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Abstract. Land use models operating at regional to global scales are almost exclusively based on the single paradigm of 

economic optimisation. Models based on different paradigms are known to produce very different results, but these are not 10 

always equivalent or attributable to particular assumptions. In this study, we compare two pan-European integrated land use 

models that are based on the same integrated modelling framework and utilise the same climatic and socio-economic scenarios, 

but which adopt fundamentally different modelling paradigms. One of these is a constrained optimising economic-equilibrium 

model and the other is a stochastic agent-based model. We run both models for a range of scenario combinations and compare 

their projections of geographical and spatially aggregate and disaggregate land use changes and ecosystem services supply 15 

levels in food, forest and associated environmental systems. We find that the models produce very different results in some 

scenarios, with simulated food production varying by up to half of total demand, and the extent of intensive agriculture varying 

by up to 25% of the EU land area. We find that t The agent-based model projects more multifunctional and heterogeneous 

landscapes in most scenarios, providing a wider range of ecosystem services at landscape scales, as agents make individual, 

time-dependent decisions that reflect economic and non-economic motivations. This tendency also results in food shortages 20 

under certain scenario conditions. The optimisation model, in contrast, maintains food supply through intensification of 

agricultural production in the most profitable areas, sometimes at the expense of land abandonment in large parts of Europe. 

We relate the principal differences observed to underlying model assumptions, and hypothesise that optimisation may be 

appropriate in scenarios that allow for coherent political and economic control of land systems, but not in scenarios where 

economic and other scenario conditions prevent the changes in prices and responses required to approach economic 25 

equilibrium. In these circumstances, agent-based modelling allows explicit consideration of behavioural processes, but in doing 

so provides a highly flexible account of land system development that is harder to link to underlying assumptions. We suggest 

that structured comparisons of parallel, transparent but paradigmatically distinct models are an important method for better 

understanding the potential scope and uncertainties of future land use change, particularly given the substantive differences 

that currently exist in the outcomes of such models.  30 

 



2 

 

1 Introduction 

Computational models of the land system make essential contributions to the exploration of environmental and socio-economic 

changes, supporting efforts to limit climate change and reverse biodiversity loss (Harrison et al. 2018; Rogelj et al. 2018). 

Such models are particularly useful for exploring conditions that do not currently exist and cannot therefore be observed, as 35 

well as for understanding past and present land use impacts (Filatova et al. 2016; IPBES 2018; Smith et al. 2019). As a result, 

the scope and complexity of land system models have been steadily increasing, with many now representing multiple land 

sectors (e.g. agriculture, forestry and urbanisation) within an Earth System context (e.g. incorporating economic, climatic, 

hydrological and energy systems) (Harrison et al. 2016; Kling et al. 2017; Pongratz et al. 2018).  

Nevertheless, simulating expected or desired future changes under novel circumstances remains a substantial challenge. 40 

Because comparable, alternative findings are rare, model results often go unchallenged, and may be misinterpreted as 

predictions of how the future will develop rather than projections dependent upon underlying assumptions (Low and Schäfer 

2020). This could be particularly misleading in social systems such as those underpinning human land use, where no universal 

laws or predictable patterns exist to guide models’ the representation of human behaviour in models. Modellers must therefore 

choose between a range of contested theoretical foundations, practical designs and evaluation strategies (Brown et al. 2016; 45 

Meyfroidt et al. 2018; Verburg et al. 2019).  

In this complex context, the proper analysis and interpretation of model outputs is just as important as proper model design, 

but has received less attention. Steps such as standardised model descriptions, open access to model code, robust calibration, 

evaluation and verification, benchmarking, uncertainty and sensitivity analyses are all necessary to ensure that model results 

are interpreted appropriately (Baldos and Hertel 2013; Sohl and Claggett 2013). Currently, few if any of these steps are taken 50 

universally and rigorously in land use science (van Vliet et al. 2016; Brown et al. 2017; Saltelli et al. 2019). This study focuses 

on one in particular; the comparison or benchmarking of independent land use models against one another.   

Comparison is especially important for land use models because a range of very different conceptual and technical approaches 

could be valid for simulating social-ecological dynamics (Filatova et al. 2013; Brown et al. 2016; Elsawah et al. 2020). In the 

absence of fair comparisons, it is impossible to objectively choose between these approaches or to identify the assumptions on 55 

which their outputs are most conditional. However, while comparisons of model outputs have been made (Lawrence et al. 

2016; Prestele et al. 2016; Alexander et al. 2017), their ability to link particular outputs to particular methodological choices 

has been limited by the sheer number of differences between individual models. Alexander et al (2017), for instance, found 

that model type explained more variance in model results than did the climatic and socio-economic scenarios, but they were 

not able to determine exactly why.   60 

These previous comparisons reveal a major challenge: the shortage of models that take distinct approaches at in similar 

geographical and thematic scalesareas, and which would therefore allow for more controlled and informative comparison 

exercises. Most established models, especially those operating over large geographical extents, share a basic approach that 

optimises land use against economic, climatic and/or environmental objectives. Technical and geophysical constraints are 
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often treated in detail, while social, institutional and ecological factors are rarely included (Brown et al. 2017; de Coninck et 65 

al. 2018; Obermeister 2019). Conceptual research suggests that lLarge areas of system behaviour remain under-explored as a 

result (Brown et al. 2016; Huber et al. 2018; Meyfroidt et al. 2018), with the likely consequence that established findings have 

implicit biases and blind spots. These can be especially problematic for the simulation of future scenarios in which neglected 

aspects of land system change become prominent (Estoque et al. 2020), and can be partially if not fully revealed by structured 

comparison exercises. 70 

In this article, we take advantage of the development of two conceptually distinct, but practically equivalent models of the 

European land system to make a direct comparison between alternative modelling paradigms. We use the term ‘modelling 

paradigm’ here to refer to a coherent methodological and theoretical approach that is based on a distinct theoretical description 

of the system in question; in this case, and specifically the ‘top-down’ and ‘bottom-up’ approaches frequently identified as 

paradigms in the literature (Brown, Brown, & Rounsevell, 2016; Couclelis, 2002). These models, an Integrated Assessment 75 

Platform (IAP) and an agent-based model (ABM) share input data to run under the same internally consistent scenario 

combinations. The former is a constrained optimising economic-equilibrium model and the latter is a stochastic behavioural 

model. We run both models for combinations of the Representative Concentration Pathways (RCP) climate scenarios and 

Shared Socioeconomic Pathways (SSP) socio-economic scenarios (O’Neill et al. 2017), and compare their projections of 

geographical territorial and overall aggregate land use change and ecosystem service provision. We use this analysis to 80 

understand the effects and importance of the different assumptions contained in each model for simulated land use futures, and 

draw general conclusions about the contributions of both approaches to understanding land system change.  

2. Methods 

This paper uses two contrasting models of the European land system: CRAFTY-EU (Brown, Seo, & Rounsevell, 2019) and 

the IMPRESSIONS Integrated Assessment Platform (IAP) (P. A. Harrison, Holman, & Berry, 2015; Paula A. Harrison et al., 85 

2019). Both models cover all European Union Member States except Croatia, as well as the UK, Norway and Switzerland. 

The IAP’s simulated baseline land use map, land use productivities, scenario conditions and ecosystem service provision levels 

were used in CRAFTY-EU, making them uniquely equivalent examples of different modelling paradigms (Fig. 1). Both 

models were run for a subset of socio-economic and climatic scenario combinations, and their outputs systematically 

compared, as described below.  90 

2.1 Model descriptions 

The IMPRESSIONS IAP is an online model of European land system change that incorporates sub-models of urban 

development, water resources, flooding, coasts, agriculture, forests and biodiversity. Within this cross-sectoral modelling 

chain, rural land use is allocated within 30-year timeslices according to a constrained optimisation algorithm that maintains 

equilibrium between the supply and demand for food and (as a secondary objective) timber, through iterating agricultural 95 

commodity prices (cereals, oilseeds, vegetable protein, milk, meat etc.) to promote agricultural expansion or contraction 
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(Audsley et al., 2015). This model therefore aims to satisfy food demand (taking account of net imports), and does so optimally 

subject to constraints imposed by biophysical and socio-economic conditions. Calculations are carried out across overlapping 

geographically unstructured clusters of cells with similar biophysical conditions (based on soil and agroclimate), with 

profitability thresholds used to determine which land use and management intensity offer the greatest returns across each 100 

cluster.  Land use proportions within each 10’ x 10’ grid cell represent the aggregations of the optimal solutions for each (up 

to 40) associated cluster. At cell level, this aggregation therefore represents the (spatially weighted) optimised land use solution 

for each cluster containing the grid cell in question. The clustering recognises that different biophysical conditions (soil and 

agroclimate) differentially influence the suitability, productivity and profitability of different crops and different agricultural 

systems (arable, dairy etc.), leading to heterogeneity in agricultural land use within a grid cell. The IAP runs from a present-105 

day simulated baseline land use configuration to the mid-2080s under combined climatic and socio-economic scenarios. The 

IAP has been applied and evaluated in a large number of studies including sensitivity and uncertainty analyses (e.g. Brown et 

al. 2014; Harrison et al. 2015, 2016, 2019; Kebede et al. 2015; Holman et al. 2017a, b; Fronzek et al. 2019). A full model 

description and the online model itself are available at http://www.impressions-project.eu/show/IAP2_14855.  

CRAFTY-EU is an application of the CRAFTY framework for agent-based modelling of land use change (Brown, Seo, et al., 110 

2019; Murray-Rust et al., 2014) that covers the same extent as the IAP at the same (10 arcminute) resolution. CRAFTY uses 

the concept of Agent Functional Types (AFTs) (Arneth, Brown, & Rounsevell, 2014) to simulate land use change over large 

geographical extents while capturing key behaviours of decision-making entities (agents) that include individual land 

managers, groups of land managers and institutions or policy bodies (Holzhauer, Brown, & Rounsevell, 2019). Modelled land 

manager agents compete for land on the basis of their abilities to produce a range of ecosystem services that society is assumed 115 

to require. In CRAFTY-EU, these services include provisioning (food crops and meat, timber), regulating (carbon 

sequestration), cultural (recreation) and supporting services (habitat provision through landscape diversity) . The abilities of 

agents to supply these services under given biophysical and socio-economic conditions are derived either from IAP model 

results (Fig. 1) or from basic assumptions linking land uses to service levels, as explained in Brown et al. (2019). Satisfying 

demands for services brings economic and non-economic benefits to individual agents, with benefits quantified as functions 120 

of unsatisfied demand. In this case, these functions are linear and equivalent for all services, meaning that the benefit of 

production of each service increases equally per unit of unmet demand, providing a clear basis for model comparison. 

Economic benefit represents income from marketable goods and services, and non-economic benefit represents a range of 

motivations, from subsistence production to the maintenance of societal, cultural or personal values associated with particular 

services or land uses. Ecosystem services production levels are determined by the natural productivity of the land and the form 125 

and intensity of agents’ land management. The outcome of the competitive process at each annual timestep is determined by 

agent-level decision-making that is not constrained to generate the greatest benefit, and agents are parameterised here to 

continue with land uses that provide some return rather than abandon their land, but to gradually adopt significantly more 

beneficial alternatives if available.  

http://www.impressions-project.eu/show/IAP2_14855
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Importantly for this study, CRAFTY-EU is parameterised on the basis of the IAP, taking IAP outputs as exogenous conditions 130 

and replacing only the land allocation component to provide alternative land use projections under identical driving conditions 

(Fig. 1). CRAFTY-EU is initialised on the IAP’s baseline map, and is known to only diverge from that stable baseline ‘solution’ 

as scenario conditions change (Brown, Seo, et al., 2019). Land use productivities, in terms of potential yields and ecosystem 

service provision levels of the simulated land use systems under the agronomic scenario conditions at cell scale, are also 

calculated from IAP outputs dependent on land use allocation, with the result that productivities are set to zero where the IAP 135 

determines production to be economically infeasible. For ecosystem services with economic values (meat, crops and timber), 

agents in CRAFTY therefore make production choices that conform to this basic level of economic feasibility, while still being 

able to select a range of economically optimal or sub-optimal land uses. A full description of the model can be found in Brown 

et al. (2019) and an online version with access to full model code at https://landchange.earth/CRAFTY.  

 140 

2.2 Climate and socio-economic scenarios 

Seven combinations of climatic and socio-economic scenarios were simulated, based on the Representative Concentration 

Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) (O’Neill et al., 2017).  The RCPs and SSPs were combined 

taking account of internal consistency with their associated greenhouse gas emissions; RCP2.6 was combined with SSP1 and 

4; RCP4.5 with SSP1, 3 and 4; and RCP8.5 with SSP3 and 5 (Table 1). The SSPs have been further developed for Europe 145 

through a stakeholder-engagement process that included interpretation and quantification of key drivers of change in land-

based sectors (Table 2a; Kok, Pedde, Gramberger, Harrison, & Holman, 2019). For this study, RCPs were simulated in the 

IAP using outputs from two global-regional climate models (EC_Earth/RCA4 for RCP2.6, and HADGEM2-ES/RCA4 for 

RCPs 4.5 and 8.5 (Table 2b; Paula A. Harrison et al., 2019)). Scenario outcomes are described for CRAFTY-EU in Brown et 

al. (2019b) and for the IAP in Harrison et al. (2019) and Papadimitriou et al. (2019). In addition to these established scenarios, 150 

one scenario combination (RCP4.5 – SSP3) was simulated with additional variations in model parameterisations. This scenario 

was chosen as producing particularly divergent results between the two models, and parameter values were altered to constrain 

the differences in model responses to the scenario and so to reveal the roles of underlying assumptions in producing the 

observed divergence. Specifically, we increased imports in the IAP by 40% (to mimic an observed under-production of food 

in CRAFTY), and increased the value of food production in CRAFTY by ten times (to compensate for reductions in supporting 155 

capital levels responsible for the under-production of food). 

 

2.3 Conceptual framework 

The model comparison presented here is motivated by the hypothesis that the nature of simulated land use allocation is one 

dominant source of uncertainty in land use modelling, as opposed to uncertainty in crop yields, biophysical conditions or other 160 

land system characteristics. The selected models therefore allow us to keep the latter factors common and explore how different 

factors that influence land use allocation, such as profitability, non-economic motivations, demand levels and socio-economic 

https://landchange.earth/CRAFTY
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conditions, affect model outcomes. This is possible because the models used share much of their information and design 

features, but adopt distinct paradigms for modelling the process of land allocation itself (Fig. 1, Table 3).  

The IAP and CRAFTY-EU belong to distinct paradigms in the sense that the IAP is an example of a ‘top-down’ model that 165 

simulates change at the system-level – in this case through an assumption of constrained economic optimisation - while 

CRAFTY is an example of a ‘bottom-up’ model that simulates change at the level of individual decision-makers – in this case 

through an assumption of behavioural choices made at the level of local land systems (Brown et al., 2016; Couclelis, 2002). 

These paradigms usually have different uses and justifications: the (dominant) top-down approach is computationally efficient, 

tractable and more in line with economic theory, although it is rarely justified as an accurate representation of how land use 170 

decisions are made in practice (in fact the evidence tends to contradict it; e.g. Chouinard et al. 2008; Schwarze et al. 2014; 

Appel and Balmann 2019). The bottom-up approach, in contrast, is more exploratory and often criticised for producing 

uncertain results, but explicitly attempts to achieve greater process accuracy (Brown et al., 2016).  

Neither of these models is intended to accurately predict real-world land use change, but to project land system dynamics on 

the basis of complex and integrated processes founded on a small number of key, transparent assumptions. This comparison is 175 

therefore intended first and foremost to explore the reasons for simulated land use changes, and does not speak directly to 

observed land use changes. Nevertheless, both models have been extensively used and evaluated, and both respond stably and 

predictably to driving conditions (Brown et al., 2014; Brown, Holzhauer, Metzger, Paterson, & Rounsevell, 2018; Brown, Seo, 

et al., 2019; Paula A. Harrison et al., 2019, 2016; I. P. Holman et al., 2017). Both also have similar uses, being intended to 

support academic research and education and, to some extent, capacity building with stakeholders to increase understanding 180 

of the importance of socio-economic and climatic changes, systemic inter-relationships in the land system, and geographic 

regions that may be particularly vulnerable or resilient to change. As a result, the comparison does not consider model purpose 

or the suitability of either model for direct policy-support, prediction or other unintended uses. 

Further, some of the effects of the different land allocation mechanisms contained in these models are apparent a priori. As a 

bottom-up, agent-based model, CRAFTY is less constrained than the IAP, with multiple outcomes being possible from a given 185 

set of input conditions. At the same time, land use decisions are subject to behavioural inertia in CRAFTY, with agents 

unwilling to change existing land uses and motivated by non-economic factors that can counteract price signals. The IAP will 

always identify the optimal result subject to economic drivers and modelled constraints, and does so without reference to the 

previously simulated timepoint (i.e., is not path-dependent). It is therefore expected that the IAP responds to smaller changes 

in conditions than does CRAFTY, and that the models are likely to diverge as time goes on and as the magnitude of changes 190 

increases.  

2.4 Comparison 

In this study, both models are run until the mid-2080s (defined as a 30-year timeslice in the IAP, and the year 2086 in CRAFTY-

EU). Both use a spatial grid of resolution 10 arcmin x 10 arcmin (approximately 16km x 16km in Europe), but simulated land 

classes differ between the two models (as described in Brown et al. 2019b) and are standardised here as described in Table 4, 195 
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to focus on major, comparable forms of agricultural and forestry management. These aggregate land use classes are not 

homogeneous or uniform across the simulations as they allow for a range of management forms within them. We therefore 

also compare ecosystem service production levels, which account for exact actual forms of management simulated in each 

cell. Urban land use is not compared as its locations are shared by both models.  

The comparison of these land use classes was made at two spatial resolutions: across the whole of the modelled domain 200 

(without reference to spatial configurations) and across 323 Nomenclature of Territorial Units for Statistics (NUTS2) regions. 

NUTS2 resolution was chosen for the spatially explicit comparison instead of the original 10’ model resolution to limit the 

impact of relatively uninformative differences in the allocation of individual cells, and to focus instead on systematic 

differences in model responses to the simulated scenarios. This choice also reflects the fact that neither model is intended to 

predict cell-level outcomes, but to provide illustrative realisations of scenario outcomes, with the cell-level results of 205 

CRAFTY-EU differing between individual runs because the model is stochastic and path dependent. At NUTS2 level, only 

differences between the models affecting at least 5% of the relevant cells were included in the analysis. In the following 

sections (Results and Discussion), CRAFTY-EU is referred to simply as CRAFTY, for brevity. 

The presentation of the results below is structured to reveal the effects of the paradigmatic differences between the models 

(and not to assess the models’ shared characteristics). First, we compare outputs from each scenario at EU scale to identify the 210 

principal differences that arise in the simulations. Because the scenarios relate to the modelling paradigms in different ways 

(e.g. allowing for stronger or weaker economic signals), this allows us to link the results to particular modelling choices. We 

then compare results at NUTS2 level to identify relatively minor or hidden differences, before experimenting with forced 

convergence to test the role of particular parameters and assumptions in each model.      

 215 

3. Results 

3.1 Overall EU-level aggregate comparison 

The responses of the two models to scenario conditions are notably different in most cases (Figures 2 & 3, Table 1), albeit 

within similar broad limits (Fig. 2). The greatest similarities in terms of aggregate land use classes occur in the SSP1 

simulations, where both models produce land systems that remain similar to the baseline, with large areas of intensive 220 

agriculture and small areas of land not managed for agriculture or forestry. The IAP results include more dedicated pastoral 

land and the CRAFTY results more forestry. In all simulations with very low climate change (RCP2.6), CRAFTY produces 

an under-supply of food and both models produce an under-supply of timber, and these shortfalls reduce under intermediate 

climate change (RCP4.5), where productivity is slightly higher (Fig. 3). CRAFTY produces smaller imbalances between food 

and timber supplies due to its equivalent valuation of all modelled services.  225 

In other scenarios, the IAP responds most strongly to SSPs 4 and 5, while CRAFTY responds most strongly to SSP3. At 

aggregate level, CRAFTY produces similar results in the SSP4 and 5 simulations as in SSP1 (Fig. 2), though with generally 
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less intensive agriculture and higher supply levels (even exceeding demand in the higher climatic productivities of RCP4.5 

and 8.5) (Fig. 3a). In contrast, the IAP projects a dramatic move away from intensive agriculture in SSPs 4 and 5 as a 

consequence of greatly increased productivity requiring a smaller agricultural area to meet demand. This loss of agricultural 230 

management in previously intensively-managed areas is far more pronounced in the IAP than in CRAFTY, where the wider 

range of valued ecosystem services supports more management and, in some cases, oversupply of services (Fig. 3). The extent 

of agricultural abandonment is greatest in the IAP under intermediate climate change (RCP4.5), where increased yields in 

some areas reduce the relative competitiveness of agricultural land in less productive areas. Differences in the simulated extent 

of intensive arable management are equivalent to 25% of the EU land area in some cases.  235 

SSP3 produces considerably smaller responses in the IAP, with some areas of all land use types going out of management and 

with far larger areas of the intensive agriculture class remaining than in SSP4. CRAFTY outcomes for SSP3 are highly 

dependent on climate scenario, with RCP4.5 producing the strongest response, most notably in terms of a large shortfall in the 

supply of crops (of up to 56% of demand; Fig. 3a). In this case, widespread extensification of land use occurs, with little 

intensive agriculture remaining by the end of the simulation, and a slight increase in land going out of agricultural or forestry 240 

management. In RCP8.5 these changes are less pronounced, with only small changes from intensive agriculture to extensive 

and forestry management. These changes occur because SSP3 includes deteriorating inherent agricultural productivity and 

also substantial declines in capital values that support land management (particularly financial, human and manufactured 

capitals). In CRAFTY, these simultaneous changes make it difficult for agents to maintain intensive management against 

competition from extensive and less capital-dependent forms of management. The increased yields in some parts of Europe 245 

produced by climate change in RCP8.5 make this scenario more conducive to the maintenance of intensive management.  

The models also respond very differently to the SSP5 scenario (paired only with RCP8.5). In the IAP, large areas switch to 

extensive and other/no management classes while there is very little overall change in CRAFTY. The differences between the 

models’ responses are mainly due to the higher yields and improved technological conditions in SSP5 making large areas of 

intensive agriculture surplus to requirements. These surplus areas are no longer intensively managed for agriculture in the IAP 250 

by the 2080s, but are in CRAFTY (resulting in over-supply of food) because they provide other services and because of the 

gradual decision-making of agents that spreads abandonment decisions over multiple timesteps.  

Together, these scenario results show that the IAP responds most strongly to scenarios with conditions in which agricultural 

productivity increases, and which therefore lead to reduced need for agricultural land and, in this model, extensification and 

agricultural abandonment (which occurs over larger extents in the IAP than in CRAFTY). CRAFTY responds less strongly to 255 

such conditions because agents have a (parameterizable) unwillingness to change or abandon their land use in the absence of 

a more viable alternative, and because a wider range of services produce returns for those agents. Conversely, CRAFTY 

responds most strongly to scenarios in which conditions affecting agricultural productivity worsen because agents rely  more 

strongly on a range of climatic and socio-economic conditions. Many of these conditions deteriorate in SSP3, making intensive 

agriculture less competitive than extensive agriculture or other multifunctional land uses, and causing intensive agents to be 260 

easily replaced (competition is a more rapid process than abandonment in the CRAFTY parameterisation used here).  
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3.2 Geographical Territorial comparison 

Within the overall aggregate differences between model results exist some consistent spatial and geographical territorial 

patterns (Fig. 4). Across scenarios, the IAP often places more pastoral and very extensive land use classes in western Europe 

in particular, while CRAFTY often has more intensive agriculture in mid-latitudes, and forest in eastern and northern areas 265 

(Figs. 4 & B1). These differences are very scenario-dependent, however, and as with the aggregate summaries above, the 

geographical spatial patterns produced by one model in SSP3 resemble those produced by the other model in SSP4. In SSP4, 

the IAP projects substantially more very extensive agricultural management and forest management than CRAFTY, while the 

near-inverse is true for SSP3 (reflecting implicit assumptions that over-production is not penalised in CRAFTY, and that 

intensive agriculture retains an efficiency advantage over extensive in the IAP). CRAFTY also produces a great deal more 270 

forest management in RCP2.6-SSP1, with intensive arable agriculture dominating only in the most productive parts of France, 

Germany and the UK. SSP1 is also the scenario in which the IAP produces the most concentrated areas of intensive pastoral 

agriculture, particularly in Ireland, the UK and France.  

Notwithstanding the smaller-scale fragmentation of land uses in CRAFTY (see below), these results show that at this aggregate 

level, CRAFTY has a tendency (except in SSP3) to concentrate intensive agriculture in mid-latitudes, extensive agriculture in 275 

the southern Baltic states, and very extensive land uses at the European latitudinal extremes. Forestry is distributed in the 

western UK and central-eastern states in particular. The IAP results are less consistent, but show a tendency to produce pastoral 

agriculture in the west and forestry more widely. Many of these differences may reflect the valuation of a wider range of 

services in CRAFTY, leading to a concentration of intensive management in the most productive areas where it can maintain 

relative competitiveness. As above, they also reflect the differences in the conditions that the models respond to, with the IAP 280 

particularly sensitive to changes in demand that do not have spatial manifestations, and CRAFTY more sensitive to capitals 

that are maximised in climatically suitable, but also politically stable and affluent countries. 

3.3 Convergence experiment 

The scenario combination RCP4.5-SSP3 was chosen as having particularly different results from the two models, and so used 

to examine the potential for convergence in model settings and results. In this scenario, CRAFTY produces a highly fragmented 285 

land system with areas of abandoned or extensively managed land scattered throughout Europe, and a substantial shortfall in 

food production. The IAP, in contrast, produces large contiguous agricultural areas with far more intensive management (albeit 

of greatly reduced productivity) and less forestry, satisfying food demands. To control for the main differences in scenario 

conditions in each model, we increased food imports in the IAP to produce lower production levels in the EU, as observed in 

the CRAFTY result, and we increased food prices in CRAFTY to produce greater support for intensive agriculture, as observed 290 

in the IAP result. In the absence of these major differences, any remaining divergence in model outputs could be attributed to 

other factors. 
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In terms of overall aggregate land system composition the changes in the IAP (an increase of 40% in food imports) did not 

lead to a result approaching the original CRAFTY results (Fig. 5). While the extent of intensive agricultural management did 

decrease, this led to widespread agricultural abandonment rather than additional extensive or forestry management (demand 295 

for which was already satisfied), with remaining food production being even more concentrated in certain intensively-managed 

parts of Europe (particularly the East). Large parts of southern and northern Europe fell out of agricultural management, with 

other regions and countries being managed only for forestry. Other results (above) suggest that the IAP would have more 

closely resembled the CRAFTY result had there been an explicit driver for extensification, rather than simply an effective 

decrease in demand levels. 300 

From the more extensively-managed and fragmented initial result produced by CRAFTY, a ten-fold increase in food prices 

did come closer to the initial IAP result, although with more intensive agriculture and less land under other or no management. 

The distribution of land uses was strikingly different, however. Unmanaged land mainly occurred in the same areas, and 

concentrations of forestry overlapped to some extent, but the agricultural land in the CRAFTY result remained highly 

fragmented across much of Europe. In this case, CRAFTY produced sufficient food to satisfy demand. 305 

4. Discussion 

Understanding the contributions of different modelling paradigms to land use projections is important for two main reasons. 

The first reason is that almost all large- to global-scale land system models share a single paradigm (economic optimisation of 

land uses), raising the risk of biases in model results and resultant, unrecognised knowledge gaps (e.g. Verburg et al. 2019; 

Elsawah et al. 2020; Müller et al. 2020). The second reason is that different paradigms are known to produce very different 310 

outcomes, but for reasons that remain unclear (Alexander et al., 2017; Prestele et al., 2016). The focused comparison presented 

here is therefore intended to identify and explain key differences between models representing major, distinct paradigms. 

While conclusions are inevitably limited by the breadth of the comparison, and in particular by the many characteristics that 

are shared between the selected models (Table 3), our results do reveal large and consistent differences that emerge from the 

different ways in which those models represent land system change.  315 

The consequences of top-down and bottom-up perspectives are apparent in the forms, extents, rates and patterns of land use 

change as the models respond to scenario conditions. The IAP’s consistent profitability thresholds within a deterministic 

optimising framework respond strongly to increasing yields or decreasing demands, when the model produces widespread 

agricultural abandonment outside the most productive land. Conversely, CRAFTY’s heterogeneous competition process within 

a stochastic agent-based framework responds more strongly to decreases in productivity, when the model produces 320 

extensification and expansion of agriculture. This difference is also apparent in our convergence experiment, where increased 

imports in the IAP lead to reduced agricultural area, ensuring efficient production where competitiveness is highest, rather 

than the extensification that CRAFTY produces. Increasing food prices in CRAFTY did generate aggregate land use 

proportions similar to those of the IAP, albeit with largely distinct spatial distributions, suggesting that agents become more 

‘optimal’ in behaviour when greater competitive advantages are available. 325 
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To some extent these differences are traceable to the underlying mathematical structures of the models, with the IAP identifying 

any change in optimal configurations and CRAFTY maintaining existing and multifunctional land uses where possible. But 

the results are also subject to model sensitivity and uncertainty. Previous analyses show that the IAP responds most strongly 

to changes in demand levels and climate-driven yields, and that their effects outweigh those of socio-economic scenarios 

(Brown et al., 2014; Kebede et al., 2015). CRAFTY has similar sensitivities complemented but not overwhelmed by simulated 330 

agent behaviour (Brown, Holzhauer, et al., 2018; Brown, Seo, et al., 2019). Together these suggest that the effects and 

differences we find are robust and traceable to model design interacting primarily with climatic scenarios (RCPs), and with 

socio-economic scenarios (SSPs) to a lesser extent.    

Particularly influential is the representation in CRAFTY of individual and societal desires for a range of ecosystem services, 

which means that extensive management practices that provide recreation, carbon sequestration or landscape diversity, for 335 

example, are adopted instead of land abandonment. This is not necessarily tied to modelling paradigm; optimisation can in 

principle be performed across a range of criteria, potentially accounting for many more (economically-valued) ecosystem 

services, although this remains conceptually and computationally challenging (Newland, Maier, Zecchin, Newman, & van 

Delden, 2018; Seppelt, Lautenbach, & Volk, 2013; Strauch et al., 2019). The non-optimising representation used in models 

such as CRAFTY is closer to the reality of how land use actually changes (Appel & Balmann, 2019; Schwarze et al., 2014), 340 

but still requires additional parameterisation and rigorous uncertainty analysis (Verburg et al., 2019). In either case, there is 

strong justification for including a wide range of ecosystem services, particularly those such as carbon sequestration that may 

gain distinct values in different future scenarios (Estoque, Ooba, Togawa, & Hijioka, 2020; Kay et al., 2019).  

One consequence of simulating demand and supply of a range of ecosystem services is that the relative economic support 

available for food production becomes a key determinant of the balance of different land uses as agriculture, while still 345 

dominant in area, must compete with alternative management options. Models such as the IAP seek to maintain food supplies, 

even at the expense of other services such as timber production, while models such as CRAFTY allow supply levels to emerge 

from simulated decisions and so are capable of producing shortfalls. All the results of the models’ results are affected by this 

basic assumption about whether equilibrium does or will exist in the food system, and further by the extent of disequilibrium 

that is tolerated and the mechanism by which that extent is defined. For instance, food prices in CRAFTY can respond to 350 

shortfalls in production through a number of parametric functions, while the in the IAP prices are automatically adjusted within 

broad limits to ensure that demand and supply match. However, shortfalls in food production in CRAFTY do not lead to 

simulated hunger, societal unrest or migration, and food prices in the IAP may become unrealistically high in scenarios where 

economic and social conditions are very challenging (Hamilton et al., 2020; Pedde et al., 2019). In both models, the simulation 

of the European land system as distinct from the rest of the world requires implicit but shared assumptions about conditions in 355 

other regions and their relationships to Europe. Alternative assumptions would inevitably lead to different outcomes and, 

perhaps, greater differences between the two models’ results. As conceptual alternatives, therefore, neither of these necessarily 

capture the true dynamics of food prices and production levels, which remains a major challenge for land system modelling 

(Müller et al., 2020; Pedde et al., 2019). 
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Beyond differences at aggregate level, another notable feature of results shown above are that CRAFTY produces far more 360 

small-scale heterogeneity in land use than does the IAP. This heterogeneity is particularly pronounced in CRAFTY’s SSP3 

simulations (Fig. 5) and reflects a basic modelling approach: the simulation of time-dependent decisions affecting individual 

cells, with agents parameterised here to abandon land only if it provides no returns, and then only gradually. This effectively 

precludes the system-level optimisation practised by the IAP, which does not account for individual land use decisions. 

Individual-level heterogeneity is, inevitably, very difficult to parameterise precisely, although participatory techniques have 365 

some promise in this respect (Elsawah, Guillaume, Filatova, Rook, & Jakeman, 2015). Conversely, (constrained) optimising 

models like the IAP produce results that may not replicate observed rates or spatial structures of land use change (Brown, 

Alexander, Arneth, Holman, & Rounsevell, 2019; Low & Schäfer, 2020; Turner, Field, Lobell, Sanchez, & Mach, 2018), but 

can introduce spatial dependencies as further constraints on optimisation in order to approximate spatially-mediated social 

processes such as imitation (Brown, Alexander, & Rounsevell, 2018; Meiyappan, Dalton, O’Neill, & Jain, 2014). Bottom-up 370 

models in general tend to be less precisely specified and so produce more variable results (or are more “skittish” as (Couclelis, 

2002) put it). They are also generally less often compared against observational (or other modelled) data, and while their 

flexibility makes fitting-to-data notably feasible in principle, their inherent tendency to produce variable results means that the 

production of any one particular outcome does not have the apparent significance that it does for a more constrained model. 

Both models used here have been compared against ‘observed’ land use data to some extent, with an example application of 375 

CRAFTY compared and calibrated to MODIS land cover data (Seo, Brown, & Rounsevell, 2018) and the IAP (and hence, 

indirectly, CRAFTY) calibrated to match CORINE land cover and NUTS2 yields (P. A. Harrison et al., 2015). 

Notwithstanding the gains to be made by better understanding the relative performance of different modelling paradigms, it is 

essential to recognise some hard limits. No land use model is intended or able to provide calibrated representations of all the 

mechanisms responsible for land use change, especially under imagined future conditions. Models of this kind are inevitably 380 

reductionist in nature and omit a large number of important factors and processes that occur in reality – particularly, in this 

case, those occurring at smaller spatial scales than are simulated here. Both alternatives must therefore be seen as providing 

realisations of assumptions that are useful in some ways but incorrect in others. Optimising models have the advantage of 

representing idealised conditions in that they maximise achievement of modelled criteria such as production levels, but do not 

necessarily reveal  pathways by which those conditions can be reached in reality (Ligmann-Zielinska, Church, & Jankowski, 385 

2008; Low & Schäfer, 2020). Process- or agent-based approaches, meanwhile, can allow exploration of the large behavioural 

uncertainties involved in the simulation of human systems, and can be powerful tools for stakeholder engagement and 

understanding (Low & Schäfer, 2020; Millington, Demeritt, & Romero-Calcerrada, 2011) – but are unlikely to perform any 

better at predicting system outcomes than simpler, more tightly constrained models (Salganik et al., 2020). Indeed, their 

primary strength may be their ability to use theory (and so to allow a choice among theories) as a guide to processes and 390 

conditions that empirical data and optimising models do not cover (Gostoli & Silverman, 2020). Both types of model represent 

abstracted units, managers and characteristics of land, which do not match exactly to real-world conditions as experienced and 
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determined by actors in the system (e.g. productivities and profits used to drive the models are not the same as those available 

to real-world land managers).  

Fundamentally, no single modelling paradigm is ‘correct’, and future developments are likely to invalidate even those 395 

assumption that appear safest at the present time. The greatest value of these two approaches may therefore lie in their ability 

to provide alternatives. This value is realised only in the (currently rare) cases when analogous models with similar driving 

conditions but different underlying assumptions, such as those used here, are available for comparison (Müller et al., 2014; 

Polhill & Gotts, 2009; Rosa, Ahmed, & Ewers, 2014). Further benefits can be drawn from combinations of the two modelling 

approaches, although this usually involves an artificial choice of systems or scales at which top-down optimisation and bottom-400 

up emergence are assumed to occur (e.g. Castella and Verburg 2007; Verburg and Overmars 2009; Houet et al. 2014). In 

addition, the benefits of using each type of model can be maximised (and the differences between them potentially minimised) 

by flexible multi-criteria optimisation on one hand and behavioural uncertainty analysis on the other (Brown, Holzhauer, et 

al., 2018; Fonoberova, Fonoberov, & Mezić, 2013; Ligmann-Zielinska, Kramer, Cheruvelil, & Soranno, 2014; Newland et al., 

2018). Nevertheless, substantial efforts to increase both the diversity and coherence of land system modelling are likely to be 405 

necessary if these important gains are to be made.    

 

5. Conclusions 

In taking two particular models as representative of major modelling paradigms we can only make draw tentative conclusions 

about the consequences of those paradigms for model outputs. Nevertheless, we find large, consistent differences between the 410 

models that are robust to known model sensitivities and directly traceable to basic assumptions. In particular, we find that the 

‘bottom-up’ agent-based model produces more heterogenous, multifunctional land systems than the ‘top-down’ model, as 

expected. We also find that the models respond most strongly to different scenario conditions, despite both being most sensitive 

to climatic effects on yields and socio-economic effects on demand levels. In particular, the constrained optimisation of the 

top-down model is able to capitalise on increases in productivity by utilising the best land, while the agent-based model is 415 

limited by inertia and path-dependency in simulated conditions. Conversely, reductions in productivity, including through 

socio-economic disruption, prompt widespread extensification of land management in the bottom-up model that is not 

replicated in the top-down model, as simulated agents diversify and rely on more varied or even non-economic benefits. 

Currently these two modelling paradigms are far apart in their projections of future change, with highly divergent outcomes 

for European land use and food supplies. This suggesting suggests huge uncertainty about the role the land system can and 420 

will play in societal challenges such as climate change and biodiversity loss, especially if impacts of large-scale events such 

as pandemics and political disruption are considered. However, this comparison suggests that such divergence, and hence 

uncertainty, rests largely on a few key features: in particular the assumed extent of non-economic decision-making, the relative 

importance that society places on cultural and regulating ecosystem services compared to provisioning, and the likely rate of 

land use change, including abandonment and intensification, as outcomes of human decisions. Our findings show the 425 
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importance of communicating these assumptions to model users, but also of identifying better-supported and more generally-

accepted positions that narrow the gap between the current extremes of dominant paradigms.  

Code and data availability 

The full model code and data for CRAFTY-EU are available for download and visualisation via 

https://landchange.earth/CRAFTY 430 

The IAP is available for interactive online runs at http://www.impressions-project.eu/show/IAP2_14855 but model code is not 

available because the IAP utilises meta-models of several other stand-alone models under different ownership. 
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 SSP1 
socio-economic conditions 

gradually improve through 

economic growth, stable 

government, high social 

cohesion and international 

cooperation 

SSP3 
social and economic 

conditions worsen, with 

limited and ineffective 

political responses 

SSP4 
large economic inequalities and 

fluctuations develop, low social 

cohesion, but high 

technological investment & 

environmental protection 

SSP5 
emphasis on social and 

economic development, 

fossil fuel exploitation 

and technology 

RCP2.6 
Very low 

climate 

change 

IAP simulates more 

intensive and pastoral 

agriculture and very 

little forest. 

CRAFTY increases 

forest at the expense 

of intensive 

agriculture. Under-

supply of timber 

(especially in the 

IAP) and under-

supply of food (only 

in CRAFTY). 

 Widespread agricultural 

extensification and 

abandonment in the IAP, 

and more forestry, but 

with under-supply of 

timber (agriculture shifts 

to optimal areas). More 

intensive agriculture in 

CRAFTY, but with under-

supply of food 

(agriculture persists in 

less optimal areas). 

 

RCP4.5 
Intermediate 

climate 

change 

Small differences, 

with the IAP having a 

slight shift towards 

pastoral and very 

extensive agriculture, 

with less forest. 

Limited change in 

the IAP but dramatic 

loss of intensive 

management in 

CRAFTY, along with 

fragmentation, 

temporal dynamism 

and supply shortfalls. 

Widespread agricultural 

abandonment in the IAP. 

CRAFTY supply levels 

exceed demand 

 

RCP8.5 
High climate 

change 

 Limited change in 

both models, with 

more extensification, 

forest and 

multifunctional 

 Widespread 

agricultural 

extensification and 

abandonment in the 

IAP. Limited 
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production in 

CRAFTY. 

change in 

CRAFTY, with 

supply levels 

exceeding demand. 
 

Table 1: Climatic and socio-economic scenario identities, summaries, and main findings. 600 
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Socio-economic scenario SSP1 SSP3 SSP4 SSP5 

Climate change (RCP pairing) 
Very low / 

intermediate 

Intermediate/ 

high 

Very low / 

Intermediate 
High 

EU population change (% change from 

2010) 
0.4 -38 -22 47 

Food imports (absolute % change) -13 -5 4 18 

Increase in arable land used for biofuel 

production (% change from 2010) 
9 19 9 14 

Land allocated to agri-environment 

schemes (e.g. set-aside, buffer strips, 

beetle banks) (%; baseline is approx. 

3%) 

6 2 5 0 

Change in dietary preferences for beef 

and lamb (% change from 2010) 
-82 0 0 53 

Change in dietary preferences for 

chicken and pork (% change from 2010) 
-34 35 35 74 

Change in agricultural mechanisation 

(% change from 2010) 
133 -35 133 133 

Change in agricultural yields (% change 

from 2010) 
-19 -35 89 89 

Change in irrigation efficiency (% 

change in water efficiency relative to 

2010); -50% = water halved per unit 

food 

-57 53 -57 -57 

Reducing diffuse source pollution from 

agriculture by reduced inputs of 

fertilisers and pesticides (higher value = 

less inputs) (absolute value relative to 

optimum nitrogen) 

1.9 0.9 0.9 0.9 
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Water savings due to behavioural 

change (% change from 2010) 
52 0 0 -30 

Water savings due to technological 

change (% change from 2010) 
45 0 29 29 

GDP (% change from 2010) 259 48 200 724 

Change in energy price (oil; % of 2010) 162 350 267 75 

Household externalities (preferences for 

lived environment: 1 = Urban; 5 = 

Country). Baseline = 3 

5 4 2 5 

Compact vs sprawled development (Low 

= Sprawl; Medium or High = Compact); 

Baseline = Med 

High Low Medium Low 

Preference to live by the coast (Low – 

High); Baseline = Med 
Low Low Med High 

 

Table 2a: Details of the socio-economic scenarios (Shared Socioeconomic Pathways, SSPs) as simulated by the IAP. 610 

Values are shown for the 2080s timeslice. Table adapted from Harrison et al. 2019. 

 

 

Emission scenario RCP2.6 RCP4.5 RCP8.5 

Climate change Very low Intermediate High 

GCM EC_Earth HadGEM2-ES HadGEM2-ES 

RCM RCA4 RCA4 RCA4 

GCM sensitivity Intermediate High High 

European ΔT / ΔPr 1.4°C / 4% 3.0°C / 3% 5.4°C / 5% 

 

Table 2b: Details of the climate scenarios used in both models. RCP denotes Representative Concentration Pathway, 615 

GCM: General Circulation Model, RCM: Regional Climate Model. Change in temperature (ΔT) and change in 

precipitation (ΔPr) are relative to 1961-1990, and affect productivities as simulated by meta-models in the IAP, which 

are then fed into the alternative land use models (Fig. 1). Further details are available in Harrison et al. (2019). 
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 IAP CRAFTY-EU Key differences 

Modelling 

paradigm 

‘Top-down’ model that 

represents land use change 

as single systemic 

response to drivers 

‘Bottom-up’ model that represents 

land use change as emergent from 

responses of multiple entities 

within the system  

Entirely distinct 

conceptualisation of 

land use change within 

shared reductionist 

(modelling) approach 

Theoretical 

basis 

Consistent with positivist 

and classical economic 

theories of system-level 

dynamic equilibrium 

under exogenous pressures 

(Brown et al. 2016) 

Consistent with methodological 

individualism and subjective 

expected utility theory of decision-

making given uncertainty and non-

economic motivations (Murray-

Neither model explicitly 

theory-driven but are 

consistent with opposing 

theoretical movements.  
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Rust et al. 2014; Brown et al. 

2016) 

Land 

allocation 

Optimisation to satisfy 

food demand, subject to 

constraints imposed by 

biophysical and socio-

economic conditions 

Individual agent decisions based 

on competition to satisfy demands 

for ecosystem services 

Land allocation is 

imposed in the IAP but 

emergent in CRAFTY, 

and therefore more 

variable 

Variables 

considered 

(inputs) 

Defined in Table 2 Potential and realised ES provision 

levels (derived from the IAP and 

dependent on the variables in Table 

2) and agent abilities to produce 

ecosystem services, sensitivities to 

capital levels, willingness and 

time-dependent probability of 

abandoning their cells or 

relinquishing to other land uses 

when at a competitive 

disadvantage, and abilities to 

search for new cells to take over.   

Most inputs are shared 

directly or indirectly, 

although the IAP more 

explicitly includes 

biophysical conditions 

and CRAFTY human 

behaviour 

Mathematical 

characteristics 

Produces single, optimal 

results (subject to 

constraints) at each 

timeslice 

Stochastic and path-dependent; 

produces sub-optimal and variable 

results 

The IAP is more 

mathematically 

constrained, but 

complexity of ‘option 

space’ makes results of 

both models difficult to 

anticipate 

Evaluation Extensively evaluated, 

including uncertainty 

analyses and comparison 

to independent data and 

other models (e.g. Brown 

et al. 2014; Harrison et al. 

2015, 2016, 2019; Kebede 

et al. 2015; Holman et al. 

2017a, b; Fronzek et al. 

2019) 

Extensively evaluated, including 

uncertainty analyses and 

comparison to independent data 

and other models (Alexander et al., 

2017; Brown, Holzhauer, Metzger, 

Paterson, & Rounsevell, 2018; 

Brown, Murray-Rust, et al., 2014; 

Holzhauer, Brown, & Rounsevell, 

2019; Seo, Brown, & Rounsevell, 

2018) 

No significant 

difference, noting that 

neither models targets 

accurate reproduction of 

observed changes 

Uncertainty & 

sensitivity 

Well-understood, with 

land use outcomes most 

sensitive to temperature, 

precipitation, yields and 

import levels (Kebede et 

al. 2015) 

Well-understood, with land use 

outcomes most sensitive to yields 

(including climate effects), import 

levels and (to lesser extent) agent 

behaviour (Brown et al. 2018) 

CRAFTY has 

sensitivities to 

behavioural parameters 

not present in the IAP 

Spatial 

resolution 

10 arcminutes (approx. 

16km in Europe), with up 

to 40 forms of land use 

10 arcminutes (approx. 16km in 

Europe), with continuous variation 

Identical resolution for 

defined classes, but 

different forms and 
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and management 

proportionally distributed 

within each cell 

in characteristics within 17 forms 

of land use and management 

extents of variation 

within those classes 

Temporal 

resolution 

Timeslices: Baseline, 

2020s, 2050s, 2080s 

Annual 2016-2086 CRAFTY has higher 

temporal resolution 

Principal uses Research, education, 

capacity building (students 

and stakeholders) 

Research, education CRAFTY less used in 

stakeholder engagement 

Table 3: Summary comparison of the two models used in this study across a range of characteristics, many of which 

stem from the distinct modelling paradigms used. Further details are provided in the text, and references cited there. 

 

 625 

 

 

Land use classes for comparison Explanation 

Intensive agriculture Intensive forms of agriculture primarily dedicated to crop production but including 

some grassland 

Extensive agriculture Extensive forms of arable and pastoral agriculture 

Pastoral agriculture Dedicated and primarily intensive pastoral agriculture 

Very extensive management Management for any service that is of the lowest intensity and leaves land in a near-

natural state 

Forestry Active management for timber extraction and other forest services 

Other/no management Land that is not actively managed for agriculture or forestry, but which can have a 

range of natural or human-impacted land covers 
Table 4: Land use classes used in the comparison and their composition. Derivations from the full range of CRAFTY and IAP classes 

are given in Table A1. 
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Figure 1: Simplified schematic showing the structure of the IAP in terms of its component metamodels, and its 

relationship to CRAFTY in this study. Results presented in this study are taken from the alternative land allocation 635 

models (yellow), and results from the biodiversity model are not used. The information transferred from the IAP to 

CRAFTY utilises all of the inputs to SFARMOD and describes initial and scenario-dependent conditions affecting 

agent decision-making in CRAFTY. 
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 640 

 

 

 
Figure 2: Simulated land use classes for each scenario in each model in the mid-2080s. Bars show the number of cells occupied by 

each class, out of the total number of 23,871 cells (y-axes). Climate scenarios (RCPs) are arranged in rows. The baseline is identical 645 
in both models and so is only shown once.   
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 650 

Figure 3a: Supply levels of services that both models attempt to satisfy demand for. Supply levels are shown, in for each scenario, 

and . Ddemand levels (derived from the IAP) are indicated by a red line for each service in each scenario. IAP supplies are unequal 

to demand levels only where the IAP reports an underproduction of a particular service (in these results, timber in SSP1 simulations). 

A supply value of 1.0 (y-axis) is equal to baseline supply. 

 655 
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Figure 3b: Supply levels of services that only CRAFTY attempts to satisfy demands for (while the , but the IAP does not). IAP supply 

levels here are calculated using CRAFTY production functions and then set as demands for CRAFTY. Demand levels are therefore 

equal to IAP supply by default and are not indicated by a line as in Fig. 3a. A supply value of 1.0 (y-axis) is equal to baseline supply. 660 
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Fig 4: Geographical Territorial differences between the models’ results across all scenarios, at NUTS2 level. Colours 

identify the most over-represented land use type in each region in the CRAFTY and IAP results, relative to the result 

of the other model (i.e. the land use with the biggest difference in occurrence in that region). Grey is shown where no 670 

land use type has an over-representation of more than 5% of the region’s cells. Scenario-specific results are shown in 

Fig. B1 (Appendix B). 
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Fig. 5: Cell-level and EU-level results for the RCP4.5-SSP3 scenario with and without alternative parameterisations 

designed to introduce analogous driving conditions to each model in turn. The IAP experiment is shown on the top row, 

and the CRAFTY experiment on the bottom. The original IAP result (top-left) moves towards the original CRAFTY 

result (bottom-right) with a 40% increase in imports allowing less production of food within Europe, resulting in 680 

widespread land abandonment in the new IAP result (top-right). The original CRAFTY result (bottom-right) moves 

towards the original IAP result (top-left) with a 10-fold increase in food prices, used to stimulate production, resulting 

in far more intensive agriculture in the new CRAFTY result (bottom-left). In neither case do the new results reproduce 

the original extremes. 
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Appendix A: Land use class composition 

Ecosystem services production in CRAFTY is derived from that of the IAP, which uses a suite of meta-models to simulate 

production levels as described in (Paula A. Harrison et al., 2019), and is presented in detail in Brown et al. (2019). CRAFTY-700 

EU also shares a baseline map with the IAP, with the aggregated land use classes used here derived from CRAFTY’s Agent 

Functional Types (AFTs) and the IAP’s land use classes as described in Table A1. 

 

Agent Functional Type IAP Class  Aggregated class 

Intensive arable farming Intensively farmed Intensive agriculture 

Intensive agro-forestry 

mosaic 

Combinations of: Intensively farmed, intensively grass, 

managed forest 

Intensive farming Combinations of: Intensively farmed, intensively grass 

Mixed farming Combinations of: Intensively farmed, intensively grass, 

extensively grass 

Managed forestry Managed forest Forestry 

Mixed forest Combinations of: Managed forest, unmanaged forest 

Mixed pastoral farming Combinations of: intensively grass, extensively grass, very 

extensively grass 

Extensive agriculture 

Extensive agro-forestry 

mosaic 

Combinations of: extensively grass, very extensively grass, 

managed forest 

Peri-urban Any combination with > 40% urban area 

Intensive pastoral farming Intensively grass Pastoral agriculture 

Extensive pastoral farming Extensively grass 

Very extensive pastoral 

farming 

Very extensively grass Very extensive 

management 

Multifunctional 4 or more land uses in uncommon combination 

Minimal management Combinations of: very extensively grass, unmanaged forest, 

unmanaged land 

Unmanaged land Unmanaged land Other/no management 

Unmanaged forest Unmanaged forest 

Urban Urban 
 

Table A1: The composition of the aggregated land use classes used here in terms of CRAFTY-EU’s Agent Functional Types (AFTs) 705 
and the IAP’s land use categories. In any case where the given IAP categories occupy more than 70% of a cell, that cell is allocated 

to the corresponding AFT in the baseline map of CRAFTY-EU, except in the case of the Peri-urban AFT, for which the threshold (of 

urban area) is 40%. The service production potentials of each AFT are calibrated to approximately match those within the IAP 

classes that constitute them, so that given the same productivities in a cell, the same levels of services will be produced. Names are 

therefore assigned in both cases on the basis of dominant land uses and do not account for minor variations in land use and 710 
production within them. 
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Appendix B: Full Complete geographical territorial scenario results 

 

 

Fig B1: Spatialised differences between the models’ results for each scenario, at NUTS2 level. Colours identify the most 720 

over-represented land use type in each region in the CRAFTY and IAP results, relative to the result of the other model. 

White is shown where no land use type has an over-representation of more than 5% of the region’s cells.  

 


