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Figures 9 to 11 show the current and future evolutions of the global
temperature as compared with the observations and the CMIP5 sim-
ulations. These projections are provided as ensembles in order to
cover the range of uncertainties related to the model settings. An
observational uncertainty is also provided. It is obvious that the
spread of the ensemble is much smaller for the FEBE model than
for the CMIP5 ensemble in Figure 9, and very often the observation
band is not falling into the range of predicted projections of FEBE,
while it is the case for the CMIP5. This suggests that the projec-
tions are unreliable in the sense that it does not cover all possible
situations that can be observed. In weather and climate sciences,
this aspect is key when making forecasts, predictions and projections
using ensembles. This unreliability should be first acknowledged in
the manuscript. Second this unreliability is maybe related to the use
of a weak stochastic forcing. Some experiments with larger stochastic
forcing would be desirable in order to clarify the under-dispersion of
the ensemble. Stronger stochastic forcing could also maybe lead to
larger climate sensitivity. This should be checked too.

Author: The basic purpose of Figures 9 to 11 was to compare the FEBE
and GCM projections. In both cases, the projections are deterministic but with
uncertainty limits due to their respective model uncertainties. Both yielded
an estimate of the forced response but with qualitatively different uncertainty
bounds. In the case of GCMs, the uncertainty is termed “structural” while
for the FEBE it is parametric uncertainty. Unlike a probabilistic forecast, the
results cannot be interpreted with the help of stochastic forecast notions such
as reliability.

We can see why the referee may have misunderstood, since we compared
the forced and internal components with the observed temperature series. This
was intended as a quick visual validation of the forced component but since it
contains the (stochastic) internal variability, strictly speaking, it should not be
directly compared to the forced component.

In order to make a proper comparison with data, we first removed the ob-
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servations from the figures so as to only compare the forced component (new
figs. 10, 11 to replace the original figs. 10, 11). All the forced components
are deterministic (the internal variability has been averaged out), for the GCMs
the uncertainty is structural uncertainty, while for the FEBE it is parametric
uncertainty. We then replaced the original figure 9 with one that represents the
ensemble average over all the parametric and internal variability of the FEBE
and the mean observational temperature (shown in new figs. 9a, 9b). This was
achieved since the statistical dependence of the internal forcing and the para-
metric uncertainty are independent: the errors therefore add in quadrature. For
this, it is sufficient to take the globally averaged yearly temperature anomaly
(≈ ±0.11C) and combined it with the annual resolution parametric forced com-
ponent from figs. 10, 11 over the historical period (1880-2020). The new figs.
9a,9b shows this result. This can also be done at monthly resolution follow-
ing the same procedure but using the globally averaged monthly temperature
anomaly (≈ ±0.14C), shown in figs. 9c, 9d.

The temperature observations do indeed fall within the 90% confidence limits
of the FEBE historical reconstruction (i.e. the ensemble average of the response
to both internal and external forcing). In both figures at annual resolution
shown below (figs. 9a,9b), the historical mean temperature (red) is within the
90% CI of the FEBE forced response (with internal variability added) 92% of the
years using the RCP scenario, and 94% using the SSP scenario. At the monthly
resolution shown in figs. 9c, 9d, the historical mean temperature (red) is within
the 90% CI of the FEBE forced response (with internal variability added) 90%
of the months using the RCP scenario or the SSP scenario. The uncertainty is
therefore compatible with the data. This is not the same as the reliability but
it is an analogous validation of probabilistic aspects of the projection.
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Fig. 9a: The historical reconstruction (forced temperature response and inter-
nal variability) of the FEBE, with parameters calibrated using FAerRCP

(blue)
alongside mean of 5 observational temperature series (red) at yearly resolution;
90% CI (due to parametric uncertainty and internal variability) are indicated
(shaded).
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Fig. 9b: Same as fig. 9a except using FAerSSP
parameters and forcing.
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Fig. 9c: The historical reconstruction (forced temperature response and inter-
nal variability) of the FEBE, with parameters calibrated using FAerRCP

(blue)
alongside mean of 5 observational temperature series (red) at monthly resolu-
tion; 90% CI (due to parametric uncertainty and internal variability) are indi-
cated (shaded).
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Fig. 9d: Same as fig. 9c except using FAerSSP
parameters and forcing.
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Fig. 10: The deterministic forced temperature response projected using the
FEBE, with parameters calibrated using FAerRCP

(blue) compared with the
CMIP5 MME projection (black); 90% CI from the parametric uncertainty are
indicated (shaded). The projections until 2100, for RCP 2.6 (top), RCP 4.5
(middle) and RCP 8.5 (bottom), are shown.
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Fig. 11: The deterministic forced temperature response projected using the
FEBE, with parameters calibrated using FAerSSP

(blue) compared with the
CMIP6 MME projection (black); 90% CI from the parametric uncertainty are
indicated (shaded). The projections until 2100, for SSP 126 (top), SSP 245
(middle) and SSP 585 (bottom), are shown.
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At page 20, line 421, the authors claim that the hiatus is better
represented in the FEBE than in the CMIP5 ensemble. Well to me
this is not true as the observations are most of the time out of the
range of FEBE. The CMIP5 looks better at capturing the observa-
tions. So I suggest to modify these comments and try to be more
objective in the comparison, maybe by using measures of reliability.

Author: We discussed the reliability in the previous responses, by showing
the observed temperature series along with the projection of the forced response
plus the internal variability response. With the internal variability we expect
the data to lie within the 90% CI, 90% of the time. We also discussed how
historical reconstructions were made (figs. 9a, 9b, 9c, 9d). We now discuss
the latter over the hiatus period. In the insets of figs. 1a, 1b, we show the
comparison of the forced median FEBE projection (blue) (using FAerRCP

in fig.
1a, and FAerSSP

in fig. 1b), the CMIP5/6 MME median (black) and the mean
of 5 observational temperature series (red) with the 90% CI over the historical
period with the inset showing the hiatus period (a blow-up of 1998-2015). We
see that indeed, the FEBE median forced component in both cases captures
the hiatus rather accurately (see Lovejoy (2015) for a stochastic forecast with a
similar high frequency limit).

A quantitative comparison between the amount of time the FEBE median
response is within the bounds of the observational temperature series 90% CI
and the same for the CMIP5/6 MME was performed at the annual resolution
data. The amount of time the median FEBE forced component using FAerRCP

is within the 90% CI of the observational temperature series over the whole
historic period is 47% and over the hiatus is 70% in comparison to the CMIP5
MME median which is within the whole historic period 39% and over the hiatus
is 17%. When using the median FEBE forced component using FAerSSP

similar
results are found, over the whole period: 45% and over the hiatus: 35%, in
comparison to the CMIP6 MME median which is within the whole historic
period 39% and over the hiatus is 30%. In can be seen in both cases that the
CMIP MME is generally warmer than the FEBE forced component notably over
the period of the hiatus.

Lovejoy, S. (2015), Using scaling for macroweather forecasting including the
pause, Geophys. Res. Lett., 42, 7148– 7155, doi:10.1002/2015GL065665.
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Fig. 1a: The median historical forced component of the FEBE, with parameters
calibrated using FAerRCP

(blue), and the median of the CMIP5 MME (black)
alongside mean of 5 observational temperature series (red) with their 90% CI
indicated (shaded).

1900 1920 1940 1960 1980 2000 2020
Year

-0.5

0.0

0.5

1.0

1.5

ΔT(K)
ΔT(K)

1995 2000 2005 2010 2015
0.25

0.5

0.75

1

1.25

Fig. 1b: The median historical forced component of the FEBE, with parameters
calibrated using FAerSSP

(blue), and the median of the CMIP6 MME (black)
alongside mean of 5 observational temperature series (red) with the 90% CI
indicated (shaded).
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One key conclusion of the manuscript is the lower sensitivity of
the FEBE model on long time scales as shown for instance in Fig-
ure 10. What is happening when the FEBE model is fitted with a
stronger noise that could maybe help in increasing the spread of the
ensemble and its reliability? The results and the conclusions should
then be revisited once these experiments are done and the impact of
the stochastic noise clarified.

Author: The the amplitude of the noise is not an adjustable parameter, it
is determined from the data. Although the empirical amplitude of the internal
variability does not alter the projections of the forced temperature response, it
does affect the uncertainties of the parameters (once these have been estimated,
the resulting projection is purely deterministic).

Equation 14: Please clarify what is the variance of gamma(t)

Author: The variance of γ(t) is the amplitude of the internal forcing assumed
to be a Gaussian white noise. The internal variability of the observational
temperature is equal to the observed series with the forced temperature response
removed. If we take the global annually averaged monthly temperature anomaly
to be σT,τr ≈ ±0.14C, we can determine the variance of γ(t) from Lovejoy et.
al (2021):

Kh =

√
π

2cos(π
(
h− 1

2

)
)Γ(−1 − 2h)

,

σf,τr =
σT,τrKh

s

(
τ

τr

)h
.

Where Kh is a standard normalization constant chosen for convenience, τ
is the relaxation time, τr is the resolution (taken to be monthly in this case), s
is the climate sensitivity parameter, σT,τr is standard deviation of the globally
averaged monthly temperature anomaly at resolution τr, h the scaling exponent
of the temperature fluctuations, and σf,τr = γ(t) is the standard deviation of
the internal forcing. Using our FRCP (and FSSP ) parameter estimates, we find
a mean estimate of the variance of γ(t) to be 1.15 Wm−2 (1.29 Wm−2) and
90% CI of [0.89, 1.42] Wm−2 ([0.99, 1.65] Wm−2). If we introduce a white noise
forcing, γ(t), with the variance calculated above to the FEBE we will be able
to recreate the the amplitude of the internal temperature variability response.
This will be included in the revision.

Harries et. al. (2010) sets out to examine the net energy flux balance at
the top of atmosphere (TOA) measured using observations from polar-orbiting
spacecraft. The early observations, using the Nimbus experiments, show an
internal variability of the 4.1 ± 4.0Wm−2, while more modern measurements
(CERES) in the 2000s show variability of between ±2 and ±4 Wm−2 generally
laying a few Wm−2 of zero. Thus our estimate of the internal forcing variability
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is within estimates of the TOA net energy flux balance.

Lovejoy S, Procyk R, Hébert R, Rio Amador L. The fractional energy balance
equation. QJR Meteorol Soc. 2021;1–25. https://doi.org/10.1002/qj.4005

Figure 6: The response of FEBE is compared with an IPCC two-
box model. What is this model? Maybe I missed the place where it
is described. Please describe this model in more details in the text

Author: The two-box model we are referring to is the classical linear two-
layer energy-balance model described in Held et al. (2010) and found in IPCC
AR5 (2013, section 8.SM.11.2):

C
dT

dt
= F − λT − γ(T − T0),

C0
dT

dt
= γ(T − T0).

We graphically showed the comparison in fig. 6. The parameters for the
two-box model are the best estimates from Geoffroy et al. (2013).

Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G.
K. Vallis, (2010): Probing the fast and slow components of global warming
by returning abruptly to preindustrial forcing. J. Climate, 23, 2418–2427.
https://doi.org/10.1175/2009JCLI3466.1

Geoffroy O, Saint-Martin D, Olivié DJ, Voldoire A, Bellon G, Tytéca S
(2013) Transient climate response in a two-layer energy-balance model. part
I: analytical solution and parameter calibration using CMIP5 AOGCM experi-
ments. J Clim 26:1841–1857. https://doi.org/10.1002/env.2140

Figure 12: Please correct the colors of the curves. I cannot figure
out what is plotted

Author: Thank you for pointing this out, the colours will be changed as to
be easily readable.
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