ESD — 2" resubmission of Schlund et al. (2020) https://doi.org/10.5194/esd-2020-49

Reply to Peter Caldwell (Referee)

Reviewer comments are given in bold, our answers in red.

The authors did a great job of addressing my concerns. | thought reviewer Thorsten Mauritsen
brought up a good point about shift of constraints towards larger ECS indicating that most of
these constraints are actually constraints on cloud feedback. The authors mention this in the
paper, but could have redone their analysis with respect to cloud feedback rather than ECS in
order to really explore this point. Nonetheless, no paper can address all questions and | think
what the authors have is definitely sufficient for publication.

We thank the reviewer again for the helpful and constructive comments that allowed us to substantially
improve our manuscript during the previous round of reviews.
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Reply to Thorsten Mauritsen (Referee)
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Second review of ""Emergent constraints on equilibrium climate sensitivity in CMIP5: do they
hold for CMIP6?"" but Manuel Schlund and co-authors.

Overall, I am happy with the revisions undertaken by the authors based on my first review. I
have a few comments of minor nature that should be addressed prior to publication.

Sincerely,
Thorsten Mauritsen

We thank the reviewer again for the helpful and constructive comments. We have revised our
manuscript in the light of these. A point-by-point reply is given below.

Minor comments

24, replace 'increased’ -> 'widens'

Changed in the manuscript.

24-25, 1 think the text in parentheses is confusing, | recommend deleting
Text in parentheses deleted.

30-33, I am not sure | understand this text, I recommend revising. As it stands it seems to suggest
that the emergent constraints that are process-based (those in this study except COX) are
superior in constraining ECS to those that more directly constrain ECS using global change
(Hargreaves 12+16, Jimenez 19, Tokarska 20, Renoult 20 etc.).

We agree, the text was misleading. We changed this to

“Our results support previous studies concluding that emergent constraints should be based on an
independently verifiable physical mechanism, and that process-based emergent constraints on ECS
should rather be thought of as constraints for the process or feedback they are actually targeting.”

in the revised version of the manuscript.

94, Leakage is normally compensated for by subtracting imbalance from the control simulation.
I think the authors do this.

We adapted the text accordingly:

“In this calculation, the linear fit of a corresponding pre-industrial control run is subtracted from the
4xCO2 run to account for energy leakage and remove any model drift that is present in the control
climate without adding noise (Andrews et al., 2012).”

96-97, You might specify that these 6 percent is a model-based estimate of the compensation
between changing feedback with time and the difference in ECS estimated by 2xC0O2 and 4xCO2
(2x2 < 4).

We added the following sentence:
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“This number is a model-based estimate of the compensation between changing feedbacks with time
and the differences introduced by considering a 4xCO2 run instead of a 2xCO2 run”.

144-145, | don't understand the meaning of this? Isn't the whole purpose of emergent constraints
to utilise variations in model performance to better constrain something of interest?

We agree. The sentence was removed.

404-405, replace 'not suffer from the same' -> ‘overcome this'

Changed as suggested.

411, a matter of tone, but I suggest replacing "However" -> ‘Nevertheless'
Changed to “Nevertheless”.

413-414, In my first review | provided a possible explanation for this, i.e. that it is to be expected
that models with higher ECS will yield this result. I am not sure that writing in this way provides
the reader with an appropriate impression of the other studies mentioned in the paragraph.

We agree. Since this paragraph focuses on emergent constraint that use the past warming trend, the
mention of COX, which uses the temperature variability, might not be appropriate. We removed the
sentence.

432-433, see comments on 24-25.

Removed the text in parentheses.
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Abstract. An important metric for temperature projections is the equilibrium climate sensitivity (ECS) which is defined as the
global mean surface air temperature change caused by a doubling of the atmospheric CO- concentration. The range for ECS
assessed by the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report is between 1.5 and 4.5 K and
has not decreased over the last decades. Among other methods, emergent constraints are potentially promising approaches to
reduce the range of ECS by combining observations and output from Earth System Models (ESMs). In this study, we
systematically analyze 11 published emergent constraints on ECS that have mostly been derived from models participating in
the Coupled Model Intercomparison Project Phase 5 (CMIP5) project. These emergent constraints are — except for one that is
based on temperature variability — all directly or indirectly based on cloud processes, which are the major source of spread in
ECS among current models. The focus of the study is on testing if these emergent constraints hold for ESMs participating in
the new Phase 6 (CMIP6). Since none of the emergent constraints considered here has been derived using the CMIP6 ensemble,
CMIP6 can be used for cross-checking of the emergent constraints on a new model ensemble. The application of the emergent
constraints to CMIP6 data shows a decrease in skill and statistical significance of the emergent relationship for nearly all
constraints, with this decrease being large in many cases. Consequently, the size of the constrained ECS ranges (66%
confidence intervals) inereasedwidens by 51% on average {(using-the-arithmetic-mean-of-all-emergent-constraints)-in CMIP6
compared to CMIP5. This is likely because of changes in the representation of cloud processes from CMIP5 to CMIP6, but
may in some cases also be due to spurious statistical relationships or a too small number of models in the ensemble the emergent
constraint was originally derived from. The emergently-constrained best estimates of ECS also increased from CMIP5 to
CMIP6 by 12% on average. This can be at least partly explained by the increased number of high-ECS (above 4.5K) models

in CMIP6 without a corresponding change in the constraint predictors, suggesting the emergence of new feedback processes
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rather than changes in strength of those previously dominant. Our results support previous studies concluding that emergent

constraints should be based on an independently verifiable physical mechanism, and that process-based emergent constraints

foeusing-on specific-processes-contributingto-ECS mayshould rather be morerobustthanthese-attemptingto-constrainthought

of as constraints for the tetalprocess or feedback they are actually targeting.

1 Introduction

A bulk measure of the sensitivity of the climate system to carbon dioxide in the atmosphere (CO2) is commonly expressed by
the equilibrium climate sensitivity (ECS), an idealized metric defined as the mean global surface air temperature change that
results from a doubling of the atmospheric CO, concentration over pre-industrial levels once the climate system reached
equilibrium. In 1979, the Charney report determined an ECS range of 1.5 to 4.5 K for the Earth system (Charney et al., 1979).
This range had not changed substantially by the time of the Intergovernmental Panel on Climate Change (IPCC) Fifth
Assessment Report (AR5) (Collins et al., 2013) and is close to the range of the Earth system models participating in the
Coupled Model Intercomparison Project Phase 5 (CMIP5, Taylor et al. (2012)).

This large range of model climate sensitivity values can be largely attributed to differences in cloud feedbacks (Boucher et al.,
2013). In particular, model differences in the change in shortwave reflection of low-level clouds changes in response to climate
change dominate the uncertainties in the global warming projections, particularly in the tropics but also in mid-latitudes (Brient
and Schneider, 2016; Vial et al., 2013). Over the years, various lines of evidence have been exploited to constrain the range of
ECS, including paleoclimate data and analysis of the current observed warming trend (Knutti et al., 2017a). A new assessment
using this evidence has narrowed the 66% range (17-83%) to 2.6-3.9 K (Sherwood et al., 2020), but in the meantime CMIP6
models are displaying a wider range of ECSs (see below).

The use of emergent constraints is another promising approach to reduce the uncertainty in ECS (Eyring et al., 2019).
Originally applied to the hydrological cycle and the snow-albedo feedback (Allen and Ingram, 2002; Hall and Qu, 2006),
emergent constraints offer the possibility to constrain future projections of Earth system model (ESM) ensembles with
observations. Their theoretical basis is an emergent relationship between an observable quantity in the past or present-day
climate and a quantity related to the future climate (such as for example ECS). Typically, the observable quantity is related to
a climate feedback allowing the emergent relationship to be physically motivated by some key processes driving this feedback.
Such a physical mechanism is a crucial prerequisite for the plausibility of an emergent constraint: due to large number of
possible observables and small number of models, spurious emergent relationships are possible just by chance, which was
shown by statistical tests (Caldwell et al., 2014). Caldwell et al. (2018) evaluated the credibility of several published emergent
constraints on ECS. Using a feedback decomposition analysis, they assessed whether the published emergent relationship
could be explained by the proposed mechanism. Out of 19 emergent constraints on ECS, only four of them were considered

credible, while the rest of them were considered as either not plausible or could not be tested using this approach. In addition,
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Caldwell et al. (2018) performed out-of-sample tests on five emergent constraints originally trained on older CMIP versions,
by applying them to the CMIP5 ensemble. They found that out only one of the five passed this test.

In this paper, we follow up on the work of Caldwell et al. (2018) by analyzing 11 published emergent constraints on ECS
which are summarized in Table 1, and assessing whether they still hold for the new CMIP6 model ensemble (Eyring et al.,
2016). We first calculate these emergent constraints for the most recent ensemble used to derive all but one of them — CMIP5
(Taylor et al., 2012) — and then test whether they still hold in the CMIP6 ensemble. The one exception is the emergent constraint
of Volodin (2008), which was derived on CMIP3 data. While the model range of ECS in CMIP5 is between 2.1 and 4.7 K, the
CMIP6 model range is considerably larger, 1.8 to 5.6 K (Meehl et al., 2020), see Figure 1. Possible reasons for this increased
ECS range are changes in the extratropical cloud parametrizations and microphysics in the CMIP6 models (Zelinka et al.,
2020). However, despite including more detailed cloud physical processes, further analyses suggest that the high sensitivity
models might overestimate the future warming trend (Tokarska et al., 2020). The large ECS range in CMIP6 emphasizes the
need for reliable methods to constrain the uncertainty range of future climate projections with observations. The CMIP6
ensemble can be used for an independent testing of the constraints on previously unknown data. If the proposed underlying
physical mechanisms are robust, i.e. targeting a key feedback mechanism controlling most of the observed CMIP6 spread, the
emergent constraints would be expected to hold when applied to CMIP6 data. In this analysis we thus test the robustness of
the constraints to new models and models with advances in model design over time.

Section 2 provides an overview of the data and methods used. Section 3 gives a discussion of the 11 emergent constraints on
ECS and their results when derived from the CMIP5 or CMIP6 ensemble including an analysis of their statistical significance.

The paper ends with a discussion and summary in sections 4 and 5.

2  Data and methods
2.1 Equilibrium Climate Sensitivity (ECS)

In this study we use the output from climate models participating in CMIP5 and CMIP6, see Table 2 and Table 3, respectively.
Traditionally, ECS is defined as the global mean surface air temperature change after an instantaneous doubling of the
atmospheric CO, concentration once the climate system reaches radiative equilibrium. Since running a fully-coupled ESM
into equilibrium is computationally expensive (this would require thousands of model years, see Rugenstein et al. (2020)),
ECS is typically approximated by a so-called “effective climate sensitivity”, which is derived from the first 150 years that
follow an instantaneous quadrupling of the atmospheric CO, concentration (4xCO, run). Since the ESMs are not in radiative
equilibrium during these 150 years, a regression of the top-of-atmosphere net downward radiation N versus the global mean
surface air temperature change AT extrapolated to N = 0 gives an estimate of the equilibrium warming (Gregory et al., 2004).
In this paper, we use the term “ECS” to denote this effective climate sensitivity derived from the Gregory regression method.

In this calculation, the linear fit of a corresponding pre-industrial control run is subtracted from the 4xCQ; run to_account for
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energy leakage and remove any model drift that is present in the control climate without adding noise (Andrews et al., 2012).

Even though widely used in literature, this Gregory regression method is known to be only an approximation of the true climate

sensitivity. A

et al. (2020), the effective climate sensitivity is 6% lower than the best estimate of the true equilibrium warming obtained from

integrating the climate models until a new equilibrium is reached. This number is a model-based estimate of the compensation

between changing feedbacks with time and the differences introduced by considering a 4XxCO- run instead of a 2xCO- run.

However, only a few ESMs provide simulations long enough to assess the true climate sensitivity. The CMIP endorsed
LongRunMIP (Rugenstein et al., 2019) could be a promising way to estimate the true climate sensitivity that can then be used

to reevaluate emergent constraints and their proposed underlying physical mechanisms.

2.2 Calculation of emergent constraints on ECS

An overview of the 11 emergent constraints analyzed in this study including the variables required for their calculations is
given in Table 1 and the following section. We chose these particular emergent constraints since these were already
implemented in the ESMValTool (see section 2.4) at the time of writing this study, which greatly facilitated this analysis. For
all emergent constraints, we use the historical simulations of CMIP5 and CMIP6 in order to ensure maximum agreement with
the observational data. If necessary, the historical simulation of CMIP5 is extended after its final year 2005 with data from the
RCP 8.5 scenario (Riahi et al., 2011). Note that we only use data through 2014, during which time all RCP scenarios behave
similarly and the choice of the scenario is not expected to affect results considerably. Such an extension is not needed for
CMIP6 models as their historical simulations cover a longer time period until 2014.

To evaluate the resulting constrained probability distribution of ECS, we use the following nomenclature: let x,,, be the x-axis
variable (i.e. the observable, constraining variable) of climate model m and y,, its corresponding target variable (ECS in our
case). Following Cox et al. (2018), we use ordinary least squares regression to fit the linear model

P (X)) = a + bx,,, (1)

where ,,, is the predicted target variable for predictor x,,, a the intercept of the linear regression line and b the slope of the

linear regression line. Fitting the regression model includes minimizing the standard error s of the estimate
M
2 1 5 )2 (2)
st = M—2 (G Y
m=1

where M is the total number of climate models.
In the standard emergent constraint approach, the constrained target variable y (here ECS) is given by the regression y(x)
evaluated at an observed or observationally based (in case of using reanalysis data) value x that has not been used to fit the

regression line. In that case, the corresponding uncertainty in the prediction of J is given by the standard prediction error
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Here, x is the arithmetic mean of x over all models. Assuming Gaussian errors, this equation defines the conditional
probability density function (PDF) for predicting a value of y given x, i.e. the posterior distribution:

- y(x)f)_

P(ylx) = 2
y

2moZ(x) ( “

y

This distribution can be interpreted as the posterior distribution in the regression model based on climate model output but
constrained by matching the observable x. However, the observation of x (referred to as x,) is not error free and has
uncertainties associated with it. Assuming again an unbiased Gaussian, the resulting observational probability density for

observing x, given the true value x is given by

®)

P(xo|x) = (xo = %) )

1
where o2 is the variance of the observation about the true value. Assuming a uniform prior P(x) « 1 with no cut-offs (i.e. the
cut-offs are positive and negative infinity, which forms an “improper” prior) and using Bayes’ theorem implies P(x|x,) =
P(x0]x). In a final step, numerical integration is used to calculate the marginal probability density for the constrained

prediction of the target variable y dependent on the observation x,:

P(y)xo) = j P(y1x)P (x]xo)dx. ©®)

By assuming a uniform prior in x we also assume a uniform prior in y (the true ECS), since x and y are linearly related (see
equation (1)) — in other words, that an ECS near 8 K would be deemed just as probable as one near 4 K if both are equally
consistent with the observational best estimate x,. We do this for simplicity. The PDFs would shift somewhat lower with a
broad prior on processes instead (see Sherwood et al. (2020)), but we are concerned here with how outcomes compare using
CMIP5 vs. CMIP6 data, rather than the exact ranges obtained. Such comparisons are not sensitive to the prior.

As typically done in other studies proposing a single emergent constraint on ECS, we do not explicitly take model
interdependency into account when applying the linear regression model (see equation (1)) to the model ensemble data. We
simply assume that the individual data points (i.e. climate models) are independent. As some modeling groups provide output
from multiple ESMs and some ESMs from different modeling groups share components and code, this is clearly not the case.
Duplicated code in multiple models is expected to lead to an overestimation of the sample size of a model ensemble and may
result in spurious correlations (Sanderson et al., 2015). Possible approaches could be to stop treating all models equally by
either applying a model weighting based on a model’s interdependence with the other models or by simply reducing the
ensemble size considering models only that are above a given (yet to be defined) interdependence score. Promising approaches
to quantify the model interdependency that could be followed include, for example, the studies of Sanderson et al. (2015);
Sanderson et al. (2017) and Knultti et al. (2017b).
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itself. Similar to many other emergent constraint studies, we use an ordinary least squares linear regression model for each

emergent constraint. However, in some cases this might not be appropriate, e.g. when we expect non-linear behavior or when
physical constraints can be used to derive further constraints for the regression model like a zero intercept (Annan et al., 2020;
Jimenez-de-la-Cuesta and Mauritsen, 2019; Renoult et al., 2020).

We further note that also observational uncertainties can play a role as using different observational datasets for a given variable
as a proxy for observational uncertainty might lead to different emergent constraints. As this study uses only one combination
of observational dataset(s) to calculate the emergent constraints as in the original published emergent constraint studies, the
error estimations given by our analysis are expected to underestimate the true error. This could be investigated by systematic
tests using different observational datasets and/or combinations of thereof as a proxy for observational uncertainty. Where
available, additionally observational uncertainty estimates could be used to give better estimates of the constrained range of
ECS. A major challenge associated with this is, however, to determine how observational uncertainties propagate to the space-
time scales represented by the models because of the typically not well-known correlation of observational errors in space and
time (e.g. Bellprat et al. (2017)).

2.3  Statistical significance of emergent relationships

To evaluate the statistical significance of the different emergent relationships, we use a two-sided t-test to determine how likely
the correlation found between the predictors and ECS would be to appear by chance. The null hypothesis for this test is that
the predictor and ECS are not linearly correlated, i.e. the true underlying Pearson correlation coefficient of the population is
zero. In that case, the variable

po VM -2 )

V1—12

has a Student’s t-distribution with M — 2 degrees of freedom. r is the Pearson correlation coefficient evaluated on the sample

N

{ (¢ v} In this study, we indicate the statistical significance with the p-value, which describes the probability of obtaining
an absolute sample Pearson correlation coefficient greater than |r| if the null hypothesis is true, i.e. the predictor and ECS are
not linearly correlated. Smaller p-values indicate higher significance. Although threshold values such as p < 0.05 are often
used to declare “significance,” here we focus mainly on how p-values are affected by the change from CMIP5 to CMIP6,

noting that they may anyway be biased low by our assumptions discussed in section 2.2.

2.4 ESMValTool

All figures in this paper are produced with the Earth System Model Evaluation Tool (ESMValTool) version 2 (Eyring et al.,
2020; Lauer et al., 2020; Righi et al., 2020). The ESMValTool is an open-source community diagnostics and performance

metrics tool for the evaluation of Earth system models (https://www.esmvaltool.org/). An ESMValTool recipe (configuration
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file defining input data, preprocessing steps and diagnostics to be applied) is available that can be used to reproduce all figures
in this paper. This also allows redoing the analysis presented in this study once new model simulations from CMIP6 or other

model ensembles become available.

3 Comparison of emergent constraints on ECS for CMIP5 and CMIP6

In this section we describe and discuss the 11 emergent constraints on ECS summarized in Table 1 using CMIP5 and CMIP6
data (sections 3.1 to 3.11) and provide a best estimate for ECS and statistical significance of the 11 emergent constraints in
section 3.12. While most of these emergent constraints have been derived using data from the CMIP5 and/or CMIP3 ensembles,
to our knowledge none of them has been evaluated on the CMIP6 ensemble so far. The results for the individual emergent
constraints described in the following are shown in Figure 2 to Figure 5. The left columns in these figures show the emergent
relationships including the uncertainty of the linear regressions (blue and orange shaded areas; see equation (3)) and the
uncertainty in the observations (gray shaded area, see equation (5)). The right columns show the probability distributions of
ECS in the original model ensemble (histogram) and the constrained distribution given by the emergent constraints (blue and
orange line; see equation (6)). Table 4 shows corresponding 66% confidence intervals (i.e. 17-83% intervals) of ECS derived
from the probability distributions given by equation (6) and the p-values used to assess the significance of the emergent

relationships.

3.1  Response of shortwave cloud reflectivity to changes in sea surface temperature (BRI)

In this emergent constraint proposed by Brient and Schneider (2016), ECS is correlated with the tropical low-level cloud (TLC)
albedo, i.e. using the covariance of clouds with changes in sea surface temperatures (SSTs). Differences in the TLC albedo
account for more than half of the variance of the ECS in the CMIP5 ensemble. Following Brient and Schneider (2016), TLC
regions are defined as grid points that are in the driest quartile of 500 hPa relative humidity of all grid cells over the ocean
between 30°S and 30°N. The albedo of the TLC is obtained by calculating the ratio of TOA shortwave cloud radiative forcing
and solar insolation averaged over the TLC region. The regression coefficients of deseasonalized variations of TLC shortwave
albedo and SST (in % per K) are then used as an emergent constraint for ECS. Here, we use observational data from HadISST
for SST (Rayner et al., 2003), ERA-Interim for 500 hPa relative humidity (Dee et al., 2011) and CERES-EBAF (Loeb et al.,
2018) for the TOA radiative fluxes over the time period 2001-2005. In the original publication, Brient and Schneider (2016)
use similar observation-based datasets with the exception of SST, where they take data from the Extended Reconstructed Sea
Surface Temperature (Smith and Reynolds, 2003) as reference instead. Our analysis yields a 66% confidence range for ECS
of 3.72 K + 0.59 K for CMIP5 (R? = 0.38) and 4.32 K + 1.07 K for CMIP6, with much lower R? = 0.12. The original
publication stated a best estimate of 4.0 K, with a very low likelihood of values below 2.3 K (90% confidence). The statistical

significance of the emergent relationship dropped from p = 0.0005 for CMIP5 to p = 0.0355 for CMIP6.
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3.2  Temperature variability (COX)

The emergent constraint on ECS proposed by Cox et al. (2018) uses a temperature variability metric ¥ which is based on the
interannual variation of global mean temperature calculated from its variance (in time) and one-year-lag autocorrelation. In
contrast to the majority of emergent constraints which focus on cloud-related processes, this constraint is based on the
fluctuation-dissipation theorem, which relates the long-term response of the climate system to an external forcing (ECS) to
short-term variations of the climate system (climate variability). This arguably places the constraint on a more solid theoretical
foundation, although several questions were raised on the robustness of the results to choices made in the analysis (Brown et
al., 2018; Po-Chedley et al., 2018; Rypdal et al., 2018). For example, Annan et al. (2020) showed that the assumed linear
relationship between ¥ and ECS does not hold when adding a deep ocean to the model. As observational data, here we use the
HadCRUT4 dataset (Morice et al., 2012) over the time period 1880-2014. Under the COX constraint we thus assess a 66%
ECS range of 3.03 K + 0.73 K for CMIP5 (R? = 0.31) and 3.71 K + 1.09 K for CMIP6 (R? = 0.01). Cox et al. (2018) derived
a 66% range of 2.8 K + 0.6 K from a different subset of CMIP5 models but the same observations. When moving from CMIP5
to CMIPG6, the significance of the emergent relation drops massively from p = 0.0032 to p = 0.5415, respectively.

3.3 Southern hemisphere Hadley cell extent (LIP)

The results of Lipat et al. (2017) show that the multi-year average extent of the Hadley cell correlates with ECS in CMIP5
models. The Hadley cell edge is defined as the latitude of the first two grid cells from the equator going south where the zonal
average 500 hPa mass stream function calculated from December-January-February means of the meridional wind field
changes sign from negative to positive. Lipat et al. (2017) explain this correlation by tying it to the observed correlation of the
interannual variability in mid-latitude clouds and their radiative effects with the poleward extent of the Hadley cell. For the
calculation of the emergent constraint, we use reanalysis data from ERA-Interim (Dee et al., 2011) for the meridional wind
speed over the time period 1980-2005. Our application of this emergent constraint gives ECS 66% ranges of 2.97 K £ 0.75 K
for CMIP5 (R? = 0.18) and 3.75 K + 1.11 K for CMIP6 (R? < 0.01). The original publication does not specify an ECS range.
For CMIP6, the emergent constraint shows a much lower statistical significance (p = 0.6791) than for CMIP5 (p = 0.0228).

3.4  Large-scale lower-tropospheric mixing (SHD)

Sherwood et al. (2014) proposed that the degree of mixing in the lower troposphere determines the response of boundary-layer
clouds and humidity to climate warming, as the associated moisture transport would increase rapidly in a warmer atmosphere
due to the Clausius-Clapeyron relationship. The large-scale component D of this mixing is defined as the ratio of shallow to
deep overturning. D is calculated from the vertical velocities averaged over two height regions: 850 hPa and 700 hPa for
shallow overturning and 600, 500 and 400 hPa for deep overturning. Both quantities are averaged over parts of the tropical
ocean region away from the regions of highest SST and strongest mid-level ascent, in particular the region 160°W — 30°E,

30°S — 30°N, wherever air is ascending at low levels. As observationally based data, we use vertical velocities from ERA-
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Interim (Dee et al., 2011) over the time period 1989-1998 similar to the original publication. We derive ECS 66% confidence
ranges of 3.65 K + 0.64 K for CMIP5 (R? = 0.28) and 3.77 K + 1.06 K for CMIP6 (R? = 0.03). Sherwood et al. (2014) do
not give a best estimate for ECS based on the large-scale component of mixing D or its small-scale counterpart S (section 3.5)
but for the sum of D+S only (see section 3.6). The regression shows a much lower significance for CMIP6 (p = 0.2805) than
for CMIP5 (p = 0.0037).

3.5  Small-scale lower-tropospheric mixing (SHS)

The small-scale mixing S (Sherwood et al., 2014) is calculated from the differences in relative humidity and temperature
between 700 and 850 hPa. The differences are averaged over all grid cells within the upper quartile of the annual mean 500
hPa ascent rate (within ascending regions) in the tropics. The tropics are defined as region between 30°S and 30°N. In the
Cloud Feedback Model Intercomparison Project models (CFMIP, Webb et al. (2017)), for which convective tendencies were
available, upward moisture transport by parameterized convection was shown to increase more rapidly with warming for higher
values of S. We use reanalysis data from ERA-Interim (Dee et al., 2011) for temperature and relative humidity to calculate the
observationally based constraint (1989-1998). Our analysis shows a 66% range of ECS of 3.07 K + 0.73 K for CMIP5 (R? =
0.13) and 3.48 K + 1.07 K for CMIP6 (R? = 0.12). The correlation of S and ECS shows a slightly higher significance in the
CMIP6 ensemble (p = 0.0396) than in the CMIP5 ensemble (p = 0.0647). The SHS constraint is one of the two analyzed
emergent constraints (ZHA being the other exception) that shows a higher statistical significance for the CMIP6 than for the
CMIP5 ensemble.

3.6 Lower tropospheric mixing index (SHL)

The lower tropospheric mixing index (LTMI) formulated by Sherwood et al. (2014) is defined as the sum of the small-scale
mixing S (see section 3.5) and the large-scale mixing D (see section 3.4), which are supposed to capture complementary
components of the total mixing phenomenon. Sherwood et al. (2014) argue that the increase in dehydration depends on initial
mixing linking it to cloud feedbacks and thus also to ECS. For this constraint, we derive an ECS 66% confidence range of 3.42
K +0.65 K for CMIP5 (R? = 0.41) and 3.67 K + 1.06 K for CMIP6 (R? = 0.16). Sherwood et al. (2014) give a best estimate
of about 4 K with a lower limit of 3 K. Similar to both other constraints by Sherwood et al. (2014), SHD and SHS, the statistical
significance of the SHL emergent relation decreased in CMIP6 (p = 0.0138) compared to CMIP5 (p = 0.0002).

3.7 Error in vertical profile of relative humidity (SU)

Another emergent constraint on ECS that targets uncertainties in cloud feedbacks was proposed by Su et al. (2014). They show
that changes in the Hadley circulation are physically connected to changes in tropical clouds and thus ECS. Consequently, the
inter-model spread in the change of the Hadley circulation in an ensemble of climate models is well correlated with the

corresponding changes in the TOA cloud radiative effect. Moreover, Su et al. (2014) found a correlation between a model’s



270

275

280

285

290

295

ECS and its ability to represent the present-day Hadley circulation. The latter is calculated from the tropical (45°S — 40°N)
zonal-mean vertical profiles of relative humidity from the surface to 100 hPa. These profiles are then used to define the x-axis
of the SU constraint by calculating a performance metric based on the slope of the linear regression between a climate model’s
relative humidity profile and the corresponding observational reference. Similarly to the original publication, we use humidity
observations from AIRS (Aumann et al., 2003) for pressure levels greater than 300 hPa and MLS-Aura data (Beer, 2006) for
pressure levels of less than 300 hPa. Our analysis yields a constrained 66% range of ECS of 3.30 K + 0.88 K for CMIP5 (R? =
0.08) and 3.77 K + 1.35 K for CMIP6 (R? = 0.05). The original publication gives a best estimate of 4 K with a lower limit of
3 K. Figure 4 shows that in addition to the low R? values, the emergent relationship shows different slopes for CMIP5 and
CMIP6. For the CMIP5, the expected positive correlation is found, while for CMIP6, a negative correlation is found. This
suggests that the constraint is not working (any more) when applied to the CMIP6 data. Consequently, the SU constraint shows
a weaker statistical significance in the CMIP6 ensemble (p = 0.1935) than for the CMIP5 ensemble (p = 0.1676). The SU
constraint is related to an emergent constraint on ECS proposed by Fasullo and Trenberth (2012), who correlated May-August
zonal-mean relative humidity against ECS. In contrast to Su et al. (2014), they did not use the entire tropics, but identified two

distinct regions with largest correlation.

3.8  Tropical mid-tropospheric humidity asymmetry index (TIH)

Tian (2015) found a link between mid-tropospheric humidity over the tropical Pacific and simulated moisture, precipitation,
clouds, and large-scale circulation and thus ECS in CMIP3 and CMIP5 models. The study explains this link with the similarity
of mid-tropospheric humidity and precipitation patterns as both are related to the ITCZ. The proposed tropical mid-
tropospheric humidity asymmetry index to constrain ECS is defined as relative bias (in percent) in simulated annual mean 500
hPa specific humidity averaged over the Southern Hemisphere (SH) tropical Pacific (30°S — 0°, 120°E — 80°W) minus the bias
averaged over the Northern Hemisphere (NH) tropical Pacific (20°N - 0°, 120°E - 80°W) when compared with observations.
Similar to the SU constraint, the index proposed by Tian (2015) seems to be related to the emergent constraint by Fasullo and
Trenberth (2012), who found correlations between relative humidity of the middle and upper troposphere and ECS. Here, we
use humidity observations from AIRS (Aumann et al., 2003) over the time period 2003—2005 as reference dataset. We assess
a 66% ECS range of 3.88 K + 0.75 K for CMIP5 (R? = 0.24) and 4.15 K * 1.10 K for CMIP6 (R? = 0.06). Tian (2015)
specifies a best estimate of 4.0 K. The significance of the emergent relationship dropped massively from p = 0.0089 in CMIP5
to p = 0.1348 in CMIP6.

3.9  Southern ITCZ index (TII)

In addition to the humidity index, Tian (2015) proposed an emergent constraint on ECS based on the southern ITCZ index

{Belucei-etal2010; Hirota-etak-2041)(Bellucci et al., 2010; Hirota et al., 2011). This index is defined as the climatological

annual mean precipitation bias averaged over the south-eastern Pacific (30°S — 0°, 150°W — 100°W). The southern ITCZ index
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is calculated in mm day* and dominated by the so-called double ITCZ, a common problem in many CMIP5 climate models.
Tian (2015) found a link between double-ITCZ bias and simulated moisture, precipitation, clouds, and large-scale circulation
in CMIP3 and CMIP5 models. He argues that this could explain the link found between the double-ITCZ bias and ECS. As
reference data, we use observed precipitation data for the years 19862005 from GPCP (Adler et al., 2003). We calculate an
ECS 66% confidence range of 3.87 K + 0.67 K for CMIP5 (R? = 0.33) and 3.84 K = 1.09 K for CMIP6 (R? < 0.01). Tian
(2015) specifies a best estimate of 4.0 K. The emergent relationship shows a much lower statistical significance in CMIP6
(p = 0.8236) than in CMIP5 (p = 0.0013).

3.10 Difference between tropical and mid-latitude cloud fraction (VOL)

The study by Volodin (2008) aims at the geographical distribution of clouds in climate models. Since this early emergent
constraint was originally trained on CMIP3 models, both CMIP5 and CMIP6 are out-of-sample tests for it. Volodin (2008)
shows that high ECS models tend to simulate a higher total cloud cover over the southern mid-Ilatitudes and a lower total cloud
cover over the tropics (relative to the multi-model mean). This can be used to establish an emergent relationship between the
ECS and the difference in tropical total cloud cover (28°S — 28°N) and the southern mid-latitude total cloud cover (56°S —
36°S). Analogous to the original study, we use the ISCCP-D2 data (Rossow and Schiffer, 1991) as observational reference.
For the VOL constraint, we calculate a constrained 66% range of ECS of 3.74 K + 0.64 K for CMIP5 (R? = 0.38) and 4.21 K
+ 1.04 K for CMIP6 (R? = 0.18), whereas the original publication gives a range of 3.6 K + 0.4 K (standard deviation) for a
climate model ensemble of CMIP3 models. The emergent constraint by Volodin (2008) shows a lower significance in the
CMIP6 ensemble (p = 0.0056) than in the CMIP5 ensemble (p = 0.0004).

3.11 Response of seasonal marine boundary layer cloud fraction to SST changes (ZHA)

Zhai et al. (2015) focus on the variations of marine boundary layer clouds (MBLC), which largely contribute to the shortwave
cloud feedback and thus to the uncertainty in modeled ECS. Their central quantity is the response of the MBLC fraction to
changes in the sea surface temperature (SST) in subtropical oceanic subsidence regions for both hemispheres (20° — 40°). On
short (seasonal) and long (centennial under a forcing) time scales, this quantity is well correlated with ECS among an ensemble
of CMIP3 and CMIP5 models. Together with observations of cloud fraction from CloudSat/CALIPSO (Mace et al., 2009),
SST from AMSRE SST (AMSR-E, 2011) and vertical velocity from ERA-Interim (Dee et al., 2011), the seasonal response of
MBLC fraction to changes in SST forms an emergent constraint on ECS. We assess a 66% ECS range of 3.35 K £ 0.74 K for
CMIP5 (R? = 0.05) and 3.79 K + 0.67 K for CMIP6 (R? = 0.62). In their original publication, Zhai et al. (2015) found an
ECS range of 3.90 K + 0.45 K (standard deviation) for a combination of CMIP3 and CMIP5 models. In terms of statistical
significance, the results of the ZHA constraints are somewhat surprising: although CMIP5 data (in combination with CMIP3
data) were successfully used in their original publication, our approach finds that the statistical significance of the emergent

relationship is much higher in the unseen CMIP6 ensemble (p < 0.0001) than in the previously available CMIP5 ensemble
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(p = 0.2567). The ZHA constraint is the only emergent constraint analyzed here that shows this extreme behavior (only one
other constraint, SHS, shows a slightly higher significance in CMIP6; all other constraints show lower significances in CMIP6).
The reason for the erratic skill in CMIP5 is the set of climate models used. For our analysis, we use 11 additional CMIP5
models that were not used in the original publication (i.e. ACCESS1-0, ACCESS1-3, bce-csml-1, bee-csml-1-m, CCSM4,
GFDL-ESM2G, GFDL-ESM2M, IPSL-CM5A-MR, IPSL-CM5B-LR, MPI-ESM-MR and MPI-ESM-P). Due to a lack of
publicly available data, the model CESM1-CAMS that is used in the original publication is not included in our analysis. The
effect of choosing different subsets of CMIP5 models on the emergent relationship is illustrated in Figure 6. Using the original
CMIP5 models from the original publication gives a considerably higher correlation (R? = 0.38) than using all available
CMIP5 models (R? = 0.05). This result shows a strong dependency of this emergent constraint on the subset of climate models
used. Nonetheless, the performance on CMIP6 models is, surprisingly, the best of all the constraints, and much better than on
either subset of CMIP5 models.

3.12 Constrained ECS ranges and statistical significance of the 11 emergent constraints

In most cases, the emergent relationships (left columns of Figure 2 to Figure 5) show the same sign of the slope (as expected
from the theory) for CMIP5 and CMIP6, with the SU constraint being the only exception. However, the coefficient of
determination (R?) is lower for CMIP6 compared to CMIP5 for all one constraint: ZHA. The probability distributions of the
constrained ECS that we obtain (right columns of Figure 2 to Figure 5) give similar results: except for the ZHA constraint, the
constraint on the CMIP6 ensemble is weaker, i.e. the constrained PDFs derived from the CMIP6 ensemble are broader than
their respective CMIP5 counterparts. As shown in Table 4, for CMIP5, the range of the best (maximum likelihood) estimates
for ECS is 2.97 K to 3.8