
Dear Dr Didier Vega-Oliveros and Dr Benjamin L. Ruddell, 
 
Thank you very much for your very helpful and constructive comments. Here, you can find 
point by point replies to your comments and suggestions.  

Reviewer comments in: Black 

Our reply in:  Blue 

Review	by	Dr Didier Vega-Oliveros:	

1. The	work	has	its	merits,	is	interesting	and	relevant	for	the	area,	with	the	potential	of	future	
works	and	interdisciplinary	developments.	The	manuscript	is	clear	and	easy	to	follow,	but	
quite	extensive,	in	which	the	structure	and	order	of	the	sections	could	be	improved.	 

Thank	you	for	your	nice	comment.	We	hope	that	our	application	of	 information	theory	
methods	on	climate	data	will	open	up	new	perspectives	in	the	climate	science	community.		

We	agree	that	our	manuscript	 is	a	bit	extensive.	However,	as	our	work	applies	various	
methods	from	information	theory	to	climate	data,	we	had	to	discuss	our	methods	in	detail	
and	test	them	before	applying	to	observations,	reanalysis,	GCMs,	and	RCMs	for	the	benefit	
of	readers	who	are	new	to	information	theory.	Nevertheless,	following	your	suggestions,	
we	moved	 few	 sentences	 about	 information	 theory	 from	 Introduction	 to	Methodology	
Section	 and	 also	 some	 idealized	 test	 cases	 to	 Appendix	 Section	 as	 suggested	 by	 Dr	
Benjamin	 Ruddell	 (details	 of	 the	 changes	 are	 provided	 in	 our	 replies	 to	 your	 specific	
comments).			

2. First,	in	the	Introduction,	the	sentences:	"Shannon	(1948)	first	introduced	the	concept	of	
information	entropy,	which	quantifies	the	average	uncertainty	of	a	given	random	variable.	
The	IE	between	two	subsystems	X	and	Y	can	be	understood	as	the	average	uncertainty	
reduction	about	X	 in	knowing	Y	or	vice	versa."	 and	all	 the	part	of	 "The	 IE	 in	a	 system	
composed	 of	 two-source	 systems	 Y	 and	 Z	 ...	 alone	 but	 by	 jointly	 knowing	 their	 states	
together."	are	adequate	to	the	Material	and	Methods	section	than	the	Introduction.	Please,	
consider	moving	these	parts	to	the	method	Section	and	refer	to	it	in	the	Introduction	if	
necessary.	 

We	moved	the	lines	you	stated	to	the	Methodology	Section	2	(changes	are	highlighted	with	
blue/red	 color	 in	 edited	 manuscript	 attached	 below	 for	 reviewers	 quick	 reference).		
However,	we	had	retained	some	important	brief	explanations	of	information	theory	in	the	
Introduction	Section	 for	 the	 readers	 to	have	a	quick	understanding	of	 the	 information	
exchange	concepts.	

3. This	reviewer	also	suggests	moving	the	Material	and	Method	sections	to	be	the	last	part	
of	the	manuscript	and	promptly	presenting	the	results	of	the	work.	Besides,	the	authors	
can	move	some	broadly	and	detailed	concepts	to	the	supplemental	material.	 

Thank	you	for	the	suggestion.	We	would	like	to	start	with	the	Methodology	Section	as	it	
helps	the	reader	to	follow	the	new	metrics	from	information	theory	before	reading	the	
results	from	the	idealized	as	well	as	the	climate	applications.	Hence,	we	maintained	the	
same	order	in	our	revised	manuscript. 

4. Before	 recommending	 the	 article’s	 acceptance,	 there	 is	 a	 further	 analysis	 that	 this	
reviewer	will	ask	the	authors.	Could	you	please	run	the	same	analysis	 in	observational	



data	for	the	same	regions	but	instead	considering	an	outside	temporal	season	(e.g.,	DJFM)?	
In	this	way,	we	can	get	more	insides	and	understanding	of	the	proposed	method	and	how	
well	are	the	behaviors	and	results.	For	example,	if	one	wants	to	check	other	regions	and	
phenomena,	 to	 discover	 new	 dynamical/physical	 connections,	 it	 would	 be	 feasible	 to	
apply	this	method	and	found	if	there	are	pieces	of	evidence	of	physical	connection	or	not,	
(like	 can	be	done	with	many	other	 approaches	 and	knowing	 their	drawbacks).	With	 a	
negative	test	in	real	data,	the	authors	can	show	the	robustness	of	their	method	and	the	
ability	to	be	used	to	test	other	systems.	 

We agree with your point of concern on testing the methods outside the seasons (DJFM) 
where the IOD and ENSO combined influence is not observed. As per your suggestion, 
we have tested our methods over the observational data for the months of DJFM and as 
expected, the ENSO and IOD do not synergistically contribute to the rainfall for the 
months of DJFM (we added this line in our revised manuscript). Here are our results 
and detailed discussion.  

Figure R1 represents the EOF modes for ENSO and IOD over the Pacific and Indian 
Oceans respectively. From the literature, it is known that the ENSO mode over the 
Pacific Ocean peaks at the end of the year (1), while the IOD ends in November and 
starts again in May(2). From the figures R1-R3, it is seen that the ENSO SST anomalies 
are clearly formed.  The IOD SST anomalies for the months of DJFM are not well 
formed as compared to the anomaly structure seen for the month of JJAS (Fig. 3 in our 
manuscript). These results fit well with the existing literature.  
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Fig.	R1:		EOF2	patterns	of	SST	anomalies	(DJFM)	in	the	Indian	ocean	and	EOF1	patterns	in	the				
Pacific	ocean	for	observed	HadISST	and	NCEP	reanalysis. 
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Fig.	R2:		SST	composites	for	various	phases	of	IOD	and	ENSO	events	for	the	months	of	DJFM	for	
HadISST	observational	data. 



 

 

 

 

 

 

 

 

Figure R4 shows that the linear fit between the Indian Ocean PCs of EOF-2 obtained from the 
HadISST against the observed IOD index has a correlation of about 0.51, and the correlation of 
NCEP reanalysis SST with the observed IOD index is 0.12. The NCEP reanalysis data for the 
months of DJFM is unable to replicate the IOD structures as compared to the observed 
HadISST. However, the correlation of both data sets with the IOD index is higher in JJAS 
compared with the DJFM. This can be attributed to the weak amplitude of IOD during DJFM 
seasons compared to JJAS.  The PCs associated with the first EOF over the Pacific Ocean are 
highly correlated against the observed Niño 3.4 index with a correlation value of 0.86 for both 
data sets indicating that the EOF1 captures the ENSO like variability. The correlation for the 
months of DJFM is greater than the JJAS months. This might be due to the ENSO peak in the 
months of DJFM. The variability of the IOD and ENSO modes for the months of DJFM is also 
consistent with the literature(3). 

 

 

 

 

 

 

 

 

 

 

 

60 100−2
0

0
20

NCEP (IOD+ve)

 ° E
 °

 N

−1.0

−0.5

0.0

0.5

1.0

60 100−2
0

0
20

NCEP (IOD−ve)

 ° E

 °
 N

−1.0

−0.5

0.0

0.5

1.0

150 200 250−4
0

40

NCEP Reanalysis (El Nino)

 ° E

 °
 N

−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5

150 200 250−4
0

40

NCEP Reanalysis (La Nina)

 ° E

 °
 N

−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5

Fig.	R3:		SST	composites	for	various	phases	of	IOD	and	ENSO	events	for	the	months	of	DJFM	for	
NCEP	Reanalysis	data. 

−1 0 1 2 3

−0
.2

0.
0

0.
2

Indian Ocean (DJFM)

DMI−index

Ha
dS

ST
−P

C2

= 0.51*

−1 0 1 2 3

−0
.2

0.
0

0.
2

Indian Ocean (DJFM)

DMI−index

NC
EP

 S
ST

−P
C2 = 0.2

5 10 15 20

0
20

40

Indian Ocean (DJFM)

Mode number

Ha
dI

SS
T 

va
ria

nc
e(

%
)

5 10 15 20

0
20

40

Indian Ocean (DJFM)

Mode number

NC
EP

 S
ST

 v
ar

ia
nc

e(
%

)

−2.0 −1.0 0.0 1.0

−0
.2

0.
0

0.
2

Pacific Ocean (DJFM)

Nino−3.4 index

Ha
dI

SS
T−

PC
1 R = 0.86*

−2.0 −1.0 0.0 1.0

−0
.2

0.
0

0.
2

Pacific Ocean (DJFM)

Nino−3.4 index

NC
EP

 S
ST

−P
C1 R = 0.86*

5 10 15 20

0
10

20
30

Pacific Ocean (DJFM)

Mode number

Ha
dI

SS
T 

va
ria

nc
e(

%
)

5 10 15 20

0
10

20
30

Pacific Ocean (DJFM)

Mode number

NC
EP

 S
ST

 v
ar

ia
nc

e(
%

)

Fig.	R4:			Regressions	of	PCs	obtained	from	their	respective	EOFs	over	
the	 Indian	 and	 Pacific	 Oceans	 with	 the	 observed	 IOD	 and	
Nino	3.4	Index	and	their	associated	percentage	contribution	
to	the	total	variance	for	HadISST	and	NCEP	reanalysis	SST	
data	sets	for	the	months	of	DJFM	



 

 

 

 

 

 

	

	

	

	

Figure R5 represents the anomalies constructed by subtracting the Indian subcontinent 
climatology mean DJFM rainfall with the rainfall months associated with various phases of 
IOD and ENSO. The anomaly composites with El-Niño (La-Niña) events show that ENSO 
events influence the precipitation in winter over the northwest India. This influence is attributed 
to the intensification of the western disturbances over the northwest India due to the baroclinic 
response(4).  The composites of precipitation anomalies during the IOD+ve events show more 
than normal rainfall near the east coast and central India for the DJFM seasons for GPCC and 
APHRODITE datasets. The Influence of IOD on the winter rainfall over India is less studied 
compared to the JJAS rainfall. However, among the limited studies Kripalani and Kumar(5) 
2004, showed the influence of IOD on the North East Monsoon rainfall during the months of 
October , November and December with IOD+ve events leading to more rainfall over Southern 
India and also towards North (see Fig. 9 in Kripalani and Kumar, 2004(5)). The IOD+ve influence 
also show positive rainfall anomaly in our study and this needs a detailed investigation on the 
process leading to it. It is worth to note here that the rainfall during DJFM is less than rainfall 
amount in JJAS shown in the manuscript.  
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Fig.	R5:			Total	precipitation	anomaly	(mm/month)	composites	(DJFM)	over	the	Indian	subcontinent	for	
El-Niño,	La-Niña,	positive	IOD	and	negative	IOD	events	observed	in	GPCC,	APHRODITE	and	NCEP	
reanalysis	data	sets	for	the	period	of	1951-2005.	 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure R6 shows the information exchange (IE) from the IOD to precipitation i.e., 
I(PREC;IOD), ENSO to precipitation i.e., I(PREC;ENSO), the two-source IE i.e., 
I(PREC;IOD,ENSO) together with the NET SYNERGY for the observations GPCC, 
APHRODITE, and the NCEP reanalysis data sets under linear approximation. The observed IE 
from IOD to total precipitation i.e., I(PREC;IOD) shows that the IOD transmits information to 
the north-central sector of the Indian subcontinent in the GPCC and APHRODITE data sets. 
The location at which the IE from IOD to the precipitation over the Indian subcontinent matches 
the significant rainfall anomalies. This is also true in the case of ENSO, where it influences the 
north-west sector of India. The net synergy plot show that the IOD and ENSO do not share any 
net synergistic information over the subcontinent. This is expected as the IOD and ENSO are 
known to act mutually  in JJAS than the DJFM season. Our results reiterate the same here. 

	Minor comments/Suggestions 

5. "provides	an	lowerbound	for..."	=>	"provides	a	lowerbound	for..." 

Rephrased as per the suggestion. 

6. In	lines	417	and	422,	is	it	IE(...)	or	should	be	I(...)?	 

Thank you, as you mentioned it should be I(..).  We changed it in the manuscript. 

7. In	lines	358	and	429,	why	the	authors	did	not	include	these	figures	in	the	Supplemental	
material?	 
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Fig.	R6:		Information	exchange	from	I(PREC;IOD),	I(PREC;ENSO),	two-source	information	exchange	I(PREC;	
ENSO,IOD)	and	NET	SYNERGY	×10−2	nats	for	observational	data	sets	GPCC,	APHRODITE	and	NCEP	
reanalysis.	Only	significant	values	at	95%	confidence	intervals	are	plotted.	 



We tested the Linear, Kraskov and Kernel estimators for the idealized and climate 
applications. Since our manuscript is quite extensive and furthermore the climate 
application is near Gaussian, we showed the Linear estimator in the manuscript (the 
linear estimator is robust than the non-linear Kraskov or Kernel estimator as the non-
linear estimators depend on the free tuning parameters in the estimation of PDF 
(Pothapakula et al., 2019)). But now we have included additional figures in the 
supplementary material (Fig.S4, Fig.S5, FigS11, Fig.S12, Fig.S13). We shall soon make 
our scripts available in GitHub. 
 

8. About	the	estimator	K-nearest	neighbors	(called	here	as	Kraskov),	how	was	the	approach	
employed	to	find	the	best	k	by	the	authors?	Did	they	try	all	possible	values	and	choose	the	
best	one?	How	did	they	define	or	evaluate	the	best	k?	 

Thank you for raising this important concern. Indeed the best k-parameter selection is 
very important for the Kraskov as the kernel width for the Kernel estimator. In our 
manuscript introduction Section we have mentioned the issues about the challenges 
involved in the estimation of information theory metrics with Kraskov, Kernel and 
Binning estimators for continuous data. We referred our earlier publication in Entropy 
which is also featured as a cover story about the quantification of information exchange 
in idealized and climate applications (https://www.mdpi.com/1099-4300/21/11/1094). 

We proposed rigorous testing of the k-nearest and kernel width for consistency of the 
results in our previous publication. We followed similar principle in the current 
manuscript, for e.g., in the results section of idealized linear system, we mentioned that 
our free parameters i.e., kernel width and k-nearest neighbors are tested and tuned for 
consistent results with the test ranging from (20-60 neighbors) as well as (0.5-2 kernel 
widths). Similarly all our results are tested and tuned for consistent results. In addition, 
as the climate system data used in this study is near Gaussian, we also used robust linear 
estimator along sides with non-linear Kraskov and Kernel estimators. 

In	 terms	of	 code	availability,	 it	 is	a	big	plus	and	highly	 recommended	 that	 the	authors	
publicly	available	their	code	in	open	source	platforms	(like	GitHub,	for	instance).	There-	
fore,	other	scholars	and	the	community	can	use	it	to	replicate	the	conclusions	and	compare	
it	with	their	methods	in	future	works.	 

Thank you, we agree. We will upload the codes in GitHub for public. 

References: 
1. https://www.ncdc.noaa.gov/teleconnections/enso/enso-tech.php 
2. Ratnam JV, Dijkstra HA, Behera SK. A machine learning based prediction system for 

the Indian Ocean Dipole. Sci Rep. 2020;10(1):284. Published 2020 Jan 14. 
doi:10.1038/s41598-019-57162-8 

3. Saji, NH., Goswami, BN., Vinayachandran PN., Yamagata T.: A dipole mode in the 
tropical Indian Ocean, Nature, 401,360–363,  https://doi.org/10.1038/43854, 1999. 
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Influencing Northwest India Winter Precipitation in Recent Decades?. J. Climate, 23, 
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5. Kripalani RH, Kumar P. 2004. Northeast monsoon rainfall variability over south 
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Review	by Dr Benjamin L. Ruddell:	

 
Dear Dr Benjamin Ruddell, 
 
Thank you very much for the constructive review and your time for reviewing our manuscript 
at these difficult times of COVID-19 crisis. Here you can find our point by point reply to your 
suggestions. Thank you once again. 
 

Reviewer comments in: Black 

Our reply in:  Blue 

1. Overall, this is a very interesting manuscript and deserves to be published with minor 
revisions. The technical methods are sound at the level of detail I am able to review 
them. The possible improvements lie in the communication and interpretation of the 
results.  

Thank you very much for your suggestions and your constructive comments. We have 
addressed your concerns point by point. 

2. I suggest shortening the manuscript dramatically, especially by moving to a supplement 
the early portions of the results and methods where the authors prove that the metrics 
capture the kind of information content and synergy that is relevant to this climate 
coupling. We already know these metrics work, so your validation is important as due 
diligence but not as an important result of the paper, in my opinion.  

            Indeed we agree that our manuscript is a bit extensive as we have tested three estimators 
on observation data, reanalysis data, three GCMs,  and three RCM simulations. We 
aimed for a robust and extensive research on the information exchange in the 
observations along with the validation of GCM and RCM. Hence, the manuscript was 
extensive. 

But, following your suggestions, we have moved the non-linear idealized system results 
and discussion part to the Appendix Section of the revised manuscript. However, we 
have retained only one example of the idealized test case in the manuscript as we believe 
it helps the reader to familiarize the concepts of synergy and information exchange. 

3. I suggest considering and including more concepts and language about coupling, and/or 
causation (coupling is better in my opinion), as opposed to information con- tent and 
synergy. Coupling, where appropriately interpretable, is a more intuitive and useful 
concept that is much more broadly understood than synergy or information con- tent, 
and is better communication. I believe you are talking about a physical coupling 
between oceanic processes and the monsoon here, at least in part. Some of my papers 
get into process coupling concepts and language, including the original Ruddell and 
Kumar 2009 in Water Resources Research.  



Thank you very much for this suggestion. We had been pondering on the use of 
language concerning the results from Information theory. In the climate application, we 
have used data from the GCM which are coupled to the ocean model. So, we applied 
information theory metrics to the coupled GCM, and hence we believe using the word 
“coupling” for the interpretation of Information exchange confuses the readers more 
often with the coupling of climate models. Therefore, as the current manuscript 
extensively uses/extends methods from our earlier manuscript 
(https://www.mdpi.com/1099-4300/21/11/1094), which discusses the methodology in 
detail, we prefer to be consistent with our terminology. Hence we have used information 
exchange and synergy in our manuscript. However, as you suggested we tried to give a 
plausible physical explanation of what synergy means in our interpretation of the results 
with IOD, ENSO on the Indian Summer Monsoon. 
 

4. The	major	change	I’d	like	to	see	is	the	inclusion	of	more	interpretation	of	these	results	in	
terms	of	physical	atmospheric	process	dynamics.	What	does	 this	 information	con-	 tent	
and	synergy	mean,	physically?	Can	you	confirm	or	reject	a	hypothesis	about	the	processes	
that	are	are	causing	it,	using	these	information	statistics?	What	does	this	mean?	Actually	
testing	a	hypothesis	would	be	the	best,	but	more	discussion	in	the	conclusions	is	also	very	
helpful.	 

We	agree	with	your	concern	regarding	the	physical	atmospheric	process	dynamics.		

We	plotted	the	moisture	transport	anomalies	(Fig.	6	in	the	manuscript)	during	the	ENSO	
and	 IOD	 phases	 over	 the	 Indian	 domain.	 We	 observed	 that	 the	 anomalous	 negative	
moisture	flux	during	the	El- Niño	is	compensated	with	the	positive	moisture	flux	anomaly	
by	IOD+ve	especially	in	central	India,	and	vice-versa	during	the	La- Niña	and	IOD-ve	events.	
This	shows	that	both	the	IOD	and	ENSO	states	should	be	known	together	to	explain	the	
variability	 of	 the	 central	 Indian	 subcontinent	 rainfall.	 Hence	 we	 see	 the	 synergetic	
influence.	We	explained	this	in	detail	in	lines	376-391.	
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Abstract. El-Niño southern oscillation (ENSO) and Indian Ocean Dipole (IOD) are two well-know temporal oscillations

in the sea surface temperature (SST), which both are thought to influence the interannual variability of the Indian Summer

Monsoon Rainfall (ISMR). Until now, there has been no measure to assess the simultaneous information exchange (IE) from

both ENSO and IOD to ISMR. This study explores the information exchange from two source variables (ENSO and IOD) to

one target (ISMR). First, in order to illustrate the concepts and quantification of two-source IE to a target, we use idealized5

test cases consisting of linear as well as non-linear dynamical systems. Our results show that these systems exhibit net synergy

(i.e., the combined influence of two sources on a target is greater than the sum of their individual contributions), even with

uncorrelated sources in both the linear and non-linear systems. We test IE quantification with various estimators (the Linear,

Kernel, and Kraskov estimators) for robustness. Next, the two-source IE from ENSO and IOD to the ISMR is investigated in

observations, reanalysis, three global climate model (GCM) simulations, and three nested, higher-resolution simulations using10

a regional climate model (RCM). This (1) quantifies IE from ENSO and IOD to ISMR in the natural system, and (2) applies

IE in the evaluation of the GCM and RCM simulations. The results show that both ENSO and IOD contribute to the ISMR

interannual variability. Interestingly, significant net synergy is noted in the central parts of the Indian subcontinent, which is

India’s monsoon core region. This indicates that both ENSO and IOD are synergistic predictors in the monsoon core region.

But, they share significant net redundant information in the southern part of Indian subcontinent. The IE patterns in the GCM15

simulations differ substantially from the patterns derived from observations and reanalyses. Only one nested RCM simulation

IE pattern adds value to the corresponding GCM simulation pattern. Only in this case, the GCM simulation shows realistic

SST patterns and moisture transport during the various ENSO and IOD phases. This confirms, once again, the importance of

the choice of the GCM in driving a higher-resolution RCM. This study shows that two-source IE is a useful metric that helps

in better understanding the climate system and in process-oriented climate model evaluation.20

1 Introduction

The South Asian Monsoon is considered as a large-scale coupled air-sea-land interaction phenomenon that brings seasonal

rainfall to the Indian subcontinent and other near areas (Webster et al, 1988). Large parts of the Indian subcontinent receive
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rainfall from June to September known as the Indian Summer Monsoon Rainfall (ISMR). The ISMR contributes about 70–90%

to the total annual precipitation amount in the Indian subcontinent (Shukla and Haung, 2016). The agriculture in the Indian25

subcontinent depends substantially on the ISMR, and any variations on the interannual as well as intraseasonal variabilities

of ISMR cause a significant impact on the country’s economy. The interannual variation of the IMSR is only about 10% of

the mean (Gadgil, 2003), yet it has a large impact on crop production. The mean seasonal rainfall predictability significantly

depends on the interannual variability of the ISMR (Goswami et al., 2006a; Pillai and Chowdary, 2016). The interannual

variability of the ISMR is linked to many noted oscillations, the El Niño Southern Oscillation (ENSO), Indian Ocean Dipole30

(IOD), Atlantic Multidecadal Oscillation (AMO), Atlantic Zonal Mode (AZM), Pacific Decadal Oscillation (PDO), etc., (Nair

et al., 2018; Sabeerali et al., 2019; Hrudaya et al., 2020). The oscillations thought to have the most significant impact on the

ISMR are ENSO and IOD (Krishnaswami et al., 2015). Hence, in this study, we majorly focus on the individual and combined

influences of the two climate modes ENSO and IOD on the ISMR interannual variability in observations, reanalysis data sets,

and climate models.35

ENSO is an important large-scale coupled atmosphere-ocean aperiodic oscillation over the Pacific ocean that on average

occurs every 2–7 years. The Sea Surface Temperature (SST) pattern over western (central-eastern) tropical Pacific ocean

experience large cold (warm) anomalies during the El Niño phase. The normal patterns of SST over the Pacific ocean are

enhanced during the La Niña phase. These variabilities in the SST are coupled to the atmospheric Walker circulation, and Sir

Gilbert Walker in 1924 was the first to observe a relation between ENSO and ISMR (Walker, 1924; Gadgil, 2003; Goswami,40

1998; Yun and Timmermann, 2018). He noticed that often the El Niño (La Niña) conditions over the Pacific ocean are linked to

weak (strong) ISMR. During the El Niño conditions, the entire walker circulation is shifted eastwards by which the descending

branch of the Walker cell on the western Indian ocean shifts eastward to overlie on the Indian subcontinent, thereby suppressing

the convection (Walker, 1924; Krishna Kumar et al., 2006; Palmer et al., 2006). In the La Niña years, the entire Walker

circulation shifts slightly westward, which assists in enhancing the convection over the Indian subcontinent. Many other studies45

(Goswami, 1998; Slingo and Annamalai, 2000) argued that the El Niño conditions do not suppress the ISMR directly through

the descending branch of the Walker circulation but rather, the changes in the Walker circulation enhances the meridional

Hadley circulation decent over the Indian subcontinent. Hence it could be that the ENSO affects the IMSR through interactions

between the Walker and Hadley circulations.

Another important source that is linked to the ISMR interannual variability is a dipole like structure in the Indian ocean50

surface temperature known as IOD (Saji et al., 1999). During a positive (negative) IOD, the southeastern part of the Indian

ocean is cooler (warmer) than normal while the western part of the Indian ocean is warmer (cooler). During the positive IOD

event, the meridional circulation in the region is modulated through anomalous convergence patterns over the Bay of Bengal,

thereby strengthening the monsoon with anomalous positive rainfall over the Indian subcontinent while the negative IOD events

lead to the weakening of the rainfall (Ashok et al., 2001). Behera and Ratnam (2018) found that the opposite phases of IOD are55

associated with distinct regional asymmetries in IMSR anomalies over the Indian subcontinent contributing significantly to the

interannual variability. Interestingly, Ashok et al. (2001) found that during the co-existence of El Niño and positive IOD, the

IOD tends to compensate for the influence of El Niño leading to normal rainfall by inducing anomalous convergence over the
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Bay of Bengal. Similarly, the negative IOD events can reduce the impact of La Niña on ISM rainfall and cause deficit monsoon

rainfall. However, the study of Chowdary et al. (2015) showed that the local air–sea interaction in the tropical Indian ocean60

opposes the Pacific ocean impact even in the absence of IOD. Hence, still there are uncertainties associated with the individual

and combined influence of ENSO and IOD on the interannual variability of ISMR.

Motivated by these large uncertainties in the present knowledge about how ENSO and IOD influence the ISMR interannual

variability, we are investigating these connections from a two-source information exchange (IE) perspective. Shannon (1948) first

introduced the concept of information entropy, which quantifies the average uncertainty of a given random variable. The65

IE between two subsystems X and Y can be understood as the average uncertainty reduction about X in knowing Y or

vice versa. Recently, various methods from information theory have been widely used in the fields of earth system sciences

(Bennett et al., 2019; Gerken et al., 2019; Jiang and Praveen, 2019; Ruddel et al., 2019), climate sciences (Nowack et al., 2020; Runge et al., 2019; Joshua et al., 2019; Campuzano et al., 2018; Bhaskar et al., 2017) and

in other interdisciplinary sciences (Wibral et al., 2017; Leonardo et al., 2019; Shoaib Ahmad, 2018). The information theory,

in its current form, provides a complete description of the IE relationship between a single-source and a target. However70

complex climate system often consist of multi-sources influencing a target such as the ENSO and IOD influencing the ISMR

variability.

The IE in a system composed of two-source systems Y and Z to the target variable X is decomposed into four parts

(Fig. 1) according to Williams and Beer (2010): (i) unique information shared by Y to X (ii) unique information shared

by Z to X (iii) redundant information or overlapping information shared by both sources Y and Z together with X (iv)75

synergistic information about X while knowing Y and Z together but not either of them alone. An example of synergis-

tic information from two sources is the classical binary exclusive-or (XOR) operation (Williams and Beer, 2010; James et

al., 2016), where the two sources Y and Z provide information that is not available from either of their states alone but

by jointly knowing their states together. Since ENSO and IOD are known to simultaneously influence the ISMR variability,

one could expect the component of synergy or redundant information existing in this climate phenomenon. In the case of80

synergy, the target uncertainty of IMSR interannual variability is reduced only when the states of two sources, ENSO and

IOD are known together but not individually. This decomposition of information is known as partial information decom-

position (PID). Unfortunately, with the present standard methods available from information theory, one can not obtain the

contributions of unique, synergy, and redundant information exchange metrics solely (Barrett, 2015). Here, we would like

to bring to the attention of the readers that many interesting studies have come up with various definitions of these metrics85

(Williams and Beer, 2010; Griffith and Koch, 2014; Bertschinger et al., 2014; Finn and Lizer, 2018) and still, there has been

no consensus among the scientific community for obtaining these metrics. A complete and consistent framework on quantifying

the individual contributions of various terms in PID would make information theory a complete framework for understanding

the information dynamics of multi-source systems. However, with the present available information theory methods, one can

obtain a metric known as net synergy, which is synergistic information minus redundant information carried by the two sources90

Y and Z about the source X . More details of the formula of net synergy are described in the data and methodology section.

It is very important to note that, though the methods from information theory are very useful in analyzing the complex system

behavior, their estimations are quite challenging due to their sensitivity to free tuning parameters and sample size (Knuth et al.,
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2013; Smirnov Dmitry, 2013; Pothapakula et al., 2019). Hence, this study follows and uses various estimators we proposed in

our earlier work (Pothapakula et al., 2019) for robustness in the results.95

Here we are investigating the information exchange from ENSO and IOD to the IMSR interannual variability by using

available observations, reanalysis data sets, and climate models. However, before exploring the two-source IE from the ENSO

and IOD to IMSR variability, we first demonstrate the concept of two-source IE with results from a simple idealized linear and

non-linear dynamical models for better understanding. We also use various estimators of IE, for example, Linear, Kraskov, and

Kernel estimators for robustness. Then, the two-source IE concept is applied to observations and reanalysis data sets. This helps100

in understanding the IE dynamics of ENSO and IOD to the interannual variability of IMSR in the natural system. Thereafter, we

investigate if the two-source information exchange dynamics of ENSO and IOD to ISMR interannual variability is replicated

in three different global climate models (GCM) simulations from the 5th phase of the Coupled Model Intercomparison Project

(CMIP5). Since it is well known that GCMs due to their low spatial resolution do not resolve all the subgrid-scale phenomena,

we have used dynamical downscaling of the three GCM simulations with an RCM to obtain higher resolution details (Bhaskaran105

et al., 2012; Chowdary et al., 2018; Dobler and Ahrens, 2011; Asharaf and Ahrens, 2015; Lucas-Picher et al., 2011). The RCM

simulations are performed with a horizontal resolution of 25km (∼ 0.22) and follow the framework of coordinated regional

downscaling experiments (CORDEX) (Giorgi et al., 2009; Gutowski et al., 2016). By employing the two-source IE from

the ENSO and IOD to the ISMR interannual variability on both the driving GCM simulations and the downscaled RCM

simulations, we can evaluate the performance of the model chain. To our knowledge, this is a first of its kind evaluation study110

of GCM simulations and RCM simulations with information theory methods from the two-source IE viewpoint.

This paper is organized as follows. In Section 2 we explain briefly the information theory methods and estimators used in this

study followed by a brief discussion about the idealized linear and non-linear dynamical systems. In Section 3 observational

and reanalysis data, various GCMs in CMIP5 used in this study, and the RCM model used in dynamically downscaling the

GCM simulations are discussed. In Section 4, the results obtained from idealized systems and model evaluation are shown115

along with a detailed discussion. Finally, conclusions are drawn in Section 5.

2 The theory of information exchange

::::::::::::::::::::::
Shannon (1948) introduced

:::
the

:::::::
concept

::
of

::::::::::
information

:::::::
entropy,

::::::
which

::::::::
quantifies

::::
the

::::::
average

::::::::::
uncertainty

::
of

::
a
:::::
given

:::::::
random

:::::::
variable.

::::::::
Recently,

:::::::
various

:::::::
methods

:::::
from

::::::::::
information

::::::
theory

::::
have

:::::
been

::::::
widely

::::
used

:::
in

:::
the

:::::
fields

::
of

:::::
earth

::::::
system

::::::::
sciences

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bennett et al., 2019; Gerken et al., 2019; Jiang and Praveen, 2019; Ruddel et al., 2019),

::::::
climate

:::::::
sciences

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Nowack et al., 2020; Runge et al., 2019; Joshua et al., 2019; Campuzano et al., 2018; Bhaskar et al., 2017) and120

::
in

::::
other

::::::::::::::
interdisciplinary

:::::::
sciences

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wibral et al., 2017; Leonardo et al., 2019; Shoaib Ahmad, 2018). This section comprises of

the basic concepts of information theory along with a brief introduction of various estimators. Also, a description of the ideal-

ized systems used in this study is covered.
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2.1 Concepts from Information Theory

The Shannon entropy (Shannon, 1948) of a random variable X , quantifies the amount of uncertainty contained in it and is125

defined by

H(X) =−
∑
x

p(x) logp(x),

where p(x) is the probability of a discrete state of the random variableX . The summation goes through all states of the random

variable X . The units of entropy are expressed in nats if a natural logarithm is applied (in bits when the logarithm base is 2).

Mutual information (MI) quantifies the reduction in the uncertainty of one random variable given knowledge of another130

variable (Cover and Thomas, 1991) and is defined by

I(X;Y ) =
∑
x,y

p(x,y) log
p(x,y)

p(x)p(y)
,

where p(x,y) is the joint distribution of variables X and Y , and p(x), p(y) are the marginal distributions of X and Y , respec-

tively.

Mutual information between two sources Y and Z and a target X is given as

I(X;Y,Z) =
∑
x,y,z

p(x,y,z) log
p(x,y,z)

p(x)p(y,z)
,

where p(x,y,z) is the joint distribution of variables X ,Y and Z, and p(x), p(y,z) are the marginal probabilities. Further-135

more, the information I(X;Y,Z) that the two sources share with target should decompose according to partial information

decomposition by Williams and Beer (2010) into four parts (Fig. 1) as

I(X;Y,Z) = U(X;Y |�Z) +U(X;Z|��Y ) +R(X;Y,Z) +S(X;Y,Z), (1)

where U(X;Y |�Z) is the unique information shared by Y to X , U(X;Z|��Y ) is the unique information shared by Z to X ,

R(X;Y,Z) redundant information shared by both sources Y and Z together with X , and S(X;Y,Z) synergistic information140

about X while knowing the states of Y and Z together.
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Figure 1. Information exchange from two sources Y , Z to the target X decomposed according to PID as unique information (U), redundant

information (R) and synergistic information (S)

In the case of two sources influencing the target, the mutual information shared by a single source to the target is given by

I(X;Y ) = U(X;Y |�Z) +R(X;Y,Z),

I(X;Z) = U(X;Z|��Y ) +R(X;Y,Z).
(2)

From the current information theory framework, the quantities I(X;Y,Z), I(X;Y ), I(X;Z) can be straightforwardly com-

puted. However, there are still ongoing debates about quantifying unique information , redundant information, and synergistic145

information
::::::::::::
Unfortunately,

::::
with

::::
the

::::::
present

::::::::
standard

:::::::
methods

::::::::
available

:::::
from

::::::::::
information

:::::::
theory,

::::
one

:::
can

::::
not

:::::
obtain

::::
the

:::::::::::
contributions

::
of

:::::::
unique,

:::::::
synergy,

::::
and

::::::::
redundant

:::::::::::
information

::::::::
exchange

::::::
metrics

::::::
solely

:::::::::::::
(Barrett, 2015).

:::::
Here,

:::
we

::::::
would

::::
like

::
to

::::
bring

:::
to

:::
the

:::::::
attention

:::
of

:::
the

::::::
readers

::::
that

:::::
many

:::::::::
interesting

::::::
studies

:::::
have

:::::
come

::
up

::::
with

:::::::
various

:::::::::
definitions

::
of

:::::
these

:::::::
metrics

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Williams and Beer, 2010; Griffith and Koch, 2014; Bertschinger et al., 2014; Finn and Lizer, 2018) and

:::::
still,

:::::
there

:::
has

:::::
been

::
no

:::::::::
consensus

:::::
among

:::
the

::::::::
scientific

:::::::::
community

:::
for

::::::::
obtaining

:::::
these

::::::
metrics.

::
A

::::::::
complete

:::
and

:::::::::
consistent

:::::::::
framework

::
on

::::::::::
quantifying150

::
the

:::::::::
individual

:::::::::::
contributions

::
of

:::::::
various

:::::
terms

::
in

:::
PID

::::::
would

:::::
make

::::::::::
information

:::::
theory

::
a
::::::::
complete

:::::::::
framework

:::
for

::::::::::::
understanding

::
the

::::::::::
information

:::::::::
dynamics

::
of

::::::::::
multi-source

:::::::
systems.

According to Barrett (2015), one can obtain a quantity known as net synergy from Eq.1 and Eq.2 as

∆I(X;Y,Z) = I(X;Y,Z)− I(X;Y )− I(X;Z),

= S(X;Y,Z)−R(X;Y,Z).
(3)

When ∆I(X;Y,Z)> 0, synergistic information from two sources is greater than redundant information and vice versa. The155

∆I provides a lowerbound for synergistic/redundant information. From here on, if ∆I(X;Y,Z)> 0 we refer as net synergistic

information and if ∆I(X;Y,Z)< 0 we refer to as net redundant information.
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2.2 Estimation techniques

Though the information theory methods are very useful in assessing the behavior of dynamical systems, their estimation is

challenging. Hence, in this study, we implemented various estimators for robustness in our results.160

2.2.1 Estimation under linear approximation (Linear estimator)

Here we will briefly introduce the basic concepts for estimation of the two-source IE under linear approximation. For a detailed

explanation of the concept, we are referring the reader to Barrett (2015).

The entropy for a continuous random variable X under linear approximation is given as

H(X) =
1

2
log[detΣ(X)] +

1

2
m log(2πe),165

where m is the dimension of random variable X , Σ(X) is the m×m matrix covariances i.e., cov(Xi,Xj).

Following Barrett (2015), the partial covariance of X with respect to Y is given as

Σ(X|Y ) = Σ(X)−Σ(X,Y )Σ(Y )−1Σ(Y,X).

From then the conditional entropy can be derived as

H(X|Y ) =
1

2
log[detΣ(X|Y )] +

1

2
m log(2πe).

The mutual information I(X;Y ) is the difference between H(X) and H(X|Y ),

I(X;Y ) =
1

2
log

[
detΣ(X)

detΣ(X|Y )

]
.

For a general three dimensional jointly Gaussian system (X,Y,Z)T , and by setting zero mean and unit variance, the covari-

ance matrix is given by,

Σ =


1 a c

a 1 b

c b 1

170

.

Thus, from the above matrix, the mutual information is given as

I(X;Y ) =
1

2
log

(
1

1− a2

)
,

I(X;Z) =
1

2
log

(
1

1− c2

)
,
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I(X;Y,Z) =
1

2
log

(
1− b2

1− (a2 + b2 + c2) + 2abc

)
.

The net synergy can be obtained by I(X;Y,Z)− I(X;Y )− I(X;Z), given as

∆I(X;Y,Z) =
1

2
log

(
(1− a2)(1− b2)(1− c2)

1− (a2 + b2 + c2) + 2abc

)
.

2.2.2 Estimation through box step kernel (Kernel estimator)

The estimation of non-linear entropy and mutual information estimators contains Probability Density Functions (PDFs). The

uni-variate and bi-variate PDFs for continuous data can be estimated through various available discretization methods (e.g.,

binning, kernel etc). Here we use a simple box step kernel Θ with Θ(x > 0) = 0 and Θ(x < 0) = 1 for the estimation of175

relevant joint probability distributions (e.g., p̂(x,y), p̂(x) and p̂(y)). For example, the joint probability distribution p̂(x,y) is

calculated as

p̂r(xn,yn) =
1

N

N∑
n′=1

Θ(|(xn−xn′),(yn− yn′)| − r),

where the norm corresponds to the maximum distance in the joint space and r is the kernel width. Similarly one can estimate

the PDF for high dimensional systems for the estimation of MI. For more details into the estimator, refer to Kantz and Schreiber180

(1997); Goodwell and Kumar (2017) and information-theoretic toolkit from Lizier (2014).

2.2.3 Estimation through k-nearest neighbor (Kraskov estimator)

The k-nearest neighbor estimator uses an adaptive binning strategy by estimating the average distances to the k-nearest neighbor

data points. For example, the MI can be computed as

I(X;Y ) = Ψ(k)−<Ψ(nx + 1) + Ψ(ny + 1)>+Ψ(N),185

where N is total number of points, nx and ny are the number of points that fall in the marginal spaces of X and Y respectively

within the distance taken as d= max(||x−x′||, |y−y′||) and Ψ denotes the digamma function. For more details refer to Kraskov

et al. (2004). Similarly, the equation mentioned above can be extended to higher dimensional estimation of MI. From hereafter,

the estimation through k-nearest neighbor is called as Kraskov estimator.

2.3 Idealized systems for demonstration190

Before we apply information theory estimators to two-source information exchange in climate applications, we consider ideal-

ized linear and non-linear systems as given in the following sub-sections to demonstrate the concept of two-source IE.

2.3.1 Linear autoregressive systems

Often in climate systems, the future state prediction of a variable relies on the past of its own state (persistence) or from

past of another variable (Runge et al., 2014), or from the linear/non-linear combination of both (possible case of net syn-195

ergy/redundancy). Hence, as a first case of demonstration, we considered a two-dimensional linear system (Barrett, 2015) x
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and y, with x receiving information from its immediate past and from the immediate past of y with the following governing

equations:

xt = αxt−1 +αyt−1 +Nx(0,1),

yt =Ny(0,1),
(4)

where α is the coupling coefficient varied from 0 to 0.8 with an increment of 0.1 andN (0,1) is Gaussian noise with zero mean200

and unit variance. The system was initialized with (x0 = 0) and is integrated around 100,000 iterations. For the analysis of

two-source IE with various estimators, we use the last 5000 time units from the available time series.

In the first example, we considered IE from two sources (one source being the persistence) contributing to the target predic-

tion, however not all predictions of target depend on two sources simultaneously (i.e., net synergy/redundancy do not exist),

hence as a second case , we considered a system consisting of two subsystems which are coupled with each other but only205

having a single source with the governing equations

xt = αyt−1 +Nx(0,1),

yt = αxt−1 +Ny(0,1),
(5)

with α being the coupling coefficient. We followed similar steps for integration as in the previous linear system.

Finally as third example, we test a three-dimensional system in which two individual sub-systems contribute to the evolution

of third system such as the ENSO and IOD, as two individual systems contributing to the interannual variability of the ISMR.210

This system has the governing equations

xt = αyt−1 +αzt−1 +Nx(0,1),

yt =Ny(0,1),

zt =Nz(0,1),

(6)

where system y and z are two individual sub-systems exchanging information to the target system x.

2.3.2 Non-linear Heńon system

As the climate system is
:::
We

::::
also

::::::::
extended

:::
our

:::::::
analysis

::
to

:
a
:
non-linear , we further extend our analysis from idealized linear215

systems to a idealized non-linear system. For this purpose, we considered coupled Heńon maps which captures the stretching

and folding dynamics of chaotic systems such as the Lorenz system which mimic’s the atmospheric behavior. We considered

two Heńon maps (Kraskovska, 2019), x and y coupled with each other with the governing equations where the coupling

coefficients C ∈ [0,0.6]. From Eq.A1 it is evident that the system x is driving system y through coupling coefficient C.
::::::
system

::::::::
described

::
in

:::
the

::::::::
Appendix

:::::::
section.220
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3 Data and climate models

In this section, we will discuss various observational and reanalysis data sets used to quantify the two-source IE from ENSO

and IOD to IMSR interannual variability in the natural system. Furthermore, the details of various GCM and RCM simulations

used in this study are also covered.

3.1 Observational, reanalysis data sets and climate simulations225

We are focusing on the South Asian Summer Monsoon seasons, starting from June and ending in September (June- July-

August-September: JJAS), thus monthly data sets for JJAS for the time period 1951-2005 from observations and model simu-

lations are used in this study. Various observational, reanalysis data sets and model simulations used to quantify the two-source

IE from the ENSO and IOD to the ISMR interannual variability are listed in Table 1 and are also described here.

3.1.1 Observational, reanalysis data sets and indices230

The UK Met Office’s Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST 1.1) (Rayner et al., 2002) is used

to retrieve SST information for the Indian and the Pacific ocean. Monthly precipitation fields from Global Precipitation Clima-

tology Centre (GPCC) (Schneider et al., 2008) is used as precipitation observational record together with a high-resolution data

set, covering only the monsoon south Asia domain, namely the Asian Precipitation - Highly-Resolved Observational Data In-

tegration Towards Evaluation (APHRODITE) monthly accumulated precipitation (Akiyo et al., 2012). The rainfall, winds, and235

specific humidity are taken from the National Center for Environmental Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis data set (Kalnay et al., 1996). The ENSO and IOD indices are obtained from the National Oceanic

and Atmospheric Administration Earth System Research Laboratories(NOAA ESRL) and Japan Agency for Marine-Earth Sci-

ence and Technology(JAMSTEC) for validation of PCs derived from the observational SST data sets, i.e., the HadISST, and

NCEP reanalysis SST. In addition to the above-mentioned data sets, we also used ERA-Interim (Dee et al., 2011) and MERRA240

(Rienecker et al., 2011) reanalysis rainfall datasets (1980-2005) as additional resources.

3.1.2 Global and regional climate simulations

The three CMIP5 GCMs (details in Table. 1), the MPI-ESM-LR (Stevens et al., 2017), Nor-ESM-M (Bentsen et al., 2012) and

EC-EARTH (Hazeleger et al., 2010) were dynamical downscaled with the non-hydrostatic regional climate model COSMO-

crCLM version v1-1. The COSMO-crCLIM is an accelerated version of the COSMO model (Fuhrer et al., 2014) in climate245

mode (Leutwyler et al., 2016; Rockel et al., 2008). A two-stream radiative transfer calculations are based on Ritter and Geleyn

(1992), the convection is parameterized by Tiedtke (1989), the turbulent surface energy transfer and planetary boundary layer

are using the parametrization of Raschendorfer (2001), and precipitation is based on a four-category microphysics scheme that

includes cloud, rainwater, snow, and ice (Doms et al., 2011). The soil-vegetation-atmosphere-transfer is using the TERRA-

ML (Schrodin and Heise, 2002), however, this current version is employing a modified groundwater formulation (Schlemmer250

et al., 2018). The RCM simulation has a horizontal resolution of 0.22◦ (i.e., 25km) and with 57 vertical levels and is using
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Table 1. CMIP5–GCMs/RCM/observations descriptions used in the current study.

GCM Modeling center Acronym Ensemble member Atm.Resolution

Max Planck Institute for Meteorology MPI-ESM-LR r1i1p1 1.875 ◦ × 1.875 ◦

Norwegian Climate Centre Nor-ESM-M r1i1p1 2.5 ◦ × 1.9 ◦

SMHI, Sweden EC-EARTH r12i1p1 1.125 ◦ × 1.125◦

RCM Modeling center

CLMCom-ETH COSMO-crCLIM 0.22◦ × 0.22◦

Observations and Reanalysis data sets

APHRODITE – – 0.25◦ × 0.25◦

GPCC – – 0.5◦ × 0.5◦

HadISST – – 1◦ × 1◦

NCEP Reanalysis – – 1.875◦ × 1.875◦

ERA-Interim Reanalysis – – 0.5◦ × 0.5◦

MERRA Reanalysis – – 0.5◦ × 0.65◦

a time step of 150s. The model simulation configuration is following the CORDEX framework, meaning that a historical

period is simulated from 1950-2005, and the business as usual future emission scenario (RCP8.5) is simulated from 2006-

2099. However, here we are only looking into the historical period. It is to be noted that for the analysis of rainfall anomaly

composites, moisture anomalies, and IE plots, the GCM and RCM simulations are interpolated to a common observational grid255

(a grid with 0.25◦). Our interpretation of results does not change much with the original resolution of the datasets.

4 Results and discussion

In the current section, first, we discuss the results of two-source IE obtained from various idealized linear and non-linear

dynamical systems mentioned in Section 2. Thereafter, we present results of two-source IE in the climate system with the

observations, reanalysis data sets, GCM simulations, and the RCM simulations.260

4.1 Applications to idealized systems

First, we will start with the discussion of results obtained from idealized systems with various IE estimators.
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4.1.1 Linear autoregressive system

Figure 2 shows the information exchange (in nats) from yt−1 (immediate past of y) to xt (present of x) and also from x imme-

diate past to present of x (i.e., xt−1 to xt), for the system with Equation 4. The two-source mutual information linear estimator265

shows that as the coupling coefficient increases, the IE from I(xt;yt−1,xt−1) increases, indicating that the immediate pasts

of xt−1 and yt−1 exchange information to the future state of x as expected from the system dynamics. Also, as expected the

I(xt;yt−1,xt−1)> I(xt;yt−1) or I(xt;xt−1), indicating that the two-source IE dominates the dynamics of this system. The

IE from the immediate past of x i.e., xt−1 is a stronger source of information to the target xt due to self feedback/large persis-

tence and yt−1 is a weaker source to the target xt (this behavior is often observed in the climate system where persistence/self270

feedback plays an important role (Runge et al., 2014). The error bars represents two standard deviations of the 100 permuted

surrogates showing the measure of uncertainty for the IE estimations. Furthermore there exists a significant positive net synergy

(∆I) indicating that the two sources at higher couplings exchange synergistic information to the target even though the two

sources yt−1 and xt−1 are uncorrelated with each other, in other words, a certain degree of uncertainty about the system xt is

reduced by knowing the state of xt−1 and yt−1 together. Here in this system, the synergy between the two sources (yt−1 and275

xt−1) to the prediction of target ( xt ) might be arising from their linear combination. This shows that linear systems can exhibit

synergies, which is also shown analytically in the work by Barrett (2015). The non-linear estimators, i.e., Kraskov estimator

(40 k-nearest neighbors) and Kernel estimator (1.5 kernel width) also show the similar system behavior. The free parameters

i.e., kernel width (1–2 kernel widths) and number of k-nearest neighbors (20–60 neighbors) are tested and tuned for consistent

and robust results.280
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Figure 2. Information exchange in nats from two-source (red line), single source (green and blue lines), and net synergy (black line) to the

target with Linear, Kraskov and Kernel estimators. The error bars represents two standard deviations of the 100 permuted samples.

Next, we tested another system consisting of two subsystems, coupled with each other but only having a single source as

in Equation 5. From Fig. S1 (in supplementary material), the MI linear metrics shows that I(xt;yt−1) = I(xt;yt−1,xt−1)

indicating that the immediate pasts of xt−1 does not contribute to IE for the target xt. The net synergy from yt−1,xt−1 to the

target xt is as expected zero. The IE from yt−1 to xt increases as the coupling coefficient increases, which is also expected. This
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is also seen in Kraskov estimator (40 k-nearest neighbors) and Kernel estimator (1.5 kernel width). The free tuning parameters285

are tested and tuned for consistent results. Finally, among the linear systems, we tested a three-dimensional system (similar to

the situation of ENSO, IOD influencing ISMR variability) with the Equation 6. Figure S2 shows that the information exchange

from I(xt;yt−1) = I(xt;zt−1) indicating that the two sources contribute to the target system equally and moreover the IE

increases with increase with coupling coefficient. This behavior is expected as observed from the governing equations. Even

though the two sources are uncorrelated with each other, they exhibit positive net synergy. The similar behavior in the system is290

seen with non-linear Kernel estimator (1.5 kernel width) and Kraskov estimator (40 k-nearest neighbors). The free parameters

are tested and tuned for consistent results.

4.1.2 Non-linear Heńon system

Figure A1 shows the information exchange in the
:::
The

::::::
results

:::
for

:
non-linear Heńon system (equations given as in Equation

A1). Figure A1 shows that the IE, I(yt;xt−1) increases as the coupling coefficient C increases. It can be also observed that295

the opposite behavior i.e., information exchange from I(yt;yt−1) decreases with increasing C due to the term (1−C)y2t−1

in Eq. 4. Also the IE from I(yt;yt−1)> I(yt;xt−1) indicating that the target is tightly coupled with its own past (also seen

in governing equations). In this case, the two-source IE is greater than I(yt;yt−1) or I(yt;xt−1) as expected, this is because

both the sources are contributing to the target future state. Here the correlation between the two sources xt−1 and yt−1 is

almost equal to zero. The net synergy increases with increase in the coupling coefficient indicating net synergistic IE by the300

two-sources. For this system we used 8 number of k-nearest neighbors for Kraskov estimator and 0.5 kernel width for Kernel

estimator.
::::::
system

:::
are

::::::::
discussed

::
in

::::::::
Appendix

:::::::
section.

:

Information exchange in nats from two-source (red line), single source (green and blue lines), net synergy (black line) to

target for Kraskov and Kernel estimators. The error bars represents two standard deviations of the 100 permuted samples.

The above mentioned idealized linear and non-linear examples show that some systems do exhibit positive net synergy from305

two-sources to target for both linear as well as non-linear systems, even when the two sources are uncorrelated. Furthermore, all

the three estimators mentioned above i.e., Linear, Kernel and Kraskov estimators are able to detect consistently the two-source

information exchange.

4.2 Application of dual-source IE to climate phenomenon

In this section, we examine the two-source IE from ENSO, IOD to the interannual variability of ISMR. Foremost, we present310

results obtained from the observational, reanalysis data sets and then extend our analysis of two-source IE to three GCM sim-

ulations as mentioned in Table. 1. Thereafter, we present results from our dynamically downscaled simulations with COSMO-

crCLM with the three GCMs as driving models.
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4.2.1 Observation and reanalysis data

In the observations and reanalysis data sets, empirical orthogonal function (EOF) analysis of the detrended SST anomalies is315

performed over the tropical Indian ocean (25◦S–20◦N,50–120◦E) and the tropical Pacific ocean (25◦S–25◦N,120◦E–80◦W) to

obtain the major oscillations and their respective PCs. The ENSO and IOD indices are taken as the time series associated with

their respective PCs obtained from the EOF spatial patterns replicating them. Figure 3 shows the second EOF patterns of the

SST anomalies over the Indian ocean and first EOF patterns over the Pacific ocean for HadISST and from NCEP reanalysis.

From the two SST data sets, it is observed that both ENSO and IOD like structures are captured with the second EOF and the320

first EOF patterns i.e., a zonal dipole like structure in the Indian ocean and the Pacific ocean respectively. We use EOF analysis

as opposed to standard indices such as the dipole mode index known as DMI (Saji et al., 1999) and Niño-3.4 to allow each

model to exhibit their own patterns as opposed to an imposed structure (Saji et al., 2006; Cai et al., 2009a, b; Liu et al., 2011).
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Figure 3. EOF2 patterns of SST anomalies (JJAS) in the Indian ocean and EOF1 patterns in the Pacific ocean for observed HadISST and

NCEP reanalysis.

To ensure that the EOF patterns in the observed SST data sets replicate the ENSO and IOD modes, the obtained PCs are

compared against the corresponding Niño 3.4 and IOD index obtained from the NOAA ESRL Physical Sciences Division,325

and JAMSTEC observations (shown in Figure S3). These indices are widely used in several studies concerning the IOD and

Niño 3.4 teleconnections. The percentage of the total variance contributed by the first 20 EOFs from the Indian and Pacific

ocean SST anomalies for the seasons JJAS are also shown in Figure S3. The linear fit between the Indian ocean PCs of EOF-2

obtained from the HadISST against the observed IOD index has a correlation of about 0.78, and the correlation of NCEP

reanalysis SST with the observed IOD index is 0.77. These results are significant at a 99 % confidence level. This indicates that330

the EOF2 replicates the IOD like variability for the two mentioned datasets. The percentage of the total variability contributed

by the EOF1 of the Indian ocean is about 30% which is associated with the basin-scale anomalies of uniform polarity in the

Indian ocean associated with the ENSO events. The dipole mode (EOF2) explains about 15% of the total variance which is
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associated with the IOD. Our results for the Indian ocean EOF patterns and their respective contribution to the total variance

are consistent with the study by Saji et al. (1999). Similarly, the PCs associated with the first EOF over the Pacific ocean are335

highly correlated against the observed Niño 3.4 index with a correlation value greater than 0.8 for both data sets indicating

that the EOF1 captures the ENSO like variability. The percentage of total variance contributed by the first EOF ≈ 20% is also

consistent with the ENSO literature.
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Figure 4. Total precipitation anomaly (mm/month) composites (JJAS) over the Indian subcontinent for El-Niño, La-Niña, positive IOD and

negative IOD events observed in GPCC, APHRODITE and NCEP reanalysis data sets for the period of 1951-2005

The ENSO and IOD are known to influence the ISMR distribution across the Indian subcontinent. Hence to investigate

the rainfall anomaly distribution during various phases of ENSO and IOD (i.e., El-Niño, La-Niña, IOD +ve, and IOD-ve),340

we plotted the anomaly composite figures ( Fig. 4 ) for the ISMR during these events. The anomalies are constructed by

subtracting the Indian subcontinent climatology mean JJAS rainfall with the rainfall months associated with various phases of

IOD and ENSO. The anomaly composites with El-Niño (La-Niña) events show that most parts of Indian subcontinent receive

less (more) rainfall during the El-Niño (La-Niña) phases. This behavior can be attributed to the suppression of convection over

the Indian subcontinent during the El-Niño phase through the zonal and meridional circulation and vice-versa during La-Niña345

phase. The rainfall anomaly composites associated with the positive and negative phases of the IOD represent distinct regional

asymmetric rainfall anomalies i.e., a meridional tripolar pattern, with above than normal rainfall in central parts of India and

below than normal rainfall to the north and south of it. Conversely, the negative IOD is associated with a zonal dipole having
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above (below) normal rainfall on the western (eastern) half of the Indian subcontinent. These results with rainfall composites

during IOD phases are consistent with Behera and Ratnam (2018), where it was concluded that these rainfall anomaly patterns350

are due to the differences in the atmospheric responses and the associated differences in moisture transports to the region during

contrasting phases of the IOD. Hence, Fig. 4 indicates that both ENSO and IOD contribute to the interannual variability of the

IMSR.
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Figure 5. Information exchange from I(PREC;IOD), I(PREC;ENSO), two-source information exchange I(PREC;ENSO,IOD)

and NET SYNERGY ×10−2 nats for observational data sets GPCC, APHRODITE and NCEP reanalysis. Only significant values at 95%

confidence intervals are plotted.

Figure 5 represents the IE from the IOD to precipitation i.e., I(PREC;IOD), ENSO to precipitation i.e., I(PREC;ENSO),

the two-source IE i.e., I(PREC;IOD,ENSO) together with the NET SYNERGY for the observations GPCC, APHRODITE,355

and the NCEP reanalysis data sets under linear approximation. We chose various precipitation data sets to accommodate un-

certainties due to the sparse data networks, especially in regions with complex topography. The observed IE from IOD to total

precipitation i.e., I(PREC;IOD) shows that the IOD transmits information to the southwest sector of the Indian subcontinent

especially the lee-ward side of the western ghat regions in GPCC and APHRODITE data sets. This feature is slightly shifted

to the east in the NCEP reanalysis data sets. All the IE plotted values are significant at 95% confidence level obtained from360

100 surrogate samples. Some regions in the northeast sector also are influenced by the IE from IOD which is replicated in all

three observational data sets. It is interesting to note that the location at which the IE from IOD to the precipitation over the
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Indian subcontinent matches the significant rainfall anomalies shown in Fig. 4. The I(PREC;ENSO) shows that the north-

ern parts of the Himalayas, central India receive information from the Pacific ocean in all the three data sets, this also matches

the anomaly locations shown in Fig. 4. The two-source information exchange covers most parts of the Indian subcontinent in-365

dicating that both ENSO and IOD contribute to the ISMR during JJAS seasons. Also, interestingly from the NET SYNERGY

plot, a positive net synergy over certain parts of central India also known as monsoon core region is observed, indicating that

both ENSO and IOD synergistically contribute to the interannual variability of ISMR. Furthermore, the ENSO and IOD share

net redundant information (negative net synergy) in the southern sector of the Indian sub-continent. The Kraskov estimator

(Fig. S4) and the Kernel estimator (figure not shown
::::
Fig.

::
S5) also show similar IE patterns over the Indian subcontinent with 30370

k-nearest neighbors for Kraskov and 0.5 kernel width for Kernel estimators
::::
(free

:::::::::
parameters

:::
are

:::::
tested

::::
and

::::
tuned

:::
for

:::::::::
consistent

::::::
results). In addition, we also checked the two-source IE patterns in the two reanalysis datasets, MERRA and ERA-Interim

(1980-2005), shown in Fig. S5
:::
S6 and Fig. S6

::
S7. It is found that in both the data sets, similar IE patterns are replicated i.e.,

positive net synergy in central India and net redundant information in southern part of the Indian subcontinent.
:::
We

::::
also

:::::
tested

:::
our

::::::::
estimators

::::::
during

:::
the

::::::
DJFM

:::::::
months,

::
the

:::::::
synergy

:::::
from

::::
IOD

:::
and

::::::
ENSO

::
to

:::
the

:::::
IMSR

::
is

::::::
absent.

:
375

The net synergy between the ENSO and IOD to the ISMR interannual variability indicates that the central India monsoon

rainfall predictability lies in knowing the states of ENSO and IOD together than by knowing the states of ENSO and IOD

individually (similar to the idealized test case of example 3). This is also exactly similar to the XOR logic gate, where the

uncertainty of the output is known only with the simultaneous knowledge of the two input states. To understand the information

synergy physically, we show the moisture transport figures from the NCEP reanalysis datasets for various phases of ENSO and380

IOD during the JJAS. From Fig. 6 it is observed that the anomalous negative moisture flux during the El-Niño is compensated

with the positive moisture flux anomaly by IOD +ve especially in central India, and vice-versa during the La-Niña and IOD-ve

events. It is known that the El-Niño events are often associated with IOD+ve events (Behera and Ratnam, 2018) and vice versa

(the ENSO and IOD are positively correlated in our data sets). From the precipitation composites (Fig.3), in central India, an

anomalous negative (positive) rainfall during the El Niño (La Niña) is observed, and during the IOD+ve (IOD-ve) a positive385

(partly negative) anomalous rainfall is observed. This could explain why both the IOD and ENSO states should be known

together to explain the variability of the central Indian subcontinent rainfall as the IOD and ENSO are having compensating

effects. This compensating behavior is not seen in the southern or northern part of the Indian subcontinent, hence this could

explain the net redundant information between ENSO and IOD to the precipitation to the southern region. The readers are

referred to Fig.3 by Barrett (2015) to further explore the relation of synergy dependence on the compensating influence from390

both sources, i.e., the correlation between two sources and to their targets respectively.
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Figure 6. Moisture flux anomalies (g/kg m/sec) over the Indian subcontinent (JJAS) for El-Niño, La-Niña, IOD+ve and IOD-ve events

observed in NCEP reanalysis data sets for the period of 1951-2005.

4.2.2 Global and regional climate model simulations

Next, we are performing the same analysis, starting with the EOF patterns from the SST fields obtained from the three GCM

simulations listed in Table 1, to investigate how the ENSO and IOD associated variability in the Indian and Pacific oceans are

represented. Figure 7 shows the second EOF pattern of the SST anomalies over the Indian ocean and the first EOF pattern395

in the Pacific ocean, for the GCM simulations of MPI-ESM-LR, Nor-ESM-M, and EC-EARTH. It is found that all the GCM

simulations replicate the zonal dipole like patterns over the Indian ocean and Pacific ocean similarly as the observations. The

percentage of the total variability contributed by EOF1 of the Indian ocean is about 30% in all the GCM simulations (Fig.

S7
::
S8) which is comparable to the observations. The EOF2, which is associated with the IOD, explains about 15% of the total

variance in all the GCMs, also similar to observations. The percentage of total variance contributed by the first EOF is between400

20− 25% in all the GCM simulations in the Pacific ocean, which is similar to variance in the observations. Thus, these results

indicate that the variability associated with the SST anomalies over the Indian and the Pacific ocean is represented in the

three GCM simulations. The SST anomaly composites during various phases of IOD and ENSO events (Fig. S8
::
S9

:
and Fig.

S9
:::
S10) show that most of the GCM simulations can replicate the SST anomaly composite patterns found during the IOD+ve

events in HadISST (Fig. S8
::
S9). On the contrary, during IOD-ve events, the MPI-ESM-LR portrays unrealistic warm anomalies405

throughout the Indian ocean. Over the Pacific ocean, the MPI-ESM-LR and EC-EARTH have an unrealistic westward extension

of the warm (cold) pool during El Niño (La Niña) events. The patterns from Nor-ESM-M are closer to the observation, shown
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in Fig. S9
:::
S10. The unrealistic westward extension of the SSTs in EC-EARTH and MPI-ESM-LR simulations might influence

the walker circulation through unrealistic large scale teleconnections patterns.
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Figure 7. EOF2 patterns of SST anomalies for (JJAS) in the Indian ocean and EOF1 patterns for (JJAS) in the Pacific Ocean for three GCM

simulations, i.e., MPI-ESM-LR, Nor-ESM-M and EC-EARTH for the period of 1951-2005.

Figure 8 represents the ISMR anomaly composites during the El-Niño, La-Niña, IOD+ve and, IOD-ve events for the three410

GCM simulations, the MPI-ESM-LR, Nor-ESM-M, and EC-EARTH, when selecting the associated years given by the re-

spective PCs. The rainfall anomaly composites associated with the positive phase of ENSO show dry conditions over the

northern/northwest parts of the Indian subcontinent in the MPI-ESM-LR, dry conditions throughout the Indian sub-continent

in Nor-ESM-M. The EC-EARTH simulation does not show a clear rainfall anomaly signal. Similar opposite polarity of rainfall

anomalies are observed in the La-Niña conditions in the MPI-ESM-LR and Nor-ESM-M simulations, while slight wet condi-415

tions in north-east India in EC-EARTH. For the IOD+ve events, MPI-ESM-LR shows dry conditions in the southwest, while

the Nor-ESM-M simulation shows dry conditions in the northwest and the Himalayan region, the EC-EARTH does not show

any variability. The Nor-ESM-M during the IOD-ve phase shows overall positive anomaly, while no clear signal is observed in

MPI-ESM-LR and EC-EARTH. Overall, the ENSO phase signal is better replicated in Nor-ESM-M simulation and partly in

MPI-ESM-LR as in the observations, while most of the GCM simulations failed to replicate the regional rainfall asymmetric420

response in IOD events as in observations (except Nor-ESM-M, which partly can replicate the dipole patterns). This might be

due to the coarse resolution of GCMs which may not be able to replicate the fine-scale precipitation response to the IOD.
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Figure 8. Total precipitation anomaly composites over the Indian subcontinent (JJAS) for El-Niño, La-Niña, positive IOD and negative IOD

events in MPI-ESM-LR, Nor-ESM and EC-EARTH simulations(1951-2005)

Figure 9 represents the IE spatial patterns from the IOD and ENSO i.e., I(PREC;IOD), I(PREC;ENSO), the two-

source IE, I(PREC;IOD,ENSO) together with the NET SYNERGY over the Indian subcontinent in the three GCM sim-

ulations i.e., MPI-ESM-LR, Nor-ESM-M, and EC-EARTH with the linear estimator. The information exchange from IOD425

to total precipitation in MPI-ESM-LR shows that the information from the IOD is exchanged to the southeastern part of the

Indian Subcontinent. This is contrary to what is seen in the results from the observations, where most of the IE takes place

to the leeward side of the western ghats and the northeastern sector of India. The Nor-ESM-M simulation shows that IE from

IOD is transmitted to the western side of the Indian subcontinent, where the observed significant anomalies are noted in Fig.

9. The EC-EARTH does not show any information exchange from IOD to the land points over the Indian sub-continent. The430

I(PREC;ENSO) show that the northern parts of the Himalayas and north west-central India receive information from the

Pacific ocean in MPI-ESM-LR. For Nor-ESM-M, the western ghats and its leeward side are influenced by ENSO. The EC-

EARTH does not show as much IE as the Nor-ESM-M or MPI-ESM-LR over the Indian continent, with an exception for some

scattered locations over the Himalayas.

The two-source information exchange I(PREC;ENSO,IOD) covers the northwest part of the Indian subcontinent for435

MPI-ESM-LR and the extreme southeast. For Nor-ESM-M the information exchange covers mostly the western part of India.

The EC-EARTH show IE over isolated places of northeast India. These results indicate that the three GCMs exhibit a IE
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pattern which is different from the observed patterns. Moreover, the results of the NET SYNERGY show that MPI-ESM-LR

does not show any net synergistic IE over the Indian subcontinent, while in Nor-ESM-M the IOD and ENSO share common

information over the west of India. EC-EARTH show less net synergy over the Indian sub-continent. Overall, the results from440

the IE exchange differ from the observations, seen for all the three GCM simulations. These results are consistent with Kernel

and Kraskov estimators (figures not shown
:::
Fig.

::::
S11).
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Figure 9. Information exchange from I(PREC;IOD), I(PREC;ENSO), two-source information exchange I(PREC;ENSO,IOD)

and NET SYNERGY ×10−2 nats for the GCM simulations MPI-ESM-LR, Nor-ESM-M and EC-EARTH for JJAS (1951-2005). Only

significant values at 95% confidence intervals are plotted.

Next, we are investigating how the two-source information exchange is represented when we dynamically downscale the

three GCM simulations (MPI-ESM-LR, Nor-ESM-M, and EC-EARTH) with the regional model COSMO-crCLIM (0.22◦). We

are applying the same two-source information exchange method on the RCM fields as we have done for the GCM simulations.445

However, since the RCM simulations are only covering a limited area, namely the South Asian CORDEX domain, we had

to combine the RCM results with the GCM simulations, in particular for the EOF-analysis over Indian and Pacific oceans.

Figure 10 represents the ISMR anomaly composites during the positive IOD+ve, IOD-ve, El-Niño, and La-Niña events for

the COSMO-crCLM RCM simulation driven with three GCM simulations, the MPI-ESM-LR, Nor-ESM-M, and EC-EARTH.

Here we are selecting the same years as given by the principal components from the driving GCM simulations. The rainfall450
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anomaly composites associated with the El-Niño events show dry conditions over the northern parts of Himalayas for the

downscaled MPI-ESM-LR and wet conditions in western ghats and isolated parts in central India. During the La-Niña phase,

dry conditions in the central Indian subcontinent, western ghats and wet conditions elsewhere are observed. In the downscaled

Nor-ESM-M, dry (wet) signal is observed throughout Indian subcontinent during El-Niño (La-Niña) phases. In the downscaled

EC-EARTH, dry regions are noted throughout most parts of Indian subcontinent during El-Niño, while dry conditions are seen455

in central India and wet conditions elsewhere in La-Niña phase. The rainfall anomalies composites associated with the positive

IOD in the observations, i.e., a meridional tripolar pattern with above than normal rainfall in central parts of India and below

than normal rainfall to north and south of it is only observed in the downscaled Nor-ESM-M. Similarly, the negative IOD in

downscaled Nor-ESM-M is associated with a zonal dipole having above (below) normal rainfall on the western (eastern) half

of India similar to that of the observations as seen in Figure 5. Overall, these results suggest that the downscaled results from460

Nor-ESM-M better reproduces the spatial patterns of precipitation anomalies associated with ENSO and IOD, when comparing

to the observations, than the downscaled results from EC-EARTH and MPI-ESM-LR.
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Figure 10. Total precipitation anomaly composites over the Indian subcontinent for El-Niño, La-Niña, positive IOD and negative IOD

events for the downscaled COSMO-crCLM simulations driven by MPI-ESM-LR, Nor-ESM-M and EC-EARTH GCM simulations for JJAS

(1951-2005)

Figure 11 represents the IE patterns over the Indian subcontinent for the downscaled RCM simulations with the Linear esti-

mator (these patterns are also consistent with Kraskov and Kernel
:::::::
(Fig.S12)

::::
and

::::::
Kernel

::::::::
(Fig.S13) estimators). The net synergy
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in central India, and shared information in southern India is better represented in the downscaled Nor-ESM-M simulation,465

compared to the downscaled MPI-ESM-LR and downscaled EC-EARTH. This is in agreement with the results from the GCM

simulation, where it was found that Nor-ESM-M simulation had a better replication of ENSO and IOD induced anomalous

precipitation structures than the two other GCMs (see Fig. 10). These results are interesting, even though all the COSMO-

crCLM simulations have the same physics and dynamics, only downscaled Nor-ESM-M replicated realistic patterns of IE.

The improvement in results in downscaled Nor-ESM-M can be attributed to a more realistic large-scale information coming470

from the GCM simulation, such as the moisture flux transport during various phases of ENSO and IOD events (see Fig. S10

:::
S14

:
– Fig. S14

:::
S18

:
and Fig.6). For the MPI-ESM-LR and EC-EARTH GCM simulations, the moisture flux anomalies are

very different from the reanalysis fluxes and thus seem misrepresented. A better replication of the moisture flux anomaly in

Nor-ESM-M GCM simulation during ENSO and IOD might be from a better simulation of the large scale circulation patterns,

like the Walker and Hadley circulations, due to the better representation of the SST than the two other GCM simulations (Fig.475

S8 and Fig. S9). The RCM simulation results exhibit similar moisture flux anomalies compared to the driving GCM simula-

tions, in which the downscaled Nor-ESM-M outperforms the downscaled MPI-ESM-LR and downscaled EC-EARTH. These

results indicate that a realistic large-scale signal from the GCM simulations (e.g., the moisture transport and SST anomalies)

is essential for an RCM to properly improve the GCM results in terms of IMSR variability. When the large-scale signal from

the GCM is incorrect, and wrong moisture fluxes are imposed on the lateral boundaries of the RCM, the downscaled results480

are hampered.
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Figure 11. Information exchange from I(PREC;IOD), I(PREC;ENSO) and two- source information exchange

I(PREC;ENSO,IOD), NET SYNERGY ×10−2 nats for the downscaled COSMO-crCLM simulations for JJAS (1951-2005).

Only significant values at 95% confidence intervals are plotted.

5 Conclusions

In this article, we explored two-source information exchange (IE) from ENSO and IOD (quantified by SST variabilities in the

Pacific and Indian oceans) to the Indian Monsoon Summer Rainfall (IMSR) interannual variability. But, first, we used simple

idealized linear and non-linear dynamical systems to demonstrate the concepts of two-source IE. Results showed that both485

the linear and the non-linear idealized systems can exhibit positive net synergy (i.e., the combined influence of two sources

is greater than their individual contributions). Interestingly, two uncorrelated sources can show positive net synergistic IE to a

target.

The two-source ENSO and IOD to IMSR IE was explored in observations, reanalysis data sets, and in three GCM simulations

which were also further dynamically downscaled with the RCM. The results from the observations and reanalysis data suggest490

that both IOD and ENSO influence the interannual variability of the ISMR throughout most parts of Indian subcontinent.

Interestingly, we found that IOD and ENSO exhibit positive net synergy over central India, which is the monsoon core region,

and net redundant information over the southern part of India.
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The IE patterns in the three GCM simulations differ from that in the observations. However, the GCM Nor-ESM-M bet-

ter captured the precipitation anomalies from ENSO and partly from IOD than the other two GCMs. Previous studies also495

showed that Nor-ESM-M outperforms other CMIP5 GCM simulations in terms of rainfall climatology, and most aspects of

the climatological annual cycle and interannual variability in the Indian subcontinent (Sperber et al., 2012; McSweeney et al.,

2015).

Downscaling Nor-ESM-M simulation with the RCM COSMO-crCLM better replicated the observed IE patterns than down-

scaling the MPI-ESM-LR and EC-EARTH simulations. Importantly, the downscaled Nor-ESM-M IE results are in better500

agreement with the observations than the Nor-ESM-M results. Downscaling Nor-ESM-M adds value to the GCM simulation.

This can not be concluded here for downscaling of MPI-ESM-LR and EC-EARTH simulations. Downscaling the latter simu-

lations did not add value because of a missing realism in their large-scale SST patterns and horizontal moisture flux variability,

which are important RCM boundary conditions and which were better represented in the Nor-ESM-M simulation. Downscal-

ing did not compensate errors in the large-scale driving simulations. These results highlight the importance of the choice of505

GCM simulations when performing dynamically downscaling for high-resolution regional climate projections.

Finally, we propose to use the two-source IE metric as a complementary tool to gain additional insight into the climate

system and to perform process-oriented climate model evaluation.
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Appendix A:
:::::::::
Non-linear

::::::
Heńon

:::::::
system

::
As

:::
the

:::::::
climate

::::::
system

::
is
::::::::::
non-linear,

:::
we

::::::
further

::::::
extend

:::
our

:::::::
analysis

:::::
from

::::::::
idealized

:::::
linear

:::::::
systems

::
to

::
a
::::::::
idealized

:::::::::
non-linear

::::::
system.

:::
For

::::
this

:::::::
purpose,

:::
we

:::::::::
considered

:::::::
coupled

::::::
Heńon

:::::
maps

:::::
which

::::::::
captures

:::
the

::::::::
stretching

::::
and

::::::
folding

::::::::
dynamics

::
of

:::::::
chaotic

::::::
systems

::::
such

::
as

:::
the

::::::
Lorenz

::::::
system

:::::
which

:::::::
mimic’s

:::
the

::::::::::
atmospheric

::::::::
behavior.

:::
We

:::::::::
considered

:::
two

::::::
Heńon

:::::
maps

::::::::::::::::
(Kraskovska, 2019),

:
x
::::
and

:
y
:::::::
coupled

::::
with

::::
each

:::::
other

::::
with

:::
the

::::::::
governing

::::::::
equations

:
525

xt = 1.4−x2t−1 + 0.3xt−2,

yt = 1.4− (Cxt−1yt−1 + (1−C)y2t−1) + 0.3yt−2,
(A1)

:::::
where

:::
the

:::::::
coupling

::::::::::
coefficients

::::::::::
C ∈ [0,0.6].

:::::
From

:::::
Eq.A1

::
it
::
is

::::::
evident

::::
that

::
the

::::::
system

::
x
::
is

::::::
driving

::::::
system

::
y

::::::
through

::::::::
coupling

::::::::
coefficient

:::
C.

:::::
Figure

:::
A1

::::::
shows

:::
the

::::::::::
information

::::::::
exchange

:::
in

:::
the

:::::::::
non-linear

::::::
Heńon

::::::
system

:::::::::
(equations

:::::
given

::
as

:::
in

::::::::
Equation

::::
A1).

::::::
Figure

::
A1

::::::
shows

::::
that

:::
the

:::
IE,

:::::::::
I(yt;xt−1)

::::::::
increases

::
as

:::
the

::::::::
coupling

:::::::::
coefficient

::
C

::::::::
increases.

::
It
::::
can

::
be

::::
also

::::::::
observed

:::
that

:::
the

::::::::
opposite530

:::::::
behavior

:::
i.e.,

::::::::::
information

:::::::::
exchange

::::
from

:::::::::
I(yt;yt−1)

:::::::::
decreases

::::
with

::::::::
increasing

:::
C

:::
due

::
to

:::
the

::::
term

:::::::::::
(1−C)y2t−1::

in
:::
Eq.

::
4.
:::::
Also

::
the

:::
IE

:::::
from

::::::::::::::::::::
I(yt;yt−1)> I(yt;xt−1)

:::::::::
indicating

::::
that

:::
the

:::::
target

::
is
::::::
tightly

:::::::
coupled

::::
with

:::
its

::::
own

::::
past

:::::
(also

::::
seen

::
in

:::::::::
governing

:::::::::
equations).

::
In

::::
this

:::::
case,

:::
the

:::::::::
two-source

:::
IE

::
is
:::::::

greater
::::
than

:::::::::
I(yt;yt−1)

:::
or

::::::::::
I(yt;xt−1)

::
as

::::::::
expected,

::::
this

::
is

:::::::
because

:::::
both

:::
the

::::::
sources

:::
are

::::::::::
contributing

::
to

:::
the

:::::
target

::::::
future

::::
state.

:::::
Here

:::
the

:::::::::
correlation

:::::::
between

:::
the

::::
two

::::::
sources

::::
xt−1::::

and
::::
yt−1::

is
::::::
almost

:::::
equal

::
to

::::
zero.

::::
The

:::
net

:::::::
synergy

::::::::
increases

::::
with

:::::::
increase

::
in

:::
the

::::::::
coupling

:::::::::
coefficient

:::::::::
indicating

:::
net

:::::::::
synergistic

::
IE

:::
by

:::
the

:::::::::::
two-sources.535

:::
For

:::
this

::::::
system

:::
we

::::
used

::
8

::::::
number

::
of
::::::::
k-nearest

:::::::::
neighbors

:::
for

:::::::
Kraskov

::::::::
estimator

:::
and

:::
0.5

::::::
kernel

:::::
width

::
for

::::::
Kernel

:::::::::
estimator.
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Figure A1.
::::::::
Information

::::::::
exchange

:
in
::::

nats
::::
from

::::::::
two-source

::::
(red

::::
line),

:::::
single

:::::
source

:::::
(green

:::
and

::::
blue

:::::
lines),

::
net

::::::
synergy

:::::
(black

::::
line)

::
to

:::::
target

::
for

:::::::
Kraskov

:::
and

:::::
Kernel

::::::::
estimators.

::::
The

:::
error

::::
bars

::::::::
represents

:::
two

::::::
standard

::::::::
deviations

::
of

:::
the

:::
100

:::::::
permuted

:::::::
samples.
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