
Reply to RC1 (comments in blue, reply in black) 
 
General/major comments 
 
This is a valuable manuscript that aims to apply ideas common in weather and climate 
prediction into the post-processing of climate projections, in particular with the 
use of large ensembles. The authors undertake an ambitious analysis to illustrate the 
relevance of calibrating the projection ensembles to increase their accuracy and reliability, 
where reliability is considered from the point of view of the trustworthiness of the 
probabilities formulated for the ensemble projections. The ideas are solid and clearly 
laid out, the text is clear, the figures adequate both in number and quality, the study 
is exhaustive. However, I am concerned by the description of the "out-of-sample with 
imperfect model test". The method is explained in page 7 and an example is given in 
figure 3, but it is hard to understand how the results displayed in figure 4 are obtained. 
As a result, Figure 4 is a bit hard to interpret. It will benefit from a more detailed caption 
and better referencing in the main text. Also, the wording and the interpretation of 
the results can be misleading. For instance, it is hard to accept that the results of the 
methods lead to improvements when the verification is performed without using observations. 
It is also a pity that the supplementary information does not include the results 
equivalent to figure 4 but for precipitation.  
 
We agree with the reviewer that it is important to clarify the description of the imperfect 
model testing. This is central to this study, so we will include an expanded description, 
including a schematic illustration of the process involved to arrive at the verification statistics 
presented in the paper. This will result in a clearer presentation of Figure 4 and the related 
plots. In addition, we will add the equivalent plot for precipitation to the Supplementary 
Information, as this may be of interest to some readers, as the reviewer rightly highlights.  
 
Regarding the logical step between demonstrating the efficacy of the calibration in the 
imperfect model tests and extrapolating this when applying to the observations. We of course 
cannot verify this simply, but one method that might be useful would be to include some 
analysis of where the parameters of the calibrated observations fits with respect to the CMIP 
perfect model tests. We will calculate this and include the results in the supplementary 
material and a discussion detailing this in the revised manuscript. 
 
 
The HGR-decomp method looks promising. However, it would be really useful if the authors 
could provide a full illustration of how each component is calibrated before the ensemble is 
reconstructed, that is, to go beyond what is currently shown in figure 6. This is far from 
obvious and would help to understand how the method works.  
 
We agree, this is a very good suggestion. We will add a schematic to fully illustrate the 
processes involved, particularly as the methods become more convoluted as the paper goes 
on. Further discussion will also be added to describe the methodologies in a clearer and more 
practical manner.  
 
 
Figures 8 and 9 show that the mean projected change is weaker in the calibrated with respect 
to the uncalibrated large ensembles, particularly for precipitation. This is an important 
statement, although it comes with a widening of the uncertainty intervals. I wonder how these 



results compare to other post-processing exercises (like model selection or model weighting) 
performed with other ensembles in the same areas and period. I consider the manuscript 
needs major revisions, not that much from the technical or conceptual point of view, but more 
for the need to clarify some details in the text.  
 
Yes, we agree that the reviewer that the paper would benefit from some discussion of these 
aspects. We will add discussion and some specifics comparisons with the results for 
European projections of some other multi-model methods to the revised manuscript (some of 
these are part of a paper that we are co-authors on and is currently in revision for publication 
in Journal of Climate).  
 
  
Minor comments 
 
- p. 2, l. 24: "applied" appears twice in the sentence.  
 
Yes, this will be corrected. 
 
 
- p. 3, l. 1: "that" appears twice.  
 
Yes, this will be corrected. 
 
 
- p. 3, l. 14-15: This is an interesting idea, although the reader might benefit from more 
details about how this merging could work and why it’s a relevant issue.  
 
Agreed. We will add further details to this idea in the revised manuscript. 
 
 
- p. 4, l. 3-4: To what measure is the regridding affecting the results? Is LENS the ensemble 
with the coarser resolution? Has the regridding to a different grid been tested?  
 
We have tested this on a small subset of the results and the regridding only marginally affects 
the results. The LENS ensemble (performed at 1x1 degree resolution in the atmosphere) is 
generally comparable or higher atmospheric resolution than the CMIP5 models, with 30 
vertical levels. The MPI-GE is performed at a relatively low T63 spectral resolution 
(equivalent to around 2-degree horizontal resolution), with 40 vertical levels. This 
information will be added to the revised manuscript.  
 
 
- p. 5, l. 17: Correct "corrlation". Also, the sentence is incomplete.  
 
Thanks for spotting this – it was a mistake and will be corrected. 
 
 
- p. 6, l. 9: Can you say a bit more about the resampling done. For instance, is it performed 
with or without replacement?  
 



The resampling was performed with replacement – this is a relevant detail and will be added 
to the revised manuscript. 
 
 
- p. 6, l. 13: Use "constant in time".  
 
Agreed, will change in the revised manuscript. 
 
 
- p. 6, l. 30: Use "to compute".  
 
Agreed, will change in the revised manuscript. 
 
 
- p. 7, l. 8: Remove "is". 
 
Agreed, will change in the revised manuscript. 
 
 
- p. 8, l. 18: Correct "signficantly". This mistake appears in other parts of the text.  
 
Agreed, will change in the revised manuscript and check for other occurrences of this 
mistake. 
 
 
- p.10, l. 24: How can the reader see the overfit of the HGR method when compared to 
the HGR-decomp method?  
 
Here we were interpreting the relatively low spread in the HGR compared with the HGR-
decomp as being due to an overfitting to the reference timeseries – resulting in a consistently 
lower Spread/Error ratio in the HGR. This interpretation and the justification for it will be 
added to the revised manuscript. 
 
 
- p. 11, l. 1: This is an example of my main concern with this manuscript. The text mentions 
an improvement for the projected climate over the period 2041-2060. However, it’s hard for 
me to accept that there is an improvement when no comparison with the observations (which 
obviously do not exist yet) is made. 
 
As the reviewer suggests, we of course cannot verify this simply, but one method that might 
be useful would be to include some analysis of where the parameters of the calibrated 
observations fits with respect to the CMIP perfect model tests. We will calculate this and 
include the results in the supplementary material and a discussion detailing this in the revised 
manuscript. In addition, we will edit the text to state more cautiously that the results suggest 
that this process may result in improved projections but that there are some important 
caveats. 
 
 
- p. 11, l. 17: Change "it it calibrated".  
 



Agreed, will change in the revised manuscript. 
 
 
- p. 11, l. 29-31: It is hard to see any changes in spread in figure 8.  
 
Agreed, will change in the revised manuscript. 
 
 
- p. 11, l. 32-33: I would not say that the impact of the calibration on 
the precipitation projections is "fairly modest".  
 
Agreed, that is not a good description. We will amend in the revised manuscript. 
 
 
- p. 12, l. 6: Correct "preciptation".  
 
- p. 13, l. 20-27: This argument seems a bit hard to follow to me. How can we determine 
if a third calibrated ensemble outperforms or not the former two in terms of future 
projections? 
 
Agreed, will change in the revised manuscript. 
 
 
- The figure 4 caption mentions a 44-year verification period starting in 1917, 
which seems wrong. Also, in the caption the sentence "For the calibrated RMS Error, 
spread/error and CRPS values, the black crosses indicate where the calibration represents 
a significant improvement over the uncalibrated (but bias-corrected) ensemble 
at the 90% significance level" misses to explain what is actually tested: the median 
of the distribution of calibrated scores, all the scores in a single sample or anything 
else. Finally, what does the range of values for the uncalibrated ensemble represent? 
If they haven’t been calibrated, do they represent the scores against the CMIP5 single 
models? 
 
Yes, the year here is a typo and will be changed in the revised manuscript. The significance 
testing was performed on the distribution of the verification scores and was tested using the 
Mann-Whitney U-test. Further details will be added to the revised manuscript.  
 
The uncalibrated ensemble has only been bias corrected over the reference period (so is not 
strictly uncalibrated) but this needs to be stated more clearly and will be corrected in the 
revised manuscript.   
 
We thank the reviewer for their insightful and helpful comments that we hope will help to 
improve the paper. 



Reply to RC2 (comments in blue, reply in black) 
 
General comments 
 
This is an ambitious and novel study aimed at improving climate projections using 
calibration techniques developed for initialized seasonal prediction. The approaches 
are tested on two single-model Large Ensembles (LE) using out-of-sample verification 
methods based on CMIP5 models. The analysis focuses on temperature and precipitation 
over Europe and takes into account seasonality. Another novel aspect is the 
application of the calibration method on the dynamical and residual thermodynamic 
components separately using the technique of “dynamical adjustment”. This yields an 
improvement in the accuracy of projections of temperature but not precipitation. The 
study is comprehensive and the methods are scientifically sound. The paper is generally 
well written, although some clarification is needed in places. I have a number of 
comments and suggestions as detailed below, but they are mostly minor in scope. 
 
We thank the reviewer for their positive comments and feedback. We agree that there are 
some aspects of the paper that require clarification and would benefit from further discussion 
in the revised manuscript – further details follow the specific points below. 
 
 
Specific comments 
 
1) P2 L24: remove “was applied to”  
 
Agreed, will change in the revised manuscript. 
 
 
2) P2 L32: Perhaps reference Deser et al. (2020) which provides a broader view of the utility 
of Large Ensembles with multiple models, and includes a more comprehensive listing of LE 
experiments to date. Deser, C., F. Lehner, K. B. Rodgers, T. Ault, T. L. Delworth, P. N. 
DiNezio, A. Fiore, C. Frankignoul, J. C. Fyfe, D. E. Horton, J. E. Kay, R. Knutti, N. S. 
Lovenduski, J. Marotzke, K. A. McKinnon, S. Minobe, J. Randerson, J. A. Screen, I. R. 
Simpson and M. Ting, 2020: Insights from earth system model initial-condition large 
ensembles and future prospects. Nat. Clim. Change, doi: 10.1038/s41558-020-0731-2. 
 
Yes, this is an important reference. I think (or hope) that this was published after submission 
but is clearly a very relevant and useful reference and will be included in the revised 
manuscript. 
 
 
3) P3 L23: Suggest using “CESM1-LE” in place of “LENS” throughout for parallel 
construction with “MPI-GE”.  
 
Agreed, this is neater and we will make this change in the revised manuscript. 
 
 
4) P3 L33: Please do some sensitivity tests on the choice of SLP dataset. I know that 
HadSLP2 generally has lower amplitude variability (and maybe trends) than 20CR or 
ERA20C.  



 
We will perform some sensitivity tests and include details in the revised manuscript. 
 
 
5) P4 L19: “lies” should be “lie”  
 
Yes, this will be corrected. 
 
 
6) P4 L20: “is further” should be “are further”  
 
Yes, this will be corrected. 
 
 
7) P5 L17: “correlation” is mis-spelled and there is some missing text after “ensemble and, 
“  
 
Yes, the spelling and text in this passage will be corrected in the revised manuscript. 
 
 
8) P6 L4: “time” should be plural  
 
Agreed, will change in the revised manuscript. 
 
 
9) P6 L24: Add “Guo et al., 2019” to your list of references (this was an application to 
precipitation) Guo, R., C. Deser, L. Terray and F. Lehner, 2019: Human influence on winter 
precipitation trends (1921-2015) over North America and Eurasia revealed by dynamical 
adjustment. Geophys. Res. Lett., 46, doi: 10.1029/2018GL081316. 
 
Good point - this was an oversight on our part and is a very relevant paper. A reference to 
this will be included in the revised manuscript. 
 
 
10) P7 L8: “is clearly has a” is not grammatical  
 
Agreed, will change in the revised manuscript. 
 
 
11) P8 L19: This sentence is confusing because it sounds like you are only testing the 
methods on the MPI-GE, but that is not the case. I suggest first discussing the LENS results 
and then moving on to the MPI results.  
 
This is a good suggestion – we will edit this passage accordingly in the revised manuscript. 
 
 
12) P9 L2: is the lack of improvement in winter because the characteristics of the variability 
are not distinguishable between LENS and CMIP5?  
 



That is the case in the MED region but more generally it might be because there is generally 
less forced change, so that  the internal variability component is more important to calibrate. 
In NEUR for example, this lead to a clear improvement in the reliability despite no change in 
the RMSE (e.g. Figure 5). The text will be edited to clarify this point in the revised 
manuscript. 
 
 
13) P9 L 3: “are” should be “is”  
 
Agreed, will change in the revised manuscript. 
 
 
14) P9 L5: “larger than is appropriate”: please explain what you mean. Does this imply that 
LENS has more variability than the other CMIP5 models, or a larger forced signal? 
Relatedly, it would be very nice to see some discussion of the relevance of the so-called 
“signal-to-noise paradox” in the seasonal-to-interannual prediction literature for climate 
change projections.  
 
As highlighted by the reviewer, it is not correct to say that the spread is “larger than 
appropriate” because it just means it is larger than the other CMIP5 models. This will be 
amended in the revised manuscript. There may certainly be some aspects of the “signal-to-
noise paradox” which are relevant and have implications for climate projectiosn and we will 
try to highlight this in the discussion in the revised manuscript. 
 
 
15) P9 L10: “in to” should be “is to”  
 
Agreed, will change in the revised manuscript. 
 
 
16) P9 L18: Change “covarying signal in the reference/observational index” to “covarying 
signal between the reference and observational indices” for clarity (unless I misunderstand 
your approach).  
 
Yes, this should certainly have been clearer. The meaning here is to highlight the covarying 
signal between the reference and the ensemble mean which is being calibrated. This will be 
clarified in the revised manuscript. 
 
 
17) P9 L21: “with a circulation driven signal”: do you want to specify whether this can be 
an “internal” circulation driven signal, or forced, or both? 
 
Agreed, this could be both and is important to make that clear here – will amend in the 
revised manuscript. 
 
 
18) P10 L20: “separately” is mis-spelled  
 
Yes, this will be corrected. 
 



 
19) P10 L21: “in the ensemble with a signal”: please clarify your intended meaning; the 
language is confusing.  
 
Agreed, will change in the revised manuscript. 
 
 
20) P11 L1: “of temperature.”: I would add “in both seasons and models, but especially 
summer”.  
 
Yes, that is a good suggestion, thanks. Will amend this in the revised manuscript. 
 
 
21) P11 L27: “from the all of” ?  
 
This is will be corrected in the revised manuscript. 
 
 
22) P11 L30-31: Can you provide a physical explanation for why the calibration method acts 
to increase the uncertainty in future projections? Does it have to do with differences between 
the level of variability between observations and the model?  
 
Yes, it seems to be largely due to the differences in the levels of variability. We will look into 
this further though and try to elaborate on this in the revised manscript. 
 
 
23) P12 L9: Is the reduced drying mainly dynamical or thermodynamic in 
origin?  
 
It seems to be mainly dynamical. In the models there is a stronger dynamical signal over the 
reference period which doesn’t seem to be there in the observations and this is reduced by the 
calibration. This detail will be added to the revised manuscript. 
 
 
24) P12 L15 “far more consistent . . .”: I think this is an overstatement.  
 
Agreed, the “far” is probably not justified here. This will be amended in the revised 
manuscript. 
 
 
25) P12 L22-30: How do your results relate, if at all, to the trend biases in LENS compared 
to a synthetic observational Large Ensemble documented in McKinnon and Deser (2018)? 
McKinnon, K. A and C. Deser, 2018: Internal variability and regional climate trends in 
an Observational Large Ensemble. J. Climate, 31, 6783–6802, doi: 10.1175/JCLI-D- 
17-0901.1. 
 
Very interesting question. Thinking about it, in some sense the calibration is “trying” to 
account of some of these biases but how is related to the trends is not obvious. Nonetheless, 
this is an important study and discussion of this will be added to the revised manuscript. 
 



 
26) P13 L31: suggest adding “in the calibrated ensembles” after “generally smaller” 
 
Agreed, will change in the revised manuscript. 
 
 
27) P14 L7: “For precipitation, where there is no clear signal over the reference period 
in the observations”: I am not sure what your evidence is. Guo et al. (2019) found a 
nice correspondence with dynamically-adjusted precipitation trends from observations 
and the ensemble-means of LENS and CMIP5 models.  
 
Here the statement is just for the seasons and regions specifically analysed in the paper and 
when comparing the signal to interannual timescale variability (e.g. black lines in Figure 8). 
It will be clarified that this is not a general statement in the revised manuscript.  
 
 
28) P14 L12: add “relative to the internal variability” after “weaker” (i.e., the forced signal 
doesn’t weaken on smaller scales, just the signal-to-noise weakens).  
 
Agreed, this will be added in the revised manuscript. 
 
 
29) P14 L21: “is kept” should be “are kept” 
 
This is will be corrected in the revised manuscript. 
 
 
30) P14 L27: Cite Yeager et al. (2018) for the LENS DPLE. Yeager, S. G., G. Danabasoglu, 
N. Rosenbloom, W. Strand, S. Bates, G. Meehl, A. Karspeck, K. Lindsay, M. C. Long, H. 
Teng, and N. S. Lovenduski, 2018: Predicting near-term changes in the Earth System: A 
large ensemble of initialized decadal prediction simulations using the Community Earth 
System Model, Bull. Amer. Meteor. Soc., in press, doi: 10.1175/BAMS-D-17-0098.1. 
 
Good point – this reference will be included in the revised manuscript. 
 
 
31) P14 L28: “merged calibrated climate predictions”: insert “set of” before “climate 
predictions”?  
 
Agreed, this will be added in the revised manuscript. 
 
 
32) Caption to Fig. 3: add “summer” before “temperature”  
 
Agreed, will change in the revised manuscript. 
 
 
33) Title to Fig. 4: It is confusing. Suggest re-wording as: “LENS JJA Temperature” 
(analogous comment applies to Fig. S1).  
 



Good suggestion – this will be changed here and in Fig S1 in the revised manuscript. 
 
 
34) Title to Fig. 5: omit the dash after “LENS” for clarity 
 
Agreed, will change in the revised manuscript. 
 
 
35) Caption to Fig. 5: 2nd sentence: change “Shown” to “Results are shown . . .” . 
Also, the sentence describing what the black boxes mean is confusing. I would shorten 
to: “Black boxes indicate where the HGR-decomp method of calibration is significantly 
better than the HGR method (at the 90% level).”  
 
Thanks for this suggestion. We will change accordingly in the revised manuscript. 
 
 
36) Caption to Fig. 7, line 3: change “has a” to “is”. In the next line, change “worse that” 
to “worse than”.  
 
Agreed, will change in the revised manuscript. 
 
 
37) Caption to Fig. 8: Please state what the various colors and linestyles mean, and what the 
shading means. Don’t rely on the legend. Indeed, the colors/linestyles in the legend seems to 
be at odds with that shown in Fig. 7, which had all blue for LENS and all red for MPI. Please 
make them consistent for clarity.  
 
Good point – the inconsistency in colours is quite stupid really and we will change this in the 
revised manuscript. 
 
 
38) Fig. 9: Same comment as above: please use a consistent color scheme as in Fig. 7 (or 
change Fig. 7 to be consistent with Fig. 9).  
 
As above - we will change this in the revised manuscript. 
 
 
39) Caption to Fig. 9: Please state the method of calibration in the caption. Is it HGR-
decomp? 
 
Yes, it is HGR-decomp. This will be clarified in the revised manuscript. 
 
We thank the reviewer for their incredibly helpful review. There were lots of insightful and 
helpful comments and we are confident these will help to improve the paper. 
 



Reply to RC3 (comments in blue, reply in black) 
 
General comments 
 
This study takes methods of forecast calibration normally used for initialized seasonal 
forecasts and applies them to half-century scale regional climate projections. Three 
similar recalibration methods are applied to two single model large ensembles of RCP 
8.5 simulations. The recalibration methods are tested using an imperfect model approach 
where CMIP5 models are used in place of observations to allow out-of-sample 
evaluation of the skill of the recalibrated projections. The imperfect model testing indicates 
that recalibration generally produces more reliable projections for future climate 
in Europe, and only rarely produces significantly less reliable projections. Results are 
qualitatively similar for both large ensembles. An important aspect of this study is the 
separate recalibration of dynamically decomposed components of the forecasts, which 
tends to produce more reliable projections that recalibrating the complete forecasts. 
 
I congratulate the authors on presenting a fascinating idea. The manuscript is generally very 
clear, and I have little criticism of the imperfect model validation methodology 
which is very thorough. The idea proposed is can uninitialized mid-term climate projections 
be recalibrated to be more useful for adaptation and impact assessment using 
techniques from seasonal/decadal forecasting? The answer is almost certainly yes, as 
this study demonstrates, but with some important caveats that warrant further discussion 
without detracting from the novelty and potential utility of the idea. 
 
We thank the reviewer for their positive comments and feedback. We agree that there are 
some important caveats and that these would benefit from further discussion in the revised 
manuscript – further details follow the specific points below. 
 
 
The main concern is conceptual. The three recalibration methods tested are very similar, 
effectively differing only in their treatment of the ensemble spread. They were conceived 
for application to seasonal forecasts where uncertainty in the forcing and the 
thermodynamic response to forcing (i.e., climate change) are negligible. On decadal 
time scales this assumption may still be a reasonable approximation, but on longer time 
scales this is not the case, as is clearly visible in Figure 3 by the divergence between 
the CESM ensemble and the CMIP5 model. The recalibration methods used were not 
intended to correct for differences in forcing or response to forcing. Therefore, unless 
the difference over time is approximately constant (which it isn’t), or can be corrected 
by a linear scaling of the signal (Figure 3 suggests not), then the recalibration methods 
tested are likely to be inadequate to the task. I do not doubt the performance 
improvements shown in the results, bias correction, signal scaling and correcting the 
ensemble spread will all improve the imperfect model predictions, but I doubt whether 
the projections are truly reliable. 
 
Yes, the reviewer makes a very valid point. As we go to longer lead-times (i.e. further into 
the future) the errors are expected to get larger, as the error in the scaling will be amplified 
and the contribution of internal variability reduced. We focused on this mid-century timescale 
because that is the focus of our current project, however, it is important to assess how the 
effectiveness of the calibration changes with lead-time. We will calculate the verification 
over some additional future periods (e.g. 2061-2080) to examine this and include the 



discussion of these in the revised manuscript (though the results may end up in the 
supplementary material as the paper is already fairly lengthy).  
 
 
This makes the dynamical decomposition aspect of the paper all the more interesting 
and important. The idea appears to be to decompose the forecasts into forced and 
unforced components, then recalibrate each component separately using the same 
recalibration method. This makes a lot of sense and goes a long way to addressing 
my concerns above (it is still questionable whether the recalibrations employed are 
suitable for the forced component, however this is pardonable given the novelty of the 
approach). In my view, the decomposition step is critical to making the whole approach 
credible and needs to be introduced and motivated in the introduction, some further 
details of the both the decomposition itself and how the components are recombined 
(Figure 6) included in methodology, and possibly some additional reflection in the 
conclusions. 
 
The reviewer is right to suggest that the description/presentation of the decomposition 
method should have been clearer – and this is also reflected in comments by the other 
reviewers. In the revised manuscript we will include an expanded motivation and description 
of the method, as well as a schematic showing the specific steps involved in the 
decomposition and calibration. We agree that this is an important part of our study that was 
perhaps not illuminated as it might have been in the previous version of the paper. 
 
 
Specific points: 
 
Page 6, Lines 5-6: Arguably, EMOS is the most general of the three methods. VINF 
is optimal in mean square error, making it equivalent to EMOS with c=0 when EMOS 
is optimized on the log score rather than CRPS. Similarly, HGR is equivalent to EMOS 
with d=0, on the log score. 
 
Yes, that’s a good point that EMOS is the most general. We thank the reviewer for making 
this point – and for suggesting the other comparisons between the methods. These details will 
be added to this section of the revised manuscript. 
 
 
Page 6, Lines 7-10: Was a block sampling strategy used to account for trends and 
periodic features such as ENSO? If not this would represent a great deal of work to 
repeat, so I do not insist it is done, but more details would be helpful. 
 
Thanks for the suggestion, yes more details would be helpful. The bootstrap resampling was 
to account for uncertainty in the fit parameters of the calibrations, not to specifically account 
for periodic features such as ENSO, however, it’s likely that the resampling method does 
implicitly account for some. More details of the method will be added to the revised 
manuscript. 
 
 
Page 6, Line 30: computed -> compute 
 
Yes, this will be corrected. 



 
 
Page 7, Line 8: the raw ensemble is clearly has -> the raw ensemble clearly has 
 
Yes, this will be corrected. 
 
 
Page 7, Lines 7-9: In apparent contradiction to the text, there is no visible positive bias 
in the upper panel of Figure 2, and the reference never lies outside of the ensemble. 
 
Agreed - this is a mistake and will be corrected (this comment was in reference to a previous 
version of this figure that has since been replaced but we should have caught this). 
 
 
Page 7, Lines 27-29: It would be useful to have some of these results available in 
the supplementary material. It seems likely that there will be systematic differences 
depending on the calibration period, given the relative lack of signal in most models 
until around 1990, the inability of most CMIP5 models to reproduce the so-called hiatus 
period, and the fact that the forcing after 2005 will differ from the observations. Longer 
calibration periods will down-weight the information contained in these key periods. 
 
Good point - we did do some sensitivity tests and will include some examples of these in the 
supplementary material when we revise the manuscript. 
 
 
Page 11, Lines 15-17: Given my primary concern above, and my comment on Page 
7, it would also be useful to have some of these results available in supplementary 
material, and a little more discussion given. 
 
Again, this is a fair point and something we will address. The verification statistics over the 
different period are likely important and we will provide more of these in the supplementary 
material of the revised manuscript, along with some discussion of these results in the main 
text.  
 
We thank the reviewer for their insightful and helpful comments that we hope will help to 
improve the paper. 
 



Reply to RC4 (comments in blue, reply in black) 
 
Summary 
 
This paper presents a novel study which attempts to create better projections by calibrating 
large ensembles over a calibration period where we have both observations 
and large ensemble simulations. This study investigates three methods of calibration 
and finds that while all methods perform well, no method performs substantially better 
than the others. They then show improvement by using a dynamical decomposition 
method. They find that the calibration works much better for temperature than precipitation, 
and attribute this to the lack of clear forced change in the calibration period for 
precipitation. For temperature they find improvement for both large ensembles over Europe 
by using this calibration method and find that it reduces warming as compared to the 
calibrated ensemble. I recommend publication with a few minor points to be addressed. 
 
We thank the reviewer for the positive comments on our study. 
 
 
Minor points:  
 
Page 3 line 2 should be ’ensembles’  
 
This will be corrected. 
 
 
Page 3 lines 27/28 MPI-GE is initialized from different years of a long pre-industrial control 
run, not in the same way as LENS  
 
This is an important distinction and was an oversight on our part. A description to this effect 
will be added in the revised manuscript. 
 
 
Page 4 line 22 should be ’projections’  
 
This will be corrected. 
 
 
Section 2.3.1 Are you results sensitive to the choice of reference period? For the dynamical 
decomposition can you explain why and how you use SLP?  
 
No the results are not very sensitive to the reference period. We tested from 30-years up to 
the full 97-year periods and the verification statistics generally improve with the length of the 
period, which is why we use the full reference period here. Text describing these tests will be 
added to the revised manuscript. 
 
The SLP is used to estimate what seasonally anomalies can be attribute to large-scale 
circulation anomalies (assessed in terms of SLP anomalies). This will be clarified in the 
revised manuscript, including a schematic illustrating how the dynamical decomposition is 
applied to produce the calibrated projections. 
 



Page 7 lines 7/8. Please explain what you mean by "The raw ensemble is clearly has a 
positive bias"  
 
This refers to the observations over the reference period – this will be clarified. 
 
 
Section 3.3 The explanation at the beginning of the section should be in Section 2.4  
 
Agreed, the description in section 2.4 will be expanded in the revised manuscript and will 
also include a schematic to visualise how this is used to produce calibrated projections. 
 
 
Additional studies that may be of interested: only cite if you feel appropriate.  
https://www.earth-syst-dynam-discuss.net/esd-2019-69/ 
https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-16-0905.1  
Deser, C., F. Lehner, K. B. Rodgers, T. Ault, T. L. Delworth, P. N. DiNezio, A. Fiore, C. 
Frankignoul, J. C. Fyfe, D. E. Horton, J. E. Kay, R. Knutti, N. S. Lovenduski, J. Marotzke, K. 
A. McKinnon, S. Minobe, J. Randerson, J. A. Screen, I. R. Simpson and M. Ting, 2020: 
Insights from earth system model initial-condition large ensembles and future prospects. Nat. 
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Abstract.
This study examines methods of calibrating projections of future regional climate

:::
for

:::
the

::::
next

:::::
40-50

:::::
years using large sin-

gle model ensembles (the CESM Large Ensemble and MPI Grand Ensemble), applied over Europe. The three calibration

methods tested here are more commonly used for initialised forecasts from weeks up to seasonal timescales. The calibration

techniques are applied to ensemble climate projections, fitting seasonal ensemble data to observations over a reference period5

(1920-2016). The calibration methods were tested and verified using an “imperfect model” approach using the historical/RCP

8.5 simulations from the CMIP5 archive. All the calibration methods exhibit a similar performance, generally improving the

out-of-sample projections in comparison to the uncalibrated (bias-corrected) ensemble. The calibration methods give results

that are largely indistinguishable from one another, so the simplest of these methods, namely Homogeneous Gaussian Re-

gression
::::::
(HGR), is used for the subsequent analysis. An extension to this method - applying it

::
As

::
an

:::::::::
extension

::
to

:::
the

:::::
HGR10

:::::::::
calibration

::::::
method

::
it

:
is
:::::::
applied to dynamically decomposed data(,

:
in which the underlying data is separated into dynamical and

residual components ) - is also tested. The verification indicates that this calibration method produces
:::::::::::::
(HGR-decomp).

::::::
Based

::
on

:::
the

::::::::::
verification

::::::
results

:::::::
obtained

:::::
using

:::
the

::::::::
imperfect

::::::
model

::::::::
approach,

:::
the

::::::::::::
HGR-decomp

:::::::
method

::
is

:::::
found

::
to

:::::::
produce

:
more

reliable and accurate projections than the uncalibrated ensemble for future climate over Europe. The calibrated projections

for temperature demonstrate a particular improvement, whereas the projections for changes in precipitation generally remain15

fairly unreliable. When the two large ensembles are calibrated using observational data, the climate projections for Europe

are far more consistent between the two ensembles, with both projecting a reduction in warming but a general increase in the

uncertainty of the projected changes.

Copyright statement.

1 Introduction20

To make informed assessments of climate impacts and implement relevant adaptation strategies, reliable climate projections are

important for policy-makers and other stakeholders (e.g. Field et al., 2012). There is particular demand for climate projections
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on regional-scales for the next 40-50 years, however, such predictions are currently very uncertain (e.g. Stocker et al., 2013;

Knutti and Sedláček, 2013). One example of the demand for improved regional climate projections is the EU-funded "European

Climate Prediction system" project (EUCP), which aims to produce reliable European climate projections from the present to

the middle of the century (Hewitt and Lowe, 2018). In this study, which is a part of the EUCP project, we examine methods of

improving the accuracy and reliability of climate projections over the European region.5

There are a myriad of factors that contribute to the uncertainty in projections of future regional climate. One large factor is

the uncertainty in greenhouse gas emissions and associated future radiative forcing anomalies (e.g. Pachauri et al., 2014). In this

study we will focus only on estimating uncertainty of the physical climate system itself in responding to changing greenhouse

gas forcing by focusing on a single representative concentration pathway (RCP), following the Coupled Model Intercomparison

Project 5 (CMIP5) protocol (Taylor et al., 2012). The majority of analyses of coupled model projections are based upon multi-10

model ensembles, which combine projections from multiple different coupled ocean-atmosphere climate models. One strength

of a multi-model ensemble is that if each of the models has different structural deficiencies and associated errors, then these

will not overly influence the ensemble projection. In seasonal forecasting, for example, multi-model products have been found

to outperform the individual models in several studies (e.g. Palmer et al., 2004; Hagedorn et al., 2005; Baker et al., 2018).

Multi-model ensembles of coupled climate models provide a range of plausible scenarios for the historical and future evolution15

of the physical climate system. The simplest treatment of these models is to assume that each is equally likely, sometimes

referred to as "model democracy" (e.g. Knutti, 2010). However, this approach assumes that models are independent and that

they each represent an equally plausible representation of the climate system, neither of which is typically well justified (e.g.

Gleckler et al., 2008; Knutti et al., 2013).

Several methods have been developed that go beyond "model democracy" and instead weight models based on their per-20

formance in an attempt to improve the representation of uncertainty in multi-model ensembles. One step away from model

democracy is to downweight models in the ensemble that are not independent from one another (e.g. Sanderson et al., 2015),

as has often found to be applicable in CMIP5-based studies. An additional or alternative approach is to weight models based

on their past performance with respect to an observational benchmark, which could be the climatology of one or multiple fields

(e.g. Giorgi and Mearns, 2002, 2003; Knutti et al., 2017; Sanderson et al., 2015)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Giorgi and Mearns, 2002, 2003; Knutti et al., 2017; Sanderson et al., 2015; Merrifield et al., 2019)25

or the ability of models to capture past changes (e.g. Kettleborough et al., 2007). In a recent paper, Brunner et al. (2019) applied

a model weighting technique was applied to the climate projections from the CMIP5 models
::
to

:::
the

::::::
CMIP5

::::::
climate

::::::::::
projections

over the European region. The model weighting was found to constrain the large spread in the CMIP5 models and reduce the

implied uncertainty in the multi-model projections of European climate over the coming decades.

A weakness of multi-model ensembles, however, is that the different externally forced climate response in each of the models30

can be difficult to isolate from internal variability. This is particularly problematic when each model typically only consists of

a few ensemble members or less, as is the case with most models in CMIP5. To overcome the problem of disentangling the

forced model response from the internal variability, several modelling groups have performed large single model ensemble

simulations, using 40 ensemble members or more (e.g. Kay et al., 2015; Maher et al., 2019). With
:::::::::::::::::::
(e.g. Deser et al., 2020)

:
.

:::::
When

::::::
dealing

::::
with

:
such large ensemble sizes, the ensemble mean provides a good estimate of the externally forced signal and35
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deviations from this can reasonably be interpreted as the internal variability of the coupled climate system.
::
A

::::::
further

:::::::
strength

::
of

::::
large

:::::::::
ensembles

::
is

:::
that

::::
they

::::
can

::
be

::::
used

::
to

:::::::::
effectively

:::::::
attribute

:::::::
climate

:::::::::
variability

::
to

:::::::
changes

::
in

:::::::::
large-scale

:::::::::
circulation.

::::
For

:::::::
example

::::::::::::::::
Deser et al. (2016)

:::
used

::
a
:::::
large

::::::::
ensemble

::
to

:::::::::::
demonstrate

:::
that

:::
the

::::::::
observed

::::::::::
wintertime

::::::::::
temperature

:::::
trends

:::::
over

:::
the

::::::
second

:::
half

::
of

:::
the

:::::::
century

::::
were

:::
due

::
to
::
a
::::::::::
combination

::
of
::::::
forced

:::::::::::::
thermodynamic

:::::::
changes

:::
and

::
a
::::::::::
dynamically

::::::
driven

::::::::::
temperature

::::
trend

::::
that

:::
was

:::
not

::::::
clearly

:::::::::
externally

::::::
forced.

:::
We

::::
will

:::
use

:::
the

:::::::::
separation

::
of

:::
the

::::
large

:::::::::
ensembles

::::
into

::::::
forced

::::::
signals

:::
and

:::::::
internal5

:::::::::
variability,

::
as

::::
well

::
as

:::
the

:::::::::
separation

::
of

::::
each

::::
into

:::::::::
dynamical

:::
and

:::::::::::::::
thermodynamical

:::::::::::
components,

::
to

:::::::
examine

:::::::
different

::::::::
methods

::
of

:::::::::
calibrating

:::::::::
projections

::
of

::::::::
European

:::::::
climate.

:

Despite large ensembles providing clearer estimates of forced climate signal and internal variability, it is obvious that that

these ensemble
::::
these

:::::::::
ensembles will not perfectly represent observed climate variability, which is also the case with the multi-

model ensembles. In this study, we explore the extent to which large ensemble climate projections can be calibrated over10

the observational period to adjust and potentially improve future projections. The general calibration approach relies upon

the large ensemble being clearly separable into a forced signal component and residual internal variability (e.g. Deser et al.,

2014). Calibration techniques have previously been applied to output from initialised seasonal forecasts (as well as shorter

range forecasts), and have been demonstrated to reduce the forecast error and, perhaps more crucially, improve the reliability

of the probabilistic forecasts (Kharin and Zwiers, 2003; Doblas-Reyes et al., 2005; Manzanas et al., 2019). In addition to15

seasonal timescales, calibration techniques have also been shown to be effective on the output from decadal prediction systems

(Sansom et al., 2016; Pasternack et al., 2018). However, these types of ensemble calibration techniques have not previously

been applied to ensemble climate model projections. Here we apply ensemble calibration techniques to uninitialised large

ensemble climate projections, focusing on European regions, to test whether these ensembles can be calibrated to give reliable

probabilistic climate projections for the next 40-50 years. Given that these calibration methods have been shown to be effective20

when applied to initialised decadal forecasts, if calibration also proves effective for projections beyond 10 years this would

present an opportunity to merge the calibrated decadal predictions with calibrated large ensemble climate projections.

The paper is organised as follows. The datasets, verification techniques and calibration methods are described in the next

section. In section 3, we present results from the different calibration methods, namely, "Variance Inflation", "Ensemble Model

Output Statistics", and "Homogeneous Gaussian Regression". These calibration methods applied to -
::
are

:::::::
applied

::
to, and verified25

against- ,
:
CMIP5 model data and also applied to observations. Conclusions follow in section 4.

2 Datasets and methods

2.1 Model and observational datasets

In this study we use two different large ensemble coupled climate model datasets. The first is from the CESM
::
(1)

:
Large Ensem-

ble (Kay et al., 2015), hereafter referred to as "LENS
::::::::::
CESM1-LE", which consists of 40 members initialised from with random30

round-off error from a single ensemble member in 1920 and freely evolving thereafter. Each ensemble member is performed

with identical external forcing, following the CMIP5 protocol for the 1920-2005 historical period and the representative con-

centration pathway 8.5 (RCP 8.5) over the period 2006-2100. The second large ensemble dataset is the MPI Grand Ensemble
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(Maher et al., 2019), hereafter referred to as "MPI-GE", which is similar to LENS
::::::::::
CESM1-LE but uses the MPI Earth System

Model and consists of 100 members starting in 1850.
::::
1850,

::::
each

::::::::
initialised

:::::
from

:
a
:::::::
different

::::::
initial

::::::::
conditions

:::::
taken

:::::
from

::
a
::::
long

:::::::::::
pre-industiral

::::::
control

::::::::::
simulation. MPI-GE is integrated through to 2099 using various CMIP5 forcing scenarios but here we

use the RCP 8.5 data to compare with LENS
:::::::::
CESM1-LE. We only use 99 members of the MPI-GE that had all of the variables

used here available at the time of carrying out the analysis. For both datasets we use data over the period 1920-2060, which is5

covered by both large ensemble datasets. The near-term (⇡ 1-40 years) period is the primary period of interest of the EUCP

project.

Observational data for surface air temperature and precipitation is taken from the CRU-TS v4.01 gridded surface dataset

(Harris et al., 2014). The observational sea-level pressure
:::::
(SLP)

:
data is taken from the HadSLP2 dataset (Allan and Ansell,

2006)
:::
for

:::
the

:::::
results

:::::::::
presented

::::::
below,

:::::::
however,

:::
we

::::::
tested

:::
the

::::::::
sensitivity

:::
to

:::
the

:::::
choice

:::
of

:::::::::::
observational

::::
SLP

::::::
dataset

:::
by

:::::
using10

::
the

:::::
20th

:::::::
Century

:::::::::
Reanalysis

:::
v3

::::::::
(20CR; ?)

:
.
::::
The

::::::
results

::::
were

::::::::
generally

::::
very

:::::::
similar

::::::::
regardless

:::
of

:::
the

:::::::::::
observational

::::::::
datasets,

:::::::
however,

:::::
some

::
of

:::
the

:::::::::
differences

::::::::
between

::
the

::::::::::::
observational

::::::
dataset

:::
are

:::::::::
highlighted

::
in

:::::::
section

:::
3.5.

The data used for out-of-sample verification was taken from the CMIP5 archive (Taylor et al., 2012). We take the first

ensemble member for the 39 models that cover the 1920-2060 period for the historical (up to 2005) and RCP 8.5 (from 2006)

scenarios.
:::
The

::::::::::
CESM1-LE

::::
has

:
a
::::::
1�x1�

::::::
degree

:::::::::
horizontal

::::::::
resolution

:::
in

:::
the

::::::::::
atmosphere

:::::
(with

:::
30

::::::
vertical

:::::::
levels),

::::::
which

::
is15

:::::::
generally

::::::::::
comparable

:::
or

::::::
higher

::::::::
resolution

::::
than

::::
the

::::::
models

::
in

:::
the

:::::::
CMIP5

:::::::::
ensemble.

::::
The

:::::::
MPI-GE

:::
has

::
a
::::::::::::
comparatively

::::
low

:::
T63

:::::::
spectral

:::::::::
resolution

:::::::::
(equivalent

::
ot

::::::
around

::
a
::
2�

::::::
degree

:::::::::
horizontal

::::::::::
resolution),

::::
with

::
40

::::::
levels

::
in

:::
the

:::::::
vertical. Data from the

CMIP5 models, MPI-GE ensemble and the observational datasets were regridded to the same grid as the LENS
::::::::::
CESM1-LE

dataset prior to the analysis.
::::
Tests

:::
on

:
a
:::::
small

::::::
subset

::
of

:::
the

::::::
results

::::::
showed

::::
that

:::
the

::::::
results

::::
were

:::
not

::::::::
sensitive

::
to

:::
the

:::::::::
regridding

::::::::
procedure.

:
20

We analyse the evolution and projections of surface-air temperature (referred to as temperature hereafter) and precipitation

over the three European SREX regions (Field et al., 2012). These are the Northern Europe, Central Europe and Mediterranean

regions, which are shown in Figure 1 and will be hereafter referred to as NEUR, CEUR and MED, respectively. Our analysis

focuses on projections of seasonal mean climate for European summer (defined as the June-July-August average) and winter

(defined as the December-January-February average).25

2.2 Verification metrics

The impact of the calibration is assessed through a series of verification metrics. The root-mean square error (RMS error) is

a simple measure of the accuracy of the ensemble mean prediction. In addition, the spread of the ensemble is also calculated,

which is defined as the square root of the mean ensemble variance over the verification period (e.g. Fortin et al., 2014). By

calculating the RMS error and spread we are able to estimate the reliability of the ensemble by calculating the spread/error ratio,30

which for a perfectly reliable ensemble will be equal to one (e.g. Jolliffe and Stephenson, 2012). A spread/error ratio greater

than one indicates an underconfident ensemble, whereas a spread/error ratio less than one indicates an overconfident ensemble.

The final metric that we will consider is the continuous rank probability score (CRPS), which is a probabilistic measure of

forecast accuracy that is based on the cumulative probability distribution (e.g. Hersbach, 2000; Wilks, 2011; Bröcker, 2012).
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The CRPS measures where the verification data
::::
point

:
lies with respect to the underlying ensemble and is higher when the

verification data is
:::
are further from the centre of the ensemble. As such, a lower CRPS value represents a more skillful

probabilistic forecast.

2.3 Ensemble calibration methods

We will assess the effectiveness of calibrating ensemble climate projection
:::::::::
projections

:
using a series of different calibration5

techniques, which are outlined in this section. The calibrations are performed seperately
:::::::::
separately for each region and season,

on annually-resolved indices.

2.3.1 Uncalibrated ensemble

The benchmark for the calibration methods is the uncalibrated ensemble. Here we use the term uncalibrated ensemble to refer

to an ensemble that has been bias corrected by removing the mean value over a particular reference period. Of course, this is10

not strictly an uncalibrated ensemble but this is the most common way that climate projections are presented in the literature

(e.g. Hawkins and Sutton, 2016). In the analysis that follows the reference period is always the same as for the corresponding

calibration methods, which is generally the observational period 1920-2016 in the following analysis.

2.3.2 Variance inflation (VINF)

One calibration method that we will test is "Variance inflation", hereafter referred to as VINF, following Doblas-Reyes et al.15

(2005). For each uncalibrated ensemble member, Xuncalib, VINF adjusts the ensemble mean signal, Xm, and anomaly with

respect to the ensemble mean, Xens-anom, from the uncalibrated ensemble. The uncalibrated ensemble can be expressed in these

terms as

Xuncalib(t,e) =Xm(t)+Xens-anom(t,e). (1)

Here t and e indicate dependence on time and ensemble member, respectively. The VINF method produces a calibrated en-20

semble, Xcalib, through the following scaling

Xcalib(t,e) = ↵Xm(t)+�Xens-anom(t,e). (2)

The scaling variables ↵ and � are calculated as

↵= ⇢
sr

sm
; (3)

25

� =
p
1� ⇢2

sr

suncalib
; (4)

where sr is the standard deviation of the reference (or observational) data that is being calibrated towards, sm is the standard

deviation of the ensemble mean, suncalib is the square-root of the mean variance of the uncalibrated ensemble members, and ⇢

5



is the correlation between the ensemble mean signal and the reference dataset over the calibration period. Where ⇢ is less than

zero and there is no skillful corrlation
:::::::::
correlation between the ensemble and

:::
the

::::::::
reference

::::::
dataset, we set ⇢ to be zero in the

calibration. VINF scales the signal and ensemble spread but maintains the underlying correlation and ensemble distribution,

rather than fitting a parametric distribution as in the following methods.

2.3.3 Ensemble Model Output Statistics (EMOS)5

The next calibration method is the "Ensemble Model Output Statistics" approach, hereafter referred to as EMOS (Gneiting

et al., 2005). The EMOS method has widely been applied to the output of ensemble prediction systems for medium-range

and seasonal forecasts. EMOS involves fitting a parametric distribution to the underlying data, such that the uncalibrated is

expressed as

Xuncalib(t) =Xm(t)+ ✏uncalib(t), ✏uncalib(t) =N [0, s2(t)]; (5)10

and the calibrated ensemble is expressed as

Xcalib(t) = bXm(t)+ ✏calib(t), ✏calib(t) =N [0, c+ ds2(t)]; (6)

where N [µ,�2] is a Gaussian distribution with mean µ and variance �2 and s2 is the time-dependent variance across the

ensemble. The coefficients b,c, and d are found using numerical methods to minimise the CRPS over the calibration period

Gneiting et al. (2007). The coefficients b,c, and d are constrained to be non-negative values. The EMOS technique
:
is
::::::::
arguably15

::
the

:::::
most

::::::
general

:::::::
method

:::
we

::::
will

:::
test

:::::::
because

::
it allows for meaningful differences in spread across the ensemble at different

time
:::::
times (i.e. the coefficient d), so is sometimes referred to as "Nonhomogenous Gaussian Regression" (e.g. Wilks, 2006;

Tippett and Barnston, 2008). EMOS represents a simplification over the VINF method because the the ensemble distribution

is parameterised as Gaussian. In this study, the EMOS technique is used to produce 1000 sampled ensemble members in the

ensemble projection. To avoid overfitting to the observations when producing the ensembles and to include some measure20

of sampling uncertainty in the
::::::::
parameter fitting process, the EMOS method is applied to randomly resampled years

::::
(with

::::::::::
replacement)

:
from the calibration period, to produce 1000 valid combinations of the coefficients b,c, and d. These combinations

are used to produce the 1000 sampled ensemble members used to produce the calibrated projection.

2.3.4 Homogenous Gaussian Regression (HGR)

The third calibration method that we test is "Homogenous Gaussian Regression", hereafter referred to as HGR. The HGR25

method is a simplified version of EMOS, in which the calibrated variance is constant is
::
in time and is expressed as

Xcalib(t) = bXm(t)+ ✏calib(t), ✏calib(t) =N [0, c]. (7)

Effectively, this method assumes that there is no information in the time variation of the ensemble spread. The coefficients b

and c are found as in EMOS and are constrained to be greater than or equal to zero.
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2.4 Dynamical decomposition of climate anomalies

In this study we will test calibrating the full variables as well as calibrating dynamically decomposed variables. The dynamical

decomposition aims to express variables - surface air temperature and precipitation in this case - as a dynamical and residual

component. The rationale for testing this on the calibration methods is that they may be fitting a thermodynamic signal in the en-

semble to something that is dynamically driven in the reference (or observational) data and therefore conflating different mech-5

anisms. Dynamical decomposition has previously been used to understand observed large-scale climate variability on decadal

timescales where there is a contribution from the thermodynamic climate change signal and large-scale circulation anomalies

(e.g. Cattiaux et al., 2010; Wallace et al., 2012; Deser et al., 2016)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Cattiaux et al., 2010; Wallace et al., 2012; Deser et al., 2016; Guo et al., 2019)

. The dynamical decomposition splits the variables at each grid-point over Europe into FULL = DYNAMICAL + RESIDUAL.

The dynamical component was calculated for all model ensemble members, CMIP5 models and observations following the10

analog method of Deser et al. (2016). The method here is exactly the same as that used in O’Reilly et al. (2017), which provides

full details. In this method, sea-level pressure (SLP) anomaly fields for each month are fitted using other SLP anomaly fields

from the corrensponding month from other years over the reference/observational period (1920-2016). This regression fit yields

weights which are then used to computed
:::::::
compute

:
the associated dynamical surface temperature or precipitation anomaly.

Each field can then be separated into a dynamical and residual component.
::
An

::::::::
example

::
of

:::
the

:::::::::
dynamical

::::::::::::
decomposition

:::
of15

::
the

::::::::::
CESM1-LE

:::::::::
projection

::::
into

:::::::::
dynamical

:::
and

:::::::
residual

::::::::::
components

::
is

:::::
shown

::
in
::::::
Figure

:::
S1

::::
(and

:::
also

:::
in

::
the

::::::::
example

:::::::::
calibration

::::::::
schematic

::
in

::::::
Figure

:::
3).

:
The regional dynamical and residual timeseries were calibrated using the above techniques towards

the corresponding dynamical and residual timeseries from the target dataset (i.e. CMIP5 or observations over the period 1920-

2016). The calibrated dynamical and residual timeseries are then combined to give a full calibrated ensemble projection
:
,
::::::
further

::::
detail

::
is
::::::::
provided

::
in

:::
the

::::::::
following

:::::::
section. Results from the calibrated dynamical decomposition are shown later in the paper20

for the HGR method and referred to as HGR-decomp.

3 Results

3.1 An example ensemble calibration

Before we begin our analysis, it is useful to motivate our approach by briefly describing an example calibration. A synthetic,

randomly-generated 100 member ensemble is shown in Figure 2, alongside a synthetic observational index. The raw ensemble25

is clearly has a positive bias and as a result has a large error. Despite the large spread of
:::::
There

::
is

:
a
:::::

large
::::::
spread

::::::
across the

ensemble,
:::
with

:
the reference frequently lies outside the ensemble

::::
lying

::::
close

::
to

:::
the

::::::::
ensemble

:::::
mean. The lower panel of Figure

2 shows the ensemble calibrated towards the reference data using the VINF method. The first step is a simple bias correction

towards the reference mean, then the VINF
:::::
VINF

::::::
method

:
scales the ensemble mean and spread to make the ensemble reliable

in a probabilistic sense. The improvement of the calibrated ensemble is clear from the reduction in error and CRPS, which is30

also shown in Figure 2. Also, it is important to note that calibrated ensemble is perfectly reliable over the reference period,
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as indicated by the spread/error being equal to 1 after calibration. The EMOS and HGR methods would have yielded almost

identical results for this synthetic ensemble.

It is clear from the example shown in Figure 2 that it is trivial to calibrate an ensemble to known data such that it is perfectly

reliable. Of more interest here is whether calibrating to observed data can improve the accuracy and reliability of a prediction

outside of the reference period used for the calibration.5

3.2 Comparing calibration techniques using an "imperfect model" test

Our aim in this study is to test how calibrating large ensemble projections using observations will influence the accuracy and

reliability of the projections. The common period of the large ensembles and observations used in this study is 1920-2016, so

we can in principle calibrate the ensembles using this period. However, we cannot test how effective this calibration is in the

future, out-of-sample period. To examine the performance of the calibration we employ an "imperfect model" test, using 3910

CMIP5 models. In this test, the large ensemble dataset is calibrated to each of these 39 models over the observational
::::::::
reference

period, 1920-2016. The future period
::::
from

:::
the

:::::::
CMIP5

:::::::::
realisation

:
is then used to analyse the impact of the calibration by

verifying against
::::::::
calibrated

:::::::::::::
large-ensemble

::
in the out-of-sample period 2017-2060. We refer to this as an imperfect model test

because, in this approach, the large ensemble calibration is tested mostly on simulations from different climate models. This is

a strength of the imperfect model test, as the observations can, in some sense, be considered an out of sample test. In addition15

to the 1920-2016 calibration period, we also tested the calibration over shorter periods (not shown
::::
some

::::::::
examples

:::
are

::::::
shown

::
in

:::::
Figure

:::
S8

::
of

:::
the

:::::::::::::
Supplementary

:::::::
Material). Overall, the calibration periods tended

:::
was

:::::
found

:
to perform better over the longer

periods, so in this study we focus on the results of the calibration on the longest available common period (i.e. 1920-2016).

An example of calibrating a large ensemble projection to a CMIP5 model index is shown in
::
the

:::
left

:::::
hand

::::::
column

::
in

:
Figure 3.

In this example, the raw LENS data for NEUR
::::::::::
uncalibrated

::::::::::
CESM1-LE

::::
data

:::
for

::::::
CEUR summer temperature is shown in red,20

along with the same index from one of the CMIP5 models
:::
over

:::
the

::::::::
reference

::::::
period

::::::::::
(1920-2016). The model is calibrated over

::::::
towards

::::
data

::::
from

:::
the

:::::::
CMIP5

:::::
model

:::::::::
realisation

::::
over

:::
the

::::::::
reference

::::::
period.

::::::::
Following

:::
the

:::::::::
calibration

::::
step,

:::
the

:::::::
CMIP5

:::
data

:::::
from

::
the

::::::
future

::::::
period

:::::::::::
(2017-2060),

:::::
which

::::
was

::::::::
withheld

::::
prior

::
to
:::

the
::::::::::

calibration,
::
is
::::
used

:::
to

:::::
verify

:::
the

:::::::::::
uncalibrated

:::
and

:::::::::
calibrated

::::::::::::
large-ensemble

::::::::::
projections

::::
using

::::
each

:::::::::
individual

::::
year

::
in the 97 year reference period(1920-2016)- shown by the black vertical

line in Figure 3 - and the calibrated ensemble is shown in blue. Over the 2017-2060 period, the calibrated large ensemble is25

then verified against the out-of-sample
:::::::::
verification

::::::
period.

::::
The

:::::::::
verification

::
is

:::::::::
performed

::
on

:::
44

::::
pairs

::
of

::::::::::
probabilistic

::::::::::
predictions

:::
and

::::::::
validation

::::
data

::::::
points

::::
from

:::
this

::::::
future

:::::
period

:::::::::::
(2017-2060).

:::::
From

::::
each

::
of

:::
the

:
CMIP5 model index. For both the LENS and

MPI-GE large ensemble datasets, this analysis was performed for all
::::::
models,

:::
we

:::
can

::::::::
therefore

::::::::
calculate

:::::::::
verification

::::::::
statistics

:::
(i.e.

:::::::
RMSE,

:::::::::::
Spread/Error,

:::::::
CRPS).

::::
The

:::::::
process

::
is

::::
then

:::::::
repeated

:::
for

:::::
each

::
of

:::
the

:
39 CMIP5 models. This process was then

repeated for
::::::
models

:::
and

:::
the

::::::::::
distribution

::
of

::::
these

::::::::::
verification

:::::::
statistics

::
is
::::::::
presented

::
in
:::
the

::::::
results

:::
that

::::::
follow.

::::
We

::::::::
performed

::::
this30

::::::
analysis

:::
for

::::
each

::
of

:::
the

:::::::::
calibration

:::::::
methods

:::::
using

::::
both

:::
the

::::::::::
CESM1-LE

:::
and

:::::::
MPI-GE

::::::::
datasets.

:::
The

:::::::
analysis

:::
for both temperature

and precipitation, for summer and winter, and over all three European regions
:
is

::::::::
presented

:::
and

:::::::::
discussed

:::::
below.

The verification statistics for the LENS
:::::::::
CESM1-LE

:
summer temperature for the uncalibrated ensemble and the three cal-

ibration methods are shown in Figure 4. The distribution of the verification statistics over the 39 models is shown, with the
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horizontal lines indicating the median of the distribution. The black crosses indicate where the verification of the calibrated

ensemble is significantly better than the verification of the uncalibrated ensemble at the 90% confidence level, calculated using

the non-parametric Mann-Whitney U-test (e.g. Wilks, 2011). For the summer temperature over all three regions, all of the

calibration methods
:::::::::
significantly

:
lower the RMS error of the ensemble projection compared with the uncalibrated ensemble.

The calibration methods generally perform similarly, acting to typically reduce the spread of the uncalibrated ensemble and5

narrowing the range of the spread/error ratios in the verification compared to the uncalibrated ensemble. There is significant

improvement in reliability, indicated by the spread/error relationship, for the CEUR region with all three calibration methods.

The CRPS is significantly lower for all of the calibration methods in all regions, demonstrating that the calibrations are im-

proving the probabilistic predictions of summer temperature by the LENS
:::::::::
CESM1-LE

:
ensemble in the out-of-sample future

period. An important point to note is that, despite not being a significant improvement for all the verification metrics shown in10

Figure 4, none of the calibration methods ever has a signficantly
::::::::::
significantly negative impact on the projections.

We also tested the different calibration methods on the
:::::::::
performed

::
the

:::::
same

::::::
testing

::::::::
described

:::::
above

:::
for

::
the

::::::::::
CESM1-LE

:::
on

:::
the

::
on

:::
the MPI-GE, for precipitation and for the different seasons. The verification measures for the MPI-GE summer temperature

are shown in Figure S1
::
S2. The performance of the calibration methods on the MPI-GE summer temperature is qualitatively

similar to that for the LENS
::::::::::
CESM1-LE (shown in Figure 4). The calibration methods in general improve the out-of-sample15

verification statistics, resulting in a more accurate and reliable projection over the three European regions compared to the

uncalibrated ensemble. Again, there is a particularly notable improvement for the CEUR region, as with the LENS
::::::::::
CESM1-LE

data (i.e. Figure 4). For the other regions there is an improvement over the uncalibrated ensemble but this is not significant for

any of the calibration methods, or for any of the verification measures. Nonetheless, as in the LENS
::::::::::
CESM1-LE data, none of

the calibration methods displays a signficantly
:::::::::
significantly

:
negative impact on the projections.20

The comparison of the ensemble calibration methods for the summer temperature suggests that there is no significant differ-

ence between the performance of the different methods, for both of the large ensembles (i.e. Figure 4 and S1
::
S2). Analysis of the

equivalent figures for precipitation and the winter season also show
::::::
(Figures

:::
S3

:::
S4),

::
as
::::
well

:::
as

:::
for

::
the

:::
the

::::::
winter

::::::
season

::::
(not

::::::
shown),

::::
also

::::::::::
demonstrate

:
a reasonably consistent performance between the calibration methods(not shown). The similarity of

the performance of the calibration methods indicate that the extra information included in the VINF and EMOS calibrations,25

compared with the HGR calibration, is not important to the performance. Therefore, we will focus on the simplest method of

the three, HGR, for the analysis that follows.

The out-of-sample verification results for the HGR method for temperature and precipitation for both summer and winter

seasons
::
for

:::
the

::::::::
calibrated

::::::::::
CESM1-LE

::::::::::
projections are shown in Figure 5 for the calibrated LENS projections (note that the red

and orange data in the first column are the same as those shown in Figure 4). The equivalent verification plot for the MPI-GE30

dataset is shown in Figure S2, and the results are, generally, qualitatively similar to those shown for the LENS
::::::::::
CESM1-LE

dataset in Figure 5. The improvement for the winter temperature in terms of RMS error is not as clear as in the summer

season but the reliability of the ensemble projections are improved significantly over the NEUR region. There is also some

improvement for the precipitation projections in some regions, particularly in terms of the spread/error ratios of the regional

precipitation projections. The spread of the uncalibrated LENS
::::::::::
CESM1-LE data seems to be larger than is appropriate for the35
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targeted indices, particularly for precipitation, which is evident in the general reduction in spread in the calibrated ensemble.

The spread/error ratios of the calibrated ensembles are consistently close to one, this is a particularly notable improvement

for the uncalibrated ensembles over the NEUR region, which are generally underconfident prior to calibration. For some other

regions, there is a smaller improvement or no noticeable difference. Crucially, the influence of the calibration on the spread/error

is not significantly negative for any of the the variables regions or seasons, indicating that the overall impact of the calibration5

in to generally improve
::::::::
calibration

::::::::
generally

::::::::
improves

:
the reliability of the projections. The only verification statistic where

the calibrated ensemble performs significantly worse than the uncalibrated ensemble is the RMS error for the NEUR winter

precipitation in the LENS
::::::::::
CESM1-LE

:
dataset (Figure 5). Whilst it is only one of the verification measures performed across

both the LENS
::::::::::
CESM1-LE and MPI-GE datasets, it is a concern because it reduces how much confidence we can have in

applying the calibration using observations.10

3.3 Examining calibration using dynamically decomposed variables

One potential problem with the calibration methods examined in the previous section is that they are calibrated towards a single

(observational) index. The implicit assumption with this calibration approach is that the forced signal in the large ensembles

is scaled based on the co-varying signal in the reference/observational index. However, we might expect the forced climate

change signal to be largely thermodynamic in nature rather than being driven by changes in large-scale circulation, particularly15

for temperature. It is possible therefore that when fitting the calibration of the ensemble to the reference, there is an incorrect

conflation of, for example, the forced thermodynamic response with a
::
an

:
circulation driven signal

:::::::::
associated

::::
with

:::::::
internal

::::::::
variability

:
in the reference index. To account for this potential shortcoming in the calibration method we used a dynamical

decomposition method (as outlined above in section 2.4) to split the model and observations datasets into a DYNAMICAL

component, associated with large-scale circulation anomalies, and a RESIDUAL component, which can often be interpreted as20

a thermodynamic component.

An example of the dynamical decomposition, applied to summertime projections for the CEUR region in the LENS
:::::::::
CESM1-LE

dataset, is shown in Figure 6.
:
3

::::
(and

:::
also

::::::
Figure

::::
S1). In this example, the future temperature response is largely associated with

the residual, representing the local thermodynamic response to increase greenhouse gas concentrations. There is also some

dynamical contribution to the signal but this also contributes to the uncertainty in the overall ensemble projection. In contrast,25

there is a much weaker signal in future precipitation changes, and the modest drying signal that is projected seems to be mostly

due to dynamical changes.

We will now examine how calibrating the dynamically decomposed parts of the ensemble projection (e.g. the
:::::::::::
DYNAMICAL

and RESIDUAL componentsin Figure 6) separately, against the respective decomposed parts of the reference indices, before

recombining affects the ensemble calibration performance.
:
A
::::::::::::
demonstration

::
of
::::

this
::::::
process

:::::::
applied

::
to

:::
one

:::
of

:::
the

::::::::::
CESM1-LE30

::::::::
projection

::
is

::::::
shown

::
in

::::::
Figure

::
3.

::::
The

::::
large

:::::::::
ensemble

::::::::
projection

::::
and

::::::::
reference

::::::
dataset

:::
are

::::
both

:::::::::
separated

:::
into

:::::::::
dynamical

::::
and

::::::
residual

:::::::::::
components.

::::::
These

:::
are

::::
then

:::::::::
calibrated

:::::::::
separately,

::::::
which

::
in

::::
this

::::::::
particular

::::::::
example

:::::::
reduces

:::
the

:::::::::
dynamical

::::::
signal

::::::::::
substantially.

:::::
Next,

:::
the

:::::::::
calibrated

::::::::::
decomposed

:::::::::
projections

:::
are

::::::::::
recombined

::
to

:::::::
produce

:::
the

::::
total

:::::::::
calibrated

:::::::::
projection.

::::
This

::::
total

::::::::
calibrated

:::::::::
projection

::
is

::::
then

::::
used

:::
to

::::::::
calculate

:::::::::
verification

:::::::::
statistics,

::
in

:::
the

:::::
same

::::
way

::
as

:::
for

::::
the

:::
full

:::::::::
calibration

::::::::::
techniques

10



::::::::
examined

:::::::::
previously.

:
We use the HGR method to do the separate decompositions

::::::
perform

:::
the

::::::::::
calibration

::
on

:::
the

:::::::::::
dynamically

::::::::::
decomposed

::::
data, and refer to this methods

::::::
method

:
as "HGR-decomp" hereafter.

Verification results for the HGR-decomp methods are shown for both temperature and precipitation and for all regions in

Figure 5, alongside the HGR verification results (with the equivalent verification for the MPI-GE shown in Figure S2
::
S5) As

with the HGR verification, the crosses/circles indicate where the verification
:::::::
statistics of the HGR-decomp calibrated ensemble5

is
::
are

:
significantly better/worse than the uncalibrated ensemble. The HGR-decomp calibration generally performs better than

the uncalibrated ensemble, and for none of the verification measures does the HGR-decomp calibration perform significantly

worse than the uncalibrated ensemble. This is in contrast with the HGR calibration method, for which there is a significant

increase in the RMS error for the wintertime precipitation in the NEUR region.

To formally compare the HGR-decomp and HGR, we assessed the significance of the difference in the verification measures10

of the two methods. In Figure 5, the black boxes indicate where either of the calibration methods is found to be significantly

better than the other, at the 90% level (based on a Mann-Whitney U-test). The only statistically significant differences are

seen for the spread/error verification, where four of the regions/variables are significantly better for the HGR-decomp method

applied to the LENS
:::::::::
CESM1-LE

:
dataset. In contrast, none of the verification measures for any of the regions/variables are

significantly worse for the HGR-decomp method. The HGR-decomp method also performs better for the calibrated MPI-GE15

indices (Figure S2
::
S5), albeit with a lower level of significance. Specifically, in ten of the twelve total regions/variables verified

for the MPI-GE dataset, HGR-decomp calibraton is found to be more reliable in terms of spread/error than the HGR calibration.

Overall, the HGR-decomp method is found to be an improvement over the HGR method, and very clearly outperforms the

uncalibrated ensembles. The improvement of the HGR-decomp method over the HGR method is clearest in the reliability of

the projection, as measured in terms of spread/error. The spread/error is consistently higher in the HGR-decomp calibration,20

primarily due to the spread, which is consistently larger in the HGR-decomp calibrated ensemble. Calibrating on the dynamical

and residual components seperately
::::::::
separately has the effect of increasing the overall spread, likely because the method avoids

fitting a forced thermodynamical or dynamical signal in the ensemble with a signal
::::::
towards

::
a
::::::
forced or internal variability

of a different origin in the reference index. Examining the verification of the HGR calibrated DYNAMICAL and RESIDUAL

components separately reveals that the spread/error of the DYNAMICAL components of the ensemble are particularly well25

calibrated (not shown). In comparison with the HGR-decomp method, the HGR method
::::::::
generally

:::
has

:
a
:::::
lower

::::::
spread,

::::::
which

::
in

::::
many

:::::
cases

::::::
results

::
in

:::::::::
projections

::::
that

::::
have

::
a
::::::::::
spread/error

::::
ratio

:::::
lower

::::
than

::::
one

:::
and

:::
are

::::
less

::::::
reliable

::::
than

:::
for

:::
the

::::::::::::
HGR-decomp

:::::::
method.

:::
In

:::
this

::::::
sense,

:::
the

::::
HGR

:::::::
method appears to be slightly “over-fitting” the ensemble to the reference period, resulting in

a consistent
:::::::::
consistently

:
over-confident ensemble projection.

3.4 Examining the impact of calibration on projections of future climatologies30

To assess how the calibration influences the projections of average European climate during the mid-21st century period, we

will examine projections of the mean 2041-2060 climate. Until this point we have focused on verifying the yearly projections

of each season over the out-of-sample period 2017-2060, which gives a verification measure for each CMIP5 model (e.g.

as shown in Figures 4 & 5). We also need to verify the out-of-sample projections for the 2041-2060 means. However, since
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there is only a single verification point for the climatology in each of the CMIP5 models, we instead need to to combine the

single measurements to produce one verification score across all the models. To estimate the uncertainty of these verification

measures, we performed
:::::::
perform a bootstrap resampling over the 39 CMIP5 model projection/verification pairs. Verification

results for the 2041-2060 climatologies for both the LENS
::::::::::
CESM1-LE and MPI-GE are shown in Figure 7.

::
6.

The HGR-decomp calibration tends to improve the projected 2041-2060 climatology of temperature
:
in

::::
both

:::::::
seasons

::::
and5

:::::::::
ensembles,

:::
but

::::::::
especially

:::::::
summer. This is a particular improvement during the summer, in both the accuracy (i.e. RMS error)

and reliability (i.e. spread/error) of the out-of-sample verification. The calibrated summer temperature projections are more

reliable in all three European regions in the LENS
::::::::::
CESM1-LE and MPI-GE ensembles but all tend to somewhat overconfident.

The winter temperature shows less obvious improvement in terms of RMS error of the calibrated projections, but the reliability

is significantly improved for all the regions in both ensembles, but again, the calibrated LENS
:::::::::
CESM1-LE

:
data is slightly more10

reliable. There is less improvement for precipitation projections than seen for the temperature projections. For the summer

precipitation, there are modest but significant improvements in some regions in terms of the RMS error but the reliability is

more mixed, with the calibration actually worsening the reliability in the MED region for the LENS
:::::::::
CESM1-LE

:
dataset. The

calibration has the least influence on the 2041-2060 climatology of precipitation, acting to worsen the RMS error in some

instances but also to modestly improve the reliability.15

Overall, the verification of the projected 2041-2060 climatologies in the imperfect model tests indicate that the HGR-decomp

calibration acts to generally improve the accuracy and reliability of the projections. The calibrated temperature projections

perform better than the calibrated precipitation projections. It is notable however, that the out-of-sample verification for the

2041-2060 climatologies do not generally seem to perform as well as the calibration for the yearly projections examined in the

previous sections. There are several possible factors contributing to this. The first is that when we examine the performance of20

the calibration on the yearly projections, the beginning of the 2017-2060 verification is found to be more accurate and reliable

than the latter period(not shown), as the forced signal in the ensemble diverges from the observations to which it it calibrated.

:
is
:::::::::
calibrated.

::::
This

::
is
::::::::::::
demonstrated

::::::
clearly

::::
when

:::
the

::::::::::
verification

::
is

::::::
applied

:::
to

:::::::
different

:::::
future

:::::::
periods

::::::::::
(specifically

::::::::::
2021-2040,

:::::::::
2041-2060

:::
and

::::::::::
2061-2080;

:::
see

::::::
Figure

::::
S6).

::::
We

:::
find

::::
that

:::
the

::::::::
accuracy

:::
and

:::::::::
reliability

::::::
clearly

:::::::::
deteriorate

:::
as

:::
the

:::::
target

::::::
period

:::::
moves

::::::
further

::::
into

:::
the

::::::
future,

::::::::
indicating

::::
that

:::
the

::::::::::::
HGR-decomp

:::::::::
calibration

::::::
method

::
is
::::
less

::::::::::
appropriate

:::
for

::::::
periods

::::::
further

::::
into25

::
the

::::::
future.

:
Another reason is that much of the increased reliability in the yearly projections comes

::::
stems

:
from calibrating the

(unpredictable) internal variability in the ensemble to the target index, but in the 20-year climatology there is a much smaller

contribution of this internal variability.

3.5 Calibrating large ensembles to observations and assessing the impact on future climate projections

The imperfect model tests in the previous sections demonstrate that the calibration methods generally act to improve future30

projections in a out-of-sample verification. In particular, the HGR-decomp method is a categorical improvement over the

uncalibrated ensembles
::
in

:::
the

::::::::
imperfect

::::::
model

:::::::
analysis

::::
using

:::
the

:::::::
CMIP5

::::::::
ensemble,

:::
as

::::::::
described

::
in

:::
the

:::::::
previous

:::::::
sections. On

the basis of this analysis, we will now apply the HGR-decomp calibration method to the large ensembles, targeted at
:::::
using the

observational indices of temperature and precipitation
:
to

::::::::
calibrate

::::::
against.
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The calibrated LENS
::::::::::
CESM1-LE projections for the summer temperature and precipitation are shown in Figure 8.

:
7.
:
Based

on the imperfect model tests we expect the calibrated summer LENS
::::::::::
CESM1-LE to represent the most accurate and reliable

projection from the
:::
out

::
of

:
all of the ensemble/variable/season combinations tested. For the summer temperature projections,

calibrating the LENS
::::::::::
CESM1-LE

:
against the observations until 2016

::::
over

:::
the

::::::::
reference

:::::
period, the rate of warming until 2060

is reduced by varying amounts. There is also a noticeable change
:::
are

:::
also

:::::
small

:::::::
changes

:
in spread, particularly

::::::
perhaps

:::::
most5

::::::
notable

:
for the NEUR regionbut also evident in the other regions, indicating that

:
,
::::
with

:
the calibration method is acting to

increase the uncertainty in the future projections. For the precipitation, the signal in LENS
::::::::::
CESM1-LE projection is much

weaker with respect to the inter-annual variability. In the projections shown here the calibration has a fairly modest
::::::
notable

impact on the future projections, acting to weaken the drying projected in the CEUR region and adjusting the ensemble

uncertainty in all the regions.10

The calibrated summer projections from the MPI-GE are fairly similar to the LENS
:::::::::
CESM1-LE, with the ensemble medians

of the MPI-GE also plotted in Figure 8
:
7
:
for comparison (the full ensemble projection plots are shown in Figure S3

::
S7). The

warming in the NEUR region is reduced over the 2017-2060 projection period and the uncertainty is increased markedly. The

calibration technique makes smaller adjustments to the summer temperature projections in the CEUR and MED regions, which

may be because the uncalibrated ensemble already does a reasonable job of capturing the warming variability seen during the15

observational period. In the projections of summer preciptation
::::::::::
precipitation

:
in the MPI-GE dataset, there is a fairly strong

future drying signal in both the CEUR and MED regions that is greatly reduced by the calibration. Interestingly a similar

result is seen in the time-slice experiments of Matsueda et al. (2016) when calibrated using the results of seasonal hindcast

experiments, which tends to reduce the drying in the MED region. In the calibration shown here, this seems to be because the

MPI-GE has a drying trend over the whole observational period in these regionsthat is not seen very ,
::::::
which

::
is

:::::::::
dynamical

::
in20

:::::
origin

:::
and

::
is

:::
not

::::
seen

:
clearly in the observations. Based on the imperfect model tests, however, we have less confidence in the

performance of the calibrated ensembles for precipitation.

:::
We

:::
also

:::::
tested

:::
the

::::::::::::
observational

:::::::::
calibration

::::
using

::::
data

:::::::::::
decomposed

:::::
using

::
the

::::::
20CR

::::
SLP,

:::::
rather

::::
than

:::
the

::::::::
HadSLP2

::::
SLP

::::
data

::::::
(Figure

::::
S9).

:::
The

::::::
results

:::
are

::::::::
generally

:::::::::
insensitive

::
to

:::
the

::::
coice

::
of

::::
SLP

:::::::
dataset.

::::
One

::::::::
exception

::
is

:::
the

:::::
MED

::::::
summer

::::::::::::
temperatures,

::
for

::::::
which

:::
the

:::::::::
calibration

::::::::
amplifies

:::::
future

::::::::
warming.

::
In

::::
this

:::::::
instance

:::
the

::::::::::::
DYNAMICAL

:::::::::
component

:::
of

:::
the

::::::::::::
decomposition

:::::
when25

::::
using

::::::
20CR

:::
SLP

::::::::
accounts

:::
for

::::::::::
substantially

::::
less

::
of

:::
the

::::::::
observed

:::::::
variance

::::
than

::
in

::::::::
HadSLP2

::::::
(Table

:::
S1)

::::
and

:::
the

:::::::::::::
decompositions

::
are

::::
also

:::::::::::
substantially

:::::::
different

::::::
(Table

::::
S2).

::::
This

::::::::
indicates

:::
that

:::
for

::::
this

::::::
season

:::
and

::::::
region

:::
the

:::::
20CR

::::
data

::
is

:::
not

::::::::
capturing

:::::
what

:::::
seems

::
to

:::
be

:
a
::::::

clearer
::::::::::

dynamical
:::::
signal

::
in

:::
the

:::::::::
HadSLP2

::::::
dataset

::::
and,

:::
as

:
a
::::::
result,

::
is

:::::::
perhaps

::::
less

::::::::::
dependable.

:::
On

:::
the

::::::
whole

::::::
though,

:::
the

::::::
results

:::
are

::::::
largely

:::::::::
insensitive

::
to

:::
the

:::::
choice

:::
of

:::
SLP

:::::::
dataset.

:

::
To

::::::::
consider

:::::::
whether

:::
the

:::::::::
imperfect

::::::
model

::::::
testing

::
is

:::::
really

::
a
::::::
useful

:::::::::
indication

::
of

:::
the

:::::::::::
performance

:::
of

:::
the

::::::::::::
observational30

:::::::::
calibration,

::
it

:
is
::
of
:::::::
interest

::
to

:::::::
compare

:::
the

::
fit

:::::::::
parameters

::
of

:::
the

::::::::::::
HGR-decomp

:::::::::
calibration.

::::
The

:::::::::
parameters

:
b
::::
and

:
c
::::
from

::::::::
equation

:
7
:::
are

::::::
plotted

::
in

::::::
Figure

::::
S10.

:::
The

::::::::
observed

::::::
scaling

::::::::::
parameters,

:
b
::::
and

::
c,

::::::::
generally

::
lie

::::::
within

:::
the

::::
range

:::
of

:::::
values

::::
used

::
to

::::::::
calibrate

::::::
CMIP5

::::::
models

:::
in

:::
the

::::::::
previous

:::::::
sections.

:::
In

:::::
some

:::::
cases

:::
the

:::::::::
parameters

:::
lie

:::::::
outside

:::
the

:::::::
CMIP5

:::::
model

:::::::::
ensemble

:::
but

::::
this

::
is

:::
not

:::::::::
systematic,

:::
so

::::
there

::
is
:::
no

:::::
clear

:::::
reason

:::
to

::::::
expect

:::
the

:::::::
efficacy

::
of

:::
the

:::::::::
calibration

:::
to

::
be

::::
very

::::::::
different

:::::
when

::::::
applied

:::
to

:::
the

:::::::::::
observational

::::
data.

:
35
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All the
:::
The

:
projected changes in the 2041-2060 climatological changes from

::::::::::::
climatologies,

::::::::
compared

::::
with

:
the present day

:::::::::
1995-2014 reference period, 1995-2014, are shown in Figure 9.

:
8.
:

Here, we have plotted both the uncalibrated and (HGR-

decomp) calibrated climatological changes for both the LENS
:::::::::
CESM1-LE

:
and MPI-GE datasets. An interesting feature of

these projected changes is that for many of them, the calibrated ensembles are far more consistent with one another than

their uncalibrated counterparts. This is perhaps most clear for the summer temperature changes in all the European regions,5

particularly NEUR and CEUR, in which there is a difference of over 1�K in the mean changes of the uncalibrated projections

and with no overlap in the probability distributions. After the calibration is applied, the projected mean changes are far closer

to one another, with considerable overlap in their probability distributions. The calibration acts to make the projections more

consistent for most of the variables and regions, which is reassuring as this implies that the observations are having a strong

impact on the initial uncalibrated ensembles that are themselves often very different.10

Another feature of the calibrations influence on the future climatologies is that it fairly consistently acts to increase the

uncertainty of the projections, with respect to the uncalibrated ensembles. This is most clear for the projections of future

temperature over Europe, where the imperfect model tests indicate that the calibration has a large impact on the reliability of

the projections (e.g. Figure 7
:
6), suggesting that the broader calibrated distribution is reasonable and is likely to be a better future

projection. It is interesting to note that the calibrated LENS
::::::::::
CESM1-LE projection has a wider spread than in the calibrated15

MPI-GE projection for many of the projected temperature indices,
::::::
which

::::
may

:::
be

::::::
related

::
to

:::::::::
particular

:::::
trend

:::::
biases

:::
in

:::
the

::::::::::
CESM1-LE

:::::::::::::::::::::::::::
(e.g. McKinnon and Deser, 2018). In the imperfect model tests, shown in Figure 7

:
6, the calibrated temperature

projections for the LENS
::::::::::
CESM1-LE dataset are consistently more reliable (in terms of spread/error) than for the MPI-GE

dataset. The calibrated MPI-GE projections were more underconfident in the out-of-sample verification, indicating that we

should have more confidence in the broader calibrated LENS
::::::::::
CESM1-LE projections for future temperature changes.20

::
In

:
a
:::::
recent

::::::
paper,

:::::::::::
Brunner et al.

::::::::
compared

::::::
several

:::::::
different

::::::::
methods

::
of

:::::
model

:::::::::
weighting

:::
and

::::::::::
constraining

::::::
climate

::::::::::
projections

::
for

:::
the

:::::::::
European

:::::::
summer

:::::
season

:::::
using

:::::::::::
multi-model

:::::::::
ensembles

::::
over

:::
the

:::::
same

:::::::::
2041-2060

:::::
period

::::::
under

:::
the

::::
RCP

:::
8.5

::::::::
scenario.

:::
The

::::::::::::
HGR-decomp

:::::::
method

::::::::
generally

:::::::
predicts

:::::
lower

:::::
levels

:::
of

:::::::
warming

:::
for

:::::::::
European

:::::::
summer

::::
than

:::
the

::::::::::::
CMIP5-based

::::::
model

::::::::::::::::::
weighting/constraining

::::::::
methods

::
but

:::::
much

::
of

:::
the

:::::::::::
distributions

::
of

::
the

::::::::
projected

:::::::
changes

:::::::
overlap.

:
It
::
is
::::::
notable

::::
that

:::
the

:::::::::::
HGR-decomp

::::::
method

::::
can

::::::
project

:::::::
changes

::::
that

:::
are

:::::::
outside

::
of

:::
the

:::::::::::
uncalibrated

:::::::::::
distribution,

:::::
which

::
is
:::::::

clearly
:::
not

:::
the

:::::
case

:::
for

:::
the

::::::
model25

::::::::::::::::::
weighting/constraining

::::::::
methods

::::
(see,

:::
for

:::::::
example,

::::::
Figure

:
2
::
of

:::::::::::::
(Brunner et al.)

:
.
::::
This

::::::
feature

::
in

::::::::
particular

:::
sets

:::
the

::::::::::::
HGR-decomp

::::::
method

:::::
apart

:::::
from

::::
these

:::::
other

::::::::::
techniques,

:::::::
whether

:::
this

::
is

:::
for

:::::
better

::
or

:::::
worse

:::::::
though,

::
is

:::
not

::::
clear.

:

4 Conclusions

In this study we have examined methods of calibrating regional climate projections from large single model ensembles. The

three calibration methods tested here - VINF, EMOS and HGR - are more commonly used for initialised forecasts from weeks30

up to seasonal timescales. Here we applied these calibration techniques to ensemble climate projections, fitting seasonal en-

semble data to observations over a reference period (1920-2016). The calibration techniques
:::::::
methods act to scale the ensemble

signal and spread so as to optimize the fit over the reference period. The three calibration methods displayed
::::::
display similar

14



performance, all generally improving the out-of-sample projections in comparison to the uncalibrated ensemble. The simplest

of the calibration methods, HGR, includes no variability of the ensemble spread and effectively discards any information that

may be contained in the year-to-year variability of the spread in the raw ensemble. Based on the performance of the HGR

method, we can conclude that the information in the year-to-year changes in the ensemble spread is not important enough, at

least in the large ensembles examined in this study, to have a meaningful influence on the ensemble calibration.5

We also tested calibrating the variables after they had been subjected to a dynamical decomposition. In this method, all vari-

ables were separated into DYNAMICAL and RESIDUAL components using information of the large-scale circulation, calibrated

separately using the corresponding reference indices and then recombined to produce the final calibrated ensemble. The results

from the out-of-sample verification of the HGR-decomp calibrations demonstrate a small but noticeable improvement over

the HGR method, particularly in terms of the reliability. The HGR calibrated ensembles have a tendency to be overconfident10

for their future projections and this seems to be due to an apparent over-fitting to variability in the reference period, which is

found to be alleviated to some extent by calibrating the DYNAMICAL and RESIDUAL components of the ensemble separately.

Therefore, the HGR-decomp calibration was chosen as the best method to apply to the observational reference data.

The HGR-decomp calibration method was also found to improve the projections of 20-year climatologies during the mid-

21st century (i.e. 2041-2060). The accuracy and reliability of the projections improved
::::::
improve

:
in the calibrated ensemble,15

when subject to the imperfect model tests. The performance of the calibration was substantial for the temperature projections

but for precipitation the improvement is much more modest, or even absent in some instances. Whilst both datasets demonstrate

an improvement due to calibrations, it is interesting that the LENS
:::::::::
CESM1-LE

:
dataset seems to perform better than the MPI-

GE, particularly in terms of the reliability of the future projections. Perhaps it is not too surprising that one ensemble would

be found to be better than another when subjected to this type of calibration. For example, if we had a third ensemble that20

we knew was a much worse representation of the climate system, we might expect the calibration to improve the projection

in this ensemble but we would not expect this calibrated ensemble to outperform the other large ensembles. In this sense, the

calibration approach taken here is clearly not a panacea for all ensemble projections and ultimately, the accuracy and reliability

of the calibrated ensemble projection would expected to depend on the raw ensemble projection.

We applied
::::
then

:::::::::
proceeded

::
to

:::::
apply

:
HGR-decomp method to each of the large ensembles using the observations as a25

reference, over the period 1920-2016. Based on the imperfect model testing we expect that the calibrated ensemble projection

provides a more accurate and certainly a more reliable probabilistic projection of European climate over the next 40 or so
:::::
40-50

years. In both the LENS
:::::::::
CESM1-LE

:
and MPI-GE datasets the projected increase in European temperatures was generally

smaller
:
is

::::::::
generally

::::::
smaller

:::
in

:::
the

::::::::
calibrated

:::::::::
ensembles

:
compared to the uncalibrated ensembles. The calibrated projections

are much
::::::
notably

:
more consistent with one another than the respective calibrated projections, indicating that the calibration30

with observations is having a consistent and substantial influence on the future projections of European climate. For the example

of European temperatures, the best estimates for the summer temperature change for the period 2041-2060 (from 1995-2014)

is projected to be about 2�C for CEUR and MED regions and 1.3�C for the NEUR region. Each of these is associated with a

substantial ensemble spread, however, reflecting the increased uncertainty (or larger ensemble spread) added by the calibration

to provide a more reliable projection.35
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The overall effectiveness of the calibration seems to stem from some key characteristics of the ensemble and reference

datasets. The calibration performs well where there is a reasonably strong signal in the ensemble that is also present to some

extent in the reference data, as is the case for the temperature indices. In these instances, the signal is scaled and an ensemble

spread is added to represent the appropriate estimate of internal variability, much of which is associated with large-scale

circulation variability. For precipitation, where there is no clear signal over the reference period in the observations
:::
for

:::
the5

::::::
specific

:::::::
regions

:::
and

:::::::
seasons

::::::::
analysed

::::
here

:
(and in many of the CMIP5 models), any future changes projected are difficult

to scale over this reference period. In effect, the calibration then adds value by correcting (mostly by inflating) the ensemble

spread. This calibration method could therefore reasonably be applied to many other regions and variables where there is an

emerging forced signal in response to external forcing. The calibration can also be applied to smaller spatial scales but as

the scales become smaller, the forced signal generally becomes weaker
::::::
relative

::
to

:::
the

:::::::
internal

:::::::::
variability, so the calibration10

will tend to become somewhat less effective. Nonetheless, the calibration has also demonstrated some utility for temperature

projections on 2.5� grid-boxes (as included in Brunner et al., submitted to J. Climate
::::::::::
Brunner et al.).

One novel aspect of this study that is particularly worth emphasising is the imperfect model testing approach. Previous

studies have typically used multi-model ensembles to constrain future projections and some in particular have used a “leave-

one-out” perfect model approach to examine the effectiveness of these methods (e.g. Knutti et al., 2017; Brunner et al., 2019).15

However, this leave-one-out approach is often used to tune particular parameters in the methodology, such as the performance

weighting parameter in Brunner et al. (2019). The use of the leave-one-out approach to tune the method is certainly well

justified. However, this does reduce the power of subsequently re-using this approach to verify the accuracy of the constraining

method, which may result in over-fitting or an over-estimation of the added-values
:::::::::
added-value

:
of the constraint. The imperfect

model approach we have used in this study is less susceptible to this type of over-fitting as the data used for the verification20

is
::
are

:
kept separate from the underlying large ensembles throughout, only being used to compare the efficacy of the different

methods.
:::
The

::::::::
imperfect

::::::
model

:::::::
approach

::
to
::::::
testing

::
is
::::::::
therefore

::
an

::::::::::::
advantageous

::::::::
approach,

:::::::::
regardless

::
the

:::::::::
particular

:::::::::
calibration

::
or

:::::
model

:::::::::
weighting

:::
that

::
is

:::::
being

::::::::
subjected

::
to

:::
the

::::::
testing.

:

As well as being applied to other datasets and regions, this calibration method can also be applied to initialised decadal

forecasts.
:::::::
Decadal

:::::::::
predictions

::::::
exhibit

::::
skill

::
in

:::::
some

::::::
aspects

:::
out

::
to

:::::::
10-years

::::::::::::::::::::::::::::::::::::::::::
(e.g. Doblas-Reyes et al., 2013; Smith et al., 2019)25

:::
and

:
a
::::::
recent

::::
study

::::
has

:::::::::::
demonstrated

:::
that

:::::::::::
constraining

::::::
climate

:::::::::
projections

:::::
using

:::::::::
initialised

::::::
decadal

:::::::::
predictions

::::
can

:::::::
improve

:::
the

:::::::
accuracy

::
of

::::::::::
projections

::
in

:::::
some

::::
cases

:::::::
(Befort

::
et

:::
al.,

:::::
2020),

::::::
which

:
is
:::

an
:::::::
exciting

:::::::::
proposition

:::
for

:::::::::
improving

:::::::
climate

:::::::::
prediction.

:::::
Given

:::
that

:::::
these

:::::::::
calibration

:::::::
methods

::::
have

::::
been

::::::
shown

::
to

::
be

:::::::
effective

:::::
when

::::::
applied

::
to

:::::::::
initialised

::::::
decadal

::::::::
forecasts,

::
if

:::::::::
calibration

:::
also

::::::
proves

::::::::
effective

:::
for

::::::::::
projections

:::::::
beyond

::
10

::::::
years

:::
this

::::::
would

:::::::
present

::
an

:::::::::::
opportunity

::
to

::::::
merge

:::
the

:::::::::
calibrated

:::::::
decadal

:::::::::
predictions

::::
with

::::::::
calibrated

:::::
large

::::::::
ensemble

::::::
climate

::::::::::
projections.

:
30

Previous studies have examined how similar calibration methods
::
to

:::::
those

::::::::
examined

::
in
::::

this
:::::
paper

:
can improve multi-year

forecasts (e.g. Sansom et al., 2016; Pasternack et al., 2018). It would be of particular interest to examine how calibrated decadal

predictions could be combined or merged with these calibrated projections. The LENS
:::::::::
CESM1-LE

:
dataset analysed in this

study has an initialised counterpart, namely the Decadal Prediction Large Ensemble
:::::::::::::::::
(Yeager et al., 2018), and testing how to

16



combine data from these different ensembles to produce a merged calibrated
:::
set

::
of climate predictions would potentially be an

exciting extension to the present study.
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Figure 1. The SREX regions over which area-averaged projections and observations are analysed in this study, following Field et al. (2012).

Example of the LENS projection of summertime Central European temperature (top) and precipitation (bottom) decomposed

from the full anomalies into dynamical and residual components. The lines show the ensemble medians and the shading shows

the 90% range of the ensemble.
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Figure 2. (Top) Synthetic data for an example (bias-corrected) ensemble temperature evolution is shown for the ensemble mean in red and

90% ensemble range (shaded), along with the synthetic (observational) reference index in black. (Bottom) The synthetic ensemble calibrated

using the variance inflation method to match the reference dataset shown in blue with the raw ensemble mean shown in dashed red. The RMS

Error, spread/error and CRPS calculated for the raw ensemble and the calibrated ensemble are all shown.
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(e.g. HGR-decomp)(e.g. VINF, EMOS, HGR)

Full calibration Decomposed calibration
(e.g. HGR-decomp)

Full calibration Decomposed calibration
(e.g. HGR-decomp)

Full calibration

Calibration Calibration Calibration

Verification Verification

Figure 3. Example
::
An

:::::::
example

::::::
showing

:::
the

:::
the

::::
steps

:
of the raw CESM Large Ensemble Northern Europe temperature

::
full

:::::::::
calibration

::::::
methods

:
(red

:::
left

::::
hand

::::::
column) , which

::
and

::::::::
calibration

::
of
:::
the

:::::::::
dynamically

::::::::::
decomposed

:::::::
variables

::::
(right

:::::::
column).

::::
This

::::::
example

:
is calibrated

to fit a single realisation from the CMIP5 model realisation
:::::::
calibration

:::
of

:::
the

::::::
summer

:
(
::::
JJA)

::::::
Central

:::::::
European

:
(green

::::
CEUR) over the

observational period, 1920-2016. The calibrated CESM Large Ensemble
:::::::::
temperature

:
using the variance inflation method is shown in

blue
:::::::::
CESM1-LE

:::
and

:::
one

::
of

:::
the

::::::
CMIP5

:::::
models. The shading indicates

::::
shows

:
the 90

::::
5-95% range across

::
of the

:::::::::
CESM1-LE ensemble.

:::
The

:::::::::
effectiveness

::
of

:::
the

::::::::
calibration

::
is

::::::
assessed

::
by

:::::::
verifying

::::
over

::::
data

:::
from

:::
the

:::::
period

:::::::::
2017-2060,

:::::
which

:
is
:::::::
withheld

:::::
during

:::
the

::::::::
calibration

::::
step.
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CESM1-LE JJA Temperature

Figure 4. Comparison of calibration methods applied to the LENS
::::::::
CESM1-LE

:
summer temperature projections calibrated to the CMIP5

models over the observational period (1920-2016) and verified using the 44 years in the out-of-sample period (1917-2060
:::::::
2017-2060). The

verification statistics for each of the individual CMIP5 models are shown in dots, the interquartile range of this distribution is shown by

the solid bars and the median is indicated by the horizontal lines. For the calibrated RMS Error, spread/error and CRPS values, the black

crosses indicate where the calibration represents a significant improvement over the uncalibrated (but bias-corrected) ensemble at the 90%

significance level. The significance levels were calculated using the non-parametric Mann-Whitney U-test
:
,
:::::
applied

::
to

:::
the

:::::::::
distributions

::
of

:::
the

::::::::
verification

:::::
scores

::::
from

:::
the

::
39

::::::
CMIP5

:::::
models.
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Figure 5. Overview of verification of the HGR and HGR-decomp calibration methods compared with the uncalibrated LENS
:::::::::
CESM1-LE

data in the European regions. Shown
:::::
Results

:::
are

:::::
shown

:
for all of the verification measures, for both summer and winter seasons and for

temperature and precipitation. The verification statistics for each of the individual CMIP5 models are shown in dots, the interquartile range

of this distribution is shown by the solid bars and the median is indicated by the horizontal lines. For the calibrated RMS Error, spread/error

and CRPS values, the black crosses indicate where the calibration represents a significant improvement over the uncalibrated (but bias-

corrected) ensemble at the 90% significance level. Black circles indicate where the calibration is significantly worse than the uncalibrated

ensemble (at the 90% level). The black
::::
Black

:
boxes show

:::::
indicate

:
where one calibration

::
the

:::::::::::
HGR-decomp

:
method

:
of

::::::::
calibration

:
is found

to be significantly better than the other calibration
::::
HGR

:
method for the same variable, season and region

:
(at the 90% significance level).

The significance levels were calculated using the non-parametric Mann-Whitney U-test,
::::::
applied

::
to

::
the

::::::::::
distributions

::
of

::
the

:::::::::
verification

:::::
scores

:::
from

:::
the

::
39

::::::
CMIP5

::::::
models.
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Figure 6. Verification of the 2041-2060 mean projections calculated relative to the out-of-sample CMIP5 models for both the LENS

:::::::::
CESM1-LE and MPIGE

::::::
MPI-GE

:
datasets. The horizontal lines show the mean across all models and the vertical lines show the 90%

confidence intervals, calculated by randomly resampling across the CMIP5 models with replacement
::::
1000

::::
times. The black crosses indicate

where the calibrated ensemble has a
:
is
:
significantly better than the equivalent uncalibrated ensemble; the black circles indicate where the

calibrated ensemble is significantly worse that the uncalibrated ensemble.
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Figure 7. Uncalibrated and calibrated (HGR-decomp) LENS
::::::::
CESM1-LE

:
projections, where here the calibrated projections have been cali-

brated against the observations over the period 1920-2016. The lines show the ensemble medians for the uncalibrated and calibrated ensem-

bles for both the LENS
:::::::::
CESM1-LE

:::::
(solid) and MPI-GE

::::::
(dashed)

:
datasets. The shading shows the 90

:::
5-95% range of the LENS

:::::::::
CESM1-LE

ensemble. Based on the verification out-of-sample tests using the CMIP5 models the calibrated ensemble is expected to be more reliable than

the uncalibrated ensemble, particularly for temperatures.
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Figure 8. 2041-2060 mean calculated relative to 1995-2014 climatology for both LENS
:::::::::
CESM1-LE and MPIGE

::::::
MPI-GE, calibrated

::::
using

::
the

:::::::::::
HGR-decomp

::::::
method to the observations over the period 1920-2016. The vertical lines show the 90% range of the ensemble, thick boxes

show the interquartile range and horizontal lines show the ensemble median.
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