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Answer to Reviewer 1 
 
We thank the reviewer for thorough reading and thoughtful comments and suggestions. A 
detailed discussion of the changes that we made in response to the reviewer’s comments is given 
below. In what follows, we state the reviewer’s comment in boldface, and describe our response 
in plain text. Text in the manuscript is represented in italics. The text that has been 
modified/included in the new version has been highlighted in red. 
 
“Overall this is an excellent manuscript, presenting a new result about the Earth’s ocean- 
land-atmosphere mass exchange, using a unique combination of satellite and reanalysis 
datasets, and a clear easy-to-follow methodology.” 
 
We appreciate the positive overall comment about the manuscript. 
 
“The only major concern/question I have is this: the interbasin ocean transport N is a small 
residual of differencing large numbers. I see that each set of numbers is followed by a 95% 
confidence range, and I read without quite understanding that the confidence interval is 
computed by a bootstrap method on the data itself. I don’t believe the re-analysis data have 
their own error estimates; I believe the GRACE data do but those did not seem to be used in 
the confidence interval estimation. I wonder whether estimating uncertainties in the 
transports by propagating uncertainties in the inputs would give intervals consistent with 
those of the bootstrap method. Upper bounds on the uncertainties in the inputs can be 
estimated, for example, by comparing UT-CSR mascons to JPL or GSFC mascons, by 
comparing ECMWF reanalysis to NCEP or another model’s reanalyses, etc. I say this because 
the lack of correlation between the inter- annual transports and ANY index of ocean-
atmosphere interaction (ENSO, SOI, etc) is suspicious.” 
 
The following changes have been included to address the issues raised by the referee:  
 
1. Bootstrap: We have included an intuitive description of the bootstrap method for time 

series and a reference to a paper on bootstrap method for time series. Besides, we have 
provided extended details about how confidence intervals have been evaluated: 

 
The reported 95% confidence intervals and the correlation coefficients are evaluated using 
the stationary bootstrap scheme of Politis and Romano (1994) (with optimal block length 
selected according to Patton et al., 2009), and the percentile method. The intuition 
underlying the bootstrap is simple. Suppose that the observed time series x1, ..., xn is a 
realization of the random vector (X1,..., Xn)  with joint distribution Pn and which is assumed 
to be part of a stationary stochastic process.  Given Xn, we first build and estimate 𝑃"n of Pn. 
Then B random vectors (𝑋!∗, … , 𝑋#∗) are generated from  𝑃"n. If 𝑃"n is a good approximation of 
Pn, then the relation   between  (𝑋!∗, … , 𝑋#∗)   and  𝑃"n  should well reproduce the relation 
between (X1,..., Xn)  and Pn  (for an introduction of bootstrap methods for time series see 
Kreiss and Lahiri (2012) and the references therein). Here, the number of bootstrap 
replications was set to B=2000. In general, half length of the confidence interval can be very 
well approximated by twice the standard deviation of the sample mean estimated from the 
bootstrap replications. Prior to applying the bootstrap to a time series, least-squares 
estimated linear/quadratic trend and sinusoid with the most relevant frequencies are 
removed from it to meet the stationarity conditions of the method. In particular, each series 
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has been decomposed into trend, seasonal and residual components. The bootstrap is 
applied to the residual component producing bootstrap samples of the residuals. For the 
evaluation of confidence intervals for the different components of WT, the trend and 
seasonal terms are added back (to the bootstrap sample of the residuals) producing 
bootstrapped time series of the component of interest. These samples are then used for 
further analysis. As an illustration, for the WT N component we proceed as follows: (i) a 
model with linear, annual, and semiannual signals is fitted to the data. The fitted linear trend 
and  annual and semiannual signals are subtracted from the original time series; (ii) the 
stationary bootstrap is then applied to the residuals producing  2000 bootstrap samples of 
the residuals; (iii)  The estimated trend and seasonal components are added back to each 
bootstrap sample of the residuals obtaining an ensemble of 2000 bootstrapped time series 
for the N component; (iv) these 2000 bootstrapped time series are used to obtain 95% 
confidence intervals for the mean fluxes (average of N over the 14 year period of study) and 
for the amplitude and phase of the annual component using the percentile method. For the 
mean fluxes, the average of N for each of the 2000 bootstrapped time series was first 
evaluated and then the 0.025 and 0.975 percentiles of these 2000 averages were reported 
as 95% confidence interval. For the study of the climatology, a linear trend model with 
annual and semiannual components was fitted to the 2000 bootstrapped time series 
producing corresponding estimates of the annual amplitude and phase. The 0.025 and 0.975 
percentiles of these estimates were reported as 95% confidence intervals. In order to study 
the robustness of the results with respect to the model choice, the analysis is rerun using 11 
alternative models obtained considering different forms for the trend component (quadratic 
or constant) and including higher frequencies in the harmonic regression (up to 5). The 
results are robust. The relative difference with respect to the reported values is smaller than 
1.2% for point estimates and smaller than 3.3% for the extremes of the 95% confidence 
intervals. 

 
 
2. Confidence intervals of the correlation coefficients. More details are provided: 

 
Note that for the study of correlation the bootstrap was applied to the bivariate time series 
of the residuals of the two variables of interest producing an ensemble of 2000 bivariate 
time series of residuals. For each bivariate time series of residuals the correlation between 
the two components of the series was first evaluated. The average and the 0.025 and 0.975 
percentiles of these 2000 estimates were reported as point estimate and confidence limits 
for the correlation between the two variables of interest (correlation between residual 
components is used to avoid spurious correlation). 
 

3. Bootstrap Vs Error propagation: The confidence intervals estimated from bootstrap have 
been compared to those estimated from error propagation of the mascon. As CSR mascon 
solution does not provide such error estimates, we have used the JPL mascon solution for 
the comparison. An explanation of why bootstrap confidence intervals contains, as 
expected, the error propagation confidence interval has been also provided. In the 
description of the bootstrap method we have included the following text: 
 
As an independent check of the bootstrap, confidence intervals for the mean value of N have 
been also evaluated by propagating the error estimate in GRACE data (using the JPL GRACE 
mascon solution for which error estimates are available). The resulting intervals were 



consistent with those of the bootstrap method. In particular (see Section 4 for details), we 
show that in all cases the bootstrap intervals contain the intervals obtained from error 
propagation. In this respect, the CI95 from bootstrap analysis can be considered a 
conservative estimate. This should be expected, since the residual component underlying the 
bootstrap approach includes measurement errors and other type of errors (related, for 
example, with the estimate of the trend and seasonal terms). As a result, the uncertainties 
in the transports estimated by the bootstrap should be larger than the corresponding 
uncertainties estimated by error propagation. 
 
We have included a new section 4, entitled “Comparison with other datasets”, which 
includes the comparison between error propagation and bootstrap confidence intervals for 
the N component estimated from JPL data:  
 
CSR GRACE mascon solution is replaced by the JPL GRACE mascon solution provided by the 
Jet Propulsion Laboratory/NASA (Watkins  et al., 2015; Wiese et al., 2019). Similarly to CSR 
data, JPL are corrected for GIA effects, C20 Stoke coefficients are replaced by a solution from 
SLR, and data are reduced to 1º regular grids from 0.5º regular grids. Besides, we have 
applied the degree-0 Stoke coefficients correction. However, CSR and JPL mascon solutions 
are not directly comparable. The main reason is that an estimate of degree-1 coefficients 
has been added to JPL mascon solutions, and the GAD product has not been added back. The 
corrections applied by JPL are not supplied separately and we cannot do/undo any of the 
corrections to process JPL data as we did with CSR data. In particular, the GAD product is not 
available for JPL. In any case, the JPL solution is useful here since it provides an error estimate 
of the mascon solution that can be propagated to obtain confidence intervals of N, which 
are independent from those estimated with the bootstrap analysis. Table 2 shows the CI95 of 
the mean values of the N component for different ocean basin estimated from error 
propagation and bootstrap analysis. It is observed that in all cases the CI95 from error 
propagation are included in those from bootstrap analysis, meaning that the latter are a 
conservative estimate of the error. JPL propagated error can be expected  to be similar to 
that propagated from CSR error estimates (which are not available), and then we can 
assume that the reported CI95 for N calculated from CSR data are a conservative estimate. 
Besides, comparing Tables 1 and 2, it is observed that the mean values of N are quite similar 
and that the CI95  largely overlap. Regarding to the time variability, the values of the N 
component from CSR and JPL mascon solutions show Pearson correlation coefficients greater 
than 0.85 (p-value < 10-3), except for the Atlantic (0.70). Thus, despite the different 
processing of CSR and JPL data, the reported analysis for the N component is robust with 
respect to the choice of GRACE datasets. 
 

Table 2. Mean net WT from JPL mascon for different ocean basins according to Equation 2 . CI95 are estimated as 
propagation of mascon errors provided by JPL, and from bootstrap analysis. Units are Gt/month. 

  Mean (CI95 from 
error propagation) 

Mean (CI95 from 
bootstrap) 

Outflows Pacific 1182 (1143, 1220) 1182 (1062,  1306) 
 Arctic 735 (713, 757) 735 (711,761) 
 Pacific + Arctic 1917 (1872, 1961) 1917 (1806, 2036) 

Inflows AIA 1183 (1092, 1274) 1183 (1077,  1282) 
 Atlantic 919 (866, 972) 919 (845, 985) 
 Indian 999 (980, 1018) 999 (928,  1067) 
 Atlantic + Indian 1918 (1862, 1974) 1918 (1838, 2003) 



 
4. Other P and E datasets: According to ERA5 documentation, there exists error estimates. 

Unfortunately, they are not available for the general public as us. In any case, we have 
included new computations with several P and E datasets. It is included in the second point 
of the new section “Comparison with other datasets”: 
 
ERA5 P and E data are replaced by several datasets for comparison purposes. The objective 
is not to be exhaustive in the selection, but rather to show that the reported features of the 
N component are quite robust with respect to the choice of the P and E datasets. The data 
sets considered are:  

(i) Continental P from GPCC (Schneider et al., 2011), GPCP (Adler et al., 2018), CMAP 
(Xie and Arkin, 1997), UDel (Willmott and Matsuura, 2001), and GLDAS/Noah (Rodell 
et al., 2004; Beaudoing and Rodell, 2016). 
(ii) Ocean P from GPCP and CMAP. 
(iii) Continental E from GLEAM (Miralles et al., 2011; Martens et al., 2017) and 
GLDAS/Noah.  
(iv) Ocean E from OAFlux (Yu et al., 2008) and HOAPS/CM SAF (Schulz et al., 2009).  

The Pacific outflow is estimated with the 162 possible combinations of P and E, including 
ERA5. The time period is 2003-2016, except for HOAPS/CM SAF and GPCP, which span from 
2003 to 12/2014 and 10/2015, respectively. The degree-0 corrections in GRACE data is made 
for each combination. Note that only ERA5 includes P and E for both continents and oceans. 
All grids have been homogenized to 1° regular grids. The main concern here is the 
heterogeneity of the spatial coverage among datasets. To make the results comparable 
among datasets, the computations are restricted to the common grid points, which do not 
cover the entire Earth (Figure 8a). However, in spite of the fact that due to the partial 
coverage the principle of water mass conservation is not accomplished, the Pacific outflow 
obtained in the common grid points from ERA5 (black line in Figure 8b) is quite in agreement 
with the same signal obtained with global coverage (red line in Figure 3 which is also 
reported as red line in Figure 8b). The Pearson correlation coefficient between the two 
signals is 0.994 (p-values < 10-3) with an average difference around 50 Gt/month. In general, 
the Pacific outflows estimated from all the P and E dataset combinations show qualitatively 
the same signal than the one reported in Figure 3. For each of the 162 estimates of the Pacific 
outflows corresponding to the possible P and E dataset combinations, we evaluated the 
average outflow (over the period of study), which is 968 Gt/month (STD: 489), and the 
correlation with the Pacific outflows in Figure 3, which is 0.82 (STD: 0.06; p-values < 10-3). 
 
These experiments show that the reported net WT are physically consistent among datasets, 
at least qualitatively.” 

 
 
 
 
 
 
 
 
 
 



 
 
 

 

 
Figure 8. Monthly time series of (the opposite of) the Pacific outflow estimated from 162 combinations of P and E datasets. 
a) Spatial coverage common to all datasets. b) Pacific outflows: Gray thin curves are the 162 Pacific outflows estimated in the 
common grid points to all datasets (no global coverage); black and red curves are based on ERA5 P and E and are obtained 
using either only the grid points  common to all datasets (black curve) or global coverage (red curve). Note that the red curve 
is the same as in Figure 3.  
 
 

5. Lack of correlation. We have included a discussion on the lack of correlation between 
the inter-annual transports and the indices of ocean-atmosphere interaction. In 
particular we propose the two following explanations: 
 
“To explore this lack of correlation, we have estimated the correlation coefficient 
between each climatic index and each WT component (Figure 7b).  
 



 
Figure 7. Pacific outflow and climatic indices for ENSO, AMO, AO, and AAO. a) Time series of Pacific outflow is de-trend and 
de-season. All time series are normalized to have unit variance. Values in the parenthesis are the correlation coefficient 
between the corresponding climatic index and the Pacific outflow. b) Correlation coefficients between de-trend and de-season 
WT components of different regions and the climatic indices.   
 

All of them are lower than 0.3 except for 6 cases in 2 regions. In the Arctic, P and P−E in 
the drainage basins of the Arctic show a correlation of ~0.5 with the AO. This correlation is 
natural since that is the area of influence of the AO. The other region is the Pacific, where, as 
expected, the SOI shows a correlation around 0.5 with P, P−E, and R in the drainage basins, 
and around −0.4 with P in the ocean. However, this individual correlation does not extend to 
the Pacific outflow. In order to understand why this is the case, it is convenient to express the 
N component of the water transport as a function of (P-E) and dW. According to Equations 1 
and 2 we have: 
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It can be shown that the correlation between N and a given index can be express as follows 

 



𝑐𝑜𝑟𝑟(𝑁, 𝐼𝑛𝑑𝑒𝑥) = ∑ 𝑐𝑜𝑟𝑟(𝑋+ , 𝐼𝑛𝑑𝑒𝑥),
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where corr denotes the correlation coefficient, and std stands for standard deviation. As 
shown in equation (4), the correlation between N and a given index is a linear combination 
of the correlation between each component and the index. The coefficients of the linear 
combination std(Xi)/std(N) are proportional to the standard deviation  of each component.  
The components of equation (4) for the Pacific outflow and the SOI index are shown in Table 
3. Despite the fact that some of the individual component exhibits significant correlation 
with SOI (in particular P−E in land and ocean) when combined with the corresponding 
coefficients their effects are canceled out yielding to a negligible correlation between water 
transport and SOI (below 0.03 in magnitude). 

  
Another possible reason for the lack of correlation resides in the definition of the studied 
regions, for which the presence of subregions with positive and negative influence of an 
index results in an overall negligible/attenuated influence of the index in the overall 
region. For example, a positive phase of the AMO is related to an increase of P in western 
Europe (Sutton and Hodson, 2005), and the Sahel (Folland et al., 1986; Knight et al., 2006; 
Zhang and Delworth, 2006; Ting et al., 2009), but to a decrease of P in the U.S. (Enfield et 
al., 2001; Sutton and Hodson, 2005), and northeast Brazil (Knight et al., 2006; Zhang and 
Delworth, 2006). All these regions are included in the Atlantic drainage basin, and then 
the influence of a positive phase of the AMO is attenuated.”  

 
 
Table 3. Correlation coefficients between SOI and de-trend and de-season WT components involved to estimate the Pacific 
outflow according to Equations 3 and 4.  

  𝑠𝑡𝑑(𝑋+) 
 

(Stand. 
Deviation) 

 

𝑐𝑜𝑟𝑟(𝑋+ , 𝑆𝑂𝐼) 
 

(Correlation 
between Xi 
with SOI) 

𝑠𝑡𝑑(𝑋+)
𝑠𝑡𝑑(𝑁)  

 
(Coefficients) 

𝑐𝑜𝑟𝑟(𝑋+ , 𝑆𝑂𝐼) ∙
𝑠𝑡𝑑(𝑋+)
𝑠𝑡𝑑(𝑁)  

 
(Correlation ∙Coefficient) 

 
X1= –(P–E)ocean 605 0.25 0.57 0.14 
X2= –(P–E)land 212 -0.53 0.20 -0.11 
X3= dWland 96 0.048 0.09 0.004 
X4= dWocean 711 -0.10 0.67 -0.07 
                                                                                       Corr(N,SOI) -0.03 

 
Note that table 3 provides also some insights about the causes of the interannual variability of 
Pacific Ocean outflow. The largest standard deviation of P−E and dW  in the ocean suggests  that 
these two components might drive the interannual variability of the Pacific Ocean outflow. This 
is confirmed by a correlation analysis. The correlation between N and the (P−E)Ocean is -0.70. The 
correlation between N and the dWocean is 0.84.  The correlation of N with the corresponding 
land components is below 0.18. In all cases, prior to the evaluation of the correlation the 
corresponding time series have been de-trend and de-season. 
 
 



 
Now addressing some details:  
 
(1) Figure 1: I would have liked to see a row with P-E- R next to the row for dW in Figure 1. 
 
Figure 1 probably means Figure 2. Including P-E-R, in our opinion, is not very useful since, by 
definition of R, P-E-R will perfectly match dW. The comparison would be interesting with an 
independent dataset of R. 
 
 
(2) Figures 1 and 3: I am sure the authors know better smoothers than the running mean 
(Hanning, Kaiser, etc). I recommend they use one. 
 
We have replaced the running mean by a low pass filter defined by a Hann function of 24 
months (the resulting smoothed curve is quite in agreement with the one previously obtained 
by running mean smoothing) 
 
 
 
(3) Line 27: Clark reference missing. Recheck all your references, I did not do an exhaustive 
check. 
 
Thank you. We have checked all the references.  
 
 
(4) Line 93: tectonic signals in the gravity field do not ‘masquerader as mascons’. Mascons are 
a simple mathematical representation of the gravity field with a physical interpretation. 
Tectonics “would be incorrectly interpreted as water mass flux” 
 
Thank you. It is better expressed in this way. We have re-written the sentence: 
“Any other non-surficial effect such as long-term tectonics would be incorrectly interpreted as 
water mass fluxes…” 
 
 
(5) Lines 124 et seq: see my concern above. A physical interpretation of this mathematical 
approach to confidence intervals would be useful. 
 
We have extended the description of the bootstrap - see point 3 (Bootstrap Vs Error 
propagation) in page 1 of this response. 
 
 
 
(6) Line 164: and loses ‘to the atmosphere’ 879 Gt/month. . . 
 
The sentence has been re-written: 
“On average, the Atlantic Ocean receives 926 Gt/month (CI95=[876, 980]; or 0.36 Sv) of salty 
water, and loses to the atmosphere 879 Gt/month (CI95=[828, 930]) via P−E+R.” 
 



 
(7) Line 188: I think ‘The Atlantic/Arctic inflow ‘mirrors this behaviour’ is a better phrase in 
English. 
 
Thank you. We have re-written the sentence: “The Atlantic/Arctic inflow mirrors this 
behaviour.” 
 
 
(8) Somewhere: W. T. Liu et al (GRL 2006, on South American water balance) did a similar 
estimation of water flux between an ocean basin and the land, without using any numerical 
model data. 
 
Thank you. We agree that it is a pertinent reference. We have included it in the last paragraph 
of the introduction, which now is: 

“In this work we propose a new methodology devised to estimate the net WT through 
the boundaries of a given oceanic region. A defining feature of the proposed approach is the use 
of the time-variable gravity data from the GRACE (Gravity Recovery and Climate Experiment) 
satellite mission to estimate the change of water content. We apply the methodology, in 
conjunction with conventional meteorological data of general hydrologic budget schemes, to 
estimate the time evolution over the period 2003-2016 of the net WT and exchanges among the 
four major ocean basins – namely Pacific, Atlantic, Indian, and Arctic. We analyse and report 
our results of the seasonal climatology as well as the interannual variability of WT. Such 
information, not available previously, is of valuable importance. For example, in closed regions, 
net WT through the boundaries on the surface must be counteracted by moisture fluxes through 
the same boundaries in the atmosphere to match GRACE measurements. Such approach has 
been successfully applied to study the hydrological cycle of South America (Liu et al., 2006). At 
ocean basin scale, knowledge about net WT not only would help elucidate the role of the oceans 
within the water cycle, but it will also impose restrictions on moisture advection in the 
atmosphere that would help to improve atmospheric models. On the other hand, ocean models 
usually deal with inflows and outflows of a given ocean region (Warren, 1983; Rahmstorf, 1996; 
Emile-Geay et al., 2003; de Vries and Weber, 2005; Dijkstra, 2007). Net WT estimates for such 
ocean region would be useful to impose constraints to the relationship between its inflows and 
outflows, which would improve the reliability of the models. Better models will improve our 
knowledge of the Earth’s WT dynamics and its evolution in the future, which is critical in the 
present scenario of climate change.” 
 
 
 
(9) There are a few more minor language errors (lines 255, 267 and possibly others). Please 
go over the manuscript and clean up. 
 
Done. Thank you. 



Answer to Reviewer 2 
 
We thank the reviewer for thorough reading and thoughtful comments and suggestions. 
A detailed discussion of the changes that we made in response to the reviewer’s comments 
is given below. In what follows, we state the reviewer’s comment in boldface, and 
describe our response in plain text. Text in the manuscript is represented in italics.  The 
text that has been modified/included in the new version has been highlighted in red. 
 
Specific comment 1:  
 

I feel a strong motivation for estimating the lateral water transports from oceanic 
boundaries is lacking. It is not clear why we require measurements of lateral 
transports, given that the overall transport among different oceanic basin is known 
to a reasonable degree of certainty, such as by the studies noted by the authors in 
the introduction and discussion sections. The authors should write a concise and 
clear paragraph of why it is important to estimate the water fluxes through 
boundaries with this novel approach. 
  

The last paragraph of the introduction has been re-written: 
 
“In this work we propose a new methodology devised to estimate the net WT 

through the boundaries of a given oceanic region. A defining feature of the proposed 
approach is the use of the time-variable gravity data from the GRACE (Gravity 
Recovery and Climate Experiment) satellite mission to estimate the change of water 
content. We apply the methodology, in conjunction with conventional 
meteorological data of general hydrologic budget schemes, to estimate the time 
evolution over the period 2003-2016 of the net WT and exchanges among the four 
major ocean basins – namely Pacific, Atlantic, Indian, and Arctic. We analyse and 
report our results of the seasonal climatology as well as the interannual variability 
of WT. Such information, not available previously, is of valuable importance. For 
example, in closed regions, net WT through the boundaries on the surface must be 
counteracted by moisture fluxes through the same boundaries in the atmosphere to 
match GRACE measurements. Such approach has been successfully applied to study 
the hydrological cycle of South America (Liu et al., 2006). At ocean basin scale, 
knowledge about net WT not only would help elucidate the role of the oceans within 
the water cycle, but it will also impose restrictions on moisture advection in the 
atmosphere that would help to improve atmospheric models. On the other hand, 
ocean models usually deal with inflows and outflows of a given ocean region 
(Warren, 1983; Rahmstorf, 1996; Emile-Geay et al., 2003; de Vries and Weber, 2005; 
Dijkstra, 2007). Net WT estimates for such ocean region would be useful to impose 
constraints to the relationship between its inflows and outflows, which would 
improve the reliability of the models. Better models will improve our knowledge of 
the Earth’s WT dynamics and its evolution in the future, which is critical in the 
present scenario of climate change.” 

 
 
 
 
 



 
Specific comment 2: 
 

In addition, the authors note in their introduction that their method improves upon 
the previous estimates. The literature on previous estimates and how (and how 
much) the new method improves upon them is not discussed in detail. In addition, a 
critical comparison of previous estimates of water transports and the estimates 
provided in this study is lacking. 
 

As far as we are applying a new methodology, there are not many studies to compare 
with. The only two studies, up to our knowledge, doing something similar are 
discussed in the third paragraph of the section “Discussion and Conclusions”: 
 

“The results presented here are consistent with the well-known salinity 
asymmetry between the Pacific and Atlantic Oceans (Reid, 1953; Warren, 1983; 
Broecker et al., 1985; Zaucker et al., 1994; Rahmstorf, 1996; Emile-Geay et al., 2003; 
Lagerloef et al., 2008; Czaja, 2009; Reul, 2014). However, they are in contrast to 
previous GRACE-based studies where a simple seesaw WT between the Pacific and 
the Atlantic/Indian oceans was reported (Chambers and Willis, 2009; Wouters et al., 
2014). In those studies, the P−E+R term in Equation 2 in both Pacific and 
Atlantic/Indian Oceans was approximated by that from the global ocean mean. 
However, the mean freshwater flux in the Pacific (1261 Gt/month) quite mis-
matches that in the Atlantic/Indian Oceans (−1837 Gt/month), meaning that the 
approximation was quite poor and hence the N term was not properly estimated in 
these studies (see Appendix for further discussion).” 

 
As stated in the text, in the Appendix we explain in detail why the proposed 
methodology overcomes some important limitations of previous approaches which 
will always show a seesaw of water transport, even if it does not exist.  

 
 
Specific comment 3: 
 

The authors observe that loss through E-P is much more in AIA as compared to the 
Pacific, even though the surface area is same. However, the reasons for such 
disparity is not discussed. Similarly, the potential reasons for other important 
results are not discussed. I hope to see some discussion on the results from this study. 
 
The P, E, P-E, and R components are auxiliar in this study. However, we understand the 
reviewer’s concern and we have added some more references for comparison purposes in 
the last paragraph of Section 3.1: 
 

“Corresponding analyses have been performed for the Atlantic, Indian, and Arctic 
Oceans separately. The time evolution of the WT components in Eqs. 1 and 2 are shown 
in Figure 4, and a diagram of the water-mass fluxes is shown in Figure 5. On average, 
the Atlantic Ocean receives 926 Gt/month (CI95=[876, 980]; or 0.36 Sv) of salty water, 
and loses to the atmosphere 879 Gt/month (CI95=[828, 930]) via P−E+R. The latter is 
equivalent to a freshwater deficit of 0.34 Sv, which increases the near-surface salt 
concentration and enables water to sink in North Atlantic producing deep water. These 
values are close to the 0.13-0.32 Sv estimated from ocean models, as needed to keep 



salinity balance in the Atlantic Ocean (Zaucker et al., 1994). Similarly, the Indian Ocean 
loses 957 Gt/month (CI95=[894, 1022]) of freshwater that is restored by 991 Gt/month 
(CI95=[907, 1073]) of salty water. The freshwater lost via P−E+R by the Atlantic and Indian 
Oceans goes to the Pacific (1261 Gt/month, CI95=[1171, 1347]) and Arctic (730 
Gt/month, CI95=[712, 747]) Oceans, which return 1194 (CI95=[1096, 1291]) and 723 
(CI95=[708, 739]) Gt/month of salty water through the ocean, respectively. Then, the 
Pacific presents a surplus of freshwater that reduces near-surface salt concentration, 
which prevents the formation of deep water. Together, the Pacific and Arctic Oceans 
supply 1917 Gt/month (CI95=[1812, 2021]) of water to the Atlantic and Indian Oceans, 
where it is reincorporated into the water cycle via net E−P. As in previous studies (see 
Craig et al., 2017 for a synthesis), the freshwater lost in the Indian Ocean is similar to 
that in the Atlantic Ocean. In those studies, P−E+R is close to zero in the Pacific Ocean, 
producing a difference of 0.4 Sv between Atlantic and Pacific Oceans. In this study, P−E+R 
is 1261 Gt/month in the Pacific Ocean and the difference with the Atlantic increases to 
~0.8 Sv. Some of these differences would be expected as far as the ocean basins are not 
defined in exactly the same way. On the other hand, the global R is 3781 Gt/month (or 
3781 ´ 12 = 45368 km3/year), close to the 41867 km3/year reported by the Global Runoff 
Data Centre (GRDC, 2014). At basin scale, R is 16834 km3/year in the Pacific, greater than 
the 11826 km3/year reported by GRDC. In the Atlantic, Indian, and Arctic, R is 18228, 
4479, and 5827 km3/year, respectively, which is closer to the GRDC values: 20772, 5238, 
and 4080 km3/year. Finally, according to the diagram in Figure 5, the water content in 
the atmosphere decreases 178 Gt/month (and it is gained by Earth’s surface), but this 
amount is not realistic as discussed in Section 2 since it should increase a few Gt/month 
(Nilsson and Elgered, 2008). This value differs from the 188 Gt/month mentioned in 
Section 2 because the endorheic regions are not accounted here.” 
 
More importantly, we have extended our analysis to other datasets. The objective is to 
show that our main results concerning the N component, are not an artifact of CSR 
GRACE and ERA5 datasets. As a result, there is new section entitled “Comparison with 
other datasets”: 
 
“Equations 1 and 2 are applied to estimate the Pacific outflow using different datasets: 
 

(1) CSR GRACE mascon solution is replaced by the JPL GRACE mascon solution 
provided by the Jet Propulsion Laboratory/NASA (Watkins et al., 2015; Wiese et al., 
2019). Similarly to CSR data, JPL are corrected for GIA effects, C20 Stoke coefficients are 
replaced by a solution from SLR, and data are reduced to 1º regular grids from 0.5º 
regular grids. Besides, we have applied the degree-0 Stoke coefficients correction. 
However, CSR and JPL mascon solutions are not directly comparable. The main reason 
is that an estimate of degree-1 coefficients has been added to JPL mascon solutions, 
and the GAD product has not been added back. The corrections applied by JPL are not 
supplied separately and we cannot do/undo any of the corrections to process JPL data 
as we did with CSR data. In particular, the GAD product is not available for JPL. In any 
case, the JPL solution is useful here since it provides an error estimate of the mascon 
solution that can be propagated to obtain confidence intervals of N, which are 
independent from those estimated with the bootstrap analysis. Table 2 shows the CI95 
of the mean values of the N component for different ocean basin estimated from error 
propagation and bootstrap analysis. It is observed that in all cases the CI95 from error 



propagation are included in those from bootstrap analysis, meaning that the latter are 
a conservative estimate of the error. JPL propagated error can be expected to be similar 
to that propagated from CSR error estimates (which are not available), and then we 
can assume that the reported CI95 for N calculated from CSR data are a conservative 
estimate. Besides, comparing Tables 1 and 2, it is observed that the mean values of N 
are quite similar and that the CI95 largely overlap. Regarding to the time variability, the 
values of the N component from CSR and JPL mascon solutions show Pearson 
correlation coefficients greater than 0.85 (p-value < 10-3), except for the Atlantic (0.70). 
Thus, despite the different processing of CSR and JPL data, the reported analysis for the 
N component is robust with respect to the choice of GRACE datasets. 

 
Table 2. Mean net WT from JPL mascon for different ocean basins according to Equation 2 . CI95 are estimated 
as propagation of mascon errors provided by JPL, and from bootstrap analysis. Units are Gt/month. 

  Mean (CI95 from 
error propagation) 

Mean (CI95 from 
bootstrap) 

Outflows Pacific 1182 (1143, 1220) 1182 (1062,  1306) 
 Arctic 735 (713, 757) 735 (711,761) 
 Pacific + Arctic 1917 (1872, 1961) 1917 (1806, 2036) 

Inflows AIA 1183 (1092, 1274) 1183 (1077,  1282) 
 Atlantic 919 (866, 972) 919 (845, 985) 
 Indian 999 (980, 1018) 999 (928,  1067) 
 Atlantic + Indian 1918 (1862, 1974) 1918 (1838, 2003) 

 
 

(2) ERA5 P and E data are replaced by several datasets for comparison purposes. The 
objective is not to be exhaustive in the selection, but rather to show that the reported 
features of the N component are quite robust with respect to the choice of the P and E 
datasets. The data sets considered are:  

(i) Continental P from GPCC (Schneider et al., 2011), GPCP (Adler et al., 2018), 
CMAP (Xie and Arkin, 1997), UDel (Willmott and Matsuura, 2001), and 
GLDAS/Noah (Rodell et al., 2004; Beaudoing and Rodell, 2016). 
(ii) Ocean P from GPCP and CMAP. 
(iii) Continental E from GLEAM (Miralles et al., 2011; Martens et al., 2017) and 
GLDAS/Noah.  
(iv) Ocean E from OAFlux (Yu et al., 2008) and HOAPS/CM SAF (Schulz et al., 
2009).  

The Pacific outflow is estimated with the 162 possible combinations of P and E, 
including ERA5. The time period is 2003-2016, except for HOAPS/CM SAF and GPCP, 
which span from 2003 to 12/2014 and 10/2015, respectively. The degree-0 
corrections in GRACE data is made for each combination. Note that only ERA5 includes 
P and E for both continents and oceans. All grids have been homogenized to 1° regular 
grids. The main concern here is the heterogeneity of the spatial coverage among 
datasets. To make the results comparable among datasets, the computations are 
restricted to the common grid points, which do not cover the entire Earth (Figure 8a). 
However, in spite of the fact that due to the partial coverage the principle of water 
mass conservation is not accomplished, the Pacific outflow obtained in the common 
grid points from ERA5 (black line in Figure 8b) is quite in agreement with the same 
signal obtained with global coverage (red line in Figure 3 which is also reported as red 
line in Figure 8b). The Pearson correlation coefficient between the two signals is 0.994 



(p-values < 10-3) with an average difference around 50 Gt/month. In general, the 
Pacific outflows estimated from all the P and E dataset combinations show 
qualitatively the same signal than the one reported in Figure 3. For each of the 162 
estimates of the Pacific outflows corresponding to the possible P and E dataset 
combinations, we evaluated the average outflow (over the period of study), which is 
968 Gt/month (STD: 489), and the correlation with the Pacific outflows in Figure 3, 
which is 0.82 (STD: 0.06; p-values < 10-3). 
 

These experiments show that the reported net WT are physically consistent among 
datasets, at least qualitatively.” 

 
 

 

 
Figure 8. Monthly time series of (the opposite of) the Pacific outflow estimated from 162 combinations of P and 
E datasets. a) Spatial coverage common to all datasets. b) Pacific outflows: Gray thin curves are the 162 Pacific 
outflows estimated in the common grid points to all datasets (no global coverage); black and red curves are based on 
ERA5 P and E and are obtained using either only the grid points common to all datasets (black curve) or global coverage 
(red curve). Note that the red curve is the same as in Figure 3.  
 



 
 
 
 
 
 
 
 
 
 
Specific comment 4: 
 

Results section (L160-170). As of now, when I read the number and where the losses 
and gains take place, it is difficult for me to visualize the transfers among different 
basins. I strongly suggest the authors to present this information in terms of a multi- 
panel graph/map, where each map shows specific water transfer-related variable 
(such as N, R, etc.) with thick arrows giving the direction of transport, their color 
showing the magnitude of transport or we can just add text (number) inside the 
arrows to show magnitude. 
 
Following the suggestion of the reviewer, we have included a new Figure with a diagram 
of the mean WT components to ease the reading: 
 

 
Figure 5. Diagram of the mean values of the WT of the studied regions. Units are Gt/month. 
 
 
  



 
Specific comment 5: 
 

L218: This is related to my comment#3. If none of the major indices shows strong 
correlation with the Pacific outflow, we do not have a confidence in what causes the 
interannual variability of Pacific Ocean outflow. Perhaps, more detailed insights 
from P and E series might help and/or some literature review on this might guide 
the authors in understanding the likely causes of the interannual variability of the 
Pacific Ocean outflow. Likewise, it would be useful to perform the same analysis on 
other basins for understanding their interannual variability of outflows.  
 
Following the suggestion of the reviewer we have looked in more details at the P and E 
series. This has provided some insight in both the lack of the correlation of the Pacific 
outflow with the most important climatic indices and the interannual variability of the 
Pacific Ocean outflow. In particular: 
 
We have extended the analysis about the lack of correlation and we give two possible 
explanations: 

 

“ To explore this lack of correlation, we have estimated the correlation coefficient 
between each climatic index and each WT component (Figure 7b).  

 
All of them are lower than 0.3 except for 6 cases in 2 regions. In the Arctic, P and 

P−E in the drainage basins of the Arctic show a correlation of ~0.5 with the AO. This 
correlation is natural since that is the area of influence of the AO. The other region is the 
Pacific, where, as expected, the SOI shows a correlation around 0.5 with P, P−E, and R in 
the drainage basins, and around -0.4 with P in the ocean. However, this individual 
correlation does not extend to the Pacific outflow. In order to understand why this is the 
case, it is convenient to express the N component of the water transport as a function of 
(P-E) and dW. According to Equations 1 and 2 we have: 
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It can be shown that the correlation between N and a given index can be express as 
follows 

 
𝑐𝑜𝑟𝑟(𝑁, 𝐼𝑛𝑑𝑒𝑥) = ∑ 𝑐𝑜𝑟𝑟(𝑋) , 𝐼𝑛𝑑𝑒𝑥)*

)+, ∙ -.((&%)
-.((1)

,                                     (4) 
 
where corr denotes the correlation coefficient, and std stands for standard deviation. As 
shown in equation (4), the correlation between N and a given index is a linear 
combination of the correlation between each component and the index. The coefficients 
of the linear combination std(Xi)/std(N) are proportional to the standard deviation  of 
each component.  The components of equation (4) for the Pacific outflow and the SOI 
index are shown in Table 3. Despite the fact that some of the individual component 
exhibits significant correlation with SOI (in particular P-E in land and ocean) when 
combined with the corresponding coefficients their effects are cancelled out yielding to 
a negligible correlation between water transport and SOI (below 0.03 in magnitude). 



 
 

 
Figure 7. Pacific outflow and climatic indices for ENSO, AMO, AO, and AAO. a) Time series of Pacific outflow 
is de-trend and de-season. All time series are normalized to have unit variance. Values in the parenthesis are the 
correlation coefficient between the corresponding climatic index and the Pacific outflow. b) Correlation coefficients 
between de-trend and de-season WT components of different regions and the climatic indices.   
 

 
Another possible reason for the lack of correlation resides in the definition of the studied 
regions, for which the presence of subregions with positive and negative influence of an 
index results in an overall negligible/attenuated influence of the index in the overall 
region. For example, a positive phase of the AMO is related to an increase of P in western 
Europe (Sutton and Hodson, 2005), and the Sahel (Folland et al., 1986; Knight et al., 
2006; Zhang and Delworth, 2006; Ting et al., 2009), but to a decrease of P in the U.S. 
(Enfield et al., 2001; Sutton and Hodson, 2005), and northeast Brazil (Knight et al., 2006; 
Zhang and Delworth, 2006). All these regions are included in the Atlantic drainage basin, 
and then the influence of a positive phase of the AMO is attenuated.”  

 
 
 
 



 
 

Table 3. Correlation coefficients between SOI and de-trend and de-season WT components involved to 
estimate the Pacific outflow according to Equations 3 and 4.  

 𝑠𝑡𝑑(𝑋!) 
 

(Stand. 
Deviation) 

 

𝑐𝑜𝑟𝑟(𝑋! , 𝑆𝑂𝐼) 
 

(Correlation 
between Xi with 

SOI) 

𝑠𝑡𝑑(𝑋!)
𝑠𝑡𝑑(𝑁)

 

 
(Coefficients) 

𝑐𝑜𝑟𝑟(𝑋! , 𝑆𝑂𝐼) ∙
𝑠𝑡𝑑(𝑋!)
𝑠𝑡𝑑(𝑁)

 

 
(Correlation ∙Coefficient) 

 

X1= –(P–E)ocean 605 0.25 0.57 0.14 
X2= –(P–E)land 212 -0.53 0.20 -0.11 
X3= dWland 96 0.048 0.09 0.004 
X4= dWocean 711 -0.10 0.67 -0.07 
                                                                                      Corr(N,SOI) -0.03 

 
Note that table 3 provides also some insights about the causes of the interannual 

variability of Pacific Ocean outflow. The largest standard deviation of P−E and dW  in 
the ocean suggests  that these two components might drive the interannual variability of 
the Pacific Ocean outflow. This is confirmed by a correlation analysis. The correlation 
between N and the (P−E)ocean is -0.70. The correlation between N and the dWocean is 0.84.  
The correlation of N with the corresponding land components is below 0.18. In all cases, 
prior to the evaluation of the correlation the corresponding time series have been de-trend 
and de-season. 
 
Technical corrections 
 
L44: Correct 'de' here 
 
Done, thank you. 
 
 
Many details are missing: Such as how were E and R computed? Are these also 
taken from ERA5? 
 
We have clarified that P and E data are both from ERA5 at the beginning of the 
description of ERA5 dataset: 
 

“The P and E data we use are adopted from the ERA5 reanalysis…” 
 
We have also clarified that R is estimated as a residual in Equation 1 (in the description 
of Equatin 1): 
 

“The R component will be estimated as a residual in Equation 1.” 
 
 
Figure 1: What is the source of Figure 1? Or how was this figure obtained? 
  
The source of Figure 1 is the runoff pathways scheme of Oki and Sud (1998) as stated in 
lines 75-76 of the original manuscript: 



 
“The land is divided into their associated drainages according to the global continental 
runoff pathways scheme of Oki and Sud (1998)” 
 
To avoid any confusion, we added in the caption of Figure 1 the reference to runoff 
pathways scheme of Oki and Sud (1998).  The new caption of Figure 1 is: 
 
Figure 1. Pacific, Atlantic, Indian, and Arctic Ocean basins and their associated continental drainage 
basins according to the global continental runoff pathways scheme of Oki and Sud (1998). Within each 
basin, darker colour represents the continental basin, lighter colour the ocean basin. White regions  
represent endorheic basins.  
 
 
Figure 1: Please add color labels to the figure. I also think the figure would look 
better is you add the basin names in the figure itself.; perhaps major continental 
basins as well. In addition, major known pathways of water transport can be added 
to the figure. 
 
The names of the basins have been added to the figure, and in figure caption has been 
modified.  
A diagram of net water transport has been included as a new figure 5 (see answer to 
specific comment 4). The goal of figure 1 is just to show how the regions have been 
defined. For this reason, we believe that additional partitions (as major continental basins) 
might be distracting. Although we agree that showing major known pathways of water 
transport could enrich the figure we decided not to include it to avoid confusion with the 
reported net water transport, which is the target of this study.  
 
The results of the changes described above is the new Figure 1 
 

 
 
Figure 1. Pacific, Atlantic, Indian, and Arctic Ocean basins and their associated continental drainage 
basins according to the global continental runoff pathways scheme of Oki and Sud (1998). Within each 
basin, darker colour represents the continental basin, lighter colour the ocean basin. White regions  
represent endorheic basins 
 
 
 



L93: Elaborate more. 
 
The sentence has been re-written: 

“Any other non-surficial effect such as long-term tectonics would be incorrectly 
interpreted as water mass fluxes (Chao, 2016) but they may only have importance in 
the determination of secular trends; so are the non-climatic sources such as the rare, 
local earthquake events.” 

 
 
L94-L95: Please provide more details as to why this is required. 
 
The sentence has been re-written: 

“As the C20 Stokes coefficient is not well determined from GRACE mission, it is 
replaced with a more accurate solution from Satellite Laser Ranging (SLR) (Cheng 
and Ries, 2017).” 

 
 
L98: Have you defined "GAD" earlier? Please provide details. Also, provide 
detailed justification of effects ignored here.   
 
The GAD acronym has not been defined. It stands for: 
   G: Geopotential coefficients;  
   A: Averaged of any background model over a time period;  
   D: Bottom pressure over oceans, zero over land. 
However, in the GRACE community it is not usually defined (we have had to check its 
meaning in the GRACE user’s manual). On the other hand, it is very common and it is 
usually referred just as “GAD product”. In any case, we give a description of what 
represents the GAD product for readers no familiarized with GRACE jargon.  
 
 
L97-100: This sentence is not very clear, rephrase for better clarity. 
L99: What is MPIOM? 
 
This part has been re-written: 

“On the other hand, the atmospheric, and some oceanic, effects on gravity 
change had beforehand been removed from the processing of the GRACE data by CSR, 
for de-aliasing purposes, according to the operational numerical weather prediction 
(NWP) model from ECMWF and to an unconstrained simulation with the global ocean 
general circulation model MPI-OM -Max-Planck-Institute Global Ocean/Sea-Ice Model-  
(Dobslaw et al. 2017). To recover the “true” ocean mass variability, we restore the 
removed signal on the oceans adding back the GAD product, which is set to zero on the 
continents.” 
 
 
L105 to 115: I am not able to quite follow these sentences, perhaps because of my 
lack of expertise in GRACE. I'd suggest writing them in more details for readers 
who are not well- versed with GRACE estimates. In fact, I feel the entire paragraph 
can be re-written for more clearity. 
 
We have re-written these sentences: 



“GRACE’s degree-0 Stokes coefficients �C00 is set identically to zero on the 
recognition that Earth’s total mass (including the atmosphere) is constant. Then, any 
increase (decrease) of the water-mass budget of the atmosphere will be counteracted by 
a decrease (increase) of the same amount of water-mass in the surface. However, after 
the atmospheric and dynamic oceanic mass changes are corrected in GRACE data, the 
GRACE �C00 are still set to zero even though they should match the opposite of the 
removed signals. To restore the lost degree-0 signal, the GAD product (which is set to 
zero on the continents) must be added back to GRACE with averaged ocean signal set to 
zero, and then, the �C00 from an atmospheric model must be subtracted from GRACE 
data to force the Earth’s total mass to be constant. Doing so, the GRACE data will 
account for the global exchange of water-mass between the Earth surface and 
atmosphere.” 
 
 
L126: Bootstrap replications of what variables? Are these timeseries data? 
L128-130: Please write these in more details. "subtracted" what from what? Please 
clarify.  
 
We have re-written this part: 
 

“The reported 95% confidence intervals and the correlation coefficients are evaluated 
using the stationary bootstrap  scheme of Politis and Romano (1994) (with optimal 
block length selected according to Patton et al., 2009), and the percentile method. 
The intuition underlying the bootstrap is simple. Suppose that the observed time 
series x1, ..., xn is a realization of the random vector (X1,..., Xn)  with joint distribution 
Pn and which is assumed to be part of a stationary stochastic process.  Given Xn, we 
first build and estimate 𝑃<n of Pn. Then B random vectors (𝑋,∗, … , 𝑋%∗) are generated 
from  𝑃<n. If 𝑃<n is a good approximation of Pn, then the relation   between  (𝑋,∗, … , 𝑋%∗)   
and  𝑃<n  should well reproduce the relation between (X1,..., Xn)  and Pn  (for an 
introduction of bootstrap methods for time series see Kreiss and Lahiri (2012) and the 
references therein). Here, the number of bootstrap replications was set to B=2000. In 
general, half length of the confidence interval can be very well approximated by twice 
the standard deviation of the sample mean estimated from the bootstrap 
replications. Prior to applying the bootstrap to a time series, least-squares estimated 
linear/quadratic trend and sinusoid with the most relevant frequencies are removed 
from it to meet the stationarity conditions of the method. In particular, each series 
has been decomposed into trend, seasonal and residual components. The bootstrap 
is applied to the residual component producing bootstrap samples of the residuals. 
For the evaluation of confidence intervals for the different components of WT, the 
trend and seasonal terms are added back (to the bootstrap sample of the residuals) 
producing bootstrapped time series of the component of interest. These samples are 
then used for further analysis. As an illustration, for the WT N component we proceed 
as follows: (i) a model with linear, annual, and semiannual signals is fitted to the data. 
The fitted linear trend and  annual and semiannual signals are subtracted from the 
original time series; (ii) the stationary bootstrap is then applied to the residuals 
producing  2000 bootstrap samples of the residuals; (iii)  The estimated trend and 
seasonal components are added back to each bootstrap sample of the residuals 



obtaining an ensemble of 2000 bootstrapped time series for the N component; (iv) 
these 2000 bootstrapped time series are used to obtain 95% confidence intervals for 
the mean fluxes (average of N over the 14 year period of study) and for the amplitude 
and phase of the annual component using the percentile method. For the mean fluxes, 
the average of N for each of the 2000 bootstrapped time series was first evaluated 
and then the 0.025 and 0.975 percentiles of these 2000 averages were reported as 
95% confidence interval. For the study of the climatology, a linear trend model with 
annual and semiannual components was fitted to the 2000 bootstrapped time series 
producing corresponding estimates of the annual amplitude and phase. The 0.025 
and 0.975 percentiles of these estimates were reported as 95% confidence intervals. 
In order to study the robustness of the results with respect to the model choice, the 
analysis is rerun using 11 alternative models obtained considering different forms for 
the trend component (quadratic or constant) and including higher frequencies in the 
harmonic regression (up to 5). The results are robust. The relative difference with 
respect to the reported values is smaller than 1.2% for point estimates and smaller 
than 3.3% for the extremes of the 95% confidence intervals. 
 
As an independent check of the bootstrap, confidence intervals for the mean value of 
N have been also evaluated by propagating the error estimate in GRACE data (using 
the JPL GRACE mascon solution for which error estimates are available). The resulting 
intervals were consistent with those of the bootstrap method. In particular (see 
Section 4 for details), we show that in all cases the bootstrap intervals contain the 
intervals obtained from error propagation. In this respect, the CI95 from bootstrap 
analysis can be considered a conservative estimate. This should be expected, since the 
residual component underlying the bootstrap approach includes measurement errors 
and other type of errors (related, for example, with the estimate of the trend and 
seasonal terms). As a result, the uncertainties in the transports estimated by the 
bootstrap should be larger than the corresponding uncertainties estimated by error 
propagation. 
 
Note that for the study of correlation the bootstrap was applied to the bivariate time 
series of the residuals of the two variables of interest producing an ensemble of 2000 
bivariate time series of residuals. For each bivariate time series of residuals the 
correlation between the two components of the series was first evaluated. The 
average and the 0.025 and 0.975 percentiles of these 2000 estimates were reported 
as point estimate and confidence limits for the correlation between the two variables 
of interest (correlation between residual components is used to avoid spurious 
correlation).” 
 

 
 
L135: All these can be written concisely in a table.    
 
The text in line 135 summarizes the robustness of the estimation of the main feature of 
the N component of WT, with respect to the model choice (trend + seasonality):  
 
L135:  In order to study the robustness of the results with respect to the model choice, the 
analysis is rerun using 11 alternative models obtained considering different forms for the 



trend component (quadratic or constant) and including higher frequencies in the 
harmonic regression (up to 5). The results are robust. The relative difference with respect 
to the reported values is smaller than 1.2% for point estimates and smaller than 3.3% for 
the extremes of the 95% confidence intervals. 
 
Although we see the point of including a table we decided to maintain line L135 in its 
original form since, in our opinion, it provides a better summary of the robustness than a 
table. The table, in fact, would be quite large ( with height 11 times the height of the 
actual table 1) and should include details of each model (which might be different for the 
different basins). For each of the quantities of interest in table 1 the reader should compare 
the 11 solutions provided by the different models (each solution comprises a point 
estimate and a confidence interval). All these comparisons, in our opinion, are more 
effectively summarized in the two lines: 
 
“The relative difference with respect to the reported values is smaller than 1.2% for point 
estimates and smaller than 3.3% for the extremes of the 95% confidence intervals.” 
 
 
Figure 2: It might be useful to show N in right panels. Perhaps, you can only keep 
P- E, rather than showing both P and E. 
 
In the new version of Figure 2 N has been included in right panels. 
 
 
Figure 2: Should be made clearer. Shouldn't "R" be same in both left and right 
columns. Perhaps, you can remove the space between columns and extended the x-
axis of the plots.  
 
Yes, R is the same in both columns. We have removed the R time series in the right 
column of Figures 2 and 4. With respect to the “design” of the figures, we have tried 
many options and selected the one that seems to us most clear (see the new Figure 2 
below). 
 



 
Figure 2. WT of Equations (1) and (2) in the Pacific (first row), Atlantic/Indian/Arctic (AIA) oceans collectively 
(second row), and their drainage basins. First column: associated land drainage basins; second column: ocean basins. 
Labels in the vertical axis correspond to the mean ± standard deviation of the associated curve. Thick lines are the low 
pass filtered signal by a Hann function of 24 months. All curves in the same panel are plotted on the same scale. P, E, 
and P–E are from ERA5 dataset; dW is estimated from GRACE; R and N are estimated as a residual in equations 1 and 
2, respectively. 
 
 
L145: The P-E estimate of 142 Gt/month should be corrected for final presentation, 
since it was earlier noted that ERA5 may have some internal inconsistency when 
comparing previously estimated values from the literature. 
 
The global average of P−E is 188 Gt/month and it should be [−4.3, 0.9]. The 142 
Gt/month is for the Pacific Ocean and it may be corrected according to its area. However, 
we have not applied this correction for two reasons: (1) It is irrelevant for the estimation 
of N after the degree-0 correction of GRACE data is applied; (2) We do not know how it 
would affect the data locally and how errors would spread on computations. 
 
 
L145: How does the results on fluxes in this manuscript compare with the values in 
the literature. 
 
See our answer to specific comments 2 and 3. 
 
 
Figure 3: I’m not sure if Figure 3 is required. I think it can be removed without loss 
of any critical details. 
 
We are very interested in showing the agreement between the Pacific outflow and the 
AIA inflow, which is not trivial at all. That is the reason to keep them in a separate figure. 



In our opinion, the comparison between the Pacific outflow and the AIA inflow is critical 
as a warranty of consistency in the processing of the data.  
 
 
L145 to 155: I would suggest the values to be put in a graphical format, which might 
look more appealing that writing the numbers. 
 
It can be seen graphically now in the new diagram inserted as Figure 5 (see the answer to 
the specific comment 4). 
 
 
L164: What is basis of deciding the salinity of water in this study? 
 
We provide the results in the form of Gt/month.  Freshwater from ERA5 is 1000 kg/m3, 
and GRACE data are directly kg/m2. When converting Gt/month into Sv, it does not 
matter if we choose a density 1020 or 1035 kg/m3 since we only show two significant 
digits (in Sv). 
 
 
L181: I though the data is monthly; if so, how can we say day of month also? 
 
Yes, data are monthly. The day of the maximum annual signal is obtained from the annual 
component fitted to the data, which is an analytical function. 
 
 
L198: Again, it seems important that authors add N time series also in Figures 2 and 
4. 
 
N component was already shown in Figure 4 and has been added in Figure 2. 
 
 
Figure 6: In addition to showing the timeseries, you can show the correlation values 
of each index with Pacific outflow. 
 
The correlation coefficients are shown in the new version of the Figure (see the answer 
to the specific comment 5). 
 
 
L225: The importance of these changes has not been discussed before in the 
manuscript.  
 
A previous comment has been added in the description of GRACE data: 
 

“Any other non-surficial effect such as long-term tectonics would be incorrectly 
interpreted as water mass fluxes (Chao, 2016) but they may only have importance in 
the determination of secular trends; so are the non-climatic sources such as the rare, 
local earthquake events.” 

 
 
 



Appendix: 
Have we referend to Appendix anywhere in the main text? 
 
It was mis-referenced at the end of the third paragraph of the section “Discussion and 
Conclusions” as Supplementary Material. It has been corrected. 

 
“However, the mean freshwater flux in the Pacific (1261 Gt/month) quite mis-matches 
that in the Atlantic/Indian Oceans (−1837 Gt/month), meaning that the 
approximation was quite poor and hence the N term was not properly estimated in 
these studies (see Appendix for further discussion).” 



Answer to Reviewer 3 
 
We thank the reviewer for thorough reading and thoughtful comments and suggestions. 
A detailed discussion of the changes that we made in response to the reviewer’s comments 
is given below. In what follows, we state the reviewer’s comment in boldface, and 
describe our response in plain text. Text in the manuscript is represented in italics.  The 
text that has been modified/included in the new version has been highlighted in red. 
 
Review for esd-2020-54 "Water transport among the world ocean basins within the 
water". 
In general, this study is interesting to me, with the global ocean basins to study 
water mass transport based on GRACE and ERA5. The conclusions are generally 
supported by the data analyses in this study, but more validations/evaluations are 
necessary to improve the reliability of the results. At least, a careful intercomparsion 
between this study and previous studies/literatures can be discussed to enhance our 
understanding. 
 
We have included several improvements in the manuscript:  
 
1. Comparison with similar studies: As far as we are applying a new methodology, 

there are not many studies to compare with. The only two studies, up to our 
knowledge, doing something similar are discussed in the third paragraph of the 
section “Discussion and Conclusions”: 

“The results presented here are consistent with the well-known salinity 
asymmetry between the Pacific and Atlantic Oceans (Reid, 1953; Warren, 1983; 
Broecker et al., 1985; Zaucker et al., 1994; Rahmstorf, 1996; Emile-Geay et al., 2003; 
Lagerloef et al., 2008; Czaja, 2009; Reul, 2014). However, they are in contrast to 
previous GRACE-based studies where a simple seesaw WT between the Pacific and 
the Atlantic/Indian oceans was reported [Chambers and Willis, 2009; Wouters et al., 
2014]. In those studies, the P−E+R term in Equation 2 in both Pacific and 
Atlantic/Indian Oceans was approximated by that from the global ocean mean. 
However, the mean freshwater flux in the Pacific (1261 Gt/month) quite mis-
matches that in the Atlantic/Indian Oceans (−1837 Gt/month), meaning that the 
approximation was quite poor and hence the N term was not properly estimated in 
these studies (see Appendix for further discussion).” 

 
As stated in the text, in the Appendix we explain in details why the proposed 
methodology overcomes some important limitations of previous approaches which 
will always show a seesaw of water transport, even if it does not exist.  

 
2. Other datasets:  

 
The P, E, P−E, and R components are auxiliar in this study. However, we have 
added some more references for comparison purposes in the last paragraph of 
Section 3.1: 

 



“Corresponding analyses have been performed for the Atlantic, Indian, and 
Arctic Oceans separately. The time evolution of the WT components in Eqs. 1 and 2 
are shown in Figure 4, and a diagram of the water-mass fluxes is shown in Figure 5. 
On average, the Atlantic Ocean receives 926 Gt/month (CI95=[876, 980]; or 0.36 Sv) of 
salty water, and loses to the atmosphere 879 Gt/month (CI95=[828, 930]) via P−E+R. 
The latter is equivalent to a freshwater deficit of 0.34 Sv, which increases the near-
surface salt concentration and enables water to sink in North Atlantic producing deep 
water. These values are close to the 0.13-0.32 Sv estimated from ocean models, as 
needed to keep salinity balance in the Atlantic Ocean (Zaucker et al., 1994). Similarly, 
the Indian Ocean loses 957 Gt/month (CI95=[894, 1022]) of freshwater that is restored 
by 991 Gt/month (CI95=[907, 1073]) of salty water. The freshwater lost via P−E+R by 
the Atlantic and Indian Oceans goes to the Pacific (1261 Gt/month, CI95=[1171, 1347]) 
and Arctic (730 Gt/month, CI95=[712, 747]) Oceans, which return 1194 (CI95=[1096, 
1291]) and 723 (CI95=[708, 739]) Gt/month of salty water through the ocean, 
respectively. Then, the Pacific presents a surplus of freshwater that reduces near-
surface salt concentration, which prevents the formation of deep water. Together, the 
Pacific and Arctic Oceans supply 1917 Gt/month (CI95=[1812, 2021]) of water to the 
Atlantic and Indian Oceans, where it is reincorporated into the water cycle via net 
E−P. As in previous studies (see Craig et al., 2017 for a synthesis), the freshwater lost 
in the Indian Ocean is similar to that in the Atlantic Ocean. In those studies, P-E+R is 
close to zero in the Pacific Ocean, producing a difference of 0.4 Sv between Atlantic 
and Pacific Oceans. In this study, P-E+R is 1261 Gt/month in the Pacific Ocean and the 
difference with the Atlantic increases to ~0.8 Sv. Some of these differences would be 
expected as far as the ocean basins are not defined in exactly the same way. On the 
other hand, the global R is 3781 Gt/month (or 3781 ´ 12 = 45368 km3/year), close to 
the 41867 km3/year reported by the Global Runoff Data Centre (GRDC, 2014). At basin 
scale, R is 16834 km3/year in the Pacific, greater than the 11826 km3/year reported 
by GRDC. In the Atlantic, Indian, and Arctic, R is 18228, 4479, and 5827 km3/year, 
respectively, which is closer to the GRDC values: 20772, 5238, and 4080 km3/year. 
Finally, according to the diagram in Figure 5, the water content in the atmosphere 
decreases 178 Gt/month (and it is gained by Earth’s surface), but this amount is not 
realistic as discussed in Section 2 since it should increase a few Gt/month [Nilsson and 
Elgered, 2008]. This value differs from the 188 Gt/month mentioned in Section 2 
because the endorheic regions are not accounted here.” 
 
 
More importantly, we have extended our analysis to other datasets. The objective is 
to show that our main results concerning the  N component, are not an artifact of CSR 
GRACE and ERA5 datasets. As a result, there is new section entitled “Comparison with 
other datasets”: 
 
“Equations 1 and 2 are applied to estimate the Pacific outflow using different 
datasets: 
 

(1) CSR GRACE mascon solution is replaced by the JPL GRACE mascon solution 
provided by the Jet Propulsion Laboratory/NASA (Watkins  et al., 2015; Wiese et al., 
2019). Similarly to CSR data, JPL are corrected for GIA effects, C20 Stoke coefficients 



are replaced by a solution from SLR, and data are reduced to 1º regular grids from 
0.5º regular grids. Besides, we have applied the degree-0 Stoke coefficients 
correction. However, CSR and JPL mascon solutions are not directly comparable. The 
main reason is that an estimate of degree-1 coefficients has been added to JPL 
mascon solutions, and the GAD product has not been added back. The corrections 
applied by JPL are not supplied separately and we cannot do/undo any of the 
corrections to process JPL data as we did with CSR data. In particular, the GAD product 
is not available for JPL. In any case, the JPL solution is useful here since it provides an 
error estimate of the mascon solution that can be propagated to obtain confidence 
intervals of N, which are independent from those estimated with the bootstrap 
analysis. Table 2 shows the CI95 of the mean values of the N component for different 
ocean basin estimated from error propagation and bootstrap analysis. It is observed 
that in all cases the CI95 from error propagation are included in those from bootstrap 
analysis, meaning that the latter are a conservative estimate of the error. JPL 
propagated error can be expected to be similar to that propagated from CSR error 
estimates (which are not available), and then we can assume that the reported CI95 
for N calculated from CSR data are a conservative estimate. Besides, comparing 
Tables 1 and 2, it is observed that the mean values of N are quite similar and that the 
CI95  largely overlap. Regarding to the time variability, the values of the N component 
from CSR and JPL mascon solutions show Pearson correlation coefficients greater than 
0.85 (p-value < 10-3), except for the Atlantic (0.70). Thus, despite the different 
processing of CSR and JPL data, the reported analysis for the N component is robust 
with respect to the choice of GRACE datasets. 
 
Table 2. Mean net WT from JPL mascon for different ocean basins according to Equation 2 . CI95 are estimated 
as propagation of mascon errors provided by JPL, and from bootstrap analysis. Units are Gt/month. 

  Mean (CI95 from 
error propagation) 

Mean (CI95 from 
bootstrap) 

Outflows Pacific 1182 (1143, 1220) 1182 (1062,  1306) 
 Arctic 735 (713, 757) 735 (711,761) 
 Pacific + Arctic 1917 (1872, 1961) 1917 (1806, 2036) 

Inflows AIA 1183 (1092, 1274) 1183 (1077,  1282) 
 Atlantic 919 (866, 972) 919 (845, 985) 
 Indian 999 (980, 1018) 999 (928,  1067) 
 Atlantic + Indian 1918 (1862, 1974) 1918 (1838, 2003) 

 
 

(2) ERA5 P and E data are replaced by several datasets for comparison purposes. The 
objective is not to be exhaustive in the selection, but rather to show that the reported 
features of the N component are quite robust with respect to the choice of the P and E 
datasets. The data sets considered are:  

(i) Continental P from GPCC (Schneider et al., 2011), GPCP (Adler et al., 2018), 
CMAP (Xie and Arkin, 1997), UDel (Willmott and Matsuura, 2001), and 
GLDAS/Noah (Rodell et al., 2004; Beaudoing and Rodell, 2016). 
(ii) Ocean P from GPCP and CMAP. 
(iii) Continental E from GLEAM (Miralles et al., 2011; Martens et al., 2017) and 
GLDAS/Noah.  



(iv) Ocean E from OAFlux (Yu et al., 2008) and HOAPS/CM SAF (Schulz et al., 
2009).  

The Pacific outflow is estimated with the 162 possible combinations of P and E, 
including ERA5. The time period is 2003-2016, except for HOAPS/CM SAF and GPCP, 
which span from 2003 to 12/2014 and 10/2015, respectively. The degree-0 
corrections in GRACE data is made for each combination. Note that only ERA5 includes 
P and E for both continents and oceans. All grids have been homogenized to 1° regular 
grids. The main concern here is the heterogeneity of the spatial coverage among 
datasets. To make the results comparable among datasets, the computations are 
restricted to the common grid points, which do not cover the entire Earth (Figure 8a).  

 
 
 

 

 
Figure 8. Monthly time series of (the opposite of) the Pacific outflow estimated from 162 combinations of P and E 
datasets. a) Spatial coverage common to all datasets. b) Pacific outflows: Gray thin curves are the 162 Pacific outflows 
estimated in the common grid points to all datasets (no global coverage); black and red curves are based on ERA5 P 
and E and are obtained using either only the grid points common to all datasets (black curve) or global coverage (red 
curve). Note that the red curve is the same as in Figure 3.  
 
 



However, in spite of the fact that due to the partial coverage the principle of water 
mass conservation is not accomplished, the Pacific outflow obtained in the common 
grid points from ERA5 (black line in Figure 8b) is quite in agreement with the same 
signal obtained with global coverage (red line in Figure 3 which is also reported as red 
line in Figure 8b). The Pearson correlation coefficient between the two signals is 0.994 
(p-values < 10-3) with an average difference around 50 Gt/month. In general, the 
Pacific outflows estimated from all the P and E dataset combinations show 
qualitatively the same signal than the one reported in Figure 3. For each of the 162 
estimates of the Pacific outflows corresponding to the possible P and E dataset 
combinations, we evaluated the average outflow (over the period of study), which is 
968 Gt/month (STD: 489), and the correlation with the Pacific outflows in Figure 3, 
which is 0.82 (STD: 0.06; p-values < 10-3). 
 

These experiments show that the reported net WT are physically consistent among 
datasets, at least qualitatively.” 
 

 
3. Bootstrap Vs Error propagation: The confidence intervals estimated from 
bootstrap have been compared to those estimated from error propagation of the 
GRACE mascon. As CSR mascon solution does not provide such error estimates, we 
have used the JPL mascon solution for the comparison. An explanation of why 
bootstrap confidence intervals contains, as expected, the error propagation 
confidence interval has been also provided. In the description of the bootstrap 
method we have included the following text: 

 
As an independent check of the bootstrap, confidence intervals for the mean value 
of N have been also evaluated by propagating the error estimate in GRACE data 
(using the JPL GRACE mascon solution for which error estimates are available). The 
resulting intervals were consistent with those of the bootstrap method. In particular 
(see Section 4 for details), we show that in all cases the bootstrap intervals contain 
the intervals obtained from error propagation. In this respect, the CI95 from bootstrap 
analysis can be considered a conservative estimate. This should be expected, since 
the residual component underlying the bootstrap approach includes measurement 
errors and other type of errors (related, for example, with the estimate of the trend 
and seasonal terms). As a result, the uncertainties in the transports estimated by the 
bootstrap should be larger than the corresponding uncertainties estimated by error 
propagation. 
 

The details are shown in the new section “Comparison with other datasets”, that 
can be found above. 

 
 
 
 
 



4. About the lack of correlation. We have included a discussion on the lack of correlation 
between the inter-annual transports and the indices of ocean-atmosphere interaction. 
In particular we propose the two following explanations: 

 
“To explore this lack of correlation, we have estimated the correlation coefficient 
between each climatic index and each WT component (Figure 7b).  
 

 

 
Figure 7. Pacific outflow and climatic indices for ENSO, AMO, AO, and AAO. a) Time series of Pacific outflow is de-
trend and de-season. All time series are normalized to have unit variance. Values in the parenthesis are the correlation 
coefficient between the corresponding climatic index and the Pacific outflow. b) Correlation coefficients between de-
trend and de-season WT components of different regions and the climatic indices.   
 

All of them are lower than 0.3 except for 6 cases in 2 regions. In the Arctic, P and 
P−E in the drainage basins of the Arctic show a correlation of ~0.5 with the AO. This 
correlation is natural since that is the area of influence of the AO. The other region is 
the Pacific, where, as expected, the SOI shows a correlation around 0.5 with P, P−E, and 
R in the drainage basins, and around -0.4 with P in the ocean. However, this individual 
correlation does not extend to the Pacific outflow. In order to understand why this is 
the case, it is convenient to express the N component of the water transport as a 
function of (P-E) and dW. According to Equations 1 and 2 we have: 
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It can be shown that the correlation between N and a given index can be express as 
follows 

 
𝑐𝑜𝑟𝑟(𝑁, 𝐼𝑛𝑑𝑒𝑥) = ∑ 𝑐𝑜𝑟𝑟(𝑋) , 𝐼𝑛𝑑𝑒𝑥)*

)+, ∙ -.((&%)
-.((1)

,                                     (4) 
 
 

where corr denotes the correlation coefficient, and std stands for standard deviation. 
As shown in equation (4), the correlation between N and a given index is a linear 
combination of the correlation between each component and the index. The 
coefficients of the linear combination std(Xi)/std(N) are proportional to the standard 
deviation  of each component.  The components of equation (4) for the Pacific outflow 
and the SOI index are shown in Table 3. Despite the fact that some of the individual 
component exhibits significant correlation with SOI (in particular P-E in land and ocean) 
when combined with the corresponding coefficients their effects are canceled out 
yielding to a negligible correlation between water transport and SOI (below 0.03 in 
magnitude). 
  
Another possible reason for the lack of correlation resides in the definition of the 
studied regions, for which the presence of subregions with positive and negative 
influence of an index results in an overall negligible/attenuated influence of the index 
in the overall region. For example, a positive phase of the AMO is related to an increase 
of P in western Europe (Sutton and Hodson, 2005), and the Sahel (Folland et al., 1986; 
Knight et al., 2006; Zhang and Delworth, 2006; Ting et al., 2009), but to a decrease of 
P in the U.S. (Enfield et al., 2001; Sutton and Hodson, 2005), and northeast Brazil 
(Knight et al., 2006; Zhang and Delworth, 2006). All these regions are included in the 
Atlantic drainage basin, and then the influence of a positive phase of the AMO is 
attenuated.”  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Correlation coefficients between SOI and de-trend and de-season WT components involved to estimate 
the Pacific outflow according to Equations 3 and 4.  

 𝑠𝑡𝑑(𝑋!) 
 

(Stand. 
Deviation) 

 

𝑐𝑜𝑟𝑟(𝑋! , 𝑆𝑂𝐼) 
 

(Correlation 
between Xi with 

SOI) 

𝑠𝑡𝑑(𝑋!)
𝑠𝑡𝑑(𝑁)

 

 
(Coefficients) 

𝑐𝑜𝑟𝑟(𝑋! , 𝑆𝑂𝐼) ∙
𝑠𝑡𝑑(𝑋!)
𝑠𝑡𝑑(𝑁)

 

 
(Correlation ∙Coefficient) 

 

X1= –(P–E)ocean 605 0.25 0.57 0.14 

X2= –(P–E)land 212 -0.53 0.20 -0.11 

X3= dWland 96 0.048 0.09 0.004 

X4= dWocean 711 -0.10 0.67 -0.07 

                                                                                       Corr(N,SOI) -0.03 

 
 
Note that table 3 provides also some insights about the causes of the interannual 
variability of Pacific Ocean outflow. The largest standard deviation of P-E and dW  in the 
ocean suggests  that these two components might drive the interannual variability of 
the Pacific Ocean outflow. This is confirmed by a correlation analysis. The correlation 
between N and the (P-E)ocean is -0.70. The correlation between N and the dWocean is 0.84.  
The correlation of N with the corresponding land components is below 0.18.  In all cases, 
prior to the evaluation of the correlation the corresponding time series have been de-
trend and de-season. 

 
5. Improvement in the visualization of main results. We have included a new 

Figure with a diagram of the mean WT components to ease the reading: 
 

 
Figure 5. Diagram of the mean values of the WT of the studied regions. Units are Gt/month. 
 
 
 
 



Other comments: 
L44, change ’de’ to ’the’. 
 
Typo has been corrected.  
 
 
In section 2: Methodology and Data: please use subtitles to re-organize the section, 
and improve the readability. 
 
Section 2 is now divided in 4 subsections: 
2.1 Methodology 
2.2 Precipitation and Evaporation data 
2.3 Time-variable GRACE data 
2.4 Confidence intervals 
 
 
 
Fig 1: suggest to add legends to indicate the locations of different ocean basins. 
 
Figure 1 has been modified, now it includes the names of the basins in the figure itself.   

 
Figure 1.  Pacific, Atlantic, Indian, and Arctic Ocean basins and their associated continental drainage basins 
according to the global continental runoff pathways scheme of Oki and Sud (1998). Within each basin, 
darker colour represents the continental basin, lighter colour the ocean basin. White regions  represent 
endorheic basins. 
 
 
 
Fig 2: are these values obtained from GRACE? or a combination of ERA5 and GRACE? 
please briefly clarify this in the figure caption. 
 
The next sentence has been added to the caption: 
“P, E, and P–E are from ERA5 dataset; dW is estimated from GRACE; R and N are 
estimated as a residual in equations 1 and 2, respectively.” 
 
 



Fig 3: black curve is the AIA inflow: ’if’ should be ’is’. 
 
Typo has been corrected.  
 
Fig 4: N component should be briefly explained in the caption.  
 
The last sentence of the caption is now: 
“Black lines are the WT N component, which are estimated as residuals in Equation 2.” 
 
 
Fig 6: please indicate the correlation coefficient R between each climate index and 
the Pacific outflow, at each time series. 
 
It has been included. See the new Figure 7b in the point 4 (About the lack of correlation) 
of this response.  



List of relevant changes  

The revised version of the manuscript includes the following relevant changes: 

- Lines 47-56: Extension of the motivation to estimate the net water transport in 
the ocean. 

- Section 2.4: More details about the bootstrap methodology. 
- Lines 216-226: New comparison with previous studies. 
- Lines 273-306: New discussion about the lack of correlation between the Pacific 

outflow and some climatic indices. 
- Section 4: This section is new. It compares the obtained results with those 

obtained from other datasets.  
- Figures 1, 2, 3, and 4: Minor changes. 
- Figures 5, 7b, and 8: They are new. 
- Tables 2 and 3: They are new. 
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Abstract. Global water cycle involves water-mass transport on land, atmosphere, ocean, and among them. Quantification of 

such transport, and especially its time evolution, is essential to identify footprints of the climate change and helps to constrain 

and improve climatic models. In the ocean, net water-mass transport among the ocean basins is a key, but poorly estimated 

parameter presently. We propose a new methodology that incorporates the time-variable gravity observations from the GRACE 

satellite (2003-2016) to estimate the change of water content, and that overcomes some fundamental limitations of existing 10 

approaches. We show that the Pacific and Arctic Oceans receive an average of 1916 (95% confidence interval 

[1812, 2021]) Gt/month (~0.72 ± 0.02 Sv) of excess freshwater from the atmosphere and the continents that gets discharged 

into the Atlantic and Indian Oceans, where net evaporation minus precipitation returns the water to complete the cycle. This 

is in contrast to previous GRACE-based studies, where the notion of a seesaw mass exchange between the Pacific and 

Atlantic/Indian Oceans has been reported. Seasonal climatology as well as the interannual variability of water-mass transport 15 

are also reported. 

1 Introduction 

The water-mass transport (henceforth WT for brevity) in the oceans is a deciding factor of the world climate system. 

Quantification of such transport, and especially its time evolution, is essential to better understand the climate change. Atlantic 

Ocean presents notably a deficit of freshwater flux, in contrast to the Pacific Ocean. This produces a salinity asymmetry that 20 

explains why deep waters are formed in the North Atlantic and not in the North Pacific (Warren, 1983; Broecker et al., 1985; 

Rahmstorf, 1996; Emile-Geay et al., 2003; Czaja, 2009). Upper layers of North Atlantic flow northward, while deep waters 

flow southward, forming the Atlantic Meridional Overturning Circulation (AMOC), which distributes heat within the Earth 

system and influences temperature and precipitation patterns worldwide (Vellinga and Wood, 2002). While small changes in 

hydrological cycle may have caused changes in AMOC during the last glaciation that led to abrupt climate changes (Clark et 25 

al., 2002), different models project a weakening of the AMOC in the 21st century that would lead to profound climatic and 

ecological changes in vast regions (Collins et al., 2019). The Antarctic Circumpolar Current (ACC) receives deep water 

injected by AMOC with excess salinity, which in turn gets transported into the Indian and Pacific Oceans (Warren, 1981). The 

Indian Ocean returns saltier water, but Pacific and Arctic Oceans return less-salty waters, producing a salinity imbalance in 



2 
 

the Atlantic. To restore the balance, freshwater must be transported outside the Atlantic at the rate of 0.13-0.32 Sv through the 30 

atmosphere (Zaucker et al., 1994). This WT produces an excess of freshwater in other ocean regions, as in the Pacific and 

Arctic Oceans, that must discharge out through the ocean.  

Meanwhile, conventional observations on the lateral WT of world ocean climatology have been sparse. In fact, 

measuring such WT in an open ocean region proves difficult as it amounts only to a few tenths Sv, several orders of magnitude 

smaller than the total ocean water inflow/outflows in such regions. For example, the Pacific is believed to receive regularly an 35 

inflow of 157 ± 10 Sv to south of Australia (Ganachaud and Wunsch, 2000), against three outflows: 0.7-1.1 Sv through the 

Bering Strait (Woodgate et al., 2012), 16 ± 5 Sv through the Indonesian Strait (Ganachaud and Wunsch, 2000), and 140-175 

Sv through the Drake Passage (Ganachaud and Wunsch, 2000; Donohue et al., 2016; Colin de Verdière and Ollitrault, 2016; 

Vigo et al., 2018).  

 40 

In this work we propose a new methodology devised to estimate the net WT through the boundaries of a given oceanic 

region. A defining feature of the proposed approach is the use of the time-variable gravity data from the GRACE (Gravity 

Recovery and Climate Experiment) satellite mission to estimate the change of water content. We apply the methodology, in 

conjunction with conventional meteorological data of general hydrologic budget schemes, to estimate the time evolution over 

the period 2003-2016 of the net WT and exchanges among the four major ocean basins – namely Pacific, Atlantic, Indian, and 45 

Arctic. We analyse and report our results of the seasonal climatology as well as the interannual variability of WT. Such 

information, not available previously, is of valuable importance. For example, in closed regions, net WT through the 

boundaries on the surface must be counteracted by moisture fluxes through the same boundaries in the atmosphere to match 

GRACE measurements. Such approach has been successfully applied to study the hydrological cycle of South America (Liu 

et al., 2006). At ocean basin scale, knowledge about net WT not only would help elucidate the role of the oceans within the 50 

water cycle, but it will also impose restrictions on moisture advection in the atmosphere that would help to improve 

atmospheric models. On the other hand, ocean models usually deal with inflows and outflows of a given ocean region (Warren, 

1983; Rahmstorf, 1996; Emile-Geay et al., 2003; de Vries and Weber, 2005; Dijkstra, 2007). Net WT estimates for such ocean 

region would be useful to impose constraints to the relationship between its inflows and outflows, which would improve the 

reliability of the models. Better models will improve our knowledge of the Earth’s WT dynamics and its evolution in the future, 55 

which is critical in the present scenario of climate change. 

2. Methodology and Data  

2.1 Methodology 

The general hydrologic budget equation states that, at any continental location and any moment in time, the change 

of water content dW equals the precipitation P minus evapotranspiration E (as vertical transport) minus the net runoff R (as 60 

horizontal transport): 
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dW = P − E – R  for land.      (1) 

 

Under the conservation of water mass, the global net P−E over ocean is negative [e.g., Hartmann, 1994]. That amount of water 65 

gets transported to land through atmosphere and returns to the ocean as R completing the water cycle. The general R for a river 

basin connected to the ocean consists of river runoff, land ice melting, and submarine groundwater discharge to ocean. The R 

component will be estimated as a residual in Equation 1. 

  

For an ocean region, R represents the inflow from adjacent land regions plus an extra additive term, call it N, 70 

accounting for water exchange between neighbouring ocean regions through boundaries, as (positive) inflow or (negative) 

outflow: 

 

dW = P − E + R + N  for ocean.      (2) 

 75 

The ocean water flux N is the target quantity that we shall solve for as a residual in Equation 2, which up till now has been 

infeasible to estimate directly [Rodell et al., 2015]. Note that N represents the integrated WT over the total-column depth of 

ocean, including deep-water flows. This is a strength of the GRACE observation for the oceans, compared to in-situ or other 

remote-sensing measurements typically targeting only the surface layer. 

 80 

Our targeted four ocean basins are largely separated geographically with designated continental boundaries and 

restricted water throughways. The land is divided into their associated drainages according to the global continental runoff 

pathways scheme of Oki and Sud (1998). There are no direct water exchanges in the form of R among land drainages (see 

Figure 1). The WT component R is estimated through Equation (1) over each continental region, then input to Equation (2) to 

estimate N in the associated ocean basins.  85 

 

2.2 Precipitation and Evaporation data 

The P and E data we use are adopted from the ERA5 reanalysis [Hersbach et al., 2018], which assimilates observations 

into general-circulation modelling provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). They 

are given at 0.25º latitude/longitude regular grids and monthly (and hourly) intervals for global coverage of both continents 90 

and oceans. In order to match the spatial resolution of the above-mentioned continental runoff pathways data, we homogenise 

the grid to 1ºx1º by averaging the corresponding 0.25º grid points. 

 

2.3 Time-variable GRACE data 
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The critical knowledge needed in Equations (1) and (2), now obtainable from GRACE monthly data, is dW (Tapley 95 

et al., 2004, 2019), the month-to-month difference of the stored water. Note that the GRACE mass variability pertains to WT 

directly, as opposed to, for example, altimetric sea level measurements that also contain non-WT, steric effects. We use the 

GRACE “mascon” (mass concentration) solutions that have already been converted into surficial mass from the original time-

variable gravity observations (in our case the GRACE RL06 mascon dataset provided by the Center of Space Research (CSR) 

of University of Texas; see Save et al., 2016, Save, 2019). The non-surficial gravity change due to the glacial isostatic 100 

adjustment (GIA) has been removed to the extent of the ICE6G-D model (Peltier et al., 2018). Any other non-surficial effect 

such as long-term tectonics would be incorrectly interpreted as water mass fluxes (Chao, 2016) but they may only have 

importance in the determination of secular trends; so are the non-climatic sources such as the rare, local earthquake events. As 

the C20 Stokes coefficient is not well determined from GRACE mission, it is replaced with a more accurate solution from 

Satellite Laser Ranging (SLR) (Cheng and Ries, 2017). GRACE is not sensitive to the geocenter variations, and its degree-1 105 

Stokes coefficients are set to zero. We had tried adding to GRACE data an estimate of geocenter variations due to modelled 

water-mass variability (Swenson et al., 2008), and our reported results would change less than 1%. On the other hand, the 

atmospheric, and some oceanic, effects on gravity change had beforehand been removed from the processing of the GRACE 

data by CSR, for de-aliasing purposes, according to the operational numerical weather prediction (NWP) model from ECMWF 

and to an unconstrained simulation with the global ocean general circulation model MPI-OM -Max-Planck-Institute Global 110 

Ocean/Sea-Ice Model-  (Dobslaw et al. 2017). To recover the “true” ocean mass variability, we restore the removed signal on 

the oceans adding back the GAD product, which is set to zero on the continents. Data are provided on a 0.25º regular grid; we 

reduce it to 1º regular grids, still finer than the spatial resolution of GRACE (~300 km), to match the spatial resolution of the 

continental drainage basin data as above.  

 115 

GRACE’s degree-0 Stokes coefficients DC00 is set identically to zero on the recognition that Earth’s total mass 

(including the atmosphere) is constant. Then, any increase (decrease) of the water-mass budget of the atmosphere will be 

counteracted by a decrease (increase) of the same amount of water-mass in the surface. However, after the atmospheric and 

dynamic oceanic mass changes are corrected in GRACE data, the GRACE DC00 are still set to zero even though they should 

match the opposite of the removed signals. To restore the lost degree-0 signal, the GAD product (which is set to zero on the 120 

continents) must be added back to GRACE with averaged ocean signal set to zero, and then, the DC00 from an atmospheric 

model must be subtracted from GRACE data to force the Earth’s total mass to be constant. Doing so, the GRACE data will 

account for the global exchange of water-mass between the Earth surface and atmosphere. Such correction has recently proved 

to improve the agreement between the GRACE global ocean mass change and non-steric sea level variation estimates from 

altimetry and ARGO data (Chen et al., 2019). Looking for consistency between the GRACE and ERA5 datasets, we use DC00 125 

from P–E to restore degree-0 signal in dW. This DC00 accounts for uniform mass variations in the global surface equivalent to 

a global averaged signal for P−E, at 188 Gt/month (95% confidence interval CI95=[136, 243], see below). As global –(P−E) 
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represents the variability of global total-column water (TCW), it should match the time derivative of the global TCW. However, 

the average rate of change of the global TWC in ERA5 is 1.5 Gt/month (CI95=[−9.2, 12.7]), although in the range of previously 

reported values of [−0.9, 4.3] Gt/month [Nilsson and Elgered, 2008] departs far from the global –(P−E) value. This reveals 130 

some internal inconsistency within the ERA5 dataset. However, while artificially increasing the dW estimate, the excessive 

value of P−E does not affect the WT components R and N estimated from Equations (1) and (2), since the degree-0 signal 

vanishes due to the residual estimate between dW and P−E. In fact, adding DC00 from P−E to GRACE is numerically equivalent 

to setting P−E DC00 to zero as far as Equations (1) and (2) are concerned. 

 135 

2.4 Confidence intervals 

The reported 95% confidence intervals and the correlation coefficients are evaluated using the stationary bootstrap  

scheme of Politis and Romano (1994) (with optimal block length selected according to Patton et al., 2009), and the percentile 

method. The intuition underlying the bootstrap is simple. Suppose that the observed time series x1, ..., xn is a realization of the 

random vector (X1,..., Xn)  with joint distribution Pn and which is assumed to be part of a stationary stochastic process.  Given 140 

Xn, we first build and estimate 𝑃" n of Pn. Then B random vectors (𝑋!∗, … , 𝑋#∗)  are generated from  𝑃" n. If 𝑃" n is a good 

approximation of Pn, then the relation   between  (X!∗ , … , X$∗ )   and  P*n  should well reproduce the relation between (X1,..., Xn)  

and Pn  (for an introduction of bootstrap methods for time series see Kreiss and Lahiri (2012) and the references therein). Here, 

the number of bootstrap replications was set to B=2000. In general, half length of the confidence interval can be very well 

approximated by twice the standard deviation of the sample mean estimated from the bootstrap replications. Prior to applying 145 

the bootstrap to a time series, least-squares estimated linear/quadratic trend and sinusoid with the most relevant frequencies 

are removed from it to meet the stationarity conditions of the method. In particular, each series has been decomposed into 

trend, seasonal and residual components. The bootstrap is applied to the residual component producing bootstrap samples of 

the residuals. For the evaluation of confidence intervals for the different components of WT, the trend and seasonal terms are 

added back (to the bootstrap sample of the residuals) producing bootstrapped time series of the component of interest. These 150 

samples are then used for further analysis. As an illustration, for the WT N component we proceed as follows: (i) a model with 

linear, annual, and semiannual signals is fitted to the data. The fitted linear trend and  annual and semiannual signals are 

subtracted from the original time series; (ii) the stationary bootstrap is then applied to the residuals producing  2000 bootstrap 

samples of the residuals; (iii)  The estimated trend and seasonal components are added back to each bootstrap sample of the 

residuals obtaining an ensemble of 2000 bootstrapped time series for the N component; (iv) these 2000 bootstrapped time 155 

series are used to obtain 95% confidence intervals for the mean fluxes (average of N over the 14 year period of study) and for 

the amplitude and phase of the annual component using the percentile method. For the mean fluxes, the average of N for each 

of the 2000 bootstrapped time series was first evaluated and then the 0.025 and 0.975 percentiles of these 2000 averages were 

reported as 95% confidence interval. For the study of the climatology, a linear trend model with annual and semiannual 

components was fitted to the 2000 bootstrapped time series producing corresponding estimates of the annual amplitude and 160 
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phase. The 0.025 and 0.975 percentiles of these estimates were reported as 95% confidence intervals. In order to study the 

robustness of the results with respect to the model choice, the analysis is rerun using 11 alternative models obtained considering 

different forms for the trend component (quadratic or constant) and including higher frequencies in the harmonic regression 

(up to 5). The results are robust. The relative difference with respect to the reported values is smaller than 1.2% for point 

estimates and smaller than 3.3% for the extremes of the 95% confidence intervals. 165 

 

As an independent check of the bootstrap, confidence intervals for the mean value of N have been also evaluated by 

propagating the error estimate in GRACE data (using the JPL GRACE mascon solution for which error estimates are available). 

The resulting intervals were consistent with those of the bootstrap method. In particular (see Section 4 for details), we show 

that in all cases the bootstrap intervals contain the intervals obtained from error propagation. In this respect, the CI95 from 170 

bootstrap analysis can be considered a conservative estimate. This should be expected, since the residual component underlying 

the bootstrap approach includes measurement errors and other type of errors (related, for example, with the estimate of the 

trend and seasonal terms). As a result, the uncertainties in the transports estimated by the bootstrap should be larger than the 

corresponding uncertainties estimated by error propagation. 

 175 

Note that for the study of correlation the bootstrap was applied to the bivariate time series of the residuals of the two 

variables of interest producing an ensemble of 2000 bivariate time series of residuals. For each bivariate time series of residuals 

the correlation between the two components of the series was first evaluated. The average and the 0.025 and 0.975 percentiles 

of these 2000 estimates were reported as point estimate and confidence limits for the correlation between the two variables of 

interest (correlation between residual components is used to avoid spurious correlation). 180 

3. Results  

The various WT components of the Pacific and its associated land drainage regions are shown in Figure 2 in units of 

Gt/month (1 Sv ≈ 2600 Gt/month; 1 Gt = 1012 kg, the weight of 1 km3 of freshwater). The same analysis is applied to the rest 

of the ocean basins, i.e. the AIA oceans individually and collectively, with its associated land drainages (see Figure 1).  

 185 

3.1 Mean fluxes  

Averaged over the studied 14 years, the Pacific Ocean loses water through the atmospheric P−E at the average rate 

of 142 Gt/month (CI95=[48, 243]), which is greatly over-compensated by inflow R from land of 1403 Gt/month (CI95=[1370, 

1436]). From this surplus, a minor (if any) amount of 67 Gt/month (CI95=[25, 108]) stays (and accumulates) in the Pacific, 

while 1194 Gt/month (CI95=[1096,1291]) is transported horizontally to the “non-Pacific” Atlantic/Indian/Artic (AIA) oceans, 190 

which will be called the “Pacific outflow” hereafter.  

 



7 
 

In the AIA Oceans, the situation is found to be markedly distinct, given the fact that the AIA oceans together have 

surface area comparable to the Pacific (177x106 m2). The AIA oceans collectively lose 3484 Gt/month (CI95=[3406, 3560]) 

through the atmospheric P−E, that is ~25 times more than does the Pacific. This water deficit is only ~68% compensated by 195 

land R inflow of 2378 Gt/month (CI95=[2337, 2419]). With the nominal minor amount of water accumulation at 87 Gt/month 

(CI95=[44, 130]), the AIA oceans thus presents an average inflow of 1194 Gt/month (CI95=[1102, 1284]) from the Pacific, 

which will be called the “AIA inflow”. 

 

As expected from the overall conservation of water mass inherent in our methodology, the estimated Pacific outflow 200 

and AIA inflow match (Figure 3). It is worth mentioning that a difference of 188 Gt/month would exist between the two mean 

flux values if the degree-0 correction were not applied.  

 

Corresponding analyses have been performed for the Atlantic, Indian, and Arctic Oceans separately. The time 

evolution of the WT components in Eqs. 1 and 2 are shown in Figure 4, and a diagram of the water-mass fluxes is shown in 205 

Figure 5. On average, the Atlantic Ocean receives 926 Gt/month (CI95=[876, 980]; or 0.36 Sv) of salty water, and loses to the 

atmosphere 879 Gt/month (CI95=[828, 930]) via P−E+R. The latter is equivalent to a freshwater deficit of 0.34 Sv, which 

increases the near-surface salt concentration and enables water to sink in North Atlantic producing deep water. These values 

are close to the 0.13-0.32 Sv estimated from ocean models, as needed to keep salinity balance in the Atlantic Ocean (Zaucker 

et al., 1994). Similarly, the Indian Ocean loses 957 Gt/month (CI95=[894, 1022]) of freshwater that is restored by 991 Gt/month 210 

(CI95=[907, 1073]) of salty water. The freshwater lost via P−E+R by the Atlantic and Indian Oceans goes to the Pacific (1261 

Gt/month, CI95=[1171, 1347]) and Arctic (730 Gt/month, CI95=[712, 747]) Oceans, which return 1194 (CI95=[1096, 1291]) 

and 723 (CI95=[708, 739]) Gt/month of salty water through the ocean, respectively. Then, the Pacific presents a surplus of 

freshwater that reduces near-surface salt concentration, which prevents the formation of deep water. Together, the Pacific and 

Arctic Oceans supply 1917 Gt/month (CI95=[1812, 2021]) of water to the Atlantic and Indian Oceans, where it is reincorporated 215 

into the water cycle via net E−P. As in previous studies (see Craig et al., 2017 for a synthesis), the freshwater lost in the Indian 

Ocean is similar to that in the Atlantic Ocean. In these studies, P−E+R is close to zero in the Pacific Ocean, producing a 

difference of 0.4 Sv between Atlantic and Pacific Oceans. In our study, P−E+R is 1261 Gt/month in the Pacific Ocean and the 

difference with the Atlantic increases to ~0.8 Sv. Some of these differences would be expected as far as the ocean basins are 

not defined in exactly the same way. On the other hand, the global R is 3781 Gt/month (or 3781 ´ 12 = 45368 km3/year), close 220 

to the 41867 km3/year reported by the Global Runoff Data Centre (GRDC, 2014). At basin scale, R is 16834 km3/year in the 

Pacific, greater than the 11826 km3/year reported by GRDC. In the Atlantic, Indian, and Arctic, R is 18228, 4479, and 5827 

km3/year, respectively, which is closer to the GRDC values: 20772, 5238, and 4080 km3/year. Finally, according to the diagram 

in Figure 5, the water content in the atmosphere decreases 178 Gt/month (and it is gained by Earth’s surface), but this amount 

is not realistic as discussed in Section 2 since it should increase a few Gt/month (Nilsson and Elgered, 2008). This value differs 225 

from the 188 Gt/month mentioned in Section 2 because the endorheic regions are not accounted here.  
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3.2 Annual climatology  

The WT climatology of the N component is estimated in two ways: (1) averaging the 14 N values for each months of 230 

the year (Figure 6a); and (2) fitting a linear trend plus annual and semiannual components model as described in Section 2. 

Annual amplitudes and phases  are plotted in Figure 6b and reported, with corresponding 95% quantile-based confidence 

intervals, in Table 1.  

 

The Pacific and Arctic Oceans show an overall outflow throughout the year, unlike the Atlantic and Indian Oceans, 235 

which show an inflow for every month. The Pacific outflow shows a prominent seasonal undulation peaked around August 3 

and a peak-to-peak WT variation of ~2000 Gt/month from boreal summer to November, when a near-zero minimum occurs. 

The Arctic Ocean show half of the Pacific variability and a less pronounced seasonal undulation. A minimum outflow of ~320 

Gt/month is reached in March and April, and a maximum ~1300 Gt/month in July. Together, the Pacific and Arctic Oceans 

send ~3000 Gt/month of seawater to the Atlantic and Indian Oceans during boreal summer, and a minimum amount five times 240 

lower, around 600 Gt/month, in November. The annual maximum is reached on August 8th. The Atlantic/Arctic inflow mirrors 

this behaviour. Separately, the Atlantic and Indian inflows show a similar peak-to-peak variation of ~2000 Gt/month, reaching 

the maxima in August and May, respectively. The Indian maximum seems to be related to a local maximum of the Pacific 

outflow. The annual maxima of net WT of the four basins are reached between August 3rd and September 9th , although the 

annual signals of the Pacific and Indian Oceans almost triple those from Arctic and Atlantic Oceans (Table 1 and Figure 6b).  245 

 

3.3 Interannual variability   

Interannually, the Pacific outflow shows remarkable variability, mainly produced by P on the continents, which is 

inherited by R, and P−E in the oceans (Figure 2). For example, the Pacific outflow shows a maximum around 1372 Gt/month 

in 2009 that matches with a P−E maximum in the Pacific, P−E minimum in the AIA oceans, and P minima in the continental 250 

basins draining to both Pacific and AIA oceans. The opposite behaviour, that is a minimum around 939 Gt/month is observed 

in 2010. The difference, 433 Gt/month, is comparable to the discharge of Amazon (Lorenz et al., 2014). In the tropical Pacific, 

the El Niño/Southern Oscillation (ENSO) is the strong recurring climate pattern involving changes in the temperature of 

seawater and air pressure in the tropical Pacific Ocean. The ENSO had a mild El Niño phase in 2009 followed by a strong La 

Niña phase in 2010, that may be related to the interannual variability of the Pacific outflow. To elucidate this, we conduct a 255 

correlation study of the interannual Pacific outflow with respect to the major climate oscillations in the Earth’s atmosphere-

ocean: ENSO, Atlantic Multi-decadal Oscillation (AMO), Antarctic Oscillation (AAO), and Arctic Oscillation (AO). The 

climatic oscillation is represented by monthly time series of its indices, which are non-dimensional functions of time derived 
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from relevant meteorological observations; their values indicate the polarity and strength of the oscillation at a given epoch. 

The ENSO oscillations are measured here with the Southern Oscillation Index (SOI), which represents the sea level pressure 260 

differences between Tahiti and Darwin, Australia. The AMO is a coherent mode of natural variability based upon the average 

anomalies of sea surface temperatures, with AMO Index to reflect the non-secular multi-decadal sea surface temperature 

pattern variability in the North Atlantic basin. The AAO describes the intensity of westerly wind belt surrounding the Antarctic, 

quantified by the AAO Index, which is the leading principal component of the 700 hPa atmospheric geopotential height 

anomalies poleward of 20°S. The AO is to be interpreted as the surface signature of modulations in the strength of the polar 265 

vortex aloft the Arctic, while the AO Index is constructed by projecting the 1000 hPa height anomalies poleward of 20°N. 

Figure 7a show all indices with amplitudes normalized to one standard deviation, as well as the de-trend, de-season, standard 

deviation normalized Pacific outflow. The correlation analysis between the Pacific outflow and the SOI shows no overall 

correlation (Pearson coefficient of 0.03) during the whole period, meaning that the influence of ENSO on the Pacific outflow 

may be restricted to the strong phases of ENSO as in 2009 and 2010. A similar lack of correlation (lower than 0.1) is observed 270 

with respect to the AMO, AAO, and AO. 

 

 To explore this lack of correlation, we have estimated the correlation coefficient between each climatic index and 

each WT component (Figure 7b). All of them are lower than 0.3 except for 6 cases in 2 regions. In the Arctic, P and P−E in 

the drainage basins of the Arctic show a correlation of ~0.5 with the AO. This correlation is natural since that is the area of 275 

influence of the AO. The other region is the Pacific, where, as expected, the SOI shows a correlation around 0.5 with P, P−E, 

and R in the drainage basins, and around −0.4 with P in the ocean. However, this individual correlation does not extend to the 

Pacific outflow. In order to understand why this is the case, it is convenient to express the N component of the water transport 

as a function of P−E and dW. According to Equations 1 and 2 we have: 

 280 
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It can be shown that the correlation between N and a given index can be express as follows 

 

𝑐𝑜𝑟𝑟(𝑁, 𝑆𝑂𝐼) = ∑ 𝑐𝑜𝑟𝑟(𝑋, , 𝑆𝑂𝐼)-
,.! ∙ /0+()%)

/0+(3)
,                                        (4) 285 

 

where corr denotes the correlation coefficient, and std stands for standard deviation. As shown in equation (4), the correlation 

between N and a given index is a linear combination of the correlation between each component and the index. The coefficients 

of the linear combination, std(Xi)/std(N), are proportional to the standard deviation  of each component.  The components of 

equation (4) for the Pacific outflow and the SOI index are shown in Table 3. Despite the fact that some of the individual 290 

component exhibits significant correlation with SOI (in particular P−E in land and ocean) when combined with the 
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corresponding coefficients their effects canceled out yielding a negligible correlation between water transport and SOI (below 

0.03 in magnitude). Note that table 3 provides also some insights about the causes of the interannual variability of Pacific 

Ocean outflow. The largest standard deviation of P−E and dW in the ocean suggests that these two components might drive 

the interannual variability of the Pacific Ocean outflow. This is confirmed by a correlation analysis. The correlation between 295 

N and (P−E)ocean is -0.70. The correlation between N and dWocean is 0.84. The correlation of N with the corresponding land 

components is below 0.18. In all cases, prior to the evaluation of the correlation the corresponding time series have been de-

trend and de-season. 
 

Another possible reason for the lack of correlation resides in the definition of the studied regions, for which the 300 

presence of subregions with positive and negative influence of an index results in an overall negligible/attenuated influence of 

the index in the overall region. For example, a positive phase of the AMO is related to an increase of P in western Europe 

(Sutton and Hodson, 2005), and the Sahel (Folland et al., 1986; Knight et al., 2006; Zhang and Delworth, 2006; Ting et al., 

2009), but to a decrease of P in the U.S. (Enfield et al., 2001; Sutton and Hodson, 2005), and northeast Brazil (Knight et al., 

2006; Zhang and Delworth, 2006). All these regions are included in the Atlantic drainage basin, and then the influence of a 305 

positive phase of the AMO is attenuated. 

 

4. Comparison with other datasets 

In this section, we perform a comparisons using alternative datasets. In particular: 

 310 

(1) CSR GRACE mascon solution is replaced by the JPL GRACE mascon solution provided by the Jet Propulsion 

Laboratory/NASA (Watkins  et al., 2015; Wiese et al., 2019). Similarly to CSR data, JPL are corrected for GIA effects, 

C20 Stoke coefficients are replaced by a solution from SLR, and data are reduced to 1º regular grids from 0.5º regular 

grids. Besides, we have applied the degree-0 Stoke coefficients correction. However, CSR and JPL mascon solutions are 

not directly comparable. The main reason is that an estimate of degree-1 coefficients has been added to JPL mascon 315 

solutions, and the GAD product has not been added back. The corrections applied by JPL are not supplied separately and 

we cannot do/undo any of the corrections to process JPL data as we did with CSR data. In particular, the GAD product is 

not available for JPL. In any case, the JPL solution is useful here since it provides an error estimate of the mascon solution 

that can be propagated to obtain confidence intervals of N, which are independent from those estimated with the bootstrap 

analysis. Table 2 shows the CI95 of the mean values of the N component for different ocean basin estimated from error 320 

propagation and bootstrap analysis. It is observed that in all cases the CI95 from error propagation are included in those 

from bootstrap analysis, meaning that the latter are a conservative estimate of the error. JPL propagated error can be 

expected to be similar to that propagated from CSR error estimates (which are not available), and then we can assume that 

the reported CI95 for N calculated from CSR data are a conservative estimate. Besides, comparing Tables 1 and 2, it is 

observed that the mean values of N are quite similar and that the CI95  largely overlap. Regarding to the time variability, 325 
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the values of the N component from CSR and JPL mascon solutions show Pearson correlation coefficients greater than 

0.85 (p-value < 10-3), except for the Atlantic (0.70). Thus, despite the different processing of CSR and JPL data, the 

reported analysis for the N component is robust with respect to the choice of GRACE datasets. 

 

(2) ERA5 P and E data are replaced by several datasets for comparison purposes. The objective is not to be exhaustive in 330 

the selection, but rather to show that the reported features of the N component are quite robust with respect to the choice 

of the P and E datasets. The data sets considered are:  

(i) Continental P from GPCC (Schneider et al., 2011), GPCP (Adler et al., 2018), CMAP (Xie and Arkin, 1997), 

UDel (Willmott and Matsuura, 2001), and GLDAS/Noah (Rodell et al., 2004; Beaudoing and Rodell, 2016). 

(ii) Ocean P from GPCP and CMAP. 335 

(iii) Continental E from GLEAM (Miralles et al., 2011; Martens et al., 2017) and GLDAS/Noah.  

(iv) Ocean E from OAFlux (Yu et al., 2008) and HOAPS/CM SAF (Schulz et al., 2009).  

The Pacific outflow is estimated with the 162 possible combinations of P and E, including ERA5. The time period is 2003-

2016, except for HOAPS/CM SAF and GPCP, which span from 2003 to 12/2014 and 10/2015, respectively. The degree-

0 corrections in GRACE data is made for each combination. Note that only ERA5 includes P and E for both continents 340 

and oceans. All grids have been homogenized to 1° regular grids. The main concern here is the heterogeneity of the spatial 

coverage among datasets. To make the results comparable among datasets, the computations are restricted to the common 

grid points, which do not cover the entire Earth (Figure 8a). However, in spite of the fact that due to the partial coverage 

the principle of water mass conservation is not accomplished, the Pacific outflow obtained in the common grid points from 

ERA5 (black line in Figure 8b) is quite in agreement with the same signal obtained with global coverage (red line in Figure 345 

3 which is also reported as red line in Figure 8b). The Pearson correlation coefficient between the two signals is 0.994 (p-

values < 10-3) with an average difference around 50 Gt/month. In general, the Pacific outflows estimated from all the P 

and E dataset combinations show qualitatively the same signal than the one reported in Figure 3. For each of the 162 

estimates of the Pacific outflows corresponding to the possible P and E dataset combinations, we evaluated the average 

outflow (over the period of study), which is 968 Gt/month (STD: 489), and the correlation with the Pacific outflows in 350 

Figure 3, which is 0.82 (STD: 0.06; p-values < 10-3). 

 

These experiments show that the reported net WT are physically consistent among datasets, at least qualitatively. 

 

 355 

5. Discussion and Conclusions 

In this work we present a new methodology that combines GRACE data with the general hydrologic budget equation 

to estimate the horizontal water-mass convergence/divergence for any oceanic region. We have assumed that the gravity 

changes are produced by mass changes on the Earth surface, such as in the oceans, so that the mascon solution is physically 
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meaningful (Chao, 2016). Any mis-modelling of the ocean basin “container” volume change due to GIA and other non-surficial 360 

changes would masquerade as WT variations. However, they are not critical as far as our non-secular analysis is concerned. 

 

We use the proposed methodology to estimate the net WT and exchanges among the Pacific, Atlantic, Indian, and 

Arctic Oceans, for the period of 2003 – 2016. Our main finding is that the Pacific and Arctic Oceans, while replenished with 

precipitation and land runoff, are nearly continuously losing water to the Atlantic and Indian Oceans. In particular, the WT 365 

climatology is such that the Pacific Ocean loses water at a rate from near zero to up to the peak of 2000 Gt/month during the 

boreal summer, which coincides with the maximum of the global atmosphere water content. On top of the climatology, the 

interannual Pacific water loss varies significantly between ~950 to ~1450 Gt/month annual means during the studied period, 

but seemingly uncorrelated with ENSO.  

   370 

The results presented here are consistent with the well-known salinity asymmetry between the Pacific and Atlantic 

Oceans (Reid, 1953; Warren, 1983; Broecker et al., 1985; Zaucker et al., 1994; Rahmstorf, 1996; Emile-Geay et al., 2003; 

Lagerloef et al., 2008; Czaja, 2009; Reul, 2014). However, they are in contrast to previous GRACE-based studies where a 

simple seesaw WT between the Pacific and the Atlantic/Indian oceans was reported (Chambers and Willis, 2009; Wouters et 

al., 2014). In those studies, the P−E+R term in Equation 2 in both Pacific and Atlantic/Indian Oceans was approximated by 375 

that from the global ocean mean. However, the mean freshwater flux in the Pacific (1261 Gt/month) quite mis-matches that in 

the Atlantic/Indian Oceans (−1837 Gt/month), meaning that the approximation was quite poor and hence the N term was not 

properly estimated in these studies (see Appendix for further discussion).  

 

Differences in freshwater fluxes between the Pacific and Atlantic Oceans produce salinity contrasts, and in turn 380 

contrasts on deep water formation. Nevertheless, there are other factors influencing these contrasts such as the narrower extent 

of the Atlantic (de Boer et al., 2008; Jones and Cessi, 2017), the meridional span of the African and American continents 

(Nilsson et al., 2013; Cessi and Jones, 2017), and the salty WT from the Indian Ocean to the Atlantic (Gordon, 1986; Marsh 

et al., 2007). AMOC is also influenced by WT through Bering Strait (Reason and Power, 1994; Goosse et al., 1997; Wadley 

and Bigg, 2002), and by surface processes of temperature, precipitation and evaporation at low-latitudes of Pacific and Indian 385 

Oceans (Newsom and Thompson, 2018). The relative importance among the multiple drivers influencing the AMOC is an 

open problem (Ferreira, 2018). The net WT estimated here provides information for differences between oceanic inflows and 

outflows, which can be useful to elucidate on this problem. 

 

Net WT in the open oceans can alternatively be estimated using global ocean models, which simulate observational 390 

data based on physical principles. However, these models are not necessarily sensitive to the WT specifically given the data 

types, and the geography and topography resolutions involved in the models. Knowledge about three-dimensional global ocean 
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circulation could also elucidate on the net WT. However, the small ratio between the net and the total WT hinders the estimation 

of the former from the latter. 

  395 

We have applied our WT estimation scheme to the four major ocean basins. The methodology can of course be applied 

to any extensive ocean region of interest as long as it is much larger than the GRACE resolution. The findings reported here 

will be useful for a better understanding of the global climate system in terms of its climatology and  spatio-temporal variations.  

 

Appendix: Apparent net mass exchange between Pacific and Atlantic/Indian oceans 400 

We shall show here that the net water mass exchange between the Pacific and Atlantic/Indian Oceans reported by 

Chambers and Willis (2009) was a mathematical artefact. Their Equation (2) approximated the freshwater flux, i.e. P−E+R, 

of the Pacific (Pcf) and Atlantic/Indian (AI) oceans by the global ocean (GO) mean. However, from Figures 2 and 4 we get 

very different (P−E+R)Pcf=1261 and (P−E+R)AI=−1837 Gt/month, meaning that the approximation in Chambers and Willis 

(2009) and hence their resultant estimates of WT are rather poor. In addition, under their approximation an apparent net mass 405 

exchange will always arise, since 

 

(𝑃 − 𝐸 + 𝑅)45 = @
(𝑃 − 𝐸 + 𝑅)6 ∙ 𝐴𝑟𝑒𝑎(𝑥)

𝐴𝑟𝑒𝑎(𝐺𝑂) =	
6	∈	45

= @
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𝐴𝑟𝑒𝑎(𝐺𝑂) +	 @
(𝑃 − 𝐸 + 𝑅)6 ∙ 𝐴𝑟𝑒𝑎(𝑥)

𝐴𝑟𝑒𝑎(𝐺𝑂) =	
6	∈	9:
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where x are disjoint grid cells in the ocean basins, the areas of the Pcf, AI, and GO are around 177, 160, and 351 x 106 km2, 410 

and the ratios 177/351 and 160/351 have been approximated by 1/2. Then, multiplying by 2 and rearranging the equation we 

get, 

 

(𝑃 − 𝐸 + 𝑅);&< −	(𝑃 − 𝐸 + 𝑅)45 	≈ 	−	[(𝑃 − 𝐸 + 𝑅)9: −	(𝑃 − 𝐸 + 𝑅)45]. 

 415 

Thus, wherever the signal is in the Pacific and Atlantic/Indian oceans, the anomalies with respect to the global ocean mean 

will always mirror each other, showing an apparent net mass exchange between them, even if such exchange does not exist.  
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 710 

 
Figure 1.  Pacific, Atlantic, Indian, and Arctic Ocean basins and their associated continental drainage basins according to the 

global continental runoff pathways scheme of Oki and Sud (1998). Within each basin, darker colour represents the continental 

basin, lighter colour the ocean basin. White regions represent endorheic basins. 
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 720 
Figure 2. WT of Equations (1) and (2) in the Pacific (first row), Atlantic/Indian/Arctic (AIA) oceans collectively (second row), and 

their drainage basins. First column: associated land drainage basins; second column: ocean basins. Labels in the vertical axis correspond 

to the mean ± standard deviation of the associated curve. Thick lines are the low pass filtered signal by a Hann function of 24 months. All 

curves in the same panel are plotted on the same scale. P, E, and P–E are from ERA5 dataset; dW is estimated from GRACE; R and N are 

estimated as a residual in equations 1 and 2, respectively. 725 
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Figure 3. Monthly time series of WT flux from the Pacific to the AIA Oceans. Red curve is (the opposite of) the Pacific outflow, and 

black curve is the AIA inflow. Thick lines are the low pass filtered signal by a Hann function of 24 months. 730 
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Figure 4. As Figure 2 but for Atlantic, Indian, and Arctic Oceans.  735 
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 740 
Figure 5. Diagram of the mean values of the WT of the studied regions. Units are Gt/month. 
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 745 
Figure 6. (a) Annual climatology time series (error bar is one standard deviation), and (b) phasor diagram (amplitude in unit of 

Gt/month, phase angle according to Equation 3) of the inflow/outflow WT of the ocean basins.  
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 750 
Figure 7. Pacific outflow and climatic indices for ENSO, AMO, AO, and AAO. a) Time series of Pacific outflow is de-trend and de-

season. All time series are normalized to have unit variance. Values in the parenthesis are the correlation coefficient between the 

corresponding climatic index and the Pacific outflow. b) Correlation coefficients between de-trend and de-season WT components of 

different regions and the climatic indices.   
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Figure 8. Monthly time series of (the opposite of) the Pacific outflow estimated from 162 combinations of P and E datasets. a) Spatial 

coverage common to all datasets. b) Pacific outflows: Gray thin curves are the 162 Pacific outflows estimated in the common grid points to 760 
all datasets (no global coverage); black and red curves are based on ERA5 P and E and are obtained using either only the grid points common 

to all datasets (black curve) or global coverage (red curve). Note that the red curve is the same as in Figure 3.  
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 765 
Table 1. Mean and annual signals of the N component as estimated from CSR mascon solution for different ocean basins 
according to Equation 2.  

  Mean (CI95) Annual signal (CI95) 

  (Gt/month) Amplitude 

(Gt/month) 

Phase 

(degree) 

Peak date 

Outflows Pacific 1194  

(1087, 1308) 

809  

(637, 975) 

212 

(200, 224) 

August 3rd 

 Arctic 723  

(709, 738) 

271 

(242, 302) 

234 

(228, 240) 

August 25th 

 Pacific + 

Arctic 

1917  

(1826, 2010) 

1061 

(904, 1216) 

217 

(209, 225) 

August 8th 

Inflows AIA 1194  

(1086, 1304) 

767  

(610, 926) 

212 

(199, 224) 

August 3rd 

 Atlantic 926  

(863, 991) 

305  

(219, 384) 

249  

(234, 266) 

September 9th 

 Indian 991  

(911, 1067) 

791  

(664, 918) 

205 

(196, 214) 

July 27th 

 Atlantic + 

Indian 

1917  

(1821, 2015) 

1020 

(876, 1172) 

218 

(209, 226) 

August 9th 
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 770 
Table 2. Mean of the N component as estimated from JPL mascon solution for different ocean basins according to Equation 2 . CI95 

are estimated as propagation of mascon errors provided by JPL, and from bootstrap analysis. Units are Gt/month. 

  Mean (CI95 from 

error propagation) 

Mean (CI95 from 

bootstrap) 

Outflows Pacific 1182  

(1143, 1220) 

1182  

(1062,  1306) 

 Arctic 735  

(713, 757) 

735  

(711,761) 

 Pacific + Arctic 1917  

(1872, 1961) 

1917  

(1806, 2036) 

Inflows AIA 1183  

(1092, 1274) 

1183  

(1077,  1282) 

 Atlantic 919  

(866, 972) 

919  

(845, 985) 

 Indian 999  

(980, 1018) 

999  

(928,  1067) 

 Atlantic + Indian 1918  

(1862, 1974) 

1918  

(1838, 2003) 
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Table 3. Correlation coefficients between SOI and de-trend and de-season WT components involved to estimate the Pacific outflow 

according to Equations 3 and 4.  
 𝑠𝑡𝑑(𝑋!) 

 

(Stand. 

Deviation) 

 

𝑐𝑜𝑟𝑟(𝑋! , 𝑆𝑂𝐼) 

 

(Correlation 

between Xi with 

SOI) 

𝑠𝑡𝑑(𝑋!)
𝑠𝑡𝑑(𝑁)

 

 

(Coefficients) 

𝑐𝑜𝑟𝑟(𝑋! , 𝑆𝑂𝐼) ∙
𝑠𝑡𝑑(𝑋!)
𝑠𝑡𝑑(𝑁)

 

 

(Correlation ∙Coefficient) 

 

X1= –(P–E)ocean 605 0.25 0.57 0.14 

X2= –(P–E)land 212 -0.53 0.20 -0.11 

X3= dWland 96 0.048 0.09 0.004 

X4= dWocean 711 -0.10 0.67 -0.07 

                                                                                       Corr(N,SOI) -0.03 
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