::
ACC

:::
for

::::::
PRED

:::
and

::::::
HIST,

:::
and

::::
σO,

:::
σP :::

and
::::
σH :::

are
:::
the

:::::::
standard

:::::::::
deviations

::
for

:::
the

::::::::::::
observations, PRED and HIST , respectively), which is described in detail in Goddard et al. (2013). The MSSS is a215

skill metric that allows us to compare the performance of PRED with respect to HIST . In the absence of a mean bias the

MSSS can be divided into two terms, the correlation and the conditional bias, which provide different information. While

the correlation takes into account the interannual variability and sign of linear trend, it is scaling invariant (i.e. independent

of the signal amplitude). The conditional bias does consider the magnitude (amplitude) of the timeseries and the linear
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trend (Goddard et al., 2013). The MSSS is thus a skill measure that depends on the correlation minus a penalisation for the220

(conditional) bias. The
::::::::::
respectively.

:
A
:::::::

positive
::::::

MSSS
:::::

value
::::::::

indicates
::::
that

::::::
PRED

::
is

:::::
more

:::::::
accurate

::::
than

:::::
HIST

::::::
while

:
a
::::::::
negative

:::::
value

::::::::
indicates

:::
the

::::::::
opposite,

:::::::
however

::::::
caution

::
is

::::::::::::
recommended

:::
for

::
its

:::::::::::
interpretation

::
as

::::::
MSSS

::
is

:::
not

:::::::::
symmetric

::::::
around

::::
zero

:::
and

:::::::
positive

:::
and

:::::::
negative

::::::
values

::
of

:::
the

:::::
same

:::::::::
magnitude

:::
are

:::
not

:::::::::::
comparable.

:::
The

:
statistical significance of the MSSS is estimated using a random walk test

following the methodology developed by DelSole and Tippett (2016).225

To evaluate the predictive skill of
:::
The

:::::
terms

::
in

:::::::
brackets

::
in

::::::::
Equation

:
1
::::::::
represent

:::
the

::::::::::
conditional

:::
bias

::
of

:::
the

::::::::::
predictions

:::::
(CB).

:::
We

:::
can

::::::::
therefore

::::::
rewrite

::
the

:::::::::
numerator

::
of

:::
Eq.

::
1
::
in

:::::
terms

::
of

:::
the

::::::::
difference

:::::::
between

:::
the

:::::::
squared

::::
ACC

::::::
values

::
in PRED and HIST

we compare them to a persistence forecast. The persistence forecast was computed by taking the monthly or annual anomaly at

the time of initialisation and persisting it for all forecast times (e.g. Yeager et al., 2018). Therefore the correlation skill for the

persistence forecast is equivalent to a lag auto-regressive model
::::::::
(∆ACC),

:::
and

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::::::
respective

:::::::
squared230

:::
CB

:::::
values

:::::::
(∆CB):

:

MSSS(P,H) =
[ACC2

P −ACC2
H ]− [CB2

P −CB2
H ]

1−ACC2
H +CB2

H

=
∆ACC2 −∆CB2

1−ACC2
H +CB2

H
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

:::::
These

::::
final

:::
two

:::::
terms

::
in

:::
the

:::::::::
numerator,

::::::
which

:::::::
compare

:::::::
different

::::::::::::
characteristics

:::
of

::
the

:::::::::
forecasts,

:::
will

:::
be

::::
later

::::
used

::
to

:::
aid

:::
the

:::::::::::
interpretation

::
of

:::
the

::::::
MSSS

::::::
results.

:::::
While

:::
the

::::::::::
correlation

::::
term

::::::
focuses

:::
on

:::::
phase

:::::::::
variability

::::::::::
disregarding

:::
the

::::::
signal

:::::::::
amplitude,

::
the

::::::::::
conditional

::::
bias

::::
term

:::::::
reflects

::::
both

:::
the

:::::::::
magnitude

:::::::::::
(amplitude)

::
of

:::
the

:::::::::
respective

:::::::::
timeseries

::
as

::::
well

::
as
:::::

their
:::::
linear

::::::
trends235

::::::::::::::::::
(Goddard et al., 2013).

The spread-error-ratio (SER; Ho et al., 2013) has been used
::
in

:::::::
addition

:
as an indicator of the forecast reliability, which

is defined as the ratio between the mean intra-ensemble standard deviation and the root-mean-square error of the forecast

ensemble mean. When the SER is greater (lower) than one, the ensemble is over-dispersed (under-dispersed) and the predictions

will be under-confident (over-confident).240

For data retrieval, loading, processing and calculation of verification measures ’startR’ and ’s2dverification’ (Manubens

et al., 2018) R libraries have been used, both developed at the BSC.

2.4 Climate Indices and Diagnostics

Several climate indices are used to assess the ability to predict both global and regional multi-annual variability.

Global mean surface temperature (GMST) is derived by blending SST over ocean and SAT temperatures over land. This245

allows for a consistent comparison with the aforementioned observational datasets NASA GISTEMPv4 and HadCRUT4. The

use of GMST over global surface air temperature at 2m height (GSAT) is particularly favourable when assessing long-term

climate trends (e.g., Richardson et al., 2018)
::::::::::::::::::::::::
(e.g. Richardson et al., 2018).

In the Pacific ocean, to distinguish between seasonal-to-interannual and decadal variability, we look at the ENSO and IPO

respectively. For ENSO we use the NINO3.4 index, which is defined as the area weighted average over the region: 5°N-5°S and250

170°W-120°W. For the IPO we use the Tripolar Pacific Index (Henley et al., 2015), which corresponds to the average of SST
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anomalies over the central equatorial Pacific (region 2: 10°S–10°N, 170°E–90°W) minus the average of the SST anomalies

in the Northwest (region 1: 25°N–45°N, 140°E–145°W) and Southwest Pacific (region 3: 50°S–15°S, 150°E–160°W). To

describe the decadal variability over the Atlantic basin, we use the AMV definition from Trenberth and Shea (2006). The AMV

is calculated as the spatial average of SST anomalies over the North Atlantic (Equator-6010001000
:::::::::::::::::
Equator-6010001000N and255

80°–0°W) minus the spatial average of SST anomalies averaged from 60°S to 60°N (Trenberth and Shea, 2006; Doblas-Reyes

et al., 2013). In addition to the AMV, we also compute the Subpolar North Atlantic (50–65ºN,60–10ºW) ocean heat content

in the upper 300m (referred to as SPNA-OHC300 hereafter). Since the IPO, AMV and SPNA-OHC300 are decadal modes of

variability, we filter out part of the interannual variability by considering four-year temporal averages along the forecast time

(i.e. forecast years 1-4, 2-5, 3-6...) for these indices.260

Likewise, density has been computed using the International Equation of State of seawater (EOS-80) referred to the level

of 2000 dbar (sigma-2), a level that represents better the deep water properties. In addition, the contributions of temperature

(sigma-T) and salinity (sigma-S) to density were computed using the thermal expansion and haline contraction coefficients,

which were themselves estimated as the density change (in the EOS-80 equation) associated with a small increase in tempera-

ture (0.02 °C) and salinity (0.01 psu), respectively.265

All ocean diagnostics have been computed using ’Earthdiagnostics’, a python-based package developed at the BSC.

3 Results

3.1 Characterising the Predictive Capacity of Surface Temperature

3.1.1 Global Mean Surface Temperature

First we compare the predicted GMST evolution for different forecast periods (Figure 1), estimated by combining SAT over270

land and SST over the ocean (cf. Data and Methodology). PRED reproduces the observed variability and shows very high ACC

skill values: 0.96, 0.97 and 0.95 for forecast year one, years 1-5 and years 6-10 respectively (similar values are obtained when

comparing to other observational products like HadCRUT4). As expected, HIST does not capture most of the interannual

variability (Figure 1), since it is largely of internal origin and therefore averages out by construction. Nevertheless, HIST

shows very high skill (0.94, 0.96 and 0.95 for forecast year one, years 1-5 and years 6-10 respectively) associated with the275

global warming trend and the cooling episodes in response to the volcanic eruptions of Agung (1963), El Chichon (1982) and

Pinatubo (1991). The differences in ACC skill between PRED and HIST are not statistically significant, indicating that the

high skill of PRED is mainly associated with the external forcings. When the simulations are detrended (a simple attempt to

remove the warming trend
:::::
signal) PRED shows higher ACC skill values than HIST, revealing the benefit of the initialisation,

especially for the earlier forecast years (ACC values 0.75 and 0.5 in forecast year one for PRED and HIST, respectively).280

Comparing the intra-ensemble spread of PRED and HIST (shown by the Box-Whisker for PRED and shading for HIST in

Figure 1) shows that PRED has considerably smaller spread even on the longer forecast times. For example the mean intra-

ensemble standard deviation of PRED is 0.05K while for HIST is 0.20K for the first forecast year. This is probably due to

9



the initialisation of PRED, which puts in phase the simulated internal and observed variability and may also help to correct

systematic errors in model response to external forcing (e.g., Doblas-Reyes et al., 2013)
:::::::::::::::::::::::::
(e.g. Doblas-Reyes et al., 2013). This285

difference in spread remains equivalent
:::::::::
comparable

:
when the ensemble size of HIST is reduced to 10 members, i.e. the same

ensemble size of PRED.

3.1.2 Added Value of Initialisation at the Regional Scale

At the regional level, PRED shows high skill at predicting surface temperature at different forecast ranges (Figure 2a-c), as

expected from the presence of long-term warming trends (Figure 2d-f). In the first forecast year, most regions show significant290

skill
:::
(2a), with a few exceptions such as the central Subpolar North Atlantic ,

::
and

:
some regions of Asia, Australia and the

Southern Ocean, where the simulated trends are small and mostly not statistically significant (Figure 2d). In
::
By

:
contrast,

the Eastern Pacific shows no significant trends but does show significant skill in the first forecast year associated with the

initialisation of ENSO. On longer time-scales (forecast ranges 1-5 and 6-10 years) PRED also shows significant skill in many

regions worldwide with greater ACC values compared to forecast year one (Figure 2b and c). This is probably a consequence295

of considering 5-year averages for validation, which reduces the influence of
:::
the

:::::::::::
unpredictable

::::
part

::
of

:
interannual variability.

There is however an important degradation of the skill in some regions for these forecast ranges, in particular in the Eastern

Tropical Pacific where the model might not be representing the correct ENSO low frequency
:::::::::::
low-frequency

:
variability, and in

the North Pacific where generally low levels of skill have been related to model biases in ocean mixing processes (Guemas

et al., 2012). Comparing the forecast periods for years 1-5 and 6-10, two major differences are apparent. First, in the Southern300

Ocean, skill degrades dramatically with forecast time, which is probably associated to
:::
with

:
the development of a warm bias

due to the incorrect representation of cloud feedbacks in the region (Hyder et al., 2018). Second, the central Subpolar North

Atlantic seems to exhibit an opposite change in skill, from negative ACC values during the first 5 forecast years to positive

but insignificant ACC values in the five following years, which might reflect the recovery from an initial shock
:::::::::
adjustment

that affects the North Atlantic. This shock
::::::::
adjustment

:
might be responsible for the strong negative trends over the regions in305

forecast years 1-5, which are substantially reduced in forecast years 6-10 (Figure 2e,f). This will be further discussed in 3.3.

To determine whether there is a benefit of the initialisation ,
::::::::::
initialisation

:::
on

:::
the

::::::
surface

::::::::::
temperature

::::
skill

:
we compute the

::::::::
difference

::
in

:::::
ACC

:::::::
between

::::::
PRED

::::
and

:::::
HIST

:::::::
(Figure

:::::
2g-i),

::
as

::::
well

:::
as

:::
the

:
MSSS of PRED considering

::::
using

:
HIST as the

baseline
::::::::
reference

::::::
forecast

:
(Figure 3a-c). To

::::
Also,

::
to

:
aid in the interpretation of the MSSS , we also show the ACC difference

between
::::::
values,

:::
we

::::
show

:::
the

::::
two

:::::
terms

:::
that

:::::::::
determine

::
its

:::::
sign,

:::
the

:::
first

:::::
being

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::::
squared

::::
ACC

::::::
values310

::
of PRED and HIST (Figure 3d-f)and the conditional bias difference ,

::::
and

:::
the

::::::
second

:::::
being

::
the

:::::::::
difference

:::::::
between

::::
their

:::::::
squared

:::::::::
conditional

:::::
biases

:
(Figure 3g-i).

:::
The

:::::
color

:::::
scales

::
in

:::
all

:::::
panels

:::::
have

::::
been

:::::::
adjusted

::
so

::::
that

:::
red

:::::
colors

::::::::
represent

:
a
:::::::::::
contribution

::
to

::::::::
improved

::::
skill

::::
from

:::::::::::
initialization

:::
(i.e.

:::
the

:::::::
colorbar

::::
was

:::::::
inverted

:::
for

:::
the

:::::::::
conditional

::::
bias

:::::
plots).

:

In the first forecast year, the MSSS shows
:::
both

:::::
ACC

::::::::::
differences

::::::
(Figure

::::
2g)

:::
and

::::::
MSSS

:::::::
(Figure

:::
3a)

:::::
show

:
added value

from initialisation mostly in the Pacific Ocean, the neighboring region of the Southern Ocean ,
:::
and

:
the eastern Subpolar315

North Atlanticand the Atlantic Subtropical areas (Figure 3a). An inspection of the ACC and conditional bias difference maps

(PRED-HIST) reveals that for
:
,
::::
with

:::::
MSSS

::::
also

:::::::
showing

::::::
positive

::::::
impact

::
of

:::::::::::
initialization

::
in

:::
the

:::::::::
Subtropical

::::::::
Atlantic.

:::
The

::::::
MSSS
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Figure 1. GMST annual mean anomaly timeseries (K) for PRED, HIST (historical+SSP2-4.5) and GISTEMPv4 for a) forecast years 1,

b) forecast years 1-5 and c) forecast years 6-10. The anomalies cover the period 1961-2018 and are referenced to the 1971-2000 mean.

Multi-year means (panels b and c) are plotted on the central year (e.g. , 2000 represents the values from 1998-2002 in b and c). For a fair

comparison with observations, PRED and HIST have been masked where and when GISTEMPv4 has missing values. The intra-ensemble

spread for PRED and HIST is represented by the box-and-whisker plots and shading respectively. The ACC for PRED and HIST is shown

in the top left part of each panel, including in brackets the ACC after removing a linear trend from the timeseries. All ACC values are

statistically significant at the 95% level. 11



Figure 2. Top row: Anomaly correlation coefficient (ACC) for
:::
the

:::::
annual surface temperature

::::
(SAT

:::
and

:::
SST

:::::
blend)

:
in PRED for a) forecast

years one
:
a)
::

1, b) forecast years 1-5 and c) forecast years 6-10. The ACC is computed between the model ensemble mean of the blended

SAT (over land) and SST (over the ocean) fields and GISTEMPv4. Hatching indicates areas that are significant at the 95% confidence level.

Missing
::::
Grid

:::::
points

:::
with

::::::
missing

:
values in observations are masked in grey. Bottom

:::::
Middle row:

:::
d-f) surface temperature linear trends [in

K/decade] for
:
in

:
PRED for d)

::
the

::::
same

:
forecast years one, e

:
in

:::
the

:::
top

:::
row.

::::::
Bottom

::::
row:

:::
g-i) forecast years 1-5

:::
ACC

::::::::
difference

:::::::
between

:::::
PRED and f)

::::
HIST

::
in

:::
the

::::
same

:
forecast years 6-10

:
as

:::::
above. Hatching

::
In

::
all

:::::
rows,

::::::
hatching

:
indicates a trend that is statistically different

from zero
::::::::

significance
:
at the 95% confidence level. Both ACC and trends are computed for annual mean values of all available years for the

respective forecast period referenced to the 1970-2018 climatology.
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::::
terms

::::::
reveal

:::
that

::
in
:

the first forecast year, the positive MSSS values (which are indicative of added value of initialisation) are

mostly associated with increased ACC values in PRED (i.e. the hindcasts reproduce better the observed variability
::
the

:::::::
squared

::::
ACC

::::
term

:::::::
(Figure

::
3d), while the Subtropical Atlantic is the only region where a positive MSSS is associated with a reduction320

in the conditional bias (i. e. a better representation of the linear trend).

MSSS values
::::::
squared

::::::::::
conditional

:::::
biases

:::::::::
contribute

:::::
mostly

::
to
::::::::
negative

:::::
MSSS

::::
skill,

::
in
:::::::::
particular

::::
over

::
the

::::::
whole

:::::
SPNA

::::::
region

:::
and

:::
the

::::::::
Northern

:::::
North

::::::
Pacific

::::::
(Figure

::::
3g).

:::::
These

:::::::
negative

:::::::::::
contributions

:::
of

:::
the

::::::
squared

::::::::::
conditional

::::
bias

::::
term

:::
are

:::
also

:::::::
present

:
at
:::::::

forecast
:::::

years
::::

1-5,
::
in
::::::

which
::::
both

:::
the

:::::
ACC

::::
and

:::::
MSSS

::::::::::
differences

:
become predominantly negativefor forecast years 1 to

5 (Figure 3b, e,h) and
:
,
:::::::::
supporting

:::::
better

:::::::::
predictive

:::::::
capacity

::
in

:::::
HIST

::::
than

::
in

::::::
PRED

::::
and

:::::::
therefore

:::::::::
indicating

::::
that only a few325

regions benefit from the initialisation
::::
areas, such as the Tropical

::::::::::
Northeastern

:::::
SPNA

::::
and

:::
the

::::::
tropical

:
Pacific (Figure 3b)due to a

reduction of the conditional bias (Figure 3h ). The rest of the Pacific and most of the Atlantic basin show negative MSSS values

(Figure 3b). In these regions, PRED has generally lower ACC values than HIST, and a larger conditional bias ,
:::
are

:::::::::
benefiting

::::
from

:::::::::::
initialisation.

::::::
While

:::
the

::::
skill

:::::::::::
improvement

::
in

:::
the

:::::::::::
Northeastern

::::::
SPNA

::
is

::::::
clearly

::::
due

:::
the

::::::
higher

::::
ACC

::
in
::::::

PRED
:::::::
(Figure

::
2h

::::
and

::::::
Figure

:::
3e),

:::
the

::::::::::::
improvement

::
in

:::
the

::::::::
Tropical

::::::
Pacific

::
is

:::
due

:::
to

:
a
::::::::
reduction

:::
of

:::
the

:::::::
squared

::::::::::
conditional

::::
bias

::
of

::::::
PRED330

::::
with

::::::
respect

::
to

:::::
HIST

:
(Figure 3e,h). At longer forecast times (6-10 years), positive

::::
added

:::::
value

:::::
from

:::::::::::
initialization

:::::::
remains

::::
very

::::::
limited.

::::::::
Positive MSSS values are almost exclusive to the Eastern tropical South Pacific and tropical South Atlantic,

where the conditional bias of the forecast is reduced (Figure 3i), indicating a better representation of the long term trend

:::::
Pacific

::::
and

:::
the

::::::::::
Southeaster

::::::::
Atlantic,

:::
due

::
to

::
a
::::::::
reduction

::
of

:::
the

:::::::
squared

::::::::::
conditional

::::
bias in PRED with respect to HIST . By

contrast, negative MSSS values span across most of the North Atlantic, and reach the Eurasian continent (Figure 3c), mostly335

associated with a larger
::::::
(Figure

:::
3i).

::
In

:::
the

:::::::::::
Northeastern

::::::
SPNA,

:::::::
although

:::
the

:::::
ACC

::
is

::::::
greater

::
in

:::::
PRED

::::::
(Figure

::
2i
::::
and

:::::
Figure

::::
3f),

::
the

:::::::
squared

:
conditional bias in PRED compared to HIST

:
is
:::::::::::

considerably
:::::
larger

:::::
than

::
in

:::::
HIST,

:::::::
leading

::
to

::::
very

:::::::
negative

::::::
MSSS

:::::
values

:::::::
(Figure 3i). The ACC differences are also predominantly negative in the Subpolar North Atlantic, a region in which

many prediction systems exhibit prolonged added value of initialisation (e.g., Robson et al., 2018; Yeager et al., 2018). This

suggests
:
,
:::::
which

:::::::
suggest that some regional key physical processes (e.g. , the gyre and overturning ocean circulations) might340

not be well represented in EC-Earth3 predictions.

To complement the analysis of surface temperature, we also consider the upper ocean heat content, a quantity that bet-

ter represents the thermal inertia of the ocean and a source of decadal variability and predictability for the surface cli-

mate (e.g., Meehl et al., 2014; Yeager et al., 2018)
::::::::::::::::::::::::::::::::::::
(e.g. Meehl et al., 2014; Yeager et al., 2018). As previously shown for sur-

face temperature, in the first forecast year high and significant ACC values are obtained in all major basins for the ocean heat345

content in the upper 300m (referred to as OHC300 hereafter; Figure 4a). A region of negative skill values is evident over the

central Subpolar North Atlantic as for the surface temperatures (Figure 2a). Forecast years 1-5 and 6-10 show that the skill

in the Tropical and Eastern Pacific is lost as is for the some regions in the Atlantic and Pacific sectors of the Southern ocean

(Figure 4b and c). As for surface temperature, the skill in the central Subpolar North Atlantic moderately improves in forecast

years 6-10 with respect to forecast years 1-5.350

Comparing the ACC difference between the PRED and HIST ensembles reveals that the initialisation increases the forecast

skill of OHC300 in the eastern Subpolar North Atlantic in all the three forecast times (and ranges) considered (Figure 4d-f). A
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Figure 3. Annual
::
Top

::::
row:

::::::
MSSS

::
of

:::
the

:::::
annual

:
mean surface temperature (SAT and SST blend) skill comparison and bias differences

between
:

in PRED and
::::
using HIST , computed with the GISTEMPv4 observations. The top row shows the MSSS of PRED with the HIST

as the reference forecast (see section 2.3) for
:::::
forecast

:::::
years a) forecast year one

:
1, b) forecast years 1-5 and c) forecast years 6-10. Hatching

indicates where the MSSS is significant using a random walk test (see section 2.3). The middle row shows
:
Its

::::
sign

::
is

:::::::::
determined

::
by

:
the

ACC difference between PRED
::
the

::::
terms

::
in
:::
the

::::::
second and HIST for d

::::
third

::::
rows

:::
(see

:::::::
Equation

::
2)forecast year one, e) forecast years 1-5

and f) forecast years 6-10. Hatching indicates a significant
:::::
Middle

::::
row:

:
difference in ACC between

::
the

::::::
squared

::::
ACC

::::::
values

:
in
:

PRED and

HIST based on
::
for

:
the methodology developed by Siegert et al. (2017) (see section 2.3) at the 95% confidence level

::::
same

::::::
forecast

::::
years. The

bottom
:::::
Bottom rowshows the :

:
difference in absolute values of

::::::
between the

:::::
squared

:
conditional bias between

:::::
biases

::
in PRED and HIST for

g)
::
the

::::
same

:
forecast year one, h) forecast years1-5 and i) forecast years 6-10.

:::
Note

:::
that

:::
the

::::
color

::::
scale

::
is

::::::
reversed

::::
with

::::::
respect

:
to
:::

the
::::
ones

::
in

::::
other

::::
rows

::
so

:::
that

::::::
positive

:::::
values

::::::::
contribute

::
to

:::::::
improved

::::
skill

:::
from

:::::::::::
initialization.

:::::::::
GISTEMPv4

::
is
::::
used

::
as

:::
the

::::::::::
observational

:::::::
reference

::
for

:::
all

:::::::::
calculations.

:
Annual mean anomalies are computed masking PRED and HIST with the GISTEMPv4 missing values (masked in grey) and

using the common climatology period 1970-2018.
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result that is consistent with other forecast systems (e.g., Robson et al., 2018; Yeager et al., 2018)
::::::::::::::::::::::::::::::::::::
(e.g. Robson et al., 2018; Yeager et al., 2018).

The Pacific Ocean shows significantly improved skill from initialisation basin wide in the first forecast year (i.e. ENSO), but for

forecast years 1-5 and 6-10 the added value of initialisation is limited to parts of the Eastern subtropical Pacific
:::
and

:::
the

:::::::
Western355

::::::
tropical

::::::
Pacific. The initialisation improves the skill in most of the Indian Ocean at all forecast times considered (although it

is not statistically significant for the forecast range 6-10), consistent with previous studies showing the high skill of decadal

predictions in this region (Guemas et al., 2013).

Figure 4. Upper 300m OHC ACC of PRED computed with the EN4 observations for a) forecast year one, b) forecast years 1-5 and c)

forecast years 6-10. The impact of initialisation is shown as the difference in ACC between PRED and HIST for d) forecast year one, e)

forecast years 1-5 and f) forecast years 6-10. In panels a-c, the hatching indicates the statistical significance of the correlation at the 95%

confidence level. For panels d-f hatching indicates the regions where the difference in correlation between HIST and PRED are statistically

significant at 95% confidence level.
:::
The

::::
black

::::
boxes

::
in
:::
the

::::
North

:::::::
Atlantic

:::::
delimit

:::
the

:::::
region

:::
over

:::::
which

:::
the

:::::
SPNA

:::::
indices

::::
have

::::
been

::::::
defined.

:
It
:::
also

:::::::
includes

:::
the

:::::
central

:::::::
boundary

::::
used

::
to

::::::::
distinguish

:::::::
between

::
its

::::::
western

:::
and

:::::
eastern

::::
side.
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3.2 Skill for the Main Ocean Modes of Variability

We further evaluate the predictive capabilities of the EC-Earth3 PRED experiment by considering the skill for predicting360

several modes of interannual to decadal variability (Figure 5). In the Pacific Ocean, ENSO is the main mode of climate vari-

ability on seasonal to interannual time-scales, and can help the predictive capacity worldwide through its well-known cli-

mate impacts (e.g., McPhaden et al., 2006; Yuan et al., 2018)
:::::::::::::::::::::::::::::::::::::
(e.g. McPhaden et al., 2006; Yuan et al., 2018). Figure 5a shows

that PRED captures the year-to-year evolution of the observed ENSO
:
,
:::::
while

:::::
HIST

::::
does

::::
not

::::
since

::::::
ENSO

::::::
events

:::
are

:::
out

:::
of

:::::
phase

:::::
across

:::
the

::::::
HIST

::::::::
ensemble

:::
and

:::::::
average

::::
out. This is confirmed by the high ACC values during the first four forecast365

months
:
in

::::::
PRED

:
(ACC>0.9), which are followed by a typical loss of skill that many dynamical forecast systems experi-

ence during the spring season (i.e. the spring barrier; Webster and Yang, 1992) and by a recovery in summer through the

next winter, in which ACC values remain positive and significant (Figure 5b). Added value for ENSO due to initialisation is

evident up to the second forecast year, as indicated by the positive MSSS values and the statistically significant difference

in ACC values between PRED and HIST (Figure 5b). The spread-error-ratio, however,
:::
lack

:::
of

::::
skill

::
in

:::::
HIST

::
is
:::::::::

expected,370

::::::
because

::::::
ENSO

::
is
::::::

barely
:::::::::
influenced

:::
by

:::
the

:::::::
external

:::::::
forcings

::::
and

:::
the

::::::::
ensemble

::::::
mean

:::::::
averages

:::
the

::::::
phases

:::
of

:::
the

:::::::::
individual

:::::::
members

::::
out.

::
In

:::
the

::::::::::
predictions,

::::
the

::::::::::::::
spread-error-ratio

:
reveals that the ENSO predictions are overconfident for the first few

months
:::
tend

:::
to

::
be

::::::::::::
overconfident

::
in
::::

the
:::
first

::::
two

:::::
years, in contrast to HIST which tends to be underconfident. On decadal

time-scales, the dominant mode of climate variability in the Pacific basin is the IPO. Figure 5e shows that neither PRED

nor HIST are capable of skillfully predicting it, a lack of skill that has been documented in many other prediction systems375

(e.g., Doblas-Reyes et al., 2013)
:::::::::::::::::::::::::
(e.g. Doblas-Reyes et al., 2013). Nonetheless, initialisation does seem to improve the reliabil-

ity of the IPO 5f
::::::
(Figure

:::
5f).

In the Atlantic Ocean, the AMV is the dominant mode of decadal climate variability, and has been linked to several climate

impacts over Europe, North America and the Sahel (Zhang and Delwoth, 2006; Sutton and Dong, 2012; Ruprich-Robert et al.,

2017, 2018) and to Atlantic tropical cyclones (e.g. Caron et al., 2015, 2018). Both PRED and HIST are capable of skillfully380

predicting the AMV, and do better than a persistence forecast (except for the forecast range 1-4 years in HIST), as shown by the

ACC (Figure 5h). PRED however, is consistently better than HIST as shown by the MSSS, even though the ACC differences

are not statistically significant. The spread-error-ratio shows that initialisation improves the reliability of the AMV predictions

at all forecast ranges (Figure 5i), since the historical simulations are overdispersive probably due to excessive intra-ensemble

spread as previously described in section 3.1.1.385

Since the Subpolar North Atlantic has been shown to be a region where forecast systems exhibit skill on decadal times scales,

we analyse the SPNA-OHC300 index (see Section 2.4). PRED
::
As

:::
for

:::
the

:::::
AMV,

:::
the

:::::::::::
initialisation

::::::::
improves

:::
the

::::::::
reliability

:::
of

::
the

::::::
PRED

::::
and

:::::
shows

:::
the

:::::
HIST

::::::::::::
intra-ensemble

::::::
spread

::::
may

:::
be

:::
too

::::
large

::::
and

:::::::
therefore

::::::::::::::
under-confident

::::::
(Figure

:::
5l).

:::
In

:::::
terms

::
of

::::::::
predictive

:::::::
capacity,

::::::
PRED exhibits a lack of skill in this

::
for

:::
the

:::::::::::::
SPNA-OHC300

:
index up to forecast range 4-7, with significant

ACC values emerging for longer forecast ranges, coinciding with the time in which the system outperforms persistence. ACC390

values in the HIST ensemble (which are not statistically different from those in PRED) also increase with forecast time. In

HIST, this is due to the fact that the skill for each forecast range is computed over a different verification period, the same one
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used for PRED, which used for each forecast range the longest period available. For the longest forecast ranges [e.g. , 7-10],

the first start dates cannot be used, excluding some of the earliest years [e.g. , 1960-1966], for which the warming trend was

less prominent, thus producing an artificial increase in skill for longer forecast times. Repeating the calculations for PRED395

over a common verification period to all forecast ranges (i.e. 1970-2018) reveals that lower skill values are still present for

the first forecast years (see Supplementary Figure 1), which suggests that the differences in skill with forecast time are not

due to differences in the verification period but to other causes, for example some potential initialisation shocks from which

the system is recovering some yearslater. This possibility
:
.
::
If

::
we

:::::::::
determine

:::::::::
separately

:::
the

:::
skill

:::
in

:::::::
OHC300

::
in

:::
the

:::::::
Western

::::
and

::::::
Eastern

::::::
SPNA

:::
(see

:::::::::::::
Supplementary

::::::
Figure

::
2),

:::
we

:::
can

::::
then

:::
see

::::
that

::
in

:::
the

:::::::
Western

:::::
SPNA

:::
the

::::
skill

::
in

::::::
PRED

:
is
:::::::
initially

::::
poor

::::
and400

:::
then

:::::::::
gradually

::::::::
increases

:::::::
reaching

:::::::::
significant

::::::
values

::
in

:::
the

:::
last

:::::::
forecast

::::::
years,

:::::
while

:::
the

::::::
Eastern

::::::
SPNA

:::::::::
maintains

:
a
::::
high

::::
and

:::::::
relatively

::::::
stable

::::::::
predictive

::::
skill.

::::
The

::::
poor

:::::
initial

:::::::::
predictive

::::
skill

::
in

::
the

:::::::
western

::::::
SPNA

:::::
might

::::
arise

::::
from

::
a
:::::::
potential

:::::::::::
initialisation

:::::
shock,

::
a

:::::::::
possibility

:::
that

:
is discussed in the next sub-section. As for the AMV, the initialisation improves the reliability of the

PRED and shows the HIST intra-ensemble spread may be too large and therefore under-confident (Figure 5l)
:::
The

:::::
final

::::
skill

:::::::
recovery

::
in

:::
the

:::::
region

::::::
might

::
be

::::::
related

::
to

:::
the

::::::
arrival

::
of

::::
OHC

:::::::::
anomalies

::::
from

:::
the

:::::::
eastern

::::::
SPNA,

:::::
which

:::
are

::::::
slowly

:::::::
advected

:::
by405

::
the

:::::
mean

::::
gyre

:::::::::
circulation.

3.3 Understanding the Limited Predictive Skill in the Subpolar North Atlantic

In the previous section we have shown an overall detrimental effect of initialisation in the EC-Earth3 predictions over some

regions of the North Atlantic at all forecast ranges (Figure 3), leading to lack of predictive skill in the specific case of the central

Subpolar North Atlantic as shown by the ACC maps of surface temperature (Figure 3) and upper ocean heat content (Figures410

4 and 5). Decadal variability in the Subpolar North Atlantic is highly influenced by the changes in the ocean circulation, both

meridional and barotropic (e.g., Ortega et al., 2017)
::::::::::::::::::::
(e.g. Ortega et al., 2017). To understand the role of the ocean circulation we

analyse the evolution of the Atlantic Meridional Overturning Circulation at 45ºN (defined as the overturning stream-function

value at 45ºN and at 1000m depth; referred to as AMOC45N hereafter) and North Atlantic Subpolar Gyre Strength Index

(NASPG, defined as the regional average of the barotropic stream-function in the Labrador Sea [52-65ºN, 58-43ºW], multiplied415

by minus one to make the values positive
:
so

:::
as to aid the comparison) in PRED and HIST (Figure 6a and b). Additionally we

include the ocean-only reconstruction from which the initial conditions are obtained (referred to as RECON hereafter) to

determine how the predictions depart from the initial conditions. Actual model values are used to illustrate how the forecast

drift develops. The mean forecast drift is also shown for completeness, estimated as the climatological value as a function of

forecast time (Figure 6c and d). Figure 6 shows that decadal changes in the AMOC and NASPG are highly correlated (e.g.420

R=0.8 in RECON), a feature
::::::::::
relationship that has been shown in previous studies (Ortega et al., 2017).

Comparing PRED and RECON allows us to identify several interesting features. In the first forecast year the predicted

AMOC45N is of equal value with respect to RECON, while for the NASPG index the predicted values tend to be weaker

(Figure 6). As the forecast
:::::::
forecasts

:
evolve and the model transitions towards its free-running attractor both indices diverge

from RECON and experience a pronounced weakening. By forecast year ten, the indices in PRED reach a weaker mean state425

than in HIST (black
::::
green

:
dashed lines in Figure 6c and d, respectively). These differences between PRED and HIST suggest
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Figure 5. Skill of the selected modes of ocean variability: a-c) ENSO
::::::
(Niño3.4

:::::
index), d-f) IPO, g-i) AMV and j-l) SPNA-OHC300. The

first column shows the observed (grey bars) and predicted (PRED in blue
:::
red, HIST in red

:::
blue) time series of the indices. The ensemble

means are represented with lines and the ensemble spread with coloured envelops. The first column shows the ENSO index for the first

winter (DJF), while for the other indices the average of the first 4 forecast years is shown. The second column shows the ACC of PRED

(blue
::
red) and HIST (red

:::
blue), the MSSS of PRED considering HIST the baseline prediction (black dashed line) and

::
the

::::
ACC

::
of

:
a persistence

forecast (purple). Statistically significant ACC values (at the 95% confidence level) are shown as empty circles. ACC differences that are

statistically significant (at the 95% confidence level) between the PRED and HIST are shown as filled circles. The third column shows the

spread-error-ratio of PRED (blue
::
red) and HIST (red

:::
blue). 18



either that the forecasts in PRED need to be run for longer to reach its attractor (HIST) (e.g., Sanchez-Gomez et al., 2016)
:::
i.e.

:::::
HIST)

::::::::::::::::::::::::::::
(e.g. Sanchez-Gomez et al., 2016), or that more than one model attractor exists.

For both indices, we also note a clear difference in the way the forecast transitions to the model attractor before and after

year 2000. In the first 30 start dates, the AMOC45N and NASPG in PRED start at stronger values than HIST (c.f. RECON430

values in Figure 6a and b), and the individual predictions exhibit a fast decline that surpasses the HIST mean state. In year

1995 of RECON, both indices experience a sharp decrease and eventually stabilise around a substantially lower mean state, a

transition that has been shown to be partly predictable in previous studies (Robson et al., 2012; Yeager et al., 2012; Msadek

et al., 2014). Due to this lower
::::::
weaker

:
initial state, all predictions after the year 2000 start much closer to the HIST mean

stateand the PRED attractor. In consequence,
::
for

:::
this

::::::
period

:
the drift in PRED is smoother. The fact that there are two distinct435

periods in which the model drifts in different ways (Figures 6c and d) may compromise the applicability of the drift correction

methods used to compute the forecast anomalies, which assumes a stationary forecast drift. This is particularly evident for

the AMOC45N, which shows important differences in the PRED climatologies during the first three
::::
three

::::
first

:
forecast years

when the climatologies are computed for the time periods preceding and following the year 2000 (Figure 6c red and blue lines,

respectively). These period-sensitive climatological differences are less pronounced for the NASPG
::::
Thus,

::
in

:::
the

::::
case

:::
of

:::
the440

::::::
AMOC

:::
and

:::::
only

:::::
within

:::
the

:::::
three

:::
first

:::::::
forecast

::::::
years,

:::::::
applying

:::
the

::::::::
standard

::::
mean

::::
drift

:::::::::
correction

:::::
leads

::
to

::
an

::::::::::::::
underestimation

::
of

::
its

::::::::
intensity

::::
over

:::
the

:::
first

::::::
period,

::::
and

::
an

:::::::::::::
overestimation

::::
over

:::
the

::::::
second

:::::
period

::::::
within

:::
the

:::::
three

:::
first

:::::::
forecast

:::::
years.

:::
In

::::
light

::
of

:::
this

:::::::
problem

:::::::
refining

:::
the

:::::::
current

::::
drift

::::::::
correction

:::::::::
techniques

:::
to

::::::
account

:::
for

::::
this

:::::::::
sensitivity

::
to

:::
the

:::::
period

::::::
and/or

:::::
initial

:::::
state

:::::::::
considered,

::
or

:::::::::
exploring

::::
other

:::::::::
alternative

::::::::
statistical

::::
drift

:::::::
models

::
to

:::::::::
recalibrate

:::
the

:::::::::
predictions

::::::::::::::::::::::::::
(e.g. Nadiga et al., 2019) might

:::
help

:::
to

:::::
better

:::::::
estimate

::::
the

::::
true

::::::::
prediction

:::::
skill.

:::::::::::
Interestingly,

:::::
other

::::::::
variables

::::
like

:::
the

:::::::
NASPG

:::::
seem

::
to
:::

be
::::
less

:::::::
affected

:::
by445

::::::::::::
non-stationary

::::
drifts

:
(Figure 6d).

To understand why the AMOC45 and NASPG are not stabilising in the predictions around the mean HIST state, we focus

on the Labrador Sea. The Labrador Sea is a key region of deep water formation, in which climate models show limitations to

represent realistic oceanic convection, which can happen too often, too deep, or can be completely absent in some cases (Heuzé,

2017). Figure 7a shows the mixed layer depth (MLD) evolution in the Labrador Sea, a proxy for the convection activity in this450

region. The MLD index is computed as the average of February-March-April, the months with the deepest mixing. In PRED,

MLD systematically collapses within the first three forecast years, which is in stark contrast with the typical behaviour in

the HIST ensemble, in which deep convection happens regularly. In the HIST ensemble mean, Labrador convection remains

active throughout the whole period although it exhibits a long-term weakening trend, consistent with the increase in local

stratification caused by the externally forced ocean surface warming. The Labrador MLD index also allows us to identify three455

HIST members with a distinct evolution from the rest, characterised by no convection during most of the historical period with

slight increase from 2005 onward (purple line in Figure 7a). These simulations have a remarkable similarity with the state

towards which PRED appears to be drifting. The ensemble mean of these three HIST members is also compatible with the

AMOC45N and NASPG states at the end of the forecasts (purple lines in Figure 6), suggesting that the attractor towards which

PRED evolves
::::::::
converges

:
is associated with a suppressed Labrador Sea convection state. Note also that in the first forecast460

year of PRED the Labrador Sea MLD is stronger than in RECON. All of the above suggests the existence of an initial shock
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Figure 6. Evolution of the a) AMOC45N and b) NASPG in the raw forecasts, historical ensemble and reconstruction. Ensemble mean

forecasts (10 members) of PRED are shown from blue to red every 3
:
4
:
startdates, with individual ensemble members shown in grey. The

ensemble mean RECON (5 members) is shown with the black dashed line. The ensemble mean of all HIST (15 members) is shown in

green, and the ensemble mean of the HIST members that do not exhibit convection are shown in purple. Panels c) and d) show the PRED

climatological values as a function of forecast time for the AMOC45N and NASPG, respectively. Three time periods are considered for

PRED: in black the climatology is for the period of 1970-2018, in red for the period 1970-2000 and in blue for 2000-2018. The black, green,

and purple dashed lines indicate the climatology computed over the 1970-2018 period for RECON, all HIST members, and HIST members

that do not show convection, respectively.
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:::::::::
adjustment in PRED, which initially boosts convection and subsequently brings the model towards a non-convective

:::::
mean

state.

Other key indices are also affected by the Labrador Sea convection collapse in PRED. For example, we see that sea ice grows

to occupy the whole Labrador Sea as soon as convection ceases (Figure 7b and e). Like for the MLD, the sea ice extent of the465

HIST members with no convection is remarkably similar, while convection in the other members keeps a relatively reduced sea

ice coverage. The western SPNA-OHC300 (50–65ºN,60–30ºW) also seems to experience an initialisation shock
::::::
abrupt

:::::
initial

::::::
change as shown in Figure 7c; the PRED climatological value at forecast time 1 year is lower than in the RECON climatology

(Figure 7f). In forecast years 2-3, this index tends to increase, approaching the HIST mean state, which is higher than in

RECON. However, this trajectory changes drastically after forecast year 3 (
:::::
Figure

:
7f), and a quick cooling begins towards470

the no-convection HIST state. This sudden change could be explained by a delayed response to the convection collapse in the

predictions, which is expected to drive a weakening of the SPG intensity by decreasing the density of its inner core and its

associated geostrophic current (Levermann and Born, 2007). For all these indices we note again that their climatological drifts

seem non-stationary (Figure 7d, e and f), and that predictions started after the year 2000 might not be well bias corrected. This,

together with the
::::
effect

:::
of

::
the

:
strong initial shock, could explain the low (negative) predictive skill in the western SPNA region475

(Figures 2 and 4), a region that is key for the North Atlantic Oscillation (e.g. ?)
:::::::::::::::::::::::::
(e.g. Athanasiadis et al., 2020) and that in our

model might be hampering its prediction skill, which is also low (not shown).

Figure 7. The same as in Fig. 6 but for the MLD in the Labrador Sea February-March-April, the SIE in the Labrador Sea during the same

months and the western SPNA-OHC300 annual mean.
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3.4 Insights on the Labrador Sea Initialisation Shock and Drift

Full-field initialisation can sometimes produce strong initialisation shocks and drifts, as the climate model adjusts from an ini-

tial state that might be substantially far from its attractor (e.g., Sanchez-Gomez et al., 2016)
:::::::::::::::::::::::::::
(e.g. Sanchez-Gomez et al., 2016).480

This section focuses on Labrador Sea Convection, for which Figure 7a shows a clear adjustment
::::::::::
readjustment

:
marked by an

initial increase and a subsequent decline. Both aspects of the predicted Labrador Sea evolution are investigated separately. We

focus on the preconditioning role of Labrador Sea density stratification on convection, and investigate the role of temperature

and salinity, two variables that might be experiencing a different initialisation adjustment and forecast drift over the region.

The initial enhancement of convection is explored in Figure 8, describing the evolution of stratification in the Labrador485

Sea the first five months of the forecast (Nov-Mar). At the time of initialisation (Nov), the density profiles of PRED and

RECON are almost identical (dark red and blue lines in Figure 8a). Differences start to emerge in the subsequent forecast

months, in which their
::
the

:
density stratification weakens at a different pace, with PRED becoming more weakly stratified and

therefore more favorable to deep convection. HIST (green lines in 8a
::::::
Figure

::
8d) also shows a similar tendency to reduce density

stratification from November to March, although the Labrador Sea density remains more strongly stratified than in PRED and490

RECON, which would explain why convection is also weaker. By considering the temperature and salinity contributions to

density stratification (sigma-T and sigma-S, figure 8band
:::::
Figure

:::
8b,c) we find that even though the overall density structure is

dominated by salinity, with temperature largely opposing the mean density stratification, the major differences between PRED

and RECON occur in the sigma-T profile and are more notable at the surface. During the first 5 months of the forecast, sigma-T

fully accounts for the differences between PRED and RECON in Labrador Sea density (e.g. , 0.038 kg/m3
::
m3

:
at the surface by495

March), with virtually no differences arising in sigma-S (0.005 kg/m3
:::
m3), which fails to counterbalance the temperature driven

changes. As a result, the destabilising role of temperature on density stratification in the deep convection months is stronger in

PRED than in HIST ,
:::::
(Figure

:::::
8e,f),

:
promoting deeper convection.

To understand why Labrador Sea stratification diverges from RECON to PRED in the first forecast months we inspect

the local surface restoring fluxes in the former, which, on average, are indicative of systematic model biases in the ocean500

component. In RECON, the heat flux restoring term is consistently positive and contributes thus to maintain a warmer surface

in these months of deep convection (Figure 9). These fluxes are not present in PRED because the simulation
::::::::::
simulations are

fully coupled, which will quickly adjust to a new free-running state with a colder upper Labrador Sea, explaining in this way

the relative surface cooling (and associated weakening of density stratification) with respect to RECON (Figure 8). Similarly
:::
By

::::::
contrast, the freshwater fluxes from the salinity restoring term are also positive

::::::
negative

:
in the Labrador Sea, and contribute505

to keep a fresher (and lighter
:::::
saltier

::::
(and

::::::
denser) surface in RECON than in PRED. Its effect, however, appears to be small in

magnitude as no remarkable differences emerge in sigma-S between RECON and PRED.

After better understanding the process behind the initial shock in the first winter, we now investigate the origin of the weak-

ening in the Labrador Sea convection after the first forecast year of PRED. Again we analyse the evolution of the Labrador

Sea density profile in PRED, but for each convective season (FMA) as a function of the forecast year (Figure 10). The corre-510

sponding profiles for RECON and the ensemble members of HIST are included to contextualise the predictions. The sigma-T
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Figure 8. Labrador sea a) density, b) sigma-T and c) sigma-S climatological profiles in the first five forecast months (November to March) of

PRED, and the equivalent calendar months of HIST and RECON.
::::
Panels

:::
d-f

:::
are

::
the

::::
same

::
as

::
in

:::::
panels

:::
a-c

::
but

:::
for

:::::
PRED

:::
and

:::::
HIST

:::::::
(different

:::::
panels

::
are

::::
used

::
to

::::::
increase

::::::::
visibility).

:
The colour intensity of the profiles from dark to light refers to increasing the forecast month.
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Figure 9. Labrador Sea [52-65ºN, 58-43ºW] monthly climatology of the nudging correction fluxes in RECON of a) heat and b) freshwater.

:
In
::::

both
::::
cases

:::
the

:::::
fluxes

::
are

::::::
defined

::::
from

:::
the

:::::::::
atmosphere

:::
into

::
the

::::::
ocean.

and sigma-S profiles are also shown to disentangle the contributions from temperature and salinity to density. After the first

forecast FMA (darkest blue line in Figure 10), for which we showed a decrease in stratification that favoured deeper convection

with respect to RECON, the density stratification becomes increasingly stronger with forecast time. This evolution is explained

by the changes in salinity (Figure 10c), as temperature contributes to decrease stratification at all forecast ranges (Figure 10b).515

In the second forecast FMA, density stratification in PRED is already stronger than in RECON (red line in Figure 10a). By

the third forecast FMA it becomes stronger than in most of the HIST members with active convection (green lines), and by

the sixth FMA it is already higher than in all of them. Interestingly, the stratification of sigma-S is not particularly different

in PRED than in the HIST ensemble members with convection, which suggests once again that the counterbalancing effect of

sigma-T is important to understand the absence of convection in the forecasts. By the tenth (last) forecast FMA (lightest blue520

line in Figure 10) the density stratification is remarkably similar to that in the HIST ensemble members without convection.

This may suggest that PRED is stabilising around this particular HIST state. However, this hypothesis is contradicted by the

vertical profiles of sigma-T and sigma-S, that in the final forecast FMA appear to be more comparable to the HIST members

with convection. It is therefore possible that the forecast drift is bringing PRED to a different equilibrium state than in HIST.

To investigate the model drift in the Labrador Sea and how it affects its stratification figure 10 shows the
::
we

::::
use scatter-plots525

of the climatological Labrador Sea FMA temperature and salinity both at the surface and at 500m of depth (Figure 11). At the

surface, the mean temperature and salinity for the first forecast FMA remain close to those in RECON, as well as to the values

in several HIST members with active convection, all placed along the same isopycnal (27kg/m3). With increasing forecast

time, PRED drifts towards a state with lower temperature and fresher conditions, the same one of the HIST members with no

convection. During this transition, the surface in PRED also becomes lighter, contributing to increase the stratification in the530

region. Important differences are observed in the subsurface (i.e. 500 m). For example, unlike for the surface, all the HIST

members (i.e. the convective and non-convective ones) show rather similar climatological T,S values, roughly aligned along

the same isopycnal (27.25kg/m3). PRED starts in this case far away from the HIST state (Figure 11c), although with similar

density conditions. The main difference with respect to the surface is that with the subsequent forecast years, the subsurface
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Figure 10. Labrador sea a) density, b) sigma-T and c) sigma-S climatological profiles for the convection season (February-March-April) in

PRED, RECON and HIST. In PRED, the intensity of the blue lines is used to represent the changing forecast time, with the darkest blue line

corresponding to the first forecast year, and the lighter blue line to the tenth. The HIST members have been divided into two sub-ensembles,

those with and without convection in the Labrador Sea, HIST (green lines) and HIST-NoConv (purple lines). The green dashed line is the

HIST ensemble mean using all members.

does not converge towards the typical mean HIST states. By the sixth forecast FMA the mean T,S value appears to stabilise535

along a weaker isopycnal (27.1kg/m3). This suggests that the forecast drift has brought the model to a different equilibrium

state, at least in the Labrador Sea. The shock and the later drift may be caused by RECON being far from the EC-Earth3

model climate state in the Labrador Sea subsurface. In particular in terms of temperature and salinity (Figure 11), as the mean

density profiles are rather comparable due to the compensation between the temperature and salinity contributions (Figure 10).

Similar T,S diagrams, using HIST as a baseline, will be used in the future when evaluating the suitability of different ocean540

reconstructions to initialise our next decadal prediction systems.

4 Summary and Conclusions

In this paper we have presented and evaluated the predictive skill of a decadal forecast system with EC-Earth, based on full-

field initialisation, that contributes to the Decadal Climate Prediction Project component A (DCPP-A). The main findings of

the skill assessment are as follows:545
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Figure 11. Scatterplot diagram
:::::
Scatter

:::
plot

:
between the climatological Labrador Sea temperature and salinity during the convection season

(February-March-April) both a) at the surface and b) at 500m. Blue dots of different intensity represent the climatological PRED values as a

function of forecast year, the red cross represents RECON and the green (purple) dots the HIST members with (without) active Labrador Sea

convection. Isopycnals are represented by dashed grey lines in the background.The dark green line shows the HIST ensemble mean using all

members.

– In agreement with other decadal forecast systems (e.g., Yeager et al., 2018; Robson et al., 2018)
::::::::::::::::::::::::::::::::::::
(e.g. Yeager et al., 2018; Robson et al., 2018),

EC-Earth3 is able to skillfully simulate the global mean surface temperature at short (forecast year one) and long forecast

times (forecast years 6-10), with a large part of the skill arising from changes in the external forcings.

– Comparing different skill metrics (i.e. anomaly correlation coefficient and mean square skill score; ACC and MSSS) in

the predictions and in an ensemble of historical simulations we have shown a beneficial effect of initialisation. In the first550

forecast year, surface temperature anomalies in regions like the Tropical Pacific, the eastern Subpolar North Atlantic and

the Southern ocean show added value from initialisation in the predictions. At longer forecast times only a few localised

regions show improvements in terms of MSSS due to initialisation, exemplified by the Eastern Equatorial Pacific and the

Equatorial Atlantic. ACC differences show more limited improvements, from which we highlight a narrow band in the

eastern Subpolar North Atlantic.555

– The added value of initialisation is more easily discernible when considering both vertically and regionally integrated

ocean quantities. For example, skill maps of the upper 300m ocean heat content (OHC300), which is more persistent

than surface temperature as it is less affected by atmospheric perturbations, show larger areas of improved skill both

in the Pacific and Atlantic oceans. Likewise, skill metrics are systematically better in the initialised predictions for the

Atlantic Multidecadal Varibility
::::::::
Variability, although the improvements are not statistically significant.560
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– Another beneficial effect of initialisation is the reduction of the ensemble spread in the predictions with respect to the

historical simulations, at least for the variables and indices analysed. The spread of the predicted anomalies is therefore

better constrained at all forecast times.

– In contrast with other studies, the central Subpolar North Atlantic is a region of poor forecast skill in the EC-Earth3

forecast system. Both SST and the OHC300 show a detrimental effect of initialisation
::
on

::
its

:::::::
regional

::::
skill

:
in the first 5565

forecast years, which could be explained by an initialisation shock
::
and

:::
the

::::::
related

:::::::::
long-term

::::
drift.

To investigate this potential shock we have further explored the forecast evolution in a selection of key ocean variables

controlling multidecadal variability in the North Atlantic. The analysis showed that Labrador Sea convection collapses by

forecast year 3 in the predictions, leading to a rapid weakening of the Atlantic Meridional Overturning Circulation (AMOC)

and the Subpolar Gyre Circulation. This causes a cooling tendency of the western SPNA and a local expansion of sea ice,570

which occupies the entire Labrador Sea by forecast year 10. Although a similar state of suppressed convection is found in 3 out

of 15 of the historical experiments, the mean of the historical ensemble (which in this
:::
our case might not exactly correspond

to a preferred model state) exhibits higher AMOC and subpolar gyre strength values, regular convection in the Labrador Sea

and a more realistic sea ice extent. This suggests that the Labrador Sea convection collapse and subsequent North Atlantic

changes are associated with an initialisation shock
:::
and

::::
drift that brings the predictions apart from their expected trajectory

::
as575

:::::::::
represented

:::
by

:::
the

::::::::
historical

::::::::
ensemble

::::
mean.

We have further related the Labrador Sea convection collapse to the evolution of local density stratification and the separate

contributions from temperature and salinity. During the first three forecast years, the Labrador density profile becomes more

strongly stratified than in most of the historical members with active convection, following an intense surface freshening. This

increase in stratification continues with forecast time, approaching but not reaching the strong density stratification levels from580

the three historical members without convection. To assess if the forecasts actually drift to an attractor characterised by these

three historical members, we have additionally evaluated the climatological temperature and salinity in the region as a function

of forecast time at the surface and 500 m. At the surface, the predictions start with mean temperature and salinity conditions

within the range of those in the historical members with active convection, and by the end of the forecast they approach the

typical state of the members without convection. At the subsurface, however, the forecasts remain far from either of the typical585

historical states, stabilising at forecast year 10 around a different (and lighter) attractor.

These results thus highlight the risk of initialising a sensitive region for decadal prediction, such as the Labrador Sea, too

far from its preferred model state. A problem that, in this case, could have been minimised by applying a weaker nudg-

ing in the subsurface when producing the reconstruction that provided the ocean and sea ice initial conditions. Our find-

ings also underline the importance of reducing as much as possible the mean model biases in the Labrador Sea, in par-590

ticular at the subsurface. The problems herein described are particularly important when considering full-field initialisa-

tion (e.g., Magnusson et al., 2012; Smith et al., 2013)
::::::::::::::::::::::::::::::::::::::
(e.g. Magnusson et al., 2012; Smith et al., 2013), an approach in which

shocks
:::::
initial

:::::::::
imbalances of this kind are more prone

:::::
likely to occur. In this sense, anomaly initialisation emerges as a potential

alternative to minimise the drifts and, more importantly here, to minimize the occurrence of initialisation shocks. However, as
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previous studies have shown (e.g., Volpi et al., 2017)
::::::::::::::::::
(e.g. Volpi et al., 2017), this approach is not exempt from problems, and595

does not prevent initial model imbalances from happening, whose effect on Labrador Sea convection remains unknown. A

complementary alternative is to devote new efforts in climate model development to reduce the model biases over the region,

to thus reduce the mismatches with the observation-constrained products used for initialisation. Indeed, an appropriate model

tuning in the Labrador Sea would benefit decadal prediction in two ways. First, by improving in the model realism in a source

region of decadal skill, and the second, by helping to prevent or reduce problems associated with initialisation.600
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