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Abstract.

We produce climate projections through the 21st century using the fractional energy balance equation (FEBE): a generaliza-

tion of the standard energy balance equation (EBE). The FEBE can be derived from Budyko-Sellers models, or phenomeno-

logically through the application of scaling symmetry to energy storage processes, easily implemented by changing the integer

order of the storage (derivative) term in the EBE to a fractional value.5

The FEBE is defined by three parameters: a fundamental shape parameter, a timescale and an amplitude, corresponding

to, respectively, the scaling exponent h, the relaxation time τ , and the equilibrium climate sensitivity (ECS). Two additional

parameters were needed for the forcing: an aerosol re-calibration factor α to account for the large aerosol uncertainty, and a

volcanic intermittency correction exponent ν. A Bayesian framework based on historical temperatures and natural and anthro-

pogenic forcing series was used for parameter estimation. Significantly, the error model was not ad hoc, rather predicted by the10

model itself: the internal variability response to white noise internal forcing.

The 90% Confidence Interval (CI) of the exponent and relaxation time were h= [0.33,0.44] (median=0.38), and τ =

[2.4,7.0] (median=4.7) years compared to the usual EBE h= 1, and literature values of τ typically in the range 2–8 years.

Aerosol forcings were too strong, requiring a decrease by an average factor α= [0.2,1.0] (median=0.6); the volcanic inter-

mittency correction exponent was ν = [0.15,0.41] (median=0.28) compared to standard values α= ν = 1. The overpowered15

aerosols support a revision of the global modern (2005) aerosol forcing 90% CI to a narrower range [-1.0,-0.2]Wm−2. For

the IPCC forcings, the key parameter ECS = [1.6, 2.4]K (median = 2.0K) compared with the IPCC AR5 range [1.5, 4.5]K

(median = 3.2K). Similarly, we found the transient climate sensitivity (TCR) = [1.2, 1.8]K (median = 1.5K) compared to

the AR5 range TCR = [1.0, 2.5]K (median =1.8K). As often seen in other observational-based studies, the FEBE values for

climate sensitivities are therefore somewhat lower but still consistent with those in IPCC AR5.20

Using these parameters we made projections to 2100 using both the Representative Carbon Pathways (RCP) and Shared

Socioeconomic Pathways (SSP) scenarios, and compared them to the corresponding CMIP5 and CMIP6 multi-model ensem-

bles (MMEs). The FEBE historical reconstructions (1880–2020) closely follow observations, notably during the 1998–2014

slowdown (“hiatus”). We also reproduce the internal variability with the FEBE and statistically validate this against centennial
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scale temperature observations. Overall the FEBE projections were 10-15% lower but due to their smaller uncertainties, their25

90% CIs lie completely within the GCM 90% CIs. This agreement means that the FEBE validates the MME and vice versa.

Copyright statement. TEXT

1 Introduction

The Earth is a complex, heterogenous system with turbulent atmospheric and oceanic processes operating over scales rang-

ing from millimeters up to planetary scales. When considered by time scale, there are three main regimes: the weather,30

macroweather and climate (Lovejoy and Schertzer, 2013; Lovejoy, 2013). From dissipation times ranging within the scale

of ten days - the lifetime of planetary structures - fluctuations in the temperature and other atmospheric quantities increase

with time scale: this is the weather regime. Beyond this - in macroweather - fluctuations generally decrease with scale: longer

averaged tending more towards convergence. Eventually, this is reversed and fluctuations again tend to increase, marking the

beginning of the climate regime. In the industrial epoch this occurs at a scale of ≈ 20 years, while in the pre-industrial epoch35

the transition is at centuries or millennia and the regime continues up to Milankovitch scales (Lovejoy, 2015b, 2019b).

A major challenge is determining the Earth’s decadal and centennial response to anthropogenic and natural perturbations.

At the moment, projection uncertainties - famously exemplified in the range 1.5–4.5K for a CO2 doubling – are quite large

so that for many purposes, including the development of mitigation policies, the development of complementary approaches

are needed. When considering alternatives, although perturbations to the Earth system can be quite varied, when compared40

to the mean solar radiation, over the past and future decades, those of interest are of the order of only a few percent. This

allows diverse forcings to be conveniently approximated by their equivalent radiative forcings. It also explains why - in spite

of their highly nonlinear weather dynamics - that to a good approximation, General Circulation Model (GCM) macroweather

and climate responses to external perturbations are typically linear (as quantified for CMIP5 models in Hébert and Lovejoy

(2018)) but with stochastic internal variability.45

In order to construct macroweather and climate models, beyond linearity and stochasticity, we require additional model

constraints, the classical one being energy balance. Starting with the first Energy Balance Models (EBMs) proposed by Budyko

(1969) and Sellers (1969), EBMs have been extensively used for understanding the climate (North, 1975; North et al., 1981,

Reviews; Trenberth et al., 2014; North and Kim, 2017; Proistosescu et al., 2018; Ziegler and Rehfeld, 2020). In this paper,

we will only consider EBMs for the globally averaged temperature. The resulting “zero dimensional” energy balance equation50

(EBE) is a first order linear differential equation, it can alternatively be obtained by considering the Earth to be a uniform

slab of material (“box”) radiatively exchanging heat with outer space. Such box models usually involve at least two boxes and

they assume Newton’s law of cooling as well as ad hoc assumptions relating surface temperature gradients to the rate of heat

exchange.
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Energy conservation is an important symmetry principle, yet when implemented in box type models, it violates another55

symmetry: scale invariance. This is because box models are integer ordered differential equations whose response functions

(Green’s functions) are exponentials. In order to respect the scaling, these “climate response functions” (CRFs) have therefore

been postulated to be scaling (power-law). However, the use of pure power law CRFs (e.g. Rypdal, 2012; Myrvoll-Nilsen et al.,

2020) leads to divergences: the "runaway Green’s function effect" (Hébert and Lovejoy, 2015) so that if the Earth is perturbed

by even an infinitesimal step function forcing, its temperature monotonically increases without ever attaining thermodynamic60

equilibrium: its ECS is infinite. Whereas the classical EBMs conserve energy but violate scaling, the pure scaling CRF models

are scaling but violate energy conservation. Such models can only make projections by using forcings that start and then return

to zero.

Hébert et al. (2021) proposed taming the divergences by cutting off the power law CRFs at small scales. The resulting model

was scaling at long times and when forced by step functions, reaches thermodynamic equilibrium. With this truncated power65

law CRF and using Bayesian techniques Hébert et al. (2021) were able to make climate projections through 2100 with the

IPCC RCP scenario forcings that were coherent with the MME 90% confidence interval. Furthermore, using the historical

part of each GCM simulation, corresponding GCM climate projections were accurately reproduced, meaning (in regards to the

Earth’s globally averaged temperature) both models were effectively equivalent. The caveat was that the CRF model truncation

was somewhat ad hoc, and therefore only useful at decadal or longer scales.70

To make more realistic models, the key issue is energy storage. Storage is a consequence of imbalances in incoming short

wave and outgoing long wave radiation and it must be accounted for in applications of the energy balance principle (Trenberth

et al., 2009). As pointed out in Lovejoy (2019a, b) and developed in Lovejoy et al. (2021) it is sufficient that the scaling

principle not be applied to the CRF, but rather to the storage term in the EBE. In lieu of the energy being stored by uniformly

heating a box, energy is instead stored in a hierarchy of structures from small to large, each with time constants that are power75

laws of their sizes. This conceptual shift can be implemented simply by changing the integer order of the storage (derivative)

term in the EBE to a fractional value: the Fractional Energy Balance Equation (FEBE). While Lovejoy et al. (2021) derived

the FEBE in a phenomenological manner, Lovejoy (2021a, b) showed how it could instead be derived from the continuum

mechanics heat equation used in the Budyko-Sellers models. Indeed, by extending Budyko-Sellers models from 2D to 3D (i.e.

to include the vertical) and imposing the (correct) conductive – radiative surface boundary conditions, one immediately obtains80

fractional order equations for the surface temperature. In other words, nonclassical fractional equations and long memories

turn out to be necessary consequences of the standard Budyko-Sellers approach.

To understand the FEBE’s key new features, recall that linear differential equations can be solved with Green’s functions;

in the classical integer ordered case, these are based on exponentials. However in the general case where one or more terms

are of fractional order, they are instead based on “generalized exponentials”, themselves based on power laws. In the FEBE,85

there are two distinct power law regimes with a transition at the relaxation time (estimated to be of the order of a few years, see

below). While the low frequency Green’s function can be very close to Hébert et al. (2021)’s truncated power law CRF, the high

frequency regime is able to produce internal variability coherent with the observed scaling and fractional Gaussian noise used

for skillfully forecasting the stochastic (internal) variability at monthly, seasonal, interannual (macroweather) scales (Lovejoy
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et al., 2015; Del Rio Amador and Lovejoy, 2019, 2020). In short, there are theoretical arguments as well as empirical evidence90

that the FEBE accurately models the Earth’s temperature response to both internal and external forcing over macroweather and

climate time scales.

The following text will introduce the standard EBE and generalize it to the FEBE, describe the radiative forcing, temperature

and GCM simulations that will be used, and introduce Bayesian inference for determining the model and forcing parameters.

Using these we present the probability distribution functions for the parameters, estimate Equilibrium Climate Sensitivity95

(ECS) and Transient Climate Response (TCR), and finally we produce global projections to 2100 using the Representative

Carbon Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) which we compare to corresponding CMIP5 and CMIP6

GCM Multi-Model Ensembles (MMEs).

2 Methods and Material

2.1 The FEBE100

The zero-dimensional FEBE may be written:

τh−∞D
h
t T +T = sF ; F(t) = F (t) + f(t), 0≤ h≤ 1 (1)

(Lovejoy, 2019a; Lovejoy et al., 2021). Where T (t) is the Earth temperature anomaly with respect to a reference temperature

(limt→−∞T (t) = 0), τ is the relaxation time, s is the climate sensitivity,F(t) is the anomalous external radiative forcing which

is the sum of the stochastic f(t) and deterministic F (t) components, and h is the order of the Caputo fractional derivative (see105

Podlubny, 1999):

−∞D
h
t T =

1

Γ(1−h)

t∫
−∞

(t−u)−hT ′(t)dt′, T ′(u) =
dT

du
(2)

Γ is the Gamma function. If this derivative is integrated by parts and the limit h→ 1 is taken, using limt→+∞T (t) = 0,

−∞D
h
t T = dT

dt so that we recover the standard box EBE (Lovejoy et al., 2021).

If we solve the FEBE using Green’s functions, we obtain:110

T (t) = s

t∫
−∞

G0,h(t−u)F(u)du (3)

Where G0,h is the impulse (Dirac) response Green’s function, for the FEBE it is given by:

G0,h(t) =

 τ−1
(
t
τ

)h−1
Eh,h

(
−
(
t
τ

)h)
; t≥ 0

0; t < 0
(4)

Where:

Eα,β(z) =

∞∑
k

zk

Γ(αk+β)
(5)115
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is the "α,β order Mittag-Leffler function" (these and most of the following results are in the notation of Podlubny (1999). The

condition Gh,x(t) = 0 for t < 0 (x ∈ N) is needed to respect causality, in what follows we will implicitly assume that for all

Green’s functions. The Mittag-Leffler functions are often called “generalized exponentials”, the classical h= 1 box model is

the (exceptional) ordinary exponential: E1,1(z) = ez .

Mathematically when 0< h < 1, the FEBE is a “fractional relaxation equation” where τ quantifies the slow, power law120

approach to a new thermodynamic equilibrium. Rather than express solutions in terms of the impulse response G0,h, it is often

more convenient to use the step response G1,h:

G1,h(t) =

t∫
0

G0,h(u)du=

(
t

τ

)h
Eh,h+1

(
−
(
t

τ

)h)
. (6)

Such that the temperature response can be written as:

T (t) = s

t∫
−∞

G1,h(t−u)F ′(u)du, F ′(u) =
dF

du
. (7)125

G1,h has the advantage of being dimensionless, and also has a simple interpretation as being the response to a step forcing such

as that found in numerical CO2 doubling experiments. At high frequencies (t� τ ), important for modelling and predicting

the internal variability we have:

G0,h,high(t) =
1

τΓ(h)

(
t

τ

)h−1
; G1,h,high(t) =

1

Γ(h+ 1)

(
t

τ

)h
; t� τ (8)

These correspond to taking the first terms in the series expansions for the Mittag-Leffler functions in eqns. 4, 6. If we consider130

the response to Gaussian white noise forcing, γ(t), then G0,h ∝ th−1 implies that T (t) is approximately a fractional Gaussian

noise (fGn) with statistical scaling exponent h (when forced by a Gaussian white noise, the FEBE response is exactly a

fractional Relaxation noise (see Lovejoy, 2019a).

To see if this is compatible with the value estimated from the low frequency response to external forcings consider the low

frequency behaviour (t� τ), important for modelling and projecting the multidecadal responses to external forcing:135

G0,h,low(t) =
−1

τΓ(−h)

(
t

τ

)−1−h
; G1,h,low(t) = 1− 1

Γ(1−h)

(
t

τ

)−h
; t� τ (9)

(note Γ(−h)< 0 for 0< h < 1). In the box, h= 1, case we have exactly G1,1(t) = 1− e−t/τ whereas when h < 1, the ex-

ponential approach to thermodynamic equilibrium is replaced by a power law. Hébert et al. (2021) used G1 = 1−
(
1 + t

τ

)HF
with HF ≈−0.5+0.4

−0.5 corresponding for t� τ to h=−HF ≈ 0.5 which is thus the same h value as that corresponding to the

internal forcing. It is thus plausible that the FEBE models both high and low frequency regimes with the unique exponent140

h≈ 0.4. Indeed it was this empirical finding that pre-dated and motivated the discovery of the FEBE.
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2.2 Data

2.2.1 Radiative Forcing Data

We consider natural and anthropogenic sources of external forcing: solar and volcanic, greenhouse gas and aerosol. We use the

standard semi-empirical carbon dioxide concentration to forcing relationship (Myhre et al., 1998):145

FCO2(ρ) = 3.71Wm−2log2
ρ

ρ0
. (10)

Where FCO2 is the forcing due to carbon dioxide, ρ is the concentration of carbon dioxide and ρ0 is the preindustrial concen-

tration of carbon dioxide which we take to be 277ppm (Solomon, 2007).

We follow the CMIP5 recommendations for anthropogenic and solar forcing, while volcanic forcing is unprescribed (Taylor

et al., 2012). The anthropogenic CMIP6 radiative forcings follow Smith et al. (2018a).150

2.2.2 Greenhouse Gas Forcing

The global climate is warming and most of the observed changes are due to increases in the concentration of anthropogenic

greenhouse gases (GHGs) (IPCC, 2013). Future anthropogenic forcing is prescribed in the Representative Concentration Path-

ways (RCPs), established by the IPCC for CMIP5 simulations: we considered RCP 2.6, RCP 4.5, and RCP 8.5 (Meinshausen

et al., 2011b). RCP 6.0 was omitted in this study since fewer CMIP5 modelling groups performed the associated run. In the155

CMIP6 simulations the anthropogenic forcings are prescribed in the Shared Socioeconomic Pathways (SSPs) (Meinshausen

et al., 2020); we investigate SSP 1-26 (strong mitigation), SSP 2-45 (middle of the road) and SSP 5-85 (strong emission)

scenarios, designated as high priority for IPCC AR6 and are counterparts to the previous RCP scenarios above.

The RCP scenarios are derived from estimates of emissions computed by a set of Integrated Assessment Models (IAM), these

emissions are converted to concentrations using the Model for the Assessment of Greenhouse-gas Induced Climate Change160

(MAGICC, Meinshausen et al., 2011a), while for the SSP scenarios the emissions are converted to forcings using the Finite

Amplitude Impulse Response model (FAIR, Smith et al., 2018a). These scenarios will allow us to compare our results from

the FEBE with CMIP5/6 simulations.

The wide spread of the scenarios allows for the investigation of the consequences of various future policies, from strong

mitigation (RCP 2.6, SSP 1-26) to no-policy reference (RCP 8.5, SSP 5-85) shown in figure 1 (bottom). For RCP 2.6 and SSP165

1-26, the strongest mitigation scenarios, the total radiative forcing has a peak at approximately 3Wm−2 around the year 2050

and declines thereafter due to large scale deployment of negative emission technologies. RCP 4.5 and SSP 2-45 are stabilization

scenarios, with the total radiative forcing rising until the year 2070 and with stable concentrations after the year 2070. While

RCP 8.5 and SSP 5-85 are continuously rising radiative forcing pathways, in which the radiative forcing levels by the end of

the 21st century reaches approximately 8.5Wm−2. Current emissions fall somewhere between the 8.5Wm−2 and 4.5Wm−2170

scenarios.

In this paper we use the forcing due to carbon dioxide equivalent, FCO2Eq , as the measure of our anthropogenic forcing,

FAnt, given in the RCP and SSP scenarios. The anthropogenic forcing corresponds to the effective radiative forcing produced
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by long lived GHGs FGHG: carbon dioxide, methane, nitrous oxide and fluorinated gases, controlled under the Kyoto protocol,

and ozone depleting substances, controlled under the Montreal Protocol. We show the anthropogenic forcings for each RCP175

and SSP scenario in figure 1.

2.2.3 Aerosol Forcing

Aerosols are a strong component of radiative forcing associated with anthropogenic emissions, resulting from a combination

of direct and indirect aerosol effects. There exists high uncertainty of the aerosol forcing, arising from a poor understanding

of how clouds respond to aerosol perturbations (Penner et al., 2001; Ramaswamy et al., 2001), compared to the fairly well180

constrained GHG forcing. We therefore follow (Forest et al., 2002; Harvey and Kaufmann, 2002; Forest et al., 2006; Padilla

et al., 2011; Hébert et al., 2021) and introduce the aerosol linear scaling factor α to account for our poor knowledge of aerosol

forcing.

We obtained the CMIP5 aerosol forcing from the totalCO2EQ forcing by subtracting the combined effective radiative forcing

of the gases controlled by the Kyoto protocol, FKyt, and from those controlled under the Montreal protocol, FMtl. FMtl is185

given in CFC-12 equivalent concentration and we use the relation from Ramaswamy et al. (2001) to convert this to Wm−2.

The total amount of aerosol forcing in 2005 given at the 90% CI in the IPCC AR5 is [−1.9,−0.1]Wm−2, but since then

attempts have been made to better constrain this value; Stevens (2015) argues that extreme aerosol forcings (more negative

than −1Wm−2) are implausible. Using results from Murphy et al. (2009), Stevens (2015) supports tightening the upper and

lower bounds of the aerosol forcing, revising it to [−1.0,−0.3]Wm−2 although the wider range from the IPCC’s AR5 is still190

supported by the more comprehensive study by Bellouin et al. (2020).

The prescribed CMIP6 SSP aerosol forcing, FAerSSP , contains contributions from aerosol-radiation interactions and from

cloud interactions: Fari and Faci (Smith et al., 2018a). Fari includes the direct radiative effect of aerosols, in addition to rapid

adjustments due to changes in the atmospheric temperature, humidity and cloud profile (formerly the semi-direct effect), and

is calculated using multi-model results from Aerocom (Myhre et al., 2013). Faci describes how aerosols affect clouds in the195

radiation budget and is calculated from the aerosol model of Stevens (2015), which includes a logarithmic dependence of

Faci on sulphates, black carbon and organic carbon emissions - the source of the difference in aerosol forcing shapes between

FAerRCP and FAerSSP shown in figure 1 (bottom).
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Figure 1. (top) The anthropogenic forcing series, the sum of the greenhouse gas forcingFGHG and respective aerosol forcing seriesFAerRCP

(black) or FAerSSP (blue) are shown over the historical period and projection period until 2100 for RCP 2.6/SSP 1-26 (solid), RCP 4.5/SSP

2-45 (dashed), and RCP 8.5/SSP 5-85 (dotted).

(bottom) The anthropogenic aerosol forcing series used, FAerRCP (blue) and FAerSSP (black) following the same scheme as above. Updated

from Hébert et al. (2021).
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2.2.4 Solar Forcing

The other external forcings considered are solar and volcanic; there exist other natural forcings such as mineral dust and sea200

salt, but they are small and will be implicitly included with the internal variability. We use the CMIP5 recommendation for

solar forcing, FSol, a reconstruction obtained by regressing sunspot and faculae time series with total solar irradiance (TSI)

(Wang et al., 2005), shown in figure 2. Following Meinshausen et al. (2011b), the solar forcing anomaly is calculated as the

change in solar constant over the average value of the two 11-year solar cycles from 1882 to 1904 divided by 4 (the effective

fraction of the surface of the Earth which is exposed to the sun) and multiplied by 0.7 (representing planetary co-albedo). To205

extend solar forcing to the future we follow CMIP5 and reproduce solar cycle 23 (the last one prior to 2008) as the assumed

future solar forcing.

2.2.5 Volcanic Forcing

The volcanic forcings series, FV ol, used in this study was generated from the volcanic optical depths, τV . Over the 1850 to

2012 period we use the approximate relation: FV ol ≈−27Wm−2τV , obtained from the Goddard Institute for Space Science210

(GISS) website (Sato, 2012). We follow Hébert et al. (2021), extending the series to 1765 using the optical depth reconstruction

of Crowley et al. (2008), and setting volcanic forcing to zero for the future.

It is well established that volcanic forcing must be scaled down by 40-50% in order to produce a comparable effect on surface

temperature, and thus most EBMs linearly scale volcanic forcing (Tomassini et al., 2007; Ring et al., 2012; Lewis and Curry,

2015; Gregory and Andrews, 2016). However the amplitude of the volcanic forcing is not the only issue; volcanic forcings215

are highly intermittent (spiky). The intermittency can be quantified in a multifractal framework (Lovejoy and Schertzer, 2013;

Lovejoy and Varotsos, 2016) by the intermittency parameter C1 which corresponds to the fractal codimension (i.e. 1-D, where

D, is the fractal dimension of the part of series that gives the dominant contribution to the mean of the series) characterizing the

sparseness of volcanic "spikes" of mean amplitude. Since linear response models do not alter the intermittency, the volcanic

series must first be non-linearly transformed before being introduced into a linear response framework. With the effective220

volcanic forcing FV olν , the volcanic intermittency correction exponent ν and the mean of the whole volcanic series 〈FV ol〉, we

follow Hébert et al. (2021) using a non-linear relation to change the intermittency so that the transformed signal can be linearly

related to the temperature:

FV olν
〈FV ol〉

=
F νV ol
〈F νV ol〉

(11)

The normalization is such that the mean is unchanged: 〈FV olν 〉= 〈FV ol〉 (this is slightly different than the normalization225

used in Hébert et al. (2021)). The volcanic intermittency correction exponent, ν, required to reduce the intermittency parameter

of the volcanic forcing, C1,FV , to equal the corresponding parameter of the temperature response, C1,TV , can be calculated

theoretically using:

C1,FV ν
αMF = C1,TV (12)
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where αMF is the multifractality index of the volcanic forcing, C1 is the codimension of the mean (see ch. 4, Lovejoy and230

Schertzer, 2013).

The volcanic response appears to be non-linear as the intermittency (“spikiness”, sparseness of the spikes) parameter C1

changes from about C1,FV ≈ 0.16 for the input volcanic forcing to C1,T ≈ 0.03 for the temperature response: the latter is

therefore much less intermittent than the former although it is possible that the estimated C1 changes slightly due to finite size

effects and internal variability. Assuming αMF ≈ 1.5, we find an approximate but plausible theoretical estimate of the volcanic235

intermittency correction exponent ν ≈ 0.3 (Lovejoy and Schertzer, 2013; Lovejoy and Varotsos, 2016).
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Figure 2. Volcanic forcing FV ol1 (blue) is shown alongside two transformed versions: linearly damped by a constant 0.5 coefficient (black),

and non-linearly transformed using equation with ν = 0.3 (red). The solar forcing FSol (orange) has been shifted down by -9 and amplified

by a factor of 10 for clarity. Adapted from Hébert et al. (2021)

2.2.6 Internal Stochastic Forcing

We consider the standard assumption about internal variability that it is forced by a Gaussian “delta correlated” white noise:

f(t) = σγ(t); 〈γ(t)〉= 0; 〈γ(t)γ(u)〉= δ(t−u), (13)

where f(t) is the noise at infinite resolution, γ(t) is a "unit" white noise and σ is its amplitude. When averaged to resolution240

τr = 1 month, the average forcing has amplitude 〈f2τr 〉
1/2 = στ = σ√

τr
. In comparison, the internal variability of the mean

observational temperature series is equal to the observed series with the forced temperature response removed. We take the

global annually averaged monthly temperature anomaly to be σT,τr ≈±0.14◦C, where τr is the resolution (taken to be monthly

in this case).
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Using Lovejoy et al. (2021) and σT,τr , we can relate σT,τr and σf,τr :245

σf,τr =
σT,τrKh

s

(
τ

τr

)h
, (14)

Kh =

√
π

2cos(π
(
h− 1

2

)
)Γ(−1− 2h)

. (15)

Where Kh is a standard normalization constant, τ is the relaxation time, and s is the climate sensitivity parameter; eq. 14 is

an approximation valid at short time scales τr� τ . If we introduce a white noise forcing, with the standard deviation calculated

using eq. 14, the FEBE response will correspond to an internal variability term with realistic amplitude and autocorrelation250

structure.

Working in a linear framework we write the forcing series, F , as the sum of the deterministic forcings, F ,(GHG, aerosol,

solar and volcanic) and the white noise forcing:

F(α,ν; t) = FGHG(t)+αFAer(t)+FSol(t)+FV olν (t)+σf,τrγτr (t); F (t) = 〈F(t)〉= FGHG(t)+αFAer(t)+FSol(t)+FV olν (t),

(16)255

where γτr (t) is a unit white noise at resolution τr and 〈·〉" is the mean ensemble (statistical) average.

2.2.7 Surface Air Temperature Data and CMIP5/6 Simulations

We used five historical records of surface air temperature for our analysis each spanning the period 1880-2020, with median

monthly temperature anomalies in relation to the reference period of 1880-1910: HadCRUT4 (Morice et al., 2012), the Cow-

tan & Way reconstruction version 2.0 (C&W, Cowtan and Way, 2014b, a; Cowtan et al., 2015), GISS Surface Temperature260

Analysis (GISTEMP, Lenssen et al., 2019), NOAA Merged Land Ocean Global Surface Temperature Analysis Dataset (NOAA-

GlobalTemp, Zhang et al., 2019; Huang et al., 2020) and Berkley Earth Surface Temperature (BEST, Rohde and Hausfather,

2020).

The HadCRUT4 dataset is a combination of the sea-surface temperature records: HadSST3 compiled by the Hadley Centre

of the UK Met Office along with land surface station records: CRUTEM4 from the Climate Research Unit in East Anglia;265

the Cowtan and Way dataset uses HadCRUT4 as raw data, but interpolates missing data that would lead to bias especially

at high latitudes by infilling missing data using an optimal interpolation algorithm (kriging); we use the dataset with land

air temperature anomalies interpolated over sea-ice. The GISTEMP dataset combines the Global Historical Climate Network

version 3 (GHCNv3) land surface air temperature records with the Extended Reconstructed Sea Surface Temperature version

4 (ERSST) along with the temperature dataset from the Scientific Community on Antarctic Research (SCAR) and is compiled270

by the Goddard Institute for Space Studies; the NOAA National Climate Data Center uses GHCNv3 and ERSST but applies

different quality controls and bias adjustments. The final data, BEST, makes use of its own land surface air temperature product

along with a modified version of HadSST.
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The CMIP5 models selected have monthly historical simulation outputs available over the 1860 to 2005 period along with

outputs of scenario runs from 2005 to 2100 for RCP 2.6, RCP 4.5, and RCP 8.5, summarized in table A1. The CMIP6 model275

outputs have monthly historical simulations from 1860 to 2014 and future projections based on the SSP scenarios 1-26, 2-45

and 5-85 (Forster et al., 2020), climate sensitivity of models are summarized in table A2 (Flynn and Mauritsen, 2020).

2.3 Bayesian Parameter Estimation

In this section we establish a procedure to estimate the probability distribution associated with the climate sensitivity: s, model

parameters: τ , h and forcing parameters: α,ν. To estimate them, we relate the forcing to surface air temperature data using280

the FEBE with a multi-parameter Bayesian technique. To apply Bayesian inference we require temperature observations, a

statistical model that relates forcing data to temperature, and prior information about the model parameters (priors). Bayesian

inference is chosen due to its ability to better constrain model parameters by using information from different sources including

data and models.

Through this framework each parameter combination (h, τ for G0,h and α, ν for F as well as s) produces a time-dependent285

forced response which is associated with a likelihood that depends on how well the corresponding model output matches

the observational temperature records over the historic period. To see how this works, recall that the FEBE describes the

temperature response to the sum of the external deterministic forcing F (t) and internal stochastic forcing σγ(t):

T (t) = Text(t) +Tint(t);
Text(t) = sG0,h(t) ∗F (t)

Tint(t) = sG0,h(t) ∗σγ(t)
, (17)

where Text, Tint are the responses. Any given set of parameters (h, τ for G0,h and α,ν for F as well as s) defines a forced290

temperature response Text(t); and when removed from the observation temperature series, they define a series of residuals:

Tres(t) = T (t)−Text(t) = Tint(t) = sG0,h(t) ∗σγ(t). (18)

The residuals are thus equal to the internal temperature variability, i.e. the response to the internal forcing σγ(t). Here we

make the usual assumption that γ(t) is a Gaussian white noise so that Tres(t) = Tint(t) is a fractional Relaxation noise process

(fRn, Lovejoy (2019a)). However, for scales shorter than the relaxation time τ (of the order of years), the fRn process is very295

close to a fractional Gaussian noise (fGn) process (due to the approximation G0,h ≈G0,high,h(t), eq. 8). Thus, rather than

making an ad hoc assumption about the statistics of the residuals, in our approach the statistics are given by the model itself

(a key improvement from Hébert et al. (2021)). The fGn approximation takes into account the strong power law correlations

induced by the fractional derivative term in the FEBE and it is generally valid except at the low frequencies that only weakly

influence the likelihood function. An fGn model for the residuals is more realistic with respect to the autocorrelation function300

of temperature data (Lovejoy et al., 2015) and thus produces more conservative confidence interval in comparison to other

exponential decorrelation models such as an AR(1) since the latter underestimate the decorrelation time, and thus overestimate

the effective sample size.

To calibrate the FEBE, we take the time-dependent forced response calculated for each parameter combination and remove

it from the temperature series to obtain a series of residuals which represent an estimator of the historical internal variability.305
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The likelihood function (L) corresponds to the probability ("Pr") of observing the series T (t) conditioned on the parameters:

s,h,τ,α,ν (right hand side), assuming the residuals are a fGn process with parameter h, and zero mean:

L(s,h,τ,α,ν|T (t)) = Pr(T (t)|s,h,τ,α,ν). (19)

Using Bayes’ rule, we can obtain the posterior probability distribution function (PDF) for our parameters using the likelihood

function (an a priori probability) and the prior distribution for the parameters, π(s,h,τ,α,ν):310

Pr(s,h,τ,α,ν|T (t)) =
Pr(T (t)|s,h,τ,α,ν)π(s,h,τ,α,ν)

Pr(T (t))
(20)

We use the following Mathematica 12.2 (Wolfram Research, Inc., 2020) functions: LogLikelihood[proc, data],

FractionalGaussianNoiseProcess[µ, σ′, h′], and EstimatedProcess[data, proc] to calculate the maximum likelihood of those

residuals to be a fGn corresponding to our error model. Note that the Hurst exponent h′ used within Mathematica 12.2 describes

the scaling behaviour of the associated fractional Brownian motion obtained by integrating the fGn. The notation h= h′−1/2315

corresponds to the associated parameter in Lovejoy et al. (2015) which directly describes the scaling associated with the

fluctuations of the fGn itself.

The priors chosen here are intended to reflect knowledge about the historical climate system. Following Del Rio Amador

and Lovejoy (2019) who estimated h from the statistics of the response of the internal forcing, the prior distribution for the

scaling parameter is taken to be a normal distribution centered around 0.4 with a standard deviation of 0.1 (twice that of320

Del Rio Amador and Lovejoy (2019), i.e N(0.4,0.1)). For the relaxation time τ , we use the normal distribution of the fast time

response of the “two-box” exponential model that corresponds to h= 1, found by Geoffroy et al. (2013) for a suite of 12 CMIP5

GCMs: N(4yrs,2yrs), with the standard deviation doubled of the original work so as to be a weakly informative prior. When

considering the aerosol scaling parameter, α, we take the prior distribution to be a normal distribution, N(1.00,0.55) which has

a 90% CI and mean coherent with the IPCC AR5 best range for the modern value of aerosol forcing, FAer ≈−1.0Wm−2, in325

the series we used. For the remaining two parameters, s and ν, we assume non-informative uniform priors over the range of

parameters; s ∈ [1.0,4.0] and ν ∈ [0.0,1.0]. All prior distributions are independent.

Using Bayes, eq. 20, we then fit a multivariate Gaussian distribution to our five-dimensional parameter space, posterior

distribution Pr(s,h,τ,α,ν|T (t)), which will be used to draw sets of parameters to generate future forced temperature projec-

tions. The multivariate Gaussian approximation is built by using the means and variances of all parameters through integrating330

the joint probability to obtain five marginal probabilities, and calculating the covariance between all pairwise parameters us-

ing their "joint" marginal distributions as to take into account potentially large correlations. The five dimensional posterior

parameter space, (s,h,τ,α,ν) is thus defined by a multivariate normal distribution:

P (x;µ,Σ) =
1

(2π)
5
2 |Σ|

1
2

e−(x−µ)
tΣ−1(x−µ)/2, (21)

where x= {s,τ,h,α,ν}, the vector of the means is µ and the covariance matrix Σ.335
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3 Results

Using Bayes’ theorem as described above, we derive probability density functions (PDFs) for the model and forcing parameters

of the FEBE from the mean likelihood functions of the five observational datasets. The different observational datasets are

treated as dependent due to the use of overlapping raw data, with the differences between series coming partly from the

different processing of the raw data by different teams. This corresponds to putting the datasets into a Bayesian framework340

where each has equal a priori probability: HadCRUTv4, C&W, GISTEMP, NOAAGlobalTemp and BEST (n= 5).

Pr(s,h,τ,α,ν|T (t)) =
1

n

n∑
i=1

Pr(s,h,τ,α,ν|Ti(t)) (22)

Following IPCC methodologies, we report the "very likely" confidence interval at the 90% confidence level throughout this

work along with median estimates for the all ensemble spreads. The complete suite of model and forcing parameters and

climate sensitivities are summarized in tables 1 and 2. In addition we include a comparison of the same parameters for the345

Half-order EBE (HEBE) (h= 1/2) that is a consequence of the continuum heat equation (Lovejoy, 2021a, b), as well as with

the precursor Scaling Climate Response Function (SCRF) model (Hébert et al. (2021)) which differs primarily in the treatment

of high frequencies in table 3.

3.1 The Model: Green’s Function Parameters: h,τ

3.1.1 The Scaling Exponent h350

The model is characterized by h and τ , where the exponent h of the FEBE is the most fundamental. For h, we found a 90% CI

of [0.33,0.44], with a median value of 0.38 when using FAerRCP , and while using FAerSSP we found a similar median of 0.38

with 90% CI of [0.32,0.44]. We can already note that it is close to the HEBE value h= 1
2 and other empirical estimates for

power law impulse Green’s functions (G(t)≈ t−HF−1) with h=−HF ≈ 0.5−0.4+0.5 (Lovejoy et al., 2017; Hébert et al., 2021).

The NOAA dataset differs the most from all others, the exact cause of the difference is not clear although it arises from the355

MLOST dataset’s use of a complex frequency algorithm with low-frequency tuning (Smith et al., 2008). This low-frequency

tuning along with the spatio-temporal smoothing applied in the MLOST dataset is likely the cause of a slightly higher h (i.e. a

smoother temperature response).

3.1.2 The Relaxation Time τ

The second model parameter is the relaxation time τ that characterizes the approach to equilibrium. τ is a difficult parameter360

to determine since from the point of view of parameter estimation, it is inversely correlated with s: a large τ can be somewhat

compensated by a smaller s and vice versa. We obtained the a posteriori median value of 4.7 years and 90% CI of [2.4,7.0]

years when using FAerRCP , and nearly identical results using FAerSSP .

Presented in figure 4 (top) are the step-response Green’s function, G1(h,τ ; t), of the FEBE with the parameters h and τ

along with its 90% CI, shown alongside the IPCC two-box model Green’s function (IPCC, 2013; Held et al., 2010; Geoffroy365
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Figure 3. For each observational dataset and their average, PDFs are shown for the model parameters: the scaling parameter h (left), and the

transition time τ (right). Shown are the PDFs for parameter estimation based on both FAerRCP (solid) and FAerSSP (dashed). The average

PDFs of the five observation datasets using FAerRCP is shown as the main result with shading, with darker 5% tails.

et al., 2013). Considering G1(t) (blue), at scales below a few years where the box models or the Hébert et al. (2021) truncated

scaling model are smooth, the FEBE has a singular response. This enables it to accurately reproduce the statistics of the internal

variability as well as to be more sensitive to volcanic forcings. Even up to scales of 25 years, the G1(t) (blue) responds much

faster than the IPCC (black), yet the approach to the asymptotic value 1 corresponding to energy balance is substantially slower.

This can also be seen in the ramp-response Green’s functions, G2(t) (bottom). For comparison, each was normalized by the370

value at 70 years - the standard ramp time for TCR Collins et al. (2013). At multi-year resolution (ignoring the high frequency

variability), over the scale of the anthropocene there is little difference between the FEBE and IPCC, with FEBE having a more

gradual response. This contributes to the somewhat cooler FEBE centennial scale projections when compared with those from

the two-box model.
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Figure 4. (top) The median and 90% CI of the FEBE step-response Green’s function, G1(h,τ ; t), compared to the IPCC two-box model

Green’s function (black). (bottom) The median and 90% CI of the FEBE normalized ramp-response Green’s function, G2(h,τ ; t), compared

to the IPCC two-box model Green’s function (black).

3.2 Characterizing the Forcing375

3.2.1 Aerosol Linear Scaling Factor α

The aerosol linear scaling factor α that effectively re-calibrates the aerosol forcing (figure 5 left, solid line) was found to have a

median value of 0.6 with a 90% CI of [0.2,1.0] for the CMIP5 FAerRCP series. However when using the CMIP6 sulphate emis-
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Figure 5. For each observational dataset and their average, PDFs are shown for the forcing parameters: the aerosol scaling factor α (left),

and the volcanic intermittency correction exponent ν (right). Again, shown are the PDFs for parameter estimation based on both FAerRCP

(solid) and FAerSSP (dashed). The average PDFs of the five observation datasets using FAerRCP is shown as the main result with shading,

with darker 5% tails

sions based aerosol forcing series, FAerSSP , we find support for a weaker and better constrained aerosol forcing, recalibration

α with a median of 0.33 and 90% CI of [0.05, 0.61] (figure 5 left, dashed line). In both cases an aerosol recalibration factor of380

1 corresponds to the modern (2005) aerosol forcing value of about −1.0Wm−2, but we find both cases that α < 1. The result

from two independent aerosol forcing series again shows that the forcing associated with aerosols is still widely uncertain and

overpowered, supporting post-AR5 studies that found aerosol forcings simulated by GCMs were unrealistic (Zhou and Penner,

2017; Sato et al., 2018; Bellouin et al., 2020), and that aerosol forcing was weaker when climate feedbacks were allowed

(Nazarenko et al., 2017).385

3.2.2 Volcanic Intermittency Correction Exponent ν

The volcanic intermittency correction exponent ν was found to have a posterior median value of 0.28 with 90% CI of [0.15,0.41]

when using FAerRCP and similar median value 0.28 with 90% CI of [0.16,0.40] when using FAerSSP (recall ν = 0 implies a

constant mean forcing and the original series is recovered with ν = 1). Both contain the theoretically calculated ν within their

90% CI (ν = 0.32). This result confirms that volcanic forcing is generally overpowered since ν = 1 has nearly null probability390

as seen in figure 5. Thus, the original volcanic series described without the intermittency correction does not reproduce well,

within the FEBE model presented, the cooling events observed in instrumental records following eruptions: volcanic cooling

would be overestimated. As noted in the case for the exponent, h, the NOAA dataset noticeably differs from the others, the

spatio-temporal smoothing applied in the MLOST dataset is likely the cause of a lower ν (i.e. a smoother volcanic forcing).

In figure 6 we compare the total forcing series, FTot(t) (black), IPCC AR5, eq. (16) where α= ν = 1, with the adjusted395

forcing series, FTot(α,ν; t) (blue). During the historical period, the intermittency and strength of the strong volcanic events
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Figure 6. The total historic (1880–2020) forcing series prescribed by the IPCC using, FAerRCP (black) compared to the adjusted forcing,

FTot(α,ν; t) (blue) which takes into account aerosol and volcanic corrections, shown with 90% CI.

is greatly reduced and in the recent past the median adjusted forcing series is higher than the unadjusted forcing due to the

reduced aerosol forcing strength. This adjusted forcing series consequently contributes to a lower climate sensitivity, presented

in the following section, due to the historic negative forcings of volcanoes and aerosols being adjusted to closer match historical

observations, eliminating the need for a high climate sensitivity to compensate.400

3.3 Climate Sensitivity

3.3.1 Climate Sensitvity Parameter, s

The climate sensitivity parameter s, refers to the equilibrium change in the annual GMST following a unit change in radiative

forcing. Its inverse is the climate feedback parameter, the increase in radiation to space per unit of global warming. We find s to

have a median value of 0.56 K(Wm−2)−1 with 90% CI [0.45,0.67] K(Wm−2)−1 using FAerRCP , and when using FAerSSP405

we find median 0.52K(Wm−2)−1 with 90% CI [0.43,0.61] K(Wm−2)−1 (figure 7). Both on the lower end of the CMIP5

MME climate sensitivity parameter of median 1K(Wm−2)−1 and 90% CI [0.5, 1.5]K(Wm−2)−1 but within the 90% CI.

Although both estimates are below the CMIP6 MME 90% CI [0.63, 1.50]K(Wm−2)−1, with a median of 0.92K(Wm−2)−1

which has been criticized as being too high (Zelinka et al., 2020; Tokarska et al., 2020; Flynn and Mauritsen, 2020).
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Figure 7. For each observational dataset and their average, PDFs are shown for the climate sensitivity parameter s (the ECS, here in units of

K(Wm−2)−1), FAerRCP (solid) and FAerSSP (dashed).

3.3.2 Equilibrium Climate Sensitivity410

Two standard types of climate sensitivity used for inter-model comparisons: Equilibrium Climate Sensitivity (ECS) and Tran-

sient Climate Response (TCR) - our results are summarized in table 2.

If atmospheric CO2 was increased to double pre-industrial concentrations and then held there, the planet would only slowly

reach a new thermodynamic equilibrium. This delay is largely because the world’s oceans take a long time to heat up in

response to the enhanced greenhouse effect. The Equilibrium Climate Sensitivity (ECS) is the amount of warming achieved415

when the entire climate system reaches ‘equilibrium’ or the steady-state temperature response to a doubling of CO2. By the

definition of the temperature response to external forcings in eq. 7, the climate sensitivity parameter is the equilibrium climate

sensitivity. The two are equivalent to within a constant factor: the number of Wm−2 per CO2 doubling, the standard value

being 3.71Wm−2/(CO2 doubling) (IPCC, 2013).

The PDF for ECS shown in figure 8 (left), for both aerosols series was found to have a 90% CI of [1.6,2.4]K and a median420

value of 2.0K when using FAerRCP , and median of 1.8K and 90% CI [1.5,2.2] using FAerSSP (see table 2). These results

are lower than those found in the CMIP5 MME which had a best value of 3.2K, but our 90% CI bounds are more narrow,

laying within the CMIP5 MME range of [1.9,4.5]K. Although when we consider the expanded ECS 90% CI of [1.5,4.5]K

considered in IPCC (2013), which takes into account both the CMIP5 MME and historical estimates, we see that the FEBE

estimates are wholly within this range and much less uncertain. For the CMIP6 MME which has a 90% CI of [2.0,5.5]K and425

mean estimate 3.7K, our best estimate using the corresponding FAerSSP is slightly below the lower confidence due to the

upward shift of ECS estimates seen in CMIP6 models (Zelinka et al., 2020), but again has a more narrow CI.
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3.3.3 Transient Climate Response

Conventionally, TCR quantifies the temperature change that would occur if CO2 levels increase by 1% (compounded) per year

until they double (≈ 70 years). Since the CO2 forcing is logarithmically dependent on CO2 concentration, the TCR is then430

simply the global temperature increase that has occurred at the point in time that a linearly increasing forcing reaches double

pre-industrial levels.

The derived PDFs for TCR are shown in figure 8 (middle) and summarized in table 2. Our TCR was found to have a 90%

CI of [1.2,1.8]K with a median of 1.5K when using FAerRCP , while when using FAerSSP we find a median 1.4K and 90% CI

of [1.1,1.6]K. Both estimates are lower and more constrained, but within the 90% CI given by the CMIP5 MME: a 90% CI of435

[1.2,2.4]K and a best value of 1.8K, and by the CMIP6 MME: 90% CI of [1.2,2.8]K with best value of 2.0K.

The ECS and TCR estimates using the SSP scenarios with the FEBE are lower than those using RCP due to the overly strong

aerosols over the historical period in the SSPs which require a lower aerosol linear factor along with lower ECS to best match

the historical temperature record. The difference between the shape of the RCP and SSP aerosol forcing can also account for

this.440

The TCR-to-ECS ratio is a non-dimensional measure of the fraction of committed warming already realised after a steady

increase in radiative forcing, in this case a doubling of CO2, this quantity is generally referred to as realised warming fraction

(RWF) (Stouffer, 2004; Solomon et al., 2009; Millar et al., 2015). A model with a low RWF will indicate that global warming

may continue for centuries after emissions have stopped. We present the TCR-to-ECS ratio in figure 8 (right), having a 90%

CI [0.70, 0.78] and median 0.73 using FRCP parameters. Similar results are found using FSSP parameters, a median of 0.72445

and 90% CI [0.71, 0.79]. From figure 8 and table 2, we see that the TCR-to-ECS ratio is higher than both generations of MME

90% CI, a consequence of lower ECS and TCR values, and similar uncertainty.

In the next section we show that with a lower and more constrained climate sensitivity parameter (figs. 7 and 8), the adjusted

forcings (figure 6) and long memory process of the FEBE produce future projections that tend to be cooler than the CMIP5/6

projections, yet remain within their 90% CI.450
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Figure 8. The PDFs for ECS (left), TCR (middle) and the TCR:ECS ratio (right) are derived using FAerRCP (solid) and FAerSSP (dashed).

The associated 90% CI (bars under the axis), the CMIP5 MME 90% CI (dark gray shading), and the CMIP6 MME 90% CI (light gray

shading).
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Table 1. Model and Forcing parameter medians for FEBE calibrated over the historical period (1880–2020) using FAerRCP and FAerSSP ,

along with their corresponding 90% confidence intervals.

Median

h

h

90% CI

Range

Median

τ

[years]

τ

90% CI

Range

[years]

Median

α

α

90% CI

Range

Median

ν

ν

90% CI

Range

Median

s

[ K
Wm−2 ]

s

90% CI

Range

[ K
Wm−2 ]

FAerRCP 0.38 [0.33, 0.44] 4.7 [2.4, 7.0] 0.6 [0.2, 1.0] 0.28 [0.15, 0.41] 0.56 [0.45, 0.67]

FAerSSP 0.38 [0.32, 0.44] 4.7 [2.4, 7.0] 0.33 [0.05, 0.61] 0.28 [0.16, 0.40] 0.52 [0.43, 0.61]

Table 2. The calculated ECS and TCR medians using both parameters corresponding to FAerRCP and FAerSSP , along with their corre-

sponding 90% confidence intervals.

Median

TCR

[K]

TCR

90% CI Range

[K]

Median

ECS

[K]

ECS

90% CI Range

[K]

Median

TCR/ECS

Ratio

TCR/ECS Ratio

90% CI Range

FAerRCP 1.5 [1.2, 1.8] 2.0 [1.6, 2.4] 0.73 [0.70, 0.78]

FAerSSP 1.4 [1.1, 1.6] 1.8 [1.5, 2.2] 0.74 [0.71, 0.79]

Table 3. Model and Forcing parameter medians using FAerRCP for FEBE, the phenomological HEBE (h= 1
2
) and the SCRF model (Hébert

et al., 2021) calibrated over the historical period, along with their corresponding 90% confidence intervals.

Median

h

h

90% CI

Range

Median

τ

(years)

τ

90% CI

Range

(years)

Median

α

α

90% CI

Range

Median

ν

ν

90% CI

Range

Median

ECS

[K]

ECS

90% CI

Range

[K]

FEBE 0.38 [0.33, 0.44] 4.7 [2.4, 7.0] 0.6 [0.2, 1.0] 0.28 [0.15, 0.41] 2.0 [1.6, 2.4]

HEBE 1/2 - 4.7 [2.4, 7.0] 0.48 [0.10, 0.86] 0.33 [0.16, 0.51] 1.8 [1.4, 2.3]

SCRF 0.5 [0.3, 0.7] 2.0 - 0.8 [0.1, 1.3] 0.55 [0.25, 0.85] 2.3 [1.8, 3.7]

4 Projections

With the collection of model and forcing parameters, the FEBE was used to reconstruct the temperature over the historical

period, as well as make projections of the forced temperature response for the coming century using forcings prescribed by the

RCP and SSP scenarios.
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The CI provided for the MME corresponds to the spread between the different GCMs, "structural uncertainty", while for455

the FEBE it is parameter uncertainty (Bretherton, 2012). In both cases, the projections are deterministic but with uncertainty

limits due to their respective model uncertainties. Both yield an estimate of the forced response but with qualitatively different

uncertainty bounds.

For the FEBE, the spread of the forced projections is purely from the uncertainty in the parameters: the contribution to un-

certainty from internal variability has been averaged out (it is effectively the average over an infinite ensemble of realizations460

of internal variability). In order to make projections we therefore draw samples of parameters from the (correlated) multidi-

mensional parameter space (approximated by the multivariate normal distribution in eq. 21), by using a Monte Carlo method.

Once a random set of parameters has been chosen, realizations of the forced temperature response are generated using eq. 3

and a numerical convolution. It should be noted this Monte Carlo sampling is simply a convenient numerical technique for

performing high dimensional probability space integrals, it does not imply any stochasticity in the projections which although465

are parametrically uncertain, nevertheless have purely deterministic forcing. However, the Monte Carlo methods do introduce

standard Monte Carlo numerical uncertainty, but this was made quite small by using a large number (500) of Monte Carlo

realizations. Once we have our ensemble of projections, we remove the pre-industrial baseline (such that the temperature

anomaly over 1880–1910 is zero) and calculate the desired confidence intervals of the forced response. We consider the histor-

ical period coinciding with the range of observation temperature records (1880-2020) and make all comparisons to this period,470

acknowledging that the CMIP5 GCMs historical reconstruction ended in 2005 and for the CMIP6 GCMs in 2014.

4.1 Reliability and Historical Reconstructions: 1880–2020

In this section we present the full historical reconstruction using the FEBE observation-based projections with those from the

GCMs in the CMIP5/6 MME. In order to make a proper comparison with data we must include both the forced deterministic

temperature response, with its purely parametric uncertainty, as well as the internal variability of the mean observational475

temperature series, estimated to be ≈±0.14◦C (monthly resolution). The two uncertainties were combined assuming the

statistical independence of the internal forcing and the parametric uncertainty: the errors therefore add in quadrature.

An important characteristic of probabilistic forecasts is their reliability that quantifies the difference between the forecast

and actual probability distributions. For example, consider a set of predictions derived from ensemble forecasts, in some

realizations it is predicted that the chance of above-average seasonal-mean temperature for the coming season will be 70%.480

If the probabilistic forecast system is reliable, then one can expect that in 70% of these predictions the actual seasonal-mean

temperature will be above average (Annan and Hargreaves, 2010; Weisheimer and Palmer, 2014). In figure 9, we can verify

the reliability of the FEBE. We see that as expected, the temperature observations fall closely within the 90% CI of the FEBE

historical reconstruction (i.e. the ensemble average of the response to both internal and external forcing). More precisely, at the

monthly resolution in figure 9, the historical mean temperature (red) is within the 90% CI of the FEBE forced response (with485

internal variability added) 89.9% of the months using the RCP scenario (left) or 90.2% of the months using the SSP scenario

(right). The accuracy of this uncertainty verifies both the underlying model and Bayesian parameter estimation method.

22



This is expected for a reliable model and is an analogous validation of probabilistic aspects of the projection as unlike

weather forecasts where we have many past test cases, climate change projections cannot be calibrated in the same manner

(Stainforth et al., 2007; Tebaldi and Knutti, 2007; Knutti et al., 2010). In both reconstructions it is possible that the end of490

war (1945) temperature spike which lies out of the FEBE 90% CI may be explained due to biases associated with bucket and

engine room intake measurements (Chan and Huybers, 2021).
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Figure 9. (left) The historical reconstruction (forced temperature response and internal variability) of the FEBE, with parameters calibrated

using FAerRCP (blue) alongside mean of 5 observational temperature series (red) at monthly resolution; 90% CI (due to parametric uncer-

tainty and internal variability) are indicated (shaded). (right) Same as left except using FAerSSP parameters and forcing.

4.2 The Amplitude of the Internal Forcing

The small scale limit of the validity of the FEBE is not known, although it is likely to be ∼1 month (roughly the weather-

macroweather transition time scale). Justification comes from the success of the high frequency FEBE limit that successfully495

forecasts monthly and seasonal temperatures (Del Rio Amador and Lovejoy, 2019, 2021a, b). As discussed earlier (eq. 14) the

FEBE predicts the (stochastic) response to the internal forcing. The standard deviation of f(t) is the amplitude of the internal

forcing assumed to be a Gaussian white noise, which can be estimated using eqs. 14, and 15, and σT,τr ≈±0.14◦C. Using our

FRCP (and FSSP ) parameter estimates, we find a mean estimate of the forcing standard deviation, σf,τr , to be 3.2 Wm−2 (3.3

Wm−2) and 90% CI of [2,1,4.2] Wm−2 ([2.3,4.3] Wm−2) (at a monthly resolution). If we introduce a white noise forcing500

with σf,τr amplitude the FEBE recreates the amplitude of the internal temperature variability response.

This estimate of the internal variability forcing can be compared with that of Harries and Belotti (2010) who examine the net

energy flux balance at the top of atmosphere (TOA) measured using observations from polar-orbiting spacecraft (at monthly

scale). The early observations, using the Nimbus experiments, show an internal variability of the 4.1±4.0Wm−2, while more

modern measurements (CERES) in the 2000s show variability of between ±2 and ±4 Wm−2 generally laying a few Wm−2505

of zero. Thus our estimate of the internal forcing variability is within estimates of the TOA net energy flux balance.
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4.3 Statistical Evaluation of the FEBE

It was shown in Lovejoy et al. (2021) that the FEBE roughly predicts both high- and low-frequency scaling regimes, using a

simple "ramp" model that included the deterministic external and stochastic internal variabilities. In figure 10 (left) we show

one realization of the full FEBE, including the deterministic and stochastic forcings, with median parameters calibrated earlier510

using FAerRCP (blue) and FAerSSP (light blue); the five observation temperature series are shown alongside (gray - shifted up).

We compare the model statistics with the 5 globally averaged temperature series using their root-mean-square Haar fluctuations,

shown in figure 10 (right). The Haar fluctuation for a series T (t), ∆T (∆t) is the difference between the average of the first and

second halves of the interval ∆t. This is a convenient way to characterize variability as a function of time scale in real space,

valid for increasing or decreasing average fluctuations. By applying global scale Haar fluctuation analyses Del Rio Amador515

and Lovejoy (2019) found H ≈−0.1 corresponding to h=H + 1/2≈ 0.4.

Below Milankovitch time scales, there are three main scaling regimes observed in the atmosphere: the weather, macroweather

and climate Lovejoy (2013). In the macroweather regime, longer than the lifetime of planetary structures (∼ 10 days), tem-

perature fluctuations decrease with scale until a transition probably occurs to the climate regime where fluctuations begin to

increase. In the industrial epoch this scale is ∼ 20 years, while in the pre-industrial epoch this scales transition occurs at cen-520

turies or millennia Lovejoy (2015b). Over the scale of 1 year to about 10 years (the macroweather regime), the FEBE and the

observational temperature series have an approximate slope (indicated by the straight reference line in figure 10) of h≈ 0.4.

We see a transition in both the FEBE and observations at ∆t' 10 years: the transition to the climate regime where fluctuations

begin to increase with scale. The fact that the FEBE’s fluctuations at the climate regime track the observational data well gives

confidence in using the FEBE for multidecadal projections.525
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Figure 10. (left) The historical reconstruction (forced and internal temperature response) of the FEBE, with parameters calibrated using

FAerRCP (blue) and FAerSSP (light blue) alongside the 5 observational temperature series (gray - shifted up) at monthly resolution. (right)

The Root Mean Square Haar fluctuation structure function S(∆t) = 〈∆T (∆t)2〉
1
2 for FEBE reconstruction using FAerRCP (blue) and

FAerSSP (light blue), and the five globally averaged monthly-resolution temperature time series (gray; mean is shown in dashed black). The

reference (red) line has the slope of the approximate median estimate of the scaling exponent h≈ 0.4 (H = h− 1
2
≈− 1

10
).
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4.4 Evaluating the FEBE using Hindprojections Including the Slowdown

We have shown that the FEBE hindcasts are reliable (sec 4.1), that they have realistic internal forcings (sec. 4.2) and realistic

statistical variability (sec. 4.3). Here we evaluate their deterministic responses using hindprojections.

In figure 11, we compare the 90% CI of the historical temperature observations with the median forced response of both the

FEBE using the RCP (left) and SSP (right) historical forcing compared to both the CMIP5 (left) and CMIP6 (right) MMEs. In530

the inset of figure 11, we show the slowdown ("hiatus’) period (1998-2014).
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Figure 11. (left) The median historical forced component of the FEBE, with parameters calibrated using FAerRCP (blue), and the median

of the CMIP5 MME (black) alongside mean of 5 observational temperature series (red) with their 90% CI indicated (shaded). (right) The

median historical forced component of the FEBE, with parameters calibrated using FAerSSP (blue), and the median of the CMIP6 MME

(black) alongside mean of 5 observational temperature series (red) with the 90% CI indicated (shaded).

Throughout the historical period, the hindprojection of the FEBE and the median of the CMIP5/6 MME are close. Between

1915–1960 the CMIP5/6 MME is consistently warmer than the FEBE hindprojection and historical temperature records, al-

though generally by less than 0.05K. The slowdown in global warming during the first decade of the 21st century, termed as the

slowdown ("hiatus") (Kaufmann et al., 2011; Meehl et al., 2011; Medhaug et al., 2017), is tracked closely by the FEBE hindpro-535

jection while the CMIP5/6 MME overshoots (by 0.1K to 0.2K), a well studied divergence between GCMs and observations,

shown in figure 11 (insets).

Following the monthly resolution reliability confirmation in section 4.1 we can now perform a quantitative comparison be-

tween the amount of time the FEBE and CMIP5/6 MME median response is within the bounds of the observational temperature

series 90% CI performed with annual resolution data. The median FEBE hindprojection using FAerRCP is within the 90% CI540

of the observational temperature series over the whole historic period 47% of the years and over the slowdown is within 70%

in comparison to the CMIP5 MME median which is within the whole historic period only 39% and over the slowdown 17%.

While the median FEBE hindprojection using FAerSSP similar results are found, over the whole period: 45% and over the

slowdown 35%, in comparison to the CMIP6 MME median which is within the whole historic period 39% and over the slow-
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down is 30%. In can be seen in both cases that the CMIP MME is generally warmer than the FEBE forced component notably545

over the period of the slowdown. We see that indeed, the FEBE median forced component in both cases captures the slowdown

rather accurately. This supports (Lovejoy, 2015a, b) which found that the slowdown ("hiatus") could be well predicted by a

stochastic fGn model (comparable with the present hindprojection) and concluded the issue to be GCM overprojection.

4.5 Projections through to 2100

We now consider the FEBE projections to 2100. At first, the temperature increase in each case is nearly identical; the future550

pathways only diverging into their respective scenarios roughly two decades after their beginning (RCPs begin in 2005, SSPs

begin in 2014). Further into the future, the warming rate begins to depend more on the specified scenario, the highest being

in RCP 8.5/SSP 5-85 (figure 12 c, f) while significantly lower in RCP 2.6/SSP 1-26 (figure 12 a, d; tables 4, 5), particularly

after about 2050 when the global surface temperature response stabilizes (and declines thereafter). Of particular interest are

the low emissions scenarios, RCP 2.6/SSP 1-26, demonstrating the potential of strong mitigation policies and speculative555

negative emission technologies where anthropogenic forcing starts decreasing around the mid-2040s. In the CMIP5 MME,

the temperature stays below 2K throughout the 21st century, whereas the corresponding median FEBE temperature projection

never exceeds 1.5K. Comparing projected warming at 2100 for the RCP 2.6/SSP 1-26 scenario, the FEBE projection reaches a

median warming of 1.2K with 90% CI of [1.1,1.4]K while the CMIP5 MME has a 90% CI of [0.9,2.4]K and median warming

of 1.7K. When considering the CMIP6 projections for SSP 1-26 (figure 12, d) the median temperature exceeds 2K beginning560

near 2050, whereas the corresponding FEBE projection is consistently lower, only crossing the 1.5K threshold briefly. At 2100,

the CMIP6 projected temperature reaches 2.2K with 90% CI of [1.5, 2.8]K while the FEBE projects a median temperature of

1.5K and a narrower spread of [1.3, 1.8]K.

While the forcing of the (perhaps most realistic) middle scenario, RCP 4.5/SSP 2-45, stabilizes in the mid 2060s, the

temperature projections continue rising throughout the 21st century for both FEBE and the CMIP5/6 MME (figure 12b, e).565

At 2100 the FEBE and CMIP5 MME project the temperature reaching 1.9K [1.6,2.2]K, and 2.6K [1.8, 3.2]K respectively

shown in figure 12b. A key point to note is that the FEBE RCP 4.5 projection remains below 2.5K of warming by 2100, while

the CMIP5 MME is well beyond this threshold. Looking at the CMIP6 projections for SSP 2-45 (figure 12, e) the median

temperature exceeds 2K beginning near 2050, whereas the corresponding FEBE projection is consistently lower, and begins

to diverge after 2050. At 2100, the CMIP6 projected temperature reaches 3K with 90% CI of [12.1, 4.2]K while the FEBE570

projects a median temperature of 2.3K and a narrower spread of [1.8, 2.8]K.

The projections of both the FEBE and the CMIP5 MME for the strong emission scenario, RCP 8.5, show alarming warming

rates of 3.5K with 90% CI [2.9,4.1]K, and 4.8K with 90% CI [3.5, 6.0]K in 2100 shown in figure 12c, f. The same quickly

increasing trend is seen in the CMIP6 SSP 5-85 scenario with temperatures in 2100 reaching a staggering 6.2K with 90%

CI [4.5, 7.0]K, while the FEBE projection although lower at 3.8K and having a tighter bound of [3.5, 4.5]K shows the dire575

consequences of no mitigation. All results shown in figure 12 are summarized in tables 4 and 5.

The FEBE projections are slightly different depending on the forcing series used, either the RCPs or the SSPs, almost solely

because of different aerosol forcing while the other forcings are practically unchanged. By applying the aerosol recalibration
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factor we constrain both aerosol series over the past to produce the same relative forcing thus there is very little difference over

the historical FEBE hindprojections. Moving into the future, in the SSP scenarios the aerosol forcing is quickly reduced to zero580

while in the RCP scenarios the aerosols are reduced but not fully eliminated causing the FEBE projections with SSP scenarios

to be warmer than their RCP counterparts.

The discrepancy in aerosol forcing strength (figure 1) at 2100 between FAerRCP and FAerSSP in the strong mitigation

scenario (RCP 2.6/SSP 1-26) is ≈ 0.6Wm−2. With the total GHG forcings being nearly identical, the SSP 1-26 scenario is

closer to a RCP 3.2 scenario than the RCP 2.6 scenario. Therefore for RCP 2.6, we can roughly attribute 30% of the increased585

future warming shown in CMIP6 in comparison with CMIP5 (figure 12) to the strong reduction of future aerosol emissions.

For the MME, in RCP 2.6, this corresponds to about 0.5K in 2100. The corresponding values for RCP 8.5 is 7% and 0.6K in

2100.

Although the FEBE projections are consistently about 15% cooler than the CMIP5 MME, due to the its smaller uncertainty

the FEBE 90% CI lies entirely within the corresponding CMIP5 CI. Both projection methods support each other and are thus590

complementary. When compared to CMIP6 projections although most of 90% CIs overlap, the median CMIP6 temperatures

are nearly 65% warmer than the corresponding FEBE median, mainly caused by their overpowered aerosols (Zelinka et al.,

2020; Flynn and Mauritsen, 2020) and previously mentioned discrepancy in the future aerosol removal as compared to the

RCPs.
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Figure 12. The deterministic forced temperature response projected using the FEBE (blue), with parameters calibrated using FAerRCP (a,

b, c) and FAerSSP (d, e, f) compared with the CMIP5/6 MME projection (black); 90% CI from the parametric uncertainty are indicated

(shaded). The projections until 2100, for RCP 2.6/SSP 1-26 (top), RCP 4.5/SSP 2-45 (middle) and RCP 8.5/SSP 5-85 (bottom), are shown.
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Table 4. The 90% CI of projected warming relative to pre-industrial reference period (1880 –1910) for the RCP scenarios analysed in this

study based on the FEBE and the CMIP5 MME. Summary of figure 12 (a, b, c).

RCP 2.6 RCP 4.5 RCP 8.5

FEBE CMIP5 FEBE CMIP5 FEBE CMIP5

2020-2040 [1.1, 1.5]K [1.2, 1.9]K [1.1, 1.5]K [1.3, 1.9]K [1.2, 1.6]K [1.4, 2.0]K

2040-2060 [1.2, 1.6]K [1.3, 2.2]K [1.4, 1.9]K [1.6, 2.6]K [1.7, 2.3]K [2.0, 3.0]K

2060-2080 [1.2, 1.6]K [1.2, 2.3]K [1.6, 2.2]K [1.8, 3.0]K [2.2, 3.1]K [2.6, 4.3]K

2080-2100 [1.2, 1.6]K [1.1, 2.4]K [1.6, 2.3]K [1.8, 3.2]K [2.7, 3.8]K [3.3, 5.3]K

Table 5. The 90% CI of projected warming relative to pre-industrial reference period (1880 –1910) for the SSP scenarios analysed in this

study based on the FEBE and the CMIP6 MME. Summary of figure 12 (d, e, f).

SSP 1-26 SSP 2-45 SSP 5-85

FEBE CMIP6 FEBE CMIP6 FEBE CMIP6

2020-2040 [1.2, 1.6]K [1.2, 1.9]K [1.2, 1.6]K [1.2, 2.0]K [1.2, 1.7]K [1.2, 2.0]K

2040-2060 [1.3, 1.8]K [1.4, 2.3]K [1.5, 2.0]K [1.6, 2.7]K [1.7, 2.3]K [1.9, 3.0]K

2060-2080 [1.4, 1.9]K [1.5, 2.6]K [1.8, 2.4]K [1.9, 3.2]K [2.3, 3.2]K [2.8, 4.4]K

2080-2100 [1.3, 1.8]K [1.4, 2.8]K [1.9, 2.6]K [2.2, 3.8]K [3.0, 4.2]K [3.6, 6.0]K

4.6 Probabilities of Exceeding Critical Warming Thresholds595

We can also use the FEBE to estimate the probability of exceeding various warming thresholds. Important tipping points have

been established which could lead to irreversible changes in major ecosystems and the planetary climate if certain threshold in

warming are exceeded (Schurer et al., 2017; Smith et al., 2018b; Iseri et al., 2018) . Using the FEBE and CMIP5/6 MME we

calculate the probability of temperature exceeding 1.5K and 2.0K (figure 13).

According to the FEBE for the low emission scenario RCP 2.6, it is unlikely to exceed the 1.5K threshold in 2100 (< 10%)600

while it is much more likely to exceed this threshold according to CMIP5 MME (67%). The FEBE has a negligible probability

of exceeding 2K while the CMIP5 MME has a 26% probability. While in the SSP 1-26 scenario, the FEBE peaks at below 50%

of exceeding 1.5K and has a negligible probability of exceeding 2K as before; it is nearly inevitable to cross 1.5K threshold

according to the CMIP6 MME, while the 2K threshold being exceeded hovers around 60% even under strong mitigation.

In the RCP 4.5 scenario, the probability of the FEBE exceeding the 1.5K threshold is extremely likely (> 95%) although605

it occurs much later than that projected by the CMIP5 MME: occurring 20 years after the MMEs: 2070; for the SSP 2-45

scenario we see the FEBE trail the CMIP6 MME until around 2035, when exceeding 1.5K becomes very likely for both near

2045. Similarly, the 2K overshoot, as projected by the FEBE will be avoided with a probability of < 40% but will most likely

not be avoided according to the CMIP5 MME with an 89% probability of exceeding 2K. Again we see the FEBE lag behind
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the CMIP6 MME, the probability of exceeding 2K is lower at the same time as compared to the CMIP6 MME, before they610

begin to converge around 2080, approaching a very likely probability to exceed the threshold.

For the final high emission, business as usual, RCP 8.5 and SSP 5-85 scenarios; both the FEBE and CMIP5/6 MME project

that exceeding the 1.5K threshold is virtually inevitable by 2100. Although in the FEBE projection it is extremely likely

that this threshold is exceeded nearly 15 years after the CMIP5/6 MME projections of 2040. The same is found for the 2K

threshold, with both the FEBE and CMIP5/6 MME exceeding the threshold about 15 years after the 1.5K threshold. These615

results are all summarized in table 6.
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Figure 13. The probability for the global mean surface temperature of exceeding a 1.5K threshold (top: a,c), and a 2K (bottom - b,c) are

given as a function of years for the FEBE (blue), using FAerRCP (a,b) or FAerSSP (c, d) and for the CMIP5/6 MME (black). The three

scenarios are considered for each case: RCP 2.6/SSP 1-26 (solid), RCP 4.5/SSP 2-45 (dashed), and RCP 8.5/SSP 5-85 (circles).
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Table 6. List of RCP and SSP scenarios analysed in this study and the probabilities of exceeding 1.5◦C or 2◦C based on the FEBE and the

CMIP5/6 MME. Summary of figure 13.

Probability of Exceeding

1.5◦C at 2100

Probability of Exceeding

2◦C at 2100

FEBE CMIP5 CMIP6 FEBE CMIP5 CMIP6

RCP 2.6 0.1% 67.0% - 0.0% 25.8% -

RCP 4.5 96.9% 98.4% - 37.8% 87.1% -

RCP 8.5 100% 100% - 100% 100% -

SSP 1-26 47.1% - 81.2% 0.0% - 47.0%

SSP 2-45 99.5% - 99.0% 82.1% - 94.3%

SSP 5-85 100% - 100% 100% - 99.9%

5 Discussion

In the following section we summarize the key results presented earlier in the paper: model and forcing parameters (see table

1), the climate sensitivities (see table 2), the projected warming at 2100 (see tables 4 and 5) and the probabilities of exceeding

warming thresholds of 1.5K and 2.5K (see table 6).620

The two parameters that characterize the model, h and τ , were estimated. The fundamental scaling exponent h, was found

to have a median value of 0.38 and 90% CI of [0.33,0.44] using FAerRCP , and similar median value 0.38 and 90% CI of

[0.32,0.44] for FAerSSP . Both estimates are near h estimated for the Scaling Climate Response Function (Hébert et al., 2021)

and the phenomenological HEBE (Lovejoy, 2021a, b). The relaxation time scale τ , characterizing the approach to equilibrium

was found to have median value of 4.7 years and 90% CI of [2.4,7.0] years when using FAerRCP , and nearly identical results625

using FAerSSP . The estimated relaxation time is comparable to other box model fast relaxation times (Schwartz, 2008; Held

et al., 2010; Geoffroy et al., 2013; Rypdal and Rypdal, 2014) as the one box (EBE) model is a special case of the FEBE where

h= 1.

The FEBE model also adjusts the deterministic forcings, notably the aerosol and volcanic forcing series which must be

scaled (the former linearly and the latter non-linearly) as for the temperature response to best match historical temperature630

records. From our analysis we find a more constrained aerosol forcing. For the FAerRCP we found a median recalibration

factor α of 0.6 with 90% CI [0.2,1.0]. Following Stevens (2015) this supports a revision of the global modern (2005) aerosol

forcing 90% CI to a narrower range [-1.0,-0.2]Wm−2. Using the CMIP6 aerosols, FAerSSP , we found a median α value of

0.33 and 90% [0.05, 0.61] implying a weaker and more tightly constrained modern (2005) aerosol forcing of [-0.9,-0.1]Wm−2.

For volcanism, the non-linear intermittency exponent, ν, was found have median value of 0.28 with 90% CI of [0.15, 0.41]635

using FAerRCP and a median 0.28 with similar 90% CI of [0.16, 0.40] using FAerSSP .

31



In comparison to IPCC AR5 and to the CMIP6 MME, we find lower likely ranges for the climate sensitivity parameter,

ECS and TCR when using the FEBE with FAerRCP (or FAerSSP ). For projections, perhaps the most important parameter is s,

climate sensitivity parameter which determines the temperature response following an increase in forcing. We find s to have a

median value of 0.56 K(Wm−2)−1 with 90% CI [0.45,0.67] K(Wm−2)−1 using FAerRCP , and when using FAerSSP we find640

median 0.52K(Wm−2)−1 with 90% CI [0.43,0.61] K(Wm−2)−1. Again see a lower median for the ECS in comparison to

the IPCC AR5 (and CMIP6 MME) estimates for their corresponding forcings, the 90% CI range is reduced from [1.5, 4.5]K

([2.0, 5.5]K) to [1.6, 2.4]K ([1.5, 2.2]K) and the median value is lowered from 3.0K (3.7K) to 2.0K (1.8K). Several recent

observation-based studies (Otto et al., 2013; Skeie et al., 2014; Johansson et al., 2015; Lewis and Curry, 2015, 2018) have

also reported lower ECS upper bounds. We also estimated the derived quantity, the Transient Climate Response (TCR), the645

temperature increase following a linear doubling in forcing over 70 years. For the TCR, where the 90% CI range shrinks from

[1.0,2.5]K ([1.2, 2.8]K) to [1.2,1.8]K ([1.1, 1.6]K) and the median estimate decreases from 1.8K (2.0K) to 1.5K (1.4K).

With all necessary parameters of the FEBE calibrated on observational temperature series we show that the FEBE is a

reliable model able to reconstruct the historical temperatures (see section 4.1), can reproduce the response amplitude to a

internal white noise forcing (see section 4.2), and produces realistic temperature fluctuations over a wide range of scales650

(see section 4.3). Having shown that the FEBE may reproduce historical temperatures and their statistics, we then produce

deterministic temperature projections to 2100 using the RCPs: 2.6, 4.5, 8.5 and SSPs: 1-26, 2-45, 5-85 comparing them to

their respective CMIP5 and CMIP6 MMEs relative to the pre-industrial baseline of 1880–1910. In the low emission scenario

RCP 2.6 (SSP 1-26) the FEBE projects the 90% CI of the temperature at 2100 to be [1.2,1.6]K ([1.3,1.8]K) as compared to

the CMIP5 (CMIP6) MME of [1.1,2.4]K ([1.4,2.8]K). The middle scenario, RCP 4.5 (SSP 2-45) the FEBE projects warming655

reaching [1.6,2.3]K ([1.9,2.6]K), narrower than the CMIP5 (CMIP6) MME warming of [1.8,3.2]K ([2.2,3.8]K). While in the

high emission scenario, RCP 8.5 (SSP 5-85) both the FEBE and CMIP5 (CMIP6) MME project extreme temperature increases

of [2.7,3.6]K ([3.0,4.2]K) and [3.3,5.3]K ([3.6,6.0]K), highlighting the need for strong emission mitigation.

During the Paris Conference in 2015, nations of the world strengthened the United Nations Framework Convention on

Climate Change by agreeing to holding the increase in the global average temperature to well below 2◦C above pre-industrial660

levels and pursuing efforts to limit the temperature increase to 1.5◦C. According to our projections, crossing either of these

thresholds is delayed with respect to the CMIP5/6 MME projections but will eventually happen if strong mitigation is not

implemented. To avert a 1.5K warming, drastic cuts would have to be made to global greenhouse emissions, similar to that

in RCP 2.6 (and SSP 1-26), for which we found <10% (<50%) probability of exceeding 1.5K in comparison to the CMIP5

(CMIP6) MME which projects a 67% (>80%). Both the FEBE and CMIP5/6 projections have temperatures surpassing 1.5K in665

scenarios with weak or no mitigation: RCP 4.5/SSP 2-45, and RCP 8.5/SSP 5-85, albeit the FEBE projects this occurring nearly

two decades later than the GCMs. The 2K threshold is projected to be avoided by both the FEBE and CMIP5/6 MME if we

follow low emission scenarios of RCP 2.6 and SSP 1-26. The opposite is true for any other emission scenarios; the exceeding of

the 2K threshold in this coming century would surely occur. Thus our model reinforces that only strong mitigation scenarios,

such as RCP 2.6 and SSP 1-26, will avoid excursions over these 1.5K and 2K thresholds, although it remains to be seen670

whether negative emission technologies are feasible and whether the appropriate policies are implemented.
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6 Conclusions

Ever since the first climate models at the end of the 1970’s, multidecadal projections have had large uncertainties with the

wide ECS confidence limits of 1.5-4.5K essentially unchanged. For policy makers, the most deleterious consequence of large

uncertainties is that projections emanating from quite diverse future scenarios have significant overlap. For example, up until675

2050, the RCP 2.6 and 8.5 scenarios can both claim to respect the 2K threshold - albeit with rather different probabilities

(figure 13). Large overlaps imply a disconnection between policies (mitigation scenarios) and outcomes (temperatures). Now

that governments have committed themselves to keeping industrial epoch temperature increases to below 2K (and aim at

1.5K), we face an uncertainty crisis (Lovejoy, 2019b).

One way of reducing this uncertainty is by developing complementary types of models. In this paper we directly constructed680

such a model in the macroweather regime (roughly one month and up) based on the physically principles of energy conservation

and scaling: the Fractional Energy Balance Equation (FEBE). Although originally derived phenomenologically, it was recently

discovered (Lovejoy, 2021a, b) that the FEBE could be derived as a consequence of classical (Budyko, 1969; Sellers, 1969),

Energy Balance Models (EBMs) that have been regularly used to determine the Earth’s latitudinal temperature variations,

its stability to perturbations and to study past and future climate states. The key was to introduce a vertical coordinate that685

allows for the application of the correct conductive-radiative surface boundary condition, needed for correctly determining the

energy storage. A surprising consequence is that even the classical (integer ordered) continuum mechanics heat equation used

by Budyko and Sellers implies that the surface temperature obeys a fractional ordered energy balance equation. The FEBE’s

fractional storage terms imply that the system has a long memory so that when calibrated by observational data, its responses

to past forcings are constrained to respect the historical climate.690

The FEBE is a parsimonious model with only two shape parameters: an exponent h, and relaxation time scale τ ; the classical

EBE (box model) is the h= 1 special case. In order to make FEBE projections, we use a Bayesian parameter estimation

approach similar to that used in Hébert et al. (2021). The latter used a Climate Response Function that at long times (> τ )

was close to the corresponding FEBE Green’s function, but that was a different power law at shorter time scales. While the

Hébert et al. (2021) CRF was justified on the basis of scale invariance, the FEBE has a stronger physical basis since it respects695

both scaling as well as energy conservation, and the long memory is explicitly situated in energy storage mechanisms. From

the practical (projection) point of view, the main advantage is that the FEBE directly handles the short time scales (down to a

month or less). This allows the FEBE to directly take into account the internal variability: a stochastic white noise forcing and

the FEBE response. The ability to model the forced response to both external and internal forcing improves FEBE parameter

estimates and contributes to lowering the corresponding projection uncertainties.700

Bayesian inference allows for a robust probabilistic parameter characterization. The basic external forcings were those pre-

scribed for the historical part of the CMIP5/6 GCMs and these were constrained by five monthly, global resolution empirical

temperature series (since 1880). The internal forcing was assumed to be a Gaussian white noise and, since to a good approx-

imation, the FEBE white noise response is a fractional Gaussian noise (fGn), the latter was taken as the Bayesian inference

error model.705

33



In order to estimate the parameters, the forcing series required two adjustments. The most important was the aerosol recali-

bration parameter α which linearly scales the aerosol forcing to take into account the increasing evidence that the CMIP5 and

CMIP6 aerosol cooling was too strong (Padilla et al., 2011; Hébert et al., 2021; Zelinka et al., 2020; Tokarska et al., 2020;

Flynn and Mauritsen, 2020). The former aerosol series (FAerRCP ) was based both on uncertain data but also on uncertain

modelling assumptions, especially about the direct and indirect effects of aerosols. Whereas the latter (FAerSSP ) is based on710

global sulphate production and derived from an alternative model than that in CMIP5.

The forcings and parameters combined with the RCP and SSP scenarios allow us to make projections through to 2100,

we did this for RCP 2.6 (SSP 1-26), 4.5 (SSP 2-45), and 8.5 (SSP 5-85). Overall, the observational based FEBE projections

had uncertainties that are smaller by more than a factor of two in comparison to the CMIP5/6 MME uncertainties. However,

the two modelling approaches have quite different sources of uncertainty. Whereas the CMIP5/6 uncertainty is purely due715

to differences in the climates of the GCMs ("structural uncertainties"), the FEBE uncertainty is "parametric" and it depends

largely on the uncertainty of the historical forcings and temperatures, in particular, those associated with aerosols. In fact, a

byproduct of the model and Bayesian framework is that we are able to more tightly constrain aerosol forcing, supporting recent

literature findings of weaker historical aerosol cooling. As a consequence, the FEBE projections are consistently a little cooler

than those of the CMIP5/6 MME but with uncertainties about half of those of the MME, it still lies within the MME uncertainty720

bounds. The qualitatively different FEBE thus effectively complements the GCMs.

In this paper we have presented the FEBE model and projections to 2100 which is an observational-based model physically

based on energy and scale symmetries, complementary to GCMs. Future work will explore the full (regional, 2D) FEBE model

(Lovejoy, 2021b), which hopefully will constrain and improve future projections. In (Lovejoy et al., 2021; Lovejoy, 2021a),

the FEBE is shown to plausibly reproduce the annual cycle at monthly resolution, in particular to explain the lag between725

the temperature maximum and the maximum in the radiative forcing. The FEBE could be also used to help understand the

generational differences between CMIP models. We can also calibrate the FEBE on the historical runs of the CMIP models in

order to perform a feedback analysis to investigate the differences between how models treat their volcanic and aerosol forcings

through the parameters ν and α. Updating our parameter estimates from calibrations on GCMs allows for GCM-FEBE hybrid

projections. Extensions to precipitation may also be possible at global and regional scales since the FEBE model is consistent730

with space-time scaling processes in historical precipitation data de Lima and Lovejoy (2015). With tighter constraints on ECS

and TCR from the FEBE we can better estimate future warming when bringing together multiple lines of evidence such as

that done in Sherwood et al. (2020). The FEBE once expanded spatially provides a flexible framework which can be calibrated

directly on observations, providing a direct representation of forcing to response relationships.

Data availability. RCP concentrations can be found at https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=welcome. SSP radiative735

forcings are provided at https://doi.org/10.5281/zenodo.3515339. CMIP5/6 model outputs are available at https://esgf-node.llnl.gov.
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Appendix A

Table A1. List of CMIP6 Models and model climate parameters.

Model ECS (K) TCR (K) TCR-to-ECS ratio

MIROC6 2.60 1.58 0.61

IPSL-CM6A-LR 4.50 2.39 0.53

CNRM-CM6-1 4.82 2.23 0.46

BCC-CSM2-MR 3.07 1.60 0.52

MRI-ESM2 3.11 1.67 0.54

CanESM5 5.58 2.75 0.49

CESM2 5.15 1.99 0.39

GISS-E2-1-H 2.99 1.81 0.61

GISS-E2-1-G 2.60 1.66 0.64

SAM0-UNICON 3.30 2.08 0.63

E3SM-1-0 5.09 2.91 0.57

UKESM1-0-LL 5.31 2.79 0.53

CNRM-ESM2-1 4.75 1.82 0.38

BCC-ESM1 3.29 1.77 0.54

CESM2-WACCM 4.65 1.92 0.41

MIROC-ES2L 2.66 1.51 0.57

EC-EARTH3-VEG 3.93 2.76 0.70

HADGEM3-GC31-LL 5.46 2.47 0.45

NORCPM-1 2.78 1.55 0.56

GFDL-CM4 3.79 - -

GFDL-ESM4 2.56 - -

NESM3 4.50 - -

NORESM2-LM 2.49 1.48 0.59

NORESM2-LM 2.49 1.48 0.59

MPI-ESM1-2-HR 2.84 1.57 0.55

INM-CM4-8 1.81 1.30 0.72

Ensemble Mean ± Std: 3.74±1.11 1.98±0.48 0.55 ± 0.09

Table A2. List of CMIP5 Models and climate sensitivity parameters.

Model ECS (K) TCR (K) TCR-to-ECS ratio

MPI-ESM-LR 3.48 1.94 0.56

MPI-ESM-MR 3.31 1.93 0.58

MPI-ESM-P 3.31 1.96 0.59

MIROC5 2.70 1.49 0.55

MIROC-ESM 4.68 2.15 0.46

IPSL-CM5B-LR 2.58 1.44 0.56

IPSL-CM5A-MR 4.03 1.96 0.49

IPSL-CM5A-LR 3.97 1.94 0.49

ISM-CM4 2.01 1.22 0.61

CSIRO-Mk3.6.0 4.05 1.76 0.43

CNRM-CM5 3.21 2.04 0.64

CNRM-CM5-2 3.40 1.63 0.48

BNU 3.98 2.58 0.65

BCC-CSM1.1 2.81 1.74 0.62

BCC-CSM1.1(m) 2.77 2.00 0.72

BCC-GCCM3 2.65 1.58 0.60

NORESM1-M 2.75 1.34 0.49

ACCESS1.0 3.76 1.72 0.46

CanESM2 3.71 2.37 0.64

GFDL-ESM2M 2.33 1.23 0.53

GFDL-CM3 3.85 1.85 0.48

CCSM4 2.90 1.64 0.57

FGOALS-g2 3.39 1.42 0.41

GISS-E2-H 2.33 1.69 0.73

GISS-E2-R 2.06 1.41 0.68

HADGEM2-ES 3.96 2.38 0.60

Esemble Mean ± Std: 3.20±0.70 1.75±0.38 0.56 ± 0.09

35



Author contributions. SL: conceptualization of the study. RH: design of methods for model calibration. RP: development the model code

and prepared the manuscript with contributions from all co-authors.

Competing interests. The authors declare that they have no conflict of interest.740

Acknowledgements. S. Lovejoy acknowledges some support from the National Science and Engineering research Council (Canada). R.

Hébert has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation

programme (grant agreement no. 716092 and grant agreement no. 772852. We thank D. Clarke and L. Del Rio Amador for helpful discus-

sions, and M. Willard-Stepan for help in editing the manuscript. The work profited from discussions at the CVAS working group of the Past

Global Changes (PAGES) programme.745

36



References

Annan, J. D. and Hargreaves, J. C.: Reliability of the CMIP3 ensemble, Geophysical Research Letters, 37,

https://doi.org/https://doi.org/10.1029/2009GL041994, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041994, 2010.

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-

L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T.,750

McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourde-

val, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate Change, Reviews

of Geophysics, 58, e2019RG000 660, https://doi.org/10.1029/2019RG000660, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2019RG000660, e2019RG000660 10.1029/2019RG000660, 2020.

Bretherton, S.: A National Strategy for Advancing Climate Modeling, The National Academies Press, Washington, DC,755

https://doi.org/10.17226/13430, https://www.nap.edu/catalog/13430/a-national-strategy-for-advancing-climate-modeling, 2012.

Budyko, M. I.: The effect of solar radiation variations on the climate of the Earth, tellus, 21, 611–619, 1969.

Chan, D. and Huybers, P.: Correcting Observational Biases in Sea-Surface Temperature Observations Removes Anomalous Warmth during

World War II, Journal of Climate, pp. 1 – 44, https://doi.org/10.1175/JCLI-D-20-0907.1, https://journals.ametsoc.org/view/journals/clim/

aop/JCLI-D-20-0907.1/JCLI-D-20-0907.1.xml, 2021.760

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe,

M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term climate change: Projections, commitments and irreversibility, pp. 1029–1136,

Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9781107415324.024, 2013.

Cowtan, K. and Way, R.: Update to ’Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends’.

Temperature reconstruction by domain: version 2.0 temperature series., https://doi.org/10.13140/RG.2.1.4728.0727, 2014a.765

Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends, Quarterly

Journal of the Royal Meteorological Society, 140, 1935–1944, https://doi.org/10.1002/qj.2297, https://rmets.onlinelibrary.wiley.com/doi/

abs/10.1002/qj.2297, 2014b.

Cowtan, K., Hausfather, Z., Hawkins, E., Jacobs, P., Mann, M. E., Miller, S. K., Steinman, B. A., Stolpe, M. B., and Way, R. G.: Ro-

bust comparison of climate models with observations using blended land air and ocean sea surface temperatures, Geophysical Research770

Letters, 42, 6526–6534, https://doi.org/https://doi.org/10.1002/2015GL064888, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/

2015GL064888, 2015.

Crowley, T. J., Zielinski, G., Vinther, B., Udisti, R., Kreutz, K., Cole-Dai, J., and Castellano, E.: Volcanism and the little ice age, PAGES

news, 16, 22–23, 2008.

de Lima, M. I. P. and Lovejoy, S.: Macroweather precipitation variability up to global and centennial scales, Water Resources Research, 51,775

9490–9513, https://doi.org/10.1002/2015WR017455, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017455, 2015.

Del Rio Amador, L. and Lovejoy, S.: Predicting the global temperature with the Stochastic Seasonal to Interannual Prediction System (Stoc-

SIPS), Climate Dynamics, 53, 4373–4411, https://doi.org/10.1007/s00382-019-04791-4, https://doi.org/10.1007/s00382-019-04791-4,

2019.

Del Rio Amador, L. and Lovejoy, S.: Using scaling for seasonal global surface temperature forecasts: StocSIPS, Climate Dynamics, submit-780

ted, 2020.

37

https://doi.org/https://doi.org/10.1029/2009GL041994
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041994
https://doi.org/10.1029/2019RG000660
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019RG000660
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019RG000660
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019RG000660
https://doi.org/10.17226/13430
https://www.nap.edu/catalog/13430/a-national-strategy-for-advancing-climate-modeling
https://doi.org/10.1175/JCLI-D-20-0907.1
https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-20-0907.1/JCLI-D-20-0907.1.xml
https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-20-0907.1/JCLI-D-20-0907.1.xml
https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-20-0907.1/JCLI-D-20-0907.1.xml
https://doi.org/10.1017/CBO9781107415324.024
https://doi.org/10.13140/RG.2.1.4728.0727
https://doi.org/10.1002/qj.2297
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2297
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2297
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2297
https://doi.org/https://doi.org/10.1002/2015GL064888
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL064888
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL064888
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL064888
https://doi.org/10.1002/2015WR017455
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017455
https://doi.org/10.1007/s00382-019-04791-4
https://doi.org/10.1007/s00382-019-04791-4


Del Rio Amador, L. and Lovejoy, S.: Long-Range Forecasting as a Past Value Problem: Untangling Correlations and Causality With

Scaling, Geophysical Research Letters, 48, e2020GL092 147, https://doi.org/https://doi.org/10.1029/2020GL092147, https://agupubs.

onlinelibrary.wiley.com/doi/abs/10.1029/2020GL092147, e2020GL092147 2020GL092147, 2021a.

Del Rio Amador, L. and Lovejoy, S.: Using regional scaling for temperature forecasts with the Stochastic Seasonal to Interannual Prediction785

System (StocSIPS), Climate Dynamics, https://doi.org/10.1007/s00382-021-05737-5, 2021b.

Flynn, C. M. and Mauritsen, T.: On the Climate Sensitivity and Historical Warming Evolution in Recent Coupled Model Ensembles, Atmo-

spheric Chemistry and Physics Discussions, 2020, 1–26, https://doi.org/10.5194/acp-2019-1175, https://www.atmos-chem-phys-discuss.

net/acp-2019-1175/, 2020.

Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R., and Webster, M. D.: Quantifying Uncertainties in Climate System Properties with790

the Use of Recent Climate Observations, Science, 295, 113–117, https://doi.org/10.1126/science.1064419, https://science.sciencemag.org/

content/295/5552/113, 2002.

Forest, C. E., Stone, P. H., and Sokolov, A. P.: Estimated PDFs of climate system properties including natural and anthropogenic forc-

ings, Geophysical Research Letters, 33, https://doi.org/https://doi.org/10.1029/2005GL023977, https://agupubs.onlinelibrary.wiley.com/

doi/abs/10.1029/2005GL023977, 2006.795

Forster, P. M., Maycock, A. C., McKenna, C. M., and Smith, C. J.: Latest climate models confirm need for urgent mitigation, Nature Climate

Change, 10, 7–10, https://doi.org/10.1038/s41558-019-0660-0, https://doi.org/10.1038/s41558-019-0660-0, 2020.

Geoffroy, O., Saint-Martin, D., Olivié, D. J., Voldoire, A., Bellon, G., and Tytéca, S.: Transient climate response in a two-layer energy-balance

model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments, Journal of Climate, 26, 1841–1857, 2013.

Gregory, J. M. and Andrews, T.: Variation in climate sensitivity and feedback parameters during the historical period, Geophysical Research800

Letters, 43, 3911–3920, https://doi.org/https://doi.org/10.1002/2016GL068406, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/

2016GL068406, 2016.

Harries, J. E. and Belotti, C.: On the Variability of the Global Net Radiative Energy Balance of the Nonequilibrium Earth, Journal of

Climate, 23, 1277 – 1290, https://doi.org/10.1175/2009JCLI2797.1, https://journals.ametsoc.org/view/journals/clim/23/6/2009jcli2797.1.

xml, 2010.805

Harvey, L. D. and Kaufmann, R. K.: Simultaneously constraining climate sensitivity and aerosol radiative forcing, Journal of Climate, 15,

2837–2861, 2002.

Hébert, R. and Lovejoy, S.: Interactive comment on "Global warming projections derived from an observation-based minimal model" by K.

Rypdal, Earth System Dynamics, 7, 51–70, https://doi.org/10.5194/esd-7-51-2016, https://www.earth-syst-dynam.net/7/51/2016/, 2015.

Hébert, R. and Lovejoy, S.: Regional Climate Sensitivity- and Historical-Based Projections to 2100, Geophysical Research Letters, 45,810

4248–4254, https://doi.org/10.1002/2017GL076649, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL076649, 2018.

Hébert, R., Lovejoy, S., and Tremblay, B.: An Observation-based Scaling Model for Climate Sensitivity Estimates and Global Projections to

2100, Climate Dynamics, 2021.

Held, I., Winton, M., Takahashi, K., Delworth, T., Zeng, F., and Vallis, G. K.: Probing the Fast and Slow Components of Global Warming

by Returning Abruptly to Preindustrial Forcing, Journal of Climate, 23, 2418–2427, https://doi.org/10.1175/2009JCLI3466.1, https://doi.815

org/10.1175/2009JCLI3466.1, 2010.

Huang, B., Menne, M. J., Boyer, T., Freeman, E., Gleason, B. E., Lawrimore, J. H., Liu, C., Rennie, J. J., Schreck, C. J., Sun, F., Vose, R.,

Williams, C. N., Yin, X., and Zhang, H.-M.: Uncertainty Estimates for Sea Surface Temperature and Land Surface Air Temperature in

38

https://doi.org/https://doi.org/10.1029/2020GL092147
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL092147
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL092147
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL092147
https://doi.org/10.1007/s00382-021-05737-5
https://doi.org/10.5194/acp-2019-1175
https://www.atmos-chem-phys-discuss.net/acp-2019-1175/
https://www.atmos-chem-phys-discuss.net/acp-2019-1175/
https://www.atmos-chem-phys-discuss.net/acp-2019-1175/
https://doi.org/10.1126/science.1064419
https://science.sciencemag.org/content/295/5552/113
https://science.sciencemag.org/content/295/5552/113
https://science.sciencemag.org/content/295/5552/113
https://doi.org/https://doi.org/10.1029/2005GL023977
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GL023977
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GL023977
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GL023977
https://doi.org/10.1038/s41558-019-0660-0
https://doi.org/10.1038/s41558-019-0660-0
https://doi.org/https://doi.org/10.1002/2016GL068406
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016GL068406
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016GL068406
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016GL068406
https://doi.org/10.1175/2009JCLI2797.1
https://journals.ametsoc.org/view/journals/clim/23/6/2009jcli2797.1.xml
https://journals.ametsoc.org/view/journals/clim/23/6/2009jcli2797.1.xml
https://journals.ametsoc.org/view/journals/clim/23/6/2009jcli2797.1.xml
https://doi.org/10.5194/esd-7-51-2016
https://www.earth-syst-dynam.net/7/51/2016/
https://doi.org/10.1002/2017GL076649
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL076649
https://doi.org/10.1175/2009JCLI3466.1
https://doi.org/10.1175/2009JCLI3466.1
https://doi.org/10.1175/2009JCLI3466.1
https://doi.org/10.1175/2009JCLI3466.1


NOAAGlobalTemp Version 5, Journal of Climate, 33, 1351 – 1379, https://doi.org/10.1175/JCLI-D-19-0395.1, https://journals.ametsoc.

org/view/journals/clim/33/4/jcli-d-19-0395.1.xml, 2020.820

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,

https://doi.org/10.1017/CBO9781107415324, www.climatechange2013.org, 2013.

Iseri, Y., Yoshikawa, S., Kiguchi, M., Tawatari, R., Kanae, S., and Oki, T.: Towards the incorporation of tipping elements in

global climate risk management: probability and potential impacts of passing a threshold, Sustainability Science, 13, 315–328,825

https://doi.org/10.1007/s11625-018-0536-7, https://doi.org/10.1007/s11625-018-0536-7, 2018.

Johansson, D. J., O’Neill, B. C., Tebaldi, C., and Häggström, O.: Equilibrium climate sensitivity in light of observations over the warming

hiatus, Nature Climate Change, 5, 449–453, 2015.

Kaufmann, R. K., Kauppi, H., Mann, M. L., and Stock, J. H.: Reconciling anthropogenic climate change with observed tem-

perature 1998-2008, Proceedings of the National Academy of Sciences of the United States of America, 108, 11 790–11 793,830

https://doi.org/10.1073/pnas.1102467108, https://pubmed.ncbi.nlm.nih.gov/21730180, 2011.

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in Combining Projections from Multiple Climate Mod-

els, Journal of Climate, 23, 2739 – 2758, https://doi.org/10.1175/2009JCLI3361.1, https://journals.ametsoc.org/view/journals/clim/23/

10/2009jcli3361.1.xml, 2010.

Lenssen, N., Schmidt, G., Hansen, J., Menne, M., Persin, A., Ruedy, R., and Zyss, D.: Improvements in the GISTEMP uncertainty model, J.835

Geophys. Res. Atmos., 124, 6307–6326, https://doi.org/10.1029/2018JD029522, 2019.

Lewis, N. and Curry, J.: The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity, Journal of Climate,

31, 6051–6071, https://doi.org/10.1175/JCLI-D-17-0667.1, https://doi.org/10.1175/JCLI-D-17-0667.1, 2018.

Lewis, N. and Curry, J. A.: The implications for climate sensitivity of AR5 forcing and heat uptake estimates, Climate Dynamics, 45,

1009–1023, https://doi.org/10.1007/s00382-014-2342-y, https://doi.org/10.1007/s00382-014-2342-y, 2015.840

Lovejoy, S.: What Is Climate?, Eos, Transactions American Geophysical Union, 94, 1–2, https://doi.org/10.1002/2013EO010001, https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013EO010001, 2013.

Lovejoy, S.: Using scaling for macroweather forecasting including the pause, Geophysical Research Letters, 42, 7148–7155,

https://doi.org/https://doi.org/10.1002/2015GL065665, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL065665, 2015a.

Lovejoy, S.: A voyage through scales, a missing quadrillion and why the climate is not what you expect, Climate Dynamics, 44, 3187–3210,845

https://doi.org/10.1007/s00382-014-2324-0, https://doi.org/10.1007/s00382-014-2324-0, 2015b.

Lovejoy, S.: Fractional relaxation noises, motions and the fractional energy balance equation, Nonlinear Processes in Geophysics Discussions,

2019, 1–52, https://doi.org/10.5194/npg-2019-39, https://www.nonlin-processes-geophys-discuss.net/npg-2019-39/, 2019a.

Lovejoy, S.: Weather, Macroweather and Climate: our random yet predictable atmosphere, Oxford U. Press, 2019b.

Lovejoy, S.: The Half-order Energy Balance Equation, Part 1: The homogeneous HEBE and long memories, Earth System Dynamics Dis-850

cussions, pp. 1–36, https://doi.org/10.5194/esd-2020-12, https://www.earth-syst-dynam-discuss.net/esd-2020-12/, 2021a.

Lovejoy, S.: The Half-order Energy Balance Equation, Part 2:The inhomogeneous HEBE and 2D energy balance models, Earth System

Dynamics Discussions, pp. 1–44, https://doi.org/10.5194/esd-2020-13, https://www.earth-syst-dynam-discuss.net/esd-2020-13/, 2021b.

Lovejoy, S. and Schertzer, D.: The Weather and Climate: Emergent Laws and Multifractal Cascades, Cambridge University Press,

https://doi.org/10.1017/CBO9781139093811, 2013.855

39

https://doi.org/10.1175/JCLI-D-19-0395.1
https://journals.ametsoc.org/view/journals/clim/33/4/jcli-d-19-0395.1.xml
https://journals.ametsoc.org/view/journals/clim/33/4/jcli-d-19-0395.1.xml
https://journals.ametsoc.org/view/journals/clim/33/4/jcli-d-19-0395.1.xml
https://doi.org/10.1017/CBO9781107415324
www.climatechange2013.org
https://doi.org/10.1007/s11625-018-0536-7
https://doi.org/10.1007/s11625-018-0536-7
https://doi.org/10.1073/pnas.1102467108
https://pubmed.ncbi.nlm.nih.gov/21730180
https://doi.org/10.1175/2009JCLI3361.1
https://journals.ametsoc.org/view/journals/clim/23/10/2009jcli3361.1.xml
https://journals.ametsoc.org/view/journals/clim/23/10/2009jcli3361.1.xml
https://journals.ametsoc.org/view/journals/clim/23/10/2009jcli3361.1.xml
https://doi.org/10.1029/2018JD029522
https://doi.org/10.1175/JCLI-D-17-0667.1
https://doi.org/10.1175/JCLI-D-17-0667.1
https://doi.org/10.1007/s00382-014-2342-y
https://doi.org/10.1007/s00382-014-2342-y
https://doi.org/10.1002/2013EO010001
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013EO010001
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013EO010001
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013EO010001
https://doi.org/https://doi.org/10.1002/2015GL065665
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL065665
https://doi.org/10.1007/s00382-014-2324-0
https://doi.org/10.1007/s00382-014-2324-0
https://doi.org/10.5194/npg-2019-39
https://www.nonlin-processes-geophys-discuss.net/npg-2019-39/
https://doi.org/10.5194/esd-2020-12
https://www.earth-syst-dynam-discuss.net/esd-2020-12/
https://doi.org/10.5194/esd-2020-13
https://www.earth-syst-dynam-discuss.net/esd-2020-13/
https://doi.org/10.1017/CBO9781139093811


Lovejoy, S. and Varotsos, C.: Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcings, Earth

Syst. Dynam, 7, 133–150, 2016.

Lovejoy, S., Del Rio Amador, L., and Hebert, R.: The ScaLIng Macroweather Model (SLIMM): using scaling to forecast global-scale

macroweather from months to decades, Earth System Dynamics, 6, 637, 2015.

Lovejoy, S., Del Rio Amador, L., and Hébert, R.: Harnessing Butterflies: Theory and Practice of the Stochastic Seasonal to Interannual860

Prediction System (StocSIPS), pp. 305–355, https://doi.org/10.1007/978-3-319-58895-7_17, 2017.

Lovejoy, S., Procyk, R., Hébert, R., and Del Rio Amador, L.: The fractional energy balance equation, Quarterly Journal of the Royal Meteoro-

logical Society, n/a, https://doi.org/https://doi.org/10.1002/qj.4005, https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4005, 2021.

Medhaug, I., Stolpe, M., Fischer, E., and Knutti, R.: Reconciling controversies about the ‘global warming hiatus’, Nature, 545, 41–47,

https://doi.org/10.1038/nature22315, 2017.865

Meehl, G., Arblaster, J., Fasullo, J., Hu, A., and Trenberth, K.: Model-based evidence of deep-ocean heat uptake during surface-temperature

hiatus periods, Nature Climate Change, 1, 360–364, https://doi.org/10.1038/nclimate1229, 2011.

Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model,

MAGICC6 – Part 1: Model description and calibration, Atmospheric Chemistry and Physics, 11, 1417–1456, https://doi.org/10.5194/acp-

11-1417-2011, https://www.atmos-chem-phys.net/11/1417/2011/, 2011a.870

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M., Lamarque, J.-F., Matsumoto, K., Montzka, S., Raper, S., Riahi, K.,

et al.: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic change, 109, 213, 2011b.

Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N.,

Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith,

S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas875

concentrations and their extensions to 2500, Geoscientific Model Development, 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-

2020, https://gmd.copernicus.org/articles/13/3571/2020/, 2020.

Millar, R. J., Otto, A., Forster, P. M., Lowe, J. A., Ingram, W. J., and Allen, M. R.: Model structure in observational constraints on transient

climate response, Climatic Change, 131, 199–211, 2015.

Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional temperature change880

using an ensemble of observational estimates: The HadCRUT4 data set, Journal of Geophysical Research: Atmospheres, 117,

https://doi.org/10.1029/2011JD017187, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD017187, 2012.

Murphy, D., Solomon, S., Portmann, R., Rosenlof, K., Forster, P., and Wong, T.: An observationally based energy balance for the Earth since

1950, Journal of Geophysical Research: Atmospheres, 114, 2009.

Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of radiative forcing due to well mixed greenhouse gases, Geophysical885

research letters, 25, 2715–2718, 1998.

Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C.,

Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo,

G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang,

P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect890

from AeroCom Phase II simulations, Atmospheric Chemistry and Physics, 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013,

https://www.atmos-chem-phys.net/13/1853/2013/, 2013.

40

https://doi.org/10.1007/978-3-319-58895-7_17
https://doi.org/https://doi.org/10.1002/qj.4005
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4005
https://doi.org/10.1038/nature22315
https://doi.org/10.1038/nclimate1229
https://doi.org/10.5194/acp-11-1417-2011
https://doi.org/10.5194/acp-11-1417-2011
https://doi.org/10.5194/acp-11-1417-2011
https://www.atmos-chem-phys.net/11/1417/2011/
https://doi.org/10.5194/gmd-13-3571-2020
https://doi.org/10.5194/gmd-13-3571-2020
https://doi.org/10.5194/gmd-13-3571-2020
https://gmd.copernicus.org/articles/13/3571/2020/
https://doi.org/10.1029/2011JD017187
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD017187
https://doi.org/10.5194/acp-13-1853-2013
https://www.atmos-chem-phys.net/13/1853/2013/


Myrvoll-Nilsen, E., Sørbye, S. H., Fredriksen, H.-B., Rue, H., and Rypdal, M.: Statistical estimation of global surface temperature response

to forcing under the assumption of temporal scaling, Earth System Dynamics, 11, 329–345, https://doi.org/10.5194/esd-11-329-2020,

https://www.earth-syst-dynam.net/11/329/2020/, 2020.895

Nazarenko, L., Rind, D., Tsigaridis, K., Del Genio, A. D., Kelley, M., and Tausnev, N.: Interactive nature of climate change and

aerosol forcing, Journal of Geophysical Research: Atmospheres, 122, 3457–3480, https://doi.org/10.1002/2016JD025809, https://agupubs.

onlinelibrary.wiley.com/doi/abs/10.1002/2016JD025809, 2017.

North, G. R.: Theory of Energy-Balance Climate Models, Journal of the Atmospheric Sciences, 32, 2033–2043, https://doi.org/10.1175/1520-

0469(1975)032<2033:TOEBCM>2.0.CO;2, https://doi.org/10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2, 1975.900

North, G. R. and Kim, K.-Y.: Energy Balance Climate Models, John Wiley & Sons, 2017.

North, G. R., Cahalan, R. F., and Coakley Jr, J. A.: Energy balance climate models, Reviews of Geophysics, 19, 91–121, 1981, Reviews.

Otto, A., Otto, F. E., Boucher, O., Church, J., Hegerl, G., Forster, P. M., Gillett, N. P., Gregory, J., Johnson, G. C., Knutti, R., et al.: Energy

budget constraints on climate response, Nature Geoscience, 6, 415–416, 2013.

Padilla, L. E., Vallis, G. K., and Rowley, C. W.: Probabilistic Estimates of Transient Climate Sensitivity Subject to Uncertainty in Forcing and905

Natural Variability, Journal of Climate, 24, 5521–5537, https://doi.org/10.1175/2011JCLI3989.1, https://doi.org/10.1175/2011JCLI3989.

1, 2011.

Penner, J., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Achuthan, J., Leaitch, R., Murphy, D., Nganga, J., and Pitari, G.:

Aerosols, their Direct and Indirect Effects, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third

Assessment Report of the Intergovernmental Panel on Climate Change, 289-348 (2001), 2001.910

Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their

solution and some of their applications, Elsevier, 1999.

Proistosescu, C., Donohoe, A., Armour, K. C., Roe, G. H., Stuecker, M. F., and Bitz, C. M.: Radiative feedbacks from stochastic variability

in surface temperature and radiative imbalance, Geophysical Research Letters, 45, 5082–5094, 2018.

Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G., and Solomon, S.: Radiative915

Forcing of Climate Change, pp. 349–416, Cambridge University Press, 2001.

Ring, M. J., Lindner, D., Cross, E. F., and Schlesinger, M. E.: Causes of the Global Warming Observed since the 19th Century, Atmospheric

and Climate Sciences, 02, 401–415, https://doi.org/10.4236/acs.2012.24035, 2012.

Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth System Science Data, 12, 3469–3479,

https://doi.org/10.5194/essd-12-3469-2020, https://essd.copernicus.org/articles/12/3469/2020/, 2020.920

Rypdal, K.: Global temperature response to radiative forcing: Solar cycle versus volcanic eruptions, Journal of Geophysical Research: At-

mospheres, 117, https://doi.org/10.1029/2011JD017283, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD017283, 2012.

Rypdal, M. and Rypdal, K.: Long-Memory Effects in Linear Response Models of Earth’s Temperature and Implications for Future Global

Warming, Journal of Climate, 27, 5240–5258, https://doi.org/10.1175/JCLI-D-13-00296.1, https://doi.org/10.1175/JCLI-D-13-00296.1,

2014.925

Sato, M.: Forcings in GISS Climate Model: Stratospheric Aerosol Optical Thickness., https://data.giss.nasa.gov/modelforce/strataer/, 2012.

Sato, Y., Goto, D., Michibata, T., Suzuki, K., Takemura, T., Tomita, H., and Nakajima, T.: Aerosol effects on cloud water amounts were

successfully simulated by a global cloud-system resolving model, Nature Communications, 9, 985, https://doi.org/10.1038/s41467-018-

03379-6, https://doi.org/10.1038/s41467-018-03379-6, 2018.

41

https://doi.org/10.5194/esd-11-329-2020
https://www.earth-syst-dynam.net/11/329/2020/
https://doi.org/10.1002/2016JD025809
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD025809
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD025809
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JD025809
https://doi.org/10.1175/1520-0469(1975)032%3C2033:TOEBCM%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1975)032%3C2033:TOEBCM%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1975)032%3C2033:TOEBCM%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2
https://doi.org/10.1175/2011JCLI3989.1
https://doi.org/10.1175/2011JCLI3989.1
https://doi.org/10.1175/2011JCLI3989.1
https://doi.org/10.1175/2011JCLI3989.1
https://doi.org/10.4236/acs.2012.24035
https://doi.org/10.5194/essd-12-3469-2020
https://essd.copernicus.org/articles/12/3469/2020/
https://doi.org/10.1029/2011JD017283
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD017283
https://doi.org/10.1175/JCLI-D-13-00296.1
https://doi.org/10.1175/JCLI-D-13-00296.1
https://data.giss.nasa.gov/modelforce/strataer/
https://doi.org/10.1038/s41467-018-03379-6
https://doi.org/10.1038/s41467-018-03379-6
https://doi.org/10.1038/s41467-018-03379-6
https://doi.org/10.1038/s41467-018-03379-6


Schurer, A. P., Mann, M. E., Hawkins, E., Tett, S. F. B., and Hegerl, G. C.: Importance of the pre-industrial baseline for likelihood of930

exceeding Paris goals, Nature Climate Change, 7, 563–567, https://doi.org/10.1038/nclimate3345, https://doi.org/10.1038/nclimate3345,

2017.

Schwartz, S. E.: Uncertainty in climate sensitivity: causes, consequences, challenges, Energy & environmental science, 1, 430–453, 2008.

Sellers, W. D.: A global climatic model based on the energy balance of the earth-atmosphere system, Journal of Applied Meteorology, 8,

392–400, 1969.935

Sherwood, S., Webb, M. J., Annan, J. D., Armour, K., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling,

E. J., et al.: An assessment of Earth’s climate sensitivity using multiple lines of evidence, Reviews of Geophysics, 58, e2019RG000 678,

2020.

Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M., and Myhre, G.: A lower and more constrained estimate of climate sensitivity using

updated observations and detailed radiative forcing time series, Earth System Dynamics, 5, 139–175, https://doi.org/10.5194/esd-5-139-940

2014, https://www.earth-syst-dynam.net/5/139/2014/, 2014.

Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A., and Regayre, L. A.: FAIR v1.3: a simple emissions-based

impulse response and carbon cycle model, Geoscientific Model Development, 11, 2273–2297, https://doi.org/10.5194/gmd-11-2273-2018,

https://www.geosci-model-dev.net/11/2273/2018/, 2018a.

Smith, D. M., Scaife, A. A., Hawkins, E., Bilbao, R., Boer, G. J., Caian, M., Caron, L.-P., Danabasoglu, G., Delworth, T., Doblas-Reyes,945

F. J., Doescher, R., Dunstone, N. J., Eade, R., Hermanson, L., Ishii, M., Kharin, V., Kimoto, M., Koenigk, T., Kushnir, Y., Matei, D.,

Meehl, G. A., Menegoz, M., Merryfield, W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Power, S., Rixen, M., Sospedra-Alfonso, R.,

Tuma, M., Wyser, K., Yang, X., and Yeager, S.: Predicted Chance That Global Warming Will Temporarily Exceed 1.5 °C, Geophysical

Research Letters, 45, 11,895–11,903, https://doi.org/10.1029/2018GL079362, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2018GL079362, 2018b.950

Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.: Improvements to NOAA’s historical merged land–ocean surface temper-

ature analysis (1880–2006), Journal of Climate, 21, 2283–2296, 2008.

Solomon, S.: Climate Change 2007 the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the

IPCC, Cambridge University Press, 2007.

Solomon, S., Plattner, G.-K., and Friedlingstein, P.: Irreversible climate change due to carbon dioxide emissions, Proceedings of the National955

Academy of Sciences, USA, 2009.

Stainforth, D., Allen, M., Tredger, E., and Smith, L.: Confidence, uncertainty and decision-support relevance in climate predic-

tions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2145–2161,

https://doi.org/10.1098/rsta.2007.2074, https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2007.2074, 2007.

Stevens, B.: Rethinking the Lower Bound on Aerosol Radiative Forcing, Journal of Climate, 28, 4794–4819, https://doi.org/10.1175/JCLI-960

D-14-00656.1, https://doi.org/10.1175/JCLI-D-14-00656.1, 2015.

Stouffer, R. J.: Time scales of climate response, Journal of Climate, 2004.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, Bulletin of the American Meteorological

Society, 93, 485–498, 2012.

Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Philosophical Transactions of the965

Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2053–2075, https://doi.org/10.1098/rsta.2007.2076, https://

royalsocietypublishing.org/doi/abs/10.1098/rsta.2007.2076, 2007.

42

https://doi.org/10.1038/nclimate3345
https://doi.org/10.1038/nclimate3345
https://doi.org/10.5194/esd-5-139-2014
https://doi.org/10.5194/esd-5-139-2014
https://doi.org/10.5194/esd-5-139-2014
https://www.earth-syst-dynam.net/5/139/2014/
https://doi.org/10.5194/gmd-11-2273-2018
https://www.geosci-model-dev.net/11/2273/2018/
https://doi.org/10.1029/2018GL079362
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079362
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079362
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079362
https://doi.org/10.1098/rsta.2007.2074
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2007.2074
https://doi.org/10.1175/JCLI-D-14-00656.1
https://doi.org/10.1175/JCLI-D-14-00656.1
https://doi.org/10.1175/JCLI-D-14-00656.1
https://doi.org/10.1175/JCLI-D-14-00656.1
https://doi.org/10.1098/rsta.2007.2076
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2007.2076
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2007.2076
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2007.2076


Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., and Knutti, R.: Past warming trend constrains future

warming in CMIP6 models, Science Advances, 6, https://doi.org/10.1126/sciadv.aaz9549, https://advances.sciencemag.org/content/6/12/

eaaz9549, 2020.970

Tomassini, L., Reichert, P., Knutti, R., Stocker, T. F., and Borsuk, M. E.: Robust Bayesian Uncertainty Analysis of Climate System Properties

Using Markov Chain Monte Carlo Methods, Journal of Climate, 20, 1239 – 1254, https://doi.org/10.1175/JCLI4064.1, https://journals.

ametsoc.org/view/journals/clim/20/7/jcli4064.1.xml, 2007.

Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth’s Global Energy Budget, Bulletin of the American Meteorological Society, 90, 311 – 324,

https://doi.org/10.1175/2008BAMS2634.1, https://journals.ametsoc.org/view/journals/bams/90/3/2008bams2634_1.xml, 2009.975

Trenberth, K. E., Fasullo, J. T., and Balmaseda, M. A.: Earth’s energy imbalance, Journal of Climate, 27, 3129–3144, 2014.

Wang, Y.-M., Lean, J., and Sheeley Jr, N.: Modeling the Sun’s magnetic field and irradiance since 1713, The Astrophysical Journal, 625,

522, 2005.

Weisheimer, A. and Palmer, T. N.: On the reliability of seasonal climate forecasts, Journal of The Royal Society Interface, 11, 20131 162,

https://doi.org/10.1098/rsif.2013.1162, https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2013.1162, 2014.980

Wolfram Research, Inc.: Mathematica, Version 12.2, https://www.wolfram.com/mathematica, champaign, IL, 2020.

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher

Climate Sensitivity in CMIP6 Models, Geophysical Research Letters, 47, e2019GL085 782, https://doi.org/10.1029/2019GL085782,

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085782, e2019GL085782 10.1029/2019GL085782, 2020.

Zhang, H., Huang, B., Lawrimore, J., Menne, M., and Smith, T. M.: Global Surface Temperature Dataset (NOAAGlobalTemp), Version985

4.0,[NOAA Global Surface Temperature Data], https://doi.org/doi:10.7289/V5FN144H [01/03/2020], 2019.

Zhou, C. and Penner, J. E.: Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5

and a CRM, Atmospheric Chemistry and Physics, 17, 21–29, https://doi.org/10.5194/acp-17-21-2017, https://www.atmos-chem-phys.net/

17/21/2017/, 2017.

Ziegler, E. and Rehfeld, K.: TransEBM v. 1.0: Description, tuning, and validation of a transient model of the Earth’s energy balance in two990

dimensions, Geoscientific Model Development Discussions, 2020, 1–36, https://doi.org/10.5194/gmd-2020-237, https://gmd.copernicus.

org/preprints/gmd-2020-237/, 2020.

43

https://doi.org/10.1126/sciadv.aaz9549
https://advances.sciencemag.org/content/6/12/eaaz9549
https://advances.sciencemag.org/content/6/12/eaaz9549
https://advances.sciencemag.org/content/6/12/eaaz9549
https://doi.org/10.1175/JCLI4064.1
https://journals.ametsoc.org/view/journals/clim/20/7/jcli4064.1.xml
https://journals.ametsoc.org/view/journals/clim/20/7/jcli4064.1.xml
https://journals.ametsoc.org/view/journals/clim/20/7/jcli4064.1.xml
https://doi.org/10.1175/2008BAMS2634.1
https://journals.ametsoc.org/view/journals/bams/90/3/2008bams2634_1.xml
https://doi.org/10.1098/rsif.2013.1162
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2013.1162
https://www.wolfram.com/mathematica
https://doi.org/10.1029/2019GL085782
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085782
https://doi.org/doi:10.7289/V5FN144H [01/03/2020]
https://doi.org/10.5194/acp-17-21-2017
https://www.atmos-chem-phys.net/17/21/2017/
https://www.atmos-chem-phys.net/17/21/2017/
https://www.atmos-chem-phys.net/17/21/2017/
https://doi.org/10.5194/gmd-2020-237
https://gmd.copernicus.org/preprints/gmd-2020-237/
https://gmd.copernicus.org/preprints/gmd-2020-237/
https://gmd.copernicus.org/preprints/gmd-2020-237/

