
Answer to Reviewer 1 
 
We thank the reviewer for thorough reading and thoughtful comments and suggestions. A 
detailed discussion of the changes that we made in response to the reviewer’s comments is given 
below. In what follows, we state the reviewer’s comment in boldface, and describe our response 
in plain text. Text in the manuscript is represented in italics. The text that has been 
modified/included in the new version has been highlighted in red. 
 
“Overall this is an excellent manuscript, presenting a new result about the Earth’s ocean- 
land-atmosphere mass exchange, using a unique combination of satellite and reanalysis 
datasets, and a clear easy-to-follow methodology.” 
 
We appreciate the positive overall comment about the manuscript. 
 
“The only major concern/question I have is this: the interbasin ocean transport N is a small 
residual of differencing large numbers. I see that each set of numbers is followed by a 95% 
confidence range, and I read without quite understanding that the confidence interval is 
computed by a bootstrap method on the data itself. I don’t believe the re-analysis data have 
their own error estimates; I believe the GRACE data do but those did not seem to be used in 
the confidence interval estimation. I wonder whether estimating uncertainties in the 
transports by propagating uncertainties in the inputs would give intervals consistent with 
those of the bootstrap method. Upper bounds on the uncertainties in the inputs can be 
estimated, for example, by comparing UT-CSR mascons to JPL or GSFC mascons, by 
comparing ECMWF reanalysis to NCEP or another model’s reanalyses, etc. I say this because 
the lack of correlation between the inter- annual transports and ANY index of ocean-
atmosphere interaction (ENSO, SOI, etc) is suspicious.” 
 
The following changes have been included to address the issues raised by the referee:  
 
1. Bootstrap: We have included an intuitive description of the bootstrap method for time 

series and a reference to a paper on bootstrap method for time series. Besides, we have 
provided extended details about how confidence intervals have been evaluated: 

 
The reported 95% confidence intervals and the correlation coefficients are evaluated using 
the stationary bootstrap scheme of Politis and Romano (1994) (with optimal block length 
selected according to Patton et al., 2009), and the percentile method. The intuition 
underlying the bootstrap is simple. Suppose that the observed time series x1, ..., xn is a 
realization of the random vector (X1,..., Xn)  with joint distribution Pn and which is assumed 
to be part of a stationary stochastic process.  Given Xn, we first build and estimate 𝑃"n of Pn. 
Then B random vectors (𝑋!∗, … , 𝑋#∗) are generated from  𝑃"n. If 𝑃"n is a good approximation of 
Pn, then the relation   between  (𝑋!∗, … , 𝑋#∗)   and  𝑃"n  should well reproduce the relation 
between (X1,..., Xn)  and Pn  (for an introduction of bootstrap methods for time series see 
Kreiss and Lahiri (2012) and the references therein). Here, the number of bootstrap 
replications was set to B=2000. In general, half length of the confidence interval can be very 
well approximated by twice the standard deviation of the sample mean estimated from the 
bootstrap replications. Prior to applying the bootstrap to a time series, least-squares 
estimated linear/quadratic trend and sinusoid with the most relevant frequencies are 
removed from it to meet the stationarity conditions of the method. In particular, each series 



has been decomposed into trend, seasonal and residual components. The bootstrap is 
applied to the residual component producing bootstrap samples of the residuals. For the 
evaluation of confidence intervals for the different components of WT, the trend and 
seasonal terms are added back (to the bootstrap sample of the residuals) producing 
bootstrapped time series of the component of interest. These samples are then used for 
further analysis. As an illustration, for the WT N component we proceed as follows: (i) a 
model with linear, annual, and semiannual signals is fitted to the data. The fitted linear trend 
and  annual and semiannual signals are subtracted from the original time series; (ii) the 
stationary bootstrap is then applied to the residuals producing  2000 bootstrap samples of 
the residuals; (iii)  The estimated trend and seasonal components are added back to each 
bootstrap sample of the residuals obtaining an ensemble of 2000 bootstrapped time series 
for the N component; (iv) these 2000 bootstrapped time series are used to obtain 95% 
confidence intervals for the mean fluxes (average of N over the 14 year period of study) and 
for the amplitude and phase of the annual component using the percentile method. For the 
mean fluxes, the average of N for each of the 2000 bootstrapped time series was first 
evaluated and then the 0.025 and 0.975 percentiles of these 2000 averages were reported 
as 95% confidence interval. For the study of the climatology, a linear trend model with 
annual and semiannual components was fitted to the 2000 bootstrapped time series 
producing corresponding estimates of the annual amplitude and phase. The 0.025 and 0.975 
percentiles of these estimates were reported as 95% confidence intervals. In order to study 
the robustness of the results with respect to the model choice, the analysis is rerun using 11 
alternative models obtained considering different forms for the trend component (quadratic 
or constant) and including higher frequencies in the harmonic regression (up to 5). The 
results are robust. The relative difference with respect to the reported values is smaller than 
1.2% for point estimates and smaller than 3.3% for the extremes of the 95% confidence 
intervals. 

 
 
2. Confidence intervals of the correlation coefficients. More details are provided: 

 
Note that for the study of correlation the bootstrap was applied to the bivariate time series 
of the residuals of the two variables of interest producing an ensemble of 2000 bivariate 
time series of residuals. For each bivariate time series of residuals the correlation between 
the two components of the series was first evaluated. The average and the 0.025 and 0.975 
percentiles of these 2000 estimates were reported as point estimate and confidence limits 
for the correlation between the two variables of interest (correlation between residual 
components is used to avoid spurious correlation). 
 

3. Bootstrap Vs Error propagation: The confidence intervals estimated from bootstrap have 
been compared to those estimated from error propagation of the mascon. As CSR mascon 
solution does not provide such error estimates, we have used the JPL mascon solution for 
the comparison. An explanation of why bootstrap confidence intervals contains, as 
expected, the error propagation confidence interval has been also provided. In the 
description of the bootstrap method we have included the following text: 
 
As an independent check of the bootstrap, confidence intervals for the mean value of N have 
been also evaluated by propagating the error estimate in GRACE data (using the JPL GRACE 
mascon solution for which error estimates are available). The resulting intervals were 



consistent with those of the bootstrap method. In particular (see Section 4 for details), we 
show that in all cases the bootstrap intervals contain the intervals obtained from error 
propagation. In this respect, the CI95 from bootstrap analysis can be considered a 
conservative estimate. This should be expected, since the residual component underlying the 
bootstrap approach includes measurement errors and other type of errors (related, for 
example, with the estimate of the trend and seasonal terms). As a result, the uncertainties 
in the transports estimated by the bootstrap should be larger than the corresponding 
uncertainties estimated by error propagation. 
 
We have included a new section 4, entitled “Comparison with other datasets”, which 
includes the comparison between error propagation and bootstrap confidence intervals for 
the N component estimated from JPL data:  
 
CSR GRACE mascon solution is replaced by the JPL GRACE mascon solution provided by the 
Jet Propulsion Laboratory/NASA (Watkins  et al., 2015; Wiese et al., 2019). Similarly to CSR 
data, JPL are corrected for GIA effects, C20 Stoke coefficients are replaced by a solution from 
SLR, and data are reduced to 1º regular grids from 0.5º regular grids. Besides, we have 
applied the degree-0 Stoke coefficients correction. However, CSR and JPL mascon solutions 
are not directly comparable. The main reason is that an estimate of degree-1 coefficients 
has been added to JPL mascon solutions, and the GAD product has not been added back. The 
corrections applied by JPL are not supplied separately and we cannot do/undo any of the 
corrections to process JPL data as we did with CSR data. In particular, the GAD product is not 
available for JPL. In any case, the JPL solution is useful here since it provides an error estimate 
of the mascon solution that can be propagated to obtain confidence intervals of N, which 
are independent from those estimated with the bootstrap analysis. Table 2 shows the CI95 of 
the mean values of the N component for different ocean basin estimated from error 
propagation and bootstrap analysis. It is observed that in all cases the CI95 from error 
propagation are included in those from bootstrap analysis, meaning that the latter are a 
conservative estimate of the error. JPL propagated error can be expected  to be similar to 
that propagated from CSR error estimates (which are not available), and then we can 
assume that the reported CI95 for N calculated from CSR data are a conservative estimate. 
Besides, comparing Tables 1 and 2, it is observed that the mean values of N are quite similar 
and that the CI95  largely overlap. Regarding to the time variability, the values of the N 
component from CSR and JPL mascon solutions show Pearson correlation coefficients greater 
than 0.85 (p-value < 10-3), except for the Atlantic (0.70). Thus, despite the different 
processing of CSR and JPL data, the reported analysis for the N component is robust with 
respect to the choice of GRACE datasets. 
 

Table 2. Mean net WT from JPL mascon for different ocean basins according to Equation 2 . CI95 are estimated as 
propagation of mascon errors provided by JPL, and from bootstrap analysis. Units are Gt/month. 

  Mean (CI95 from 
error propagation) 

Mean (CI95 from 
bootstrap) 

Outflows Pacific 1182 (1143, 1220) 1182 (1062,  1306) 
 Arctic 735 (713, 757) 735 (711,761) 
 Pacific + Arctic 1917 (1872, 1961) 1917 (1806, 2036) 

Inflows AIA 1183 (1092, 1274) 1183 (1077,  1282) 
 Atlantic 919 (866, 972) 919 (845, 985) 
 Indian 999 (980, 1018) 999 (928,  1067) 
 Atlantic + Indian 1918 (1862, 1974) 1918 (1838, 2003) 



 
4. Other P and E datasets: According to ERA5 documentation, there exists error estimates. 

Unfortunately, they are not available for the general public as us. In any case, we have 
included new computations with several P and E datasets. It is included in the second point 
of the new section “Comparison with other datasets”: 
 
ERA5 P and E data are replaced by several datasets for comparison purposes. The objective 
is not to be exhaustive in the selection, but rather to show that the reported features of the 
N component are quite robust with respect to the choice of the P and E datasets. The data 
sets considered are:  

(i) Continental P from GPCC (Schneider et al., 2011), GPCP (Adler et al., 2018), CMAP 
(Xie and Arkin, 1997), UDel (Willmott and Matsuura, 2001), and GLDAS/Noah (Rodell 
et al., 2004; Beaudoing and Rodell, 2016). 
(ii) Ocean P from GPCP and CMAP. 
(iii) Continental E from GLEAM (Miralles et al., 2011; Martens et al., 2017) and 
GLDAS/Noah.  
(iv) Ocean E from OAFlux (Yu et al., 2008) and HOAPS/CM SAF (Schulz et al., 2009).  

The Pacific outflow is estimated with the 162 possible combinations of P and E, including 
ERA5. The time period is 2003-2016, except for HOAPS/CM SAF and GPCP, which span from 
2003 to 12/2014 and 10/2015, respectively. The degree-0 corrections in GRACE data is made 
for each combination. Note that only ERA5 includes P and E for both continents and oceans. 
All grids have been homogenized to 1° regular grids. The main concern here is the 
heterogeneity of the spatial coverage among datasets. To make the results comparable 
among datasets, the computations are restricted to the common grid points, which do not 
cover the entire Earth (Figure 8a). However, in spite of the fact that due to the partial 
coverage the principle of water mass conservation is not accomplished, the Pacific outflow 
obtained in the common grid points from ERA5 (black line in Figure 8b) is quite in agreement 
with the same signal obtained with global coverage (red line in Figure 3 which is also 
reported as red line in Figure 8b). The Pearson correlation coefficient between the two 
signals is 0.994 (p-values < 10-3) with an average difference around 50 Gt/month. In general, 
the Pacific outflows estimated from all the P and E dataset combinations show qualitatively 
the same signal than the one reported in Figure 3. For each of the 162 estimates of the Pacific 
outflows corresponding to the possible P and E dataset combinations, we evaluated the 
average outflow (over the period of study), which is 968 Gt/month (STD: 489), and the 
correlation with the Pacific outflows in Figure 3, which is 0.82 (STD: 0.06; p-values < 10-3). 
 
These experiments show that the reported net WT are physically consistent among datasets, 
at least qualitatively.” 

 
 
 
 
 
 
 
 
 
 



 
 
 

 

 
Figure 8. Monthly time series of (the opposite of) the Pacific outflow estimated from 162 combinations of P and E datasets. 
a) Spatial coverage common to all datasets. b) Pacific outflows: Gray thin curves are the 162 Pacific outflows estimated in the 
common grid points to all datasets (no global coverage); black and red curves are based on ERA5 P and E and are obtained 
using either only the grid points  common to all datasets (black curve) or global coverage (red curve). Note that the red curve 
is the same as in Figure 3.  
 
 

5. Lack of correlation. We have included a discussion on the lack of correlation between 
the inter-annual transports and the indices of ocean-atmosphere interaction. In 
particular we propose the two following explanations: 
 
“To explore this lack of correlation, we have estimated the correlation coefficient 
between each climatic index and each WT component (Figure 7b).  
 



 
Figure 7. Pacific outflow and climatic indices for ENSO, AMO, AO, and AAO. a) Time series of Pacific outflow is de-trend and 
de-season. All time series are normalized to have unit variance. Values in the parenthesis are the correlation coefficient 
between the corresponding climatic index and the Pacific outflow. b) Correlation coefficients between de-trend and de-season 
WT components of different regions and the climatic indices.   
 

All of them are lower than 0.3 except for 6 cases in 2 regions. In the Arctic, P and P−E in 
the drainage basins of the Arctic show a correlation of ~0.5 with the AO. This correlation is 
natural since that is the area of influence of the AO. The other region is the Pacific, where, as 
expected, the SOI shows a correlation around 0.5 with P, P−E, and R in the drainage basins, 
and around −0.4 with P in the ocean. However, this individual correlation does not extend to 
the Pacific outflow. In order to understand why this is the case, it is convenient to express the 
N component of the water transport as a function of (P-E) and dW. According to Equations 1 
and 2 we have: 
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It can be shown that the correlation between N and a given index can be express as follows 
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where corr denotes the correlation coefficient, and std stands for standard deviation. As 
shown in equation (4), the correlation between N and a given index is a linear combination 
of the correlation between each component and the index. The coefficients of the linear 
combination std(Xi)/std(N) are proportional to the standard deviation  of each component.  
The components of equation (4) for the Pacific outflow and the SOI index are shown in Table 
3. Despite the fact that some of the individual component exhibits significant correlation 
with SOI (in particular P−E in land and ocean) when combined with the corresponding 
coefficients their effects are canceled out yielding to a negligible correlation between water 
transport and SOI (below 0.03 in magnitude). 

  
Another possible reason for the lack of correlation resides in the definition of the studied 
regions, for which the presence of subregions with positive and negative influence of an 
index results in an overall negligible/attenuated influence of the index in the overall 
region. For example, a positive phase of the AMO is related to an increase of P in western 
Europe (Sutton and Hodson, 2005), and the Sahel (Folland et al., 1986; Knight et al., 2006; 
Zhang and Delworth, 2006; Ting et al., 2009), but to a decrease of P in the U.S. (Enfield et 
al., 2001; Sutton and Hodson, 2005), and northeast Brazil (Knight et al., 2006; Zhang and 
Delworth, 2006). All these regions are included in the Atlantic drainage basin, and then 
the influence of a positive phase of the AMO is attenuated.”  

 
 
Table 3. Correlation coefficients between SOI and de-trend and de-season WT components involved to estimate the Pacific 
outflow according to Equations 3 and 4.  

  𝑠𝑡𝑑(𝑋+) 
 

(Stand. 
Deviation) 

 

𝑐𝑜𝑟𝑟(𝑋+ , 𝑆𝑂𝐼) 
 

(Correlation 
between Xi 
with SOI) 

𝑠𝑡𝑑(𝑋+)
𝑠𝑡𝑑(𝑁)  

 
(Coefficients) 

𝑐𝑜𝑟𝑟(𝑋+ , 𝑆𝑂𝐼) ∙
𝑠𝑡𝑑(𝑋+)
𝑠𝑡𝑑(𝑁)  

 
(Correlation ∙Coefficient) 

 
X1= –(P–E)ocean 605 0.25 0.57 0.14 
X2= –(P–E)land 212 -0.53 0.20 -0.11 
X3= dWland 96 0.048 0.09 0.004 
X4= dWocean 711 -0.10 0.67 -0.07 
                                                                                       Corr(N,SOI) -0.03 

 
Note that table 3 provides also some insights about the causes of the interannual variability of 
Pacific Ocean outflow. The largest standard deviation of P−E and dW  in the ocean suggests  that 
these two components might drive the interannual variability of the Pacific Ocean outflow. This 
is confirmed by a correlation analysis. The correlation between N and the (P−E)Ocean is -0.70. The 
correlation between N and the dWocean is 0.84.  The correlation of N with the corresponding 
land components is below 0.18. In all cases, prior to the evaluation of the correlation the 
corresponding time series have been de-trend and de-season. 
 
 



 
Now addressing some details:  
 
(1) Figure 1: I would have liked to see a row with P-E- R next to the row for dW in Figure 1. 
 
Figure 1 probably means Figure 2. Including P-E-R, in our opinion, is not very useful since, by 
definition of R, P-E-R will perfectly match dW. The comparison would be interesting with an 
independent dataset of R. 
 
 
(2) Figures 1 and 3: I am sure the authors know better smoothers than the running mean 
(Hanning, Kaiser, etc). I recommend they use one. 
 
We have replaced the running mean by a low pass filter defined by a Hann function of 24 
months (the resulting smoothed curve is quite in agreement with the one previously obtained 
by running mean smoothing) 
 
 
 
(3) Line 27: Clark reference missing. Recheck all your references, I did not do an exhaustive 
check. 
 
Thank you. We have checked all the references.  
 
 
(4) Line 93: tectonic signals in the gravity field do not ‘masquerader as mascons’. Mascons are 
a simple mathematical representation of the gravity field with a physical interpretation. 
Tectonics “would be incorrectly interpreted as water mass flux” 
 
Thank you. It is better expressed in this way. We have re-written the sentence: 
“Any other non-surficial effect such as long-term tectonics would be incorrectly interpreted as 
water mass fluxes…” 
 
 
(5) Lines 124 et seq: see my concern above. A physical interpretation of this mathematical 
approach to confidence intervals would be useful. 
 
We have extended the description of the bootstrap - see point 3 (Bootstrap Vs Error 
propagation) in page 1 of this response. 
 
 
 
(6) Line 164: and loses ‘to the atmosphere’ 879 Gt/month. . . 
 
The sentence has been re-written: 
“On average, the Atlantic Ocean receives 926 Gt/month (CI95=[876, 980]; or 0.36 Sv) of salty 
water, and loses to the atmosphere 879 Gt/month (CI95=[828, 930]) via P−E+R.” 
 



 
(7) Line 188: I think ‘The Atlantic/Arctic inflow ‘mirrors this behaviour’ is a better phrase in 
English. 
 
Thank you. We have re-written the sentence: “The Atlantic/Arctic inflow mirrors this 
behaviour.” 
 
 
(8) Somewhere: W. T. Liu et al (GRL 2006, on South American water balance) did a similar 
estimation of water flux between an ocean basin and the land, without using any numerical 
model data. 
 
Thank you. We agree that it is a pertinent reference. We have included it in the last paragraph 
of the introduction, which now is: 

“In this work we propose a new methodology devised to estimate the net WT through 
the boundaries of a given oceanic region. A defining feature of the proposed approach is the use 
of the time-variable gravity data from the GRACE (Gravity Recovery and Climate Experiment) 
satellite mission to estimate the change of water content. We apply the methodology, in 
conjunction with conventional meteorological data of general hydrologic budget schemes, to 
estimate the time evolution over the period 2003-2016 of the net WT and exchanges among the 
four major ocean basins – namely Pacific, Atlantic, Indian, and Arctic. We analyse and report 
our results of the seasonal climatology as well as the interannual variability of WT. Such 
information, not available previously, is of valuable importance. For example, in closed regions, 
net WT through the boundaries on the surface must be counteracted by moisture fluxes through 
the same boundaries in the atmosphere to match GRACE measurements. Such approach has 
been successfully applied to study the hydrological cycle of South America (Liu et al., 2006). At 
ocean basin scale, knowledge about net WT not only would help elucidate the role of the oceans 
within the water cycle, but it will also impose restrictions on moisture advection in the 
atmosphere that would help to improve atmospheric models. On the other hand, ocean models 
usually deal with inflows and outflows of a given ocean region (Warren, 1983; Rahmstorf, 1996; 
Emile-Geay et al., 2003; de Vries and Weber, 2005; Dijkstra, 2007). Net WT estimates for such 
ocean region would be useful to impose constraints to the relationship between its inflows and 
outflows, which would improve the reliability of the models. Better models will improve our 
knowledge of the Earth’s WT dynamics and its evolution in the future, which is critical in the 
present scenario of climate change.” 
 
 
 
(9) There are a few more minor language errors (lines 255, 267 and possibly others). Please 
go over the manuscript and clean up. 
 
Done. Thank you. 


