
We would like to thank the reviewers for their helpful and constructive comments, which, we               
believe, further improved the article. The major changes implemented in the manuscript            
include a more detailed description of the climate and the crop model simulations in section               
2.1 and Appendix A and a paragraph on the robustness of the results of the Lasso                
regression in section 4.1 

Reviewer 1 
Vogel et al. showcase how a regression models for regional crop failures can be obtain 
from a multitude of potential climatological drivers while minimizing the number of 
relevant variables via LASSO, a statistical method. It’s a nicely and thoroughly done 
analysis that deserves publication after some minor revisions. 
 
#### Minor Comments:  
 
1.l. 3 understanding and forecasting of..? 
 
We clarified the sentence: 
“Identifying the underlying mechanisms that cause extreme impacts, such as crop failure, is             
of crucial importance to improve their understanding and forecasting.” 
 
2.l. 8. ‘predict’ -> ‘determine’? 
 
We adjusted the text accordingly. 
 
3.l. 31 ‘depend’ 
 
We adjusted the text accordingly. 
 
4.l. 85 ‘..the climatology was defined to be the mean plus the first three annual harmonics.‘                
Can the authors further explain what is meant by that? 
 
Harmonic analysis is a branch of      
mathematics which uses wave functions     
to describe data. What is meant by this        
statement is that we calculate the      
annual cycle by using harmonic     
analysis, and that we limit the      
mathematical description of this cycle to      
the first three wave functions.  
 
In the figure you can see that this        
indeed captures the annual cycle and      
removes ‘noise’ due to weather. 
 
 
 

https://en.wikipedia.org/wiki/Mathematics


 
5.Figure 5 what is the growing season (GS) here could this possibly highlighted in the 
section to the left, which shows the months? 
 
Thank you for this helpful comment. We assume the reviewer meant figure 3, rather than               
figure 5. We added the following sentences. 
 
At the end of the caption of figure 3: 
“Note that (a) shows the correlation for all months included in the growing season of the grid                 
point in France and (c) shows the average correlation for a given month computed over all                
grid points containing this month in their growing season.” 
 
We put a definition of growing season just before the introduction of Figure 2 in section 2.3:  
“For a given grid point, the sowing date is the same for the 1600 simulated years, but the                  
harvest dates differ. We therefore define the growing season for a given grid point as starting                
on the month containing the sowing date and finishing with the month containing the latest               
harvest date.”  
 
We completed the last sentence of section 2.3: 
“We use monthly means of Tmax, Pr and VPD during the growing season, as well as the                 
seven extreme indicators for further analysis.”  
 
 Figures 2, A2 and A3 were adjusted, so that they now display the meteorological conditions               
starting from the sowing date of the corresponding location until the end of their longest               
growing season. 
 
6. l. 167 and later on: Nice to see R-packages explicitly cited. 
 
Thank you for the remark. 
 
7. l. 190 is s segregation threshold and the local cut-off value? Maybe it would be better 
to use one term only? 
 
Thank you for this remark. We chose to use exclusively the term segregation threshold in the                
revision. 
 
8. Figure 7 sub-panels are not enumerated. 
 
 Thank you, we corrected this. 
 
#### Major Comments:  
 
 9. Could the authors provide an estimate on how many data points would be necessary at                 
minimum to apply the LASSO method? Is there a relationship between total number of              
suggested variables and necessary datapoints? 
 



The user’s guide of glmnet R-package recommends to apply the Lasso logistic regression             
only to a dataset containing more than 8 occurrences of each “1” and “0”. As a consequence                 
of the small number of bad years, defined here as years with yield below the 5th percentile,                 
the dataset is more likely to have less than 8 bad years in the testing data with decreasing                  
sample size. This results in a decreasing mean CSI with decreasing number of datapoints              
(see the figures below, presenting the CSI for Lasso regression applied with different             
configurations of the number of datapoints). We would therefore strongly recommend to            
have at least 8 occurrences of “1”s and 8 occurrences of “0”s in both the training and testing                  
dataset, and a number of variables lower than the number of years available. We added a                
remark on the robustness of our results with decreasing sample size (see major comment in               
the third review). 
 

 

 

 

 

 



 
 
 10. Do I understand correctly that LASSO, avoids autocorrelation by checking for the 
variability of variables only? Could the authors provide evidence for the reliability of 
such approach? 
Thank you for your question. The advantage of Lasso we wanted to highlight is its ability to                 
deal with potential correlation between explanatory variables. An example causing          
correlation is the autocorrelation within the annual time series of meteorological variables. As             
an example, the time series of temperature over the year presents autocorrelation due to              
seasonality, reflected in our case by correlation between e.g. the two explanatory variables             
“mean temperature in June” and “mean temperature in July”. To avoid any confusion, we              
removed the term “autocorrelation” in section 2.4. 
Correlation between explanatory variables can be a problem in basic regression models. As             
explained in section 2.4, if two variables X_1 and X_2 are highly correlated, the information               
brought by a small regression coefficient (beta_1) for the variable X_1 and a large              
regression coefficient (beta_2) for the variable X_2 is the same as the information brought by               
a large beta_1 and a small beta_2. This implies large variability of the coefficients in the                
regression procedure. Lasso regression controls this variability of the regression coefficients           
with a penalty term on the norm of these coefficients. 
The reader can find complete information about the reliability of the method regarding             
correlation between variables in Tibshirani (1996). We provide here a short example with two              
correlated variables: 
Tibshirani, R.: Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, 58,                
267–288, 1996. 



 
(example inspired by: 
https://stats.stackexchange.com/questions/241471/if-multi-collinearity-is-high-would-lasso-co
efficients-shrink-to-0 ) 
 
11. As prediction is mentioned as one application in the abstract, how would the CSI 
change if growing season variables were not included? In what region is it possible to 
build a useful prediction model using Months outside the growing season only, in what 
regions are yields not predictable without including conditions from within the Growing 
season itself 
 
Thank you for pointing out this potential application of our work.  
We do not apply Lasso regression for forecasting, as this is beyond the scope of our study.  
In principle, the set of selected variables by the Lasso regression at each grid point could be                 
used as a starting point to identify regions, where parts of the growing season could               
potentially be excluded and to assess predictive power for forecasts in future work.  
We also would like to clarify that our study is designed to include only months belonging to                 
the maximum growing season of each pixel, whereas prior months before the growing             
season are not taken into account here. 
 

https://stats.stackexchange.com/questions/241471/if-multi-collinearity-is-high-would-lasso-coefficients-shrink-to-0
https://stats.stackexchange.com/questions/241471/if-multi-collinearity-is-high-would-lasso-coefficients-shrink-to-0


12. Overall but specifically in Fig.8 It might be more insightful to show results relative 
to the grid-point dependent growing season? Could this explain the differences in the 
shape of the histogram between the North America / Europe and Asia? 
 
Thank you for this comment. We were also considering this option (see the corresponding              
figure attached below). However, it does not add substantial additional value in our opinion              
and either way it is a trade-off.  
If we show which month of the growing season relative to the grid-point (Month 1, 2, 3,...) is                  
selected, we lose the information which month of year (January - December) is selected and               
vice versa. Furthermore, if we use the sowing date of each grid point as a base line, we still                   
cannot infer the precise stage of the growing season because the harvest dates also differ               
(and therefore the length of the growing season). 
Yes, the differences in the shapes of the histograms can likely be explained by differences in                
the start and length of the growing season. This is addressed at the end of the second                 
paragraph in section 3.2. 

 
 

 
 
 
13.On data sampling: The 5th percentile is a rather low threshold, to increase the 
number of events (and come closer to a real-world applicability) is the method sensitive 



to the exact choice? What production loss does a 5th percentile correspond to 
regionally/on average? 
 
What production loss does a 5th percentile correspond to regionally/on average? 
 Thank you for your question. We completed Figure 1 with a map of the relative difference of                 
the 5th percentile threshold and the mean yield. For a majority of grid points, the 5th percentile                 
value is between 30 and 60% of the mean yield. One can note that some regions with low                  
CSI are also regions with a small relative difference between the mean yield and the 5th                
percentile threshold, e.g. in southern China and Japan. Low yield variability can therefore             
lead to low model performance, suggesting a challenging distinction between normal and            
bad years. 

 
 
 
Is the method sensitive to the exact choice? 
To address the sensitivity towards the chosen threshold for crop failure, we performed the 
analysis additionally for the 10th percentile. We attached reproduction of figures 5, 6, 7, 8 and 
A4 in the main manuscript for the 10th percentile below. In general, these results are very 
similar to the 5th percentile, thus our approach seems to be not very sensitive to the choice of 
the percentile. The CSI generally increases a bit (the mean CSI is 0.52), which indicates the 
distinction between crop failure and normal years becomes better with an increasing 
threshold. This improvement is likely due to the higher amount of data assigned to extreme 
crop yield loss. This shows that data availability is crucial for good model performance. In 
our study, we decided for the 5th percentile as a trade-off between data availability and the 
magnitude of the extreme (which is the focus of our research). 
 

 



 

 

 

 

 



 

 

  



Reviewer 2 
The paper is of a great interest and the authors applied an innovative approach to identify                
the drivers of extreme impact on crop yield. I found a few main issues that, on my opinion                  
should be addressed before publication.  
 
The description of the meteorological dataset is unclear and requires to be reframed under a               
more general scheme, e.g. which is the aim of developing such a dataset? Do you want to                 
address the issue of uncertainties in climate simulations? Why using 1 degree as spatial              
resolution? May it be considered a good compromise between the scale you require for your               
assessment (global) and the scale required for crop growth simulations (local)? There is a              
reference concerning the development of such a dataset, but what is reported here is too               
much squeezed.  
 
The large ensemble climate model experiment was developed to investigate natural           
variability and extreme events in the climate system, and their influence on societal/natural             
impacts. Creating large ensemble simulations is computationally very expensive, hence the           
horizontal resolution generally remains relatively low, this is indeed a compromise as the             
reviewer correctly notes. We note however, that these simulations are state-of-the-art in the             
climate modelling community, comparable in ensemble size (here 2000 years) and           
horizontal resolution (here ~1 degree) to other efforts (e.g. MMLEA at           
http://www.cesm.ucar.edu/projects/community-projects/MMLEA/). 
 
All climate models are subject to possible model biases. However, the climate model             
simulations were designed to match observed global mean temperatures between          
2011-2015. Since the aim of the present paper is mostly methodological, i.e. can we identify               
drivers of extreme impacts using Lasso regression, we do not think this is an issue here.  
We rewrote the paragraph to explain the purpose of the climate model simulations, and note               
the compromise between spatial resolution and ensemble size. 
“To investigate the influence of natural variability and climatic extreme events, a large             
ensemble simulation experiment was set up with the EC-Earth global climate model (v2.3,             
Hazeleger et al., 2012). We use this climate model data set, consisting of 2000 years of                
present-day simulated weather, to investigate if we can identify the drivers of extreme low              
crop yield seasons. Large ensemble modelling is at the forefront of climate science (Deser et               
al., 2020), due to the computational expenses involved a balance between ensemble size,             
horizontal resolution and number of climate models has to be found. We have found the               
climate data used here to be suitable for the presented study. A detailed description of these                
climate simulations is provided in Van der Wiel et al. (2019b), here we provide a short                
overview of the experimental setup. Present-day was defined as the five year model period              
in which the global mean surface temperature matched that observed in 2011-2015            
(HadCRUT4 data, Morice et al., 2012). Because of a cold bias in EC-Earth, in the model this                 
period is 2035-2039. To create the large ensemble, twenty five ensemble members were             
branched off from sixteen long transient climate runs (forced by Representative           
Concentration Pathway (RCP) 8.5). Each ensemble member was integrated for five years.            
Differences between ensemble members were forced by choosing different seeds in the            
atmospheric stochastics perturbations (Buizza et al., 1999). This resulted in a total of 16 x 25                
x 5 = 2000 years of meteorological data, at T159 horizontal resolution (approximately 1°).” 

http://www.cesm.ucar.edu/projects/community-projects/MMLEA/


Buizza, R., Milleer, M., and Palmer, T. N.: Stochastic representation of model uncertainties in the ECMWF                
ensemble prediction system, Quarterly Journal of the Royal Meteorological Society, 125, 2887–2908, 1999. 
Deser, C., Lehner, F., Rodgers, K., Ault, T., Delworth, T., DiNezio, P., Fiore, A., Frankignoul, C., Fyfe, J., Horton,                   
D., et al.: Insights from Earth system model initial-condition large ensembles and future prospects, Nature               
Climate Change, pp. 1–10, https://doi.org/10.1038/s41558-020-0731-2, 2020. 
Hazeleger, W., Wang, X., Severijns, C., ¸ Stefanescu, S., Bintanja, R., Sterl, A., Wyser, K., Semmler, T., Yang,                  
S., Van den Hurk, B., et al.: EC-Earth V2.2: description and validation of a new seamless earth system prediction                   
model, Climate dynamics, 39, 2611–2629, 2012. 
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional                   
temperature change using an ensemble of observational estimates: The HadCRUT4 data set, Journal of              
Geophysical Research: Atmospheres, 117, 2012. 
Van der Wiel, K., Wanders, N., Selten, F., and Bierkens, M.: Added value of large ensemble simulations for                  
assessing extreme river discharge in a 2°C warmer world, Geophysical Research Letters, 46, 2093–2102, 2019b. 
 
The same applied for APSIM description. Given the topics of this journal, I strongly suspect               
that a general introduction about crop modelling is due. I would therefore expect a general               
overview on the APSIM model with a particular reference to crop phenology, dry matter              
accumulation and limiting factors for growth. The effect of higher temperature on the length              
of growing season may therefore be better understood as well as the effect of abiotic               
stresses on crop growth. As an example, this paper deals with the impact of extreme events                
on crop growth, but the reader actually does not understand which meteorological extremes             
can affect crop growth and if/how the model considers these impacts in relation to the               
phenological stage. F Accordingly, I suggest firstly to outline the main features of APSIM.  
 
As a second step, I would state which are the main abiotic factors affecting crop yield with a                  
special reference to the phenological stage when they occur. E.g. a frost or heat events have                
a different impact if occurring during vegetative or reproductive stage. The authors report the              
issue on par 305, but the basis of this statement must be explained before by a description                 
of impacts of extremes events in relation to crop growth  
 
Thirdly, I would explain how these effects are simulated in your model. E.g. how the impact                
of heat events at anthesis are simulated? Is there an additional effect during grain filling?               
This would help to better explain some trends observed in your results in relation to the                
growing season period. This is of course a suggested scheme, but these issue should be in                
any case addressed Figure 1. Is there a general relationship between crop yield simulated              
and observed on the global scale? On page 320 there is a note on possible bias in crop                  
growth calibration, but actually we do not know how the crop model was calibrated. The               
discussion tackles the effect of temporal resolution of the meteorological data and this an              
added value to the paper. In case, some discussion is due for some process not specifically                
considered in crop modelling approach 
 
As suggested, we added Appendix A to introduce the APSIM model. We generally follow the               
proposed outline and introduce the phenology and biomass algorithm of the APSIM-Wheat            
model. In particular, we provide details on the calculation of dry above-ground biomass (ΔQ)              
and of daily thermal time (ΔTT), which is used to calculate the length of phenological               
phases. 
The APSIM-Wheat model does not currently simulate the specific effects of heat or frost              
stress events on grain or floret sterility. Low yields are not necessarily provoked by weather               
extremes, but are also caused by moderate climate conditions (van der Wiel et al., 2020).               
Therefore, this study is focusing on yield extremes resulting from weather conditions during             



the growing season, rather than climatic extreme events during specific phenological           
phases.  
 Besides the model description, we also added a figure validating the APSIM output against              
country yield statistics in the appendix (see figure below).  
 
K van der Wiel, FM Selten, R Bintanja, R Blackport, JA Screen (2020): Ensemble climate-impact modelling: 
extreme impacts from moderate meteorological conditions . Environmental Research Letters, 15, pp. 034050.  

 

New Figure A1: APSIM model validation at country basis. 

 

Reviewer 3 
 
 #### Major Comments: 

As a major comment, which doesn’t necessarily imply need for major revisions in the paper, I                
would like to stress that this greater interpretability is still quite limited by the nature of the                 
Lasso model. This is designed to select the variables that produce the best forecasting              
performance with minimal number of covariates in a linear model that may be a strong               
approximation of the real world phenomenon. This means that the selected variables are             
surely the ones that provide better explanation of crop failure in the considered crop              

http://doi.org/10.1088/1748-9326/ab7668
http://doi.org/10.1088/1748-9326/ab7668


simulation model and in terms of prediction. This does not necessarily imply selecting             
variables that directly physically drive the crop failure, just like the resulting regression             
coefficients are not estimates of a real linear law existing in nature, but of an approximation                
that optimizes forecasting. 

In all fairness, results in the presented case study appear to be physically reasonable, and I                
found the discussion in Section 3.2 convincing in this sense. However, it is possible that in                
different problems, where processes are less understood, results can provide indications           
useful for forecasting but not really provide physical insights, making the methodology not             
necessarily effective in all fields of application. I would explicitly stress this in the main body                
and in the conclusions, because a reader not familiar with the shortcomings of applied              
statistical modelling may over-generalise these findings to a problem where it is not possible              
to do so. Also, I would add a warning that critical interpretation of the results is always                 
necessary, especially in cases with smaller or non gridded datasets, where the hints coming              
from spatial coherence (which in this paper play a role in making results more solid) may not                 
be available. 

Point 1: Interpretability of results 

The reviewer raises an important point, which is partially already addressed in the article. To               
avoid confusion and improve clarity, we added additional text.  

We highlight this point at the end of the abstract and in section 4.2 that the detected                 
relationships are of purely correlative nature and thus do not necessarily imply a causal              
structure between drivers and impacts. In that sense, our article presents a method to              
identify potential relevant drivers, whose physical meaning could be investigated in a next             
step, e.g. by applying causal inference frameworks (Runge et al. 2019). 

We added a sentence in section 4.2 in line 381 (as penultimate of the paragraph) to make                 
this point clearer to the reader: 

“However, for interpretation of the selected variable set one should be aware that the              
variables in our model are selected based on correlation, and thus attributing them as              
potential physical drivers needs further careful investigation.” 
Runge, Jakob; Bathiany, Sebastian; Bollt, Erik; Camps-Valls, Gustau; Coumou, Dim; Deyle, Ethan et al. (2019):               
Inferring causation from time series in Earth system sciences. In Nature communications 10 (1), p. 2553. DOI:                 
10.1038/s41467-019-10105-3. 

 

Point 2: Importance of data size and spatial extent 

Using a sample size of 400 (a quarter of the available data) we still obtain an average CSI of                   
0.33, indicating that performance decreases only slightly with decreasing data size. For            
further details, please see the answer to question 9 in the first review. 

Thank you for your remark on spatial coherence. We agree that observational data is often               
not available at such spatial extent as the crop data used here and therefore spatial               
coherence cannot be used as an indicator of robustness for observational data. We added a               
few sentences on this in section 4.1: 



“We analysed the robustness of our results using a) the 10th percentile as a threshold to                
discriminate between bad and normal years and b) a smaller data subset with only 400               
entries per grid point (i.e. a quarter of the available data). The spatial patterns of the selected                 
predictors and the CSI using the 10th percentile threshold are very similar compared to those               
 of the 5th percentile and the average CSI increases slightly from 0.43 to 0.52. Using a                
sample size of 400 we still obtain an average CSI of 0.33, indicating that performance               
decreases only slightly with decreasing data size, while the spatial patterns remain            
consistent (results not shown). Furthermore, the spatial coherence of our results additionally            
suggests robustness of our analysis. An application of the approach on real data might still               
be challenging, as observational sample sizes generally are much smaller than even 400             
years. In addition, observational data is often not available at such spatial resolution and              
extent as it is the case for the crop model data used in this study. This will make it difficult to                     
use spatial coherence of the identified drivers as an indicator of model robustness when              
using observational data.” 

 

#### Minor Comments: 

The model is tested against two competitors, a generalized linear model (I suppose binomial              
with logistic link, it would be nice to specify this detail in Section 2.5) and a random forest run                   
in binary classification mode. 
 
Yes, it is binomial with a logit link function. We added a remark on this in section 2.5: 
“, using a binomial family with a logit link function.” 

A general consideration: the notation calling "positive" years with a good crop may be a bit                
confusing when trying to interpret results. While a good yield is surely positive news, the               
model is designed to detect drivers of impacts leading to bad years: it would be more                
coherent with traditional terminology to address the non-baseline case under investigation           
with this term. I do not think that this is worth modifying the phrasing in the whole article, but                   
maybe I would stress this, especially readers with a statistical rather/other than physical             
background may not pick up on this immediately (I didn’t!). 
 
We agree that this might be a bit confusing in the current version and therefore adjusted the                 
text accordingly and refer to the “bad years” as “positives” in the classification. 
  
1. (line 14) "both between" should read "of both" 
 
We adjusted the text accordingly. 
  
2. (line 115) the authors state that they normalize all the variables to be in [-1,1]. I                 
understand rescaling/normalizing variables when they take values that differ by several           
orders of magnitude, but I do not understand the choice of squeezing them into a close                
interval, as logistic regression handles continuous real valued covariates. 
 



We also used z-score standardization, which yielded the same results. Some of the             
variables have skewed distributions (e.g. some of the extreme indicators) so we decided that              
a normalization to the interval [-1,1] would be more appropriate. 
 
3. (line 150) the authors state that Lasso is superior in handling correlations in the covariates                
better than standard GLMs. This is certainly true for correlation among covariates, but I am               
not so sure about autocorrelation. In particular, meteorological data display a strong            
seasonality, which introduces long range autocorrelation in the data. Can the author provide             
some reference specific to this aspect? 
 
We refer to our answer to question 10 in the first review. Time series of meteorological                
variables are surely autocorrelated over the course of the year. However each month of the               
growing season is considered as a separate climate variable in our model: there is              
correlation among variables, but no autocorrelation within a variable, as years can be             
considered as independent. We removed the word “autocorrelation” from the manuscript to            
avoid confusion. 

4. (lines 168-175) I am not sure if I understand correctly the choice of _1se: is it because,                  
using _min+1se falls almost exactly in the middle of the 95% confidence interval that would               
require 2se? If so, it makes sense but it should be explained more explicitly. 

The choice of λ1se was motivated by a trade-off when minimizing both the errors produced by                
the model and the number of variables. We followed guidelines by the authors of the glmnet                
package (Friedman et al. 2010) and by Krstajic et al. 2014 (“The main point of the 1 SE rule,                   
with which we agree, is to choose the simplest model whose accuracy is comparable with               
the best model”). We added these references in the manuscript. 
Friedman, J., Hastie, T., and Tibshirani, R.: Regularization Paths for Generalized Linear Models via Coordinate               
Descent, Journal of Statistical Software, Articles, 33, 1–22, https://doi.org/10.18637/jss.v033.i01, 2010. 
Krstajic, D., Buturovic, L. J., Leahy, D. E., and Thomas, S.: : Cross-validation pitfalls when selecting and                 
assessing regression and classification models, Journal of Cheminformatics, 6, 1–15,          
https://doi.org/10.1186/1758-2946-6-10, 2014. 

5. it seems that the authors choose a priori s* = 5% and try also 2.5 and 10% to test the                     
sensitivity as a threshold to define bad crop years. If so, does it make sense to define s* as                   
the argmin of C(s) as in line 205? 

This question concerns two different thresholds. The first one is the “percentile threshold” (in              
our case 5%), which is applied to discriminate between bad and normal yields. The second               
one is the “segregation threshold” s*, which is used to transform the continuous predictions              
of the Lasso regression to binary classes. We are aware that these two thresholds can               
potentially be confounded. To avoid ambiguity, we strictly refer to them as “percentile             
threshold” and “segregation threshold” in the revised version, respectively. 

6. (lines 219-222) not sure about these lines: it is a good idea to check for significant                 
interactions and report it, but then I would explain in larger detail what interactions are in                
regression models, because the reader may not be familiar with the concept. Also, which              
one did they try, and did they have an a priori idea about possible meaningful interactions? 

We investigated first order interactions between potential drivers. To avoid confusion, we            
removed this paragraph in the revision. 

http://www.jstatsoft.org/v33/i01/paper


7. (line 231) "eastward" → "westward"? 

We adjusted the text accordingly. 

8. (line 327) the authors say that their analysis is based on a time series model, but maybe                   
they mean that the dataset is constituted by gridded time series data. 

We agree that the term “time series model” might be a bit misleading in this context. We                 
rephrased this sentence as follows:  

“Our analysis was based on fitting a local model at each location, which is one of the three                  
principal statistical methods used to link crop yield with weather conditions, along with cross              
section models and panel models, which are global models that adjust for spatial variability              
using fixed or random effects (Lobell & Burke, 2010; Shi et al., 2013).” 

Lobell, D. B. and Burke, M. B.: On the use of statistical models to predict crop yield responses to climate change,                     
Agricultural and Forest Meteorology, 150, 1443–1452, https://doi.org/10.1016/j.agrformet.2010.07.008, 2010. 
Shi, W., Tao, F., and Zhang, Z.: A review on statistical models for identifying climate contributions to crop yields,                   
Journal of Geographical Sciences, 23, 567–576, https://doi.org/10.1007/s11442-013-1029-3, 2013. 

9. (line 380) "With our approach with" should be "With our approach we" 

We adjusted the text accordingly. 

 

Edited figures in the revised version 
The following figures were edited in the revised version: 

● Figure 1: We completed Figure 1 with a map of the relative difference of the 5th 
percentile threshold and the mean yield (see comment 13 of the first review). 

● Figure 2, A2, A3: Figures 2, A2 (former A1) and A3 (former A2) were adjusted, so 
that they now display the meteorological conditions starting from the sowing date of 
the corresponding location until the end of their longest growing season (see 
comment 5 of the first review). 

● Figure 4: We altered the terminology and refer now to the “bad years” as “positives” 
in the classification (see the general consideration at the beginning of the minor 
comments of the third review). 

● Figure 7: We enumerated the sub-panels (see comment 8 of the first review).  
● Figure A1: This figure was added to show the validation of the APSIM output against 

country yield statistics (see last paragraph of the second review). 
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Abstract. Compound weather events may lead to extreme impacts that can affect many aspects of society including agriculture.

Identifying the underlying mechanisms that cause extreme impacts, such as crop failure, is of crucial importance to improve

::::
their understanding and forecasting. In this study we investigate whether key meteorological drivers of extreme impacts can

be identified using Least Absolute Shrinkage and Selection Operator (Lasso) in a model environment, a method that allows

for automated variable selection and is able to handle collinearity between variables. As an example of an extreme impact,5

we investigate crop failure using annual wheat yield as simulated by the APSIM crop model driven by 1600 years of daily

weather data from a global climate model (EC-Earth) under present-day conditions for the Northern Hemisphere. We then

apply the logistic Lasso regression to predict
:::::
Lasso

:::::::
logistic

::::::::
regression

:::
to

:::::::::
determine which weather conditions during the

growing season lead to crop failure. We obtain good model performance in Central Europe and the eastern half of the United

States, while crop failure years in regions in Asia and the western half of the United States are less accurately predicted. Model10

performance correlates strongly with annual mean and variability of crop yields, that is, model performance is highest in regions

with relatively large annual crop yield mean and variability. Overall, for nearly all grid points the inclusion of temperature,

precipitation and vapour pressure deficit is key to predict crop failure. In addition, meteorological predictors during all seasons

are required for a good prediction. These results illustrate the omnipresence of compounding effects both between
:
of
:::::

both

meteorological drivers and different periods of the growing season for creating crop failure events. Especially vapour pressure15

deficit and climate extreme indicators such as diurnal temperature range and the number of frost days are selected by the

statistical model as relevant predictors for crop failure at most grid points, underlining their overarching relevance. We conclude
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that the Lasso regression model is a useful tool to automatically detect compound drivers of extreme impacts, and could be

applied to other weather impacts such as wildfires or floods. As the detected relationships are of purely correlative nature, more

detailed analyses are required to establish the causal structure between drivers and impacts.20

1 Introduction

Climate extremes such as droughts, heatwaves, floods and frost events can have substantial impacts on crop health (Shah and

Paulsen, 2003; Singh et al., 2011; Lesk et al., 2016; Ben-Ari et al., 2018). However, not all climate extremes lead to an extreme

impact, and large impacts can be related to moderate drivers (Zscheischler et al., 2016; Van der Wiel et al., 2019a, 2020; Pan

et al., 2020). Whether a large impact occurs does not only depend on a climate hazard but also on the vulnerability of the25

underlying system (Oppenheimer et al., 2015), which varies strongly for crops during the course of the growing season (Iizumi

and Ramankutty, 2015; Ben-Ari et al., 2018). The mechanisms that translate a climate hazard into crop failure are often very

complex and associated with lagged effects that are difficult to disentangle (Frank et al., 2015).

While climate extremes may lead to large impacts, extreme climate-related impacts are often the result of multiple con-

tributing factors
:::::::::::::::::::::::::::
(Tschumi and Zscheischler, 2020). The concept of compound events has recently been promoted to address30

climate impacts from an impact-centred perspective. For instance, compound events have been defined as extreme impacts that

depends
::::::
depend on multiple statistically dependent drivers (Leonard et al., 2014) or, more recently, simply as the combination

of multiple drivers that contributes to environmental or societal risk (Zscheischler et al., 2018). Drivers in this context refer

to climate and weather processes and phenomena. With respect to yields at the local scale, multiple drivers can compound an

impact through a sequence of weather events (temporally compounding); one weather event may also change the vulnerability35

of the crop to a subsequent weather event (preconditioning); or multiple drivers may interact and impact crops at the same time

(multivariate events) (Zscheischler et al., 2020).

Understanding the drivers that lead to extreme impacts helps to better predict and mitigate the potential impacts of such

events. One way of identifying the relevant drivers of an impact is to perform a bottom-up analysis, that is, start from an

impact and identify key drivers through statistical analysis (Zscheischler et al., 2013; Ben-Ari et al., 2018). In this context,40

linear regression analysis can identify the most relevant drivers of an impact variable and reveal potential interactions between

drivers (Forkel et al., 2012; Ben-Ari et al., 2018). More sophisticated approaches such as random forest might yield higher

predictive power at the cost of losing explainability (Vogel et al., 2019). When the set of possible predictors is very large,

suitable variable selection approaches need to be applied to reduce the number of predictors. In order to be applicable to

a large number of locations and a variety of impacts, an automatic approach is desired that only requires a limited amount45

of expert knowledge and parameter tuning. An example of such an approach is the Least Absolute Shrinkage and Selection

Operator (Tibshirani, 1996), or short Lasso regression, which obtains a reduced number of predictors by penalizing the number

of variables in the loss function.

The aim of this study is to present a method that can identify drivers of extreme impacts in an automatic manner and

that is suitable for many applications. We use crop failure as an example of an extreme impact in a model environment,50
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that is, we use simulated data from a climate and a crop model. End-of-season crop yield is related to climate drivers via

highly complex interactions at different temporal scales. Temperature and precipitation are the two basic climate variables

that regulate crop health (Lobell and Asner, 2003; Lobell et al., 2011; Leng et al., 2016). Furthermore, vapour pressure deficit

(VPD), the difference of water vapour pressure at saturated condition and its actual value at a given temperature, determines

crop photosynthesis and water demand (Rawson et al., 1977; Zhang et al., 2017; Yuan et al., 2019).55

Here we use 1600 years of wheat yield data from a global gridded crop model driven by simulated meteorological data

under present-day conditions. Based on this large database of yield data we showcase approaches to identify multiple drivers

of crop failure in different regions of the world and highlight results for the Lasso regression. Using a model environment

to explore new analytical approaches to identify drivers of extreme impacts, we circumvent common limitations associated

with observational data, such as a small sample size, measurement uncertainties and data coverage. Among the large amount60

of information provided by the crop model simulations, the statistical model summarizes the link between crop failure and

climate conditions.

This paper is structured as follows. The data and methods used in this study are introduced in section 2. In this section,

the reader can first find a description of the data, including an introduction to the global climate model and the crop model

used in this study. We further describe which meteorological variables are considered in the statistical analysis; section 265

also introduces the Lasso logistic regression to predict years of low yield based on meteorological drivers and the metrics

employed to assess the performance of the statistical model. The results of the Lasso regression are shown in section 3, where

the performance and the summary statistics for the variables that have been selected as being critical to predict crop failure

events are presented. Finally, we summarize and discuss the Lasso regression’s results in section 4, and give some perspective

to this study
::
in

::::::
section

::
5.70

2 Data and Methods

2.1 Climate and crop model simulations

The
::
To

:::::::::
investigate

:::
the

:::::::
influence

::
of

::::::
natural

:::::::::
variability

:::
and

:::::::
climatic

:::::::
extreme

::::::
events,

:
a
:::::
large

::::::::
ensemble

:::::::::
simulation

:::::::::
experiment

::::
was

::
set

:::
up

::::
with

:::
the EC-Earth global climate model (v2.3, Hazeleger et al., 2012)was used to create

:
.
:::
We

:::
use

:::
this

:::::::
climate

:::::
model

::::
data

:::
set,

::::::::
consisting

::
of
:
2000 years of present-day weather simulations

::::::::
simulated

:::::::
weather,

::
to

:::::::::
investigate

::
if

:::
we

:::
can

:::::::
identify

:::
the

::::::
drivers75

::
of

:::::::
extreme

:::
low

::::
crop

:::::
yield

:::::::
seasons.

:::::
Large

::::::::
ensemble

:::::::::
modelling

:
is
::
at
:::
the

::::::::
forefront

::
of

::::::
climate

:::::::
science

::::::::::::::::
(Deser et al., 2020),

::::
due

::
to

::
the

::::::::::::
computational

::::::::
expenses

:::::::
involved

::
a

::::::
balance

:::::::
between

::::::::
ensemble

::::
size,

:::::::::
horizontal

::::::::
resolution

:::
and

:::::::
number

::
of

::::::
climate

:::::::
models

:::
has

::
to

::
be

:::::
found.

:::
We

:::::
have

:::::
found

::
the

:::::::
climate

:::
data

::::
used

::::
here

::
to

:::
be

::::::
suitable

:::
for

:::
the

::::::
present

:::::
study.

::
A

:::::::
detailed

:::::::::
description

::
of

::::
these

:::::::
climate

:::::::::
simulations

::
is

::::::::
provided

::
in

::::::::::::::::::::::
Van der Wiel et al. (2019b),

::::
here

:::
we

::::::
provide

::
a

::::
short

::::::::
overview

::
of

:::
the

:::::::::::
experimental

::::
setup. Present-day

was defined as the five year model period in which the
::::::::
simulated global mean surface temperature matched that observed in80

2011-2015 (HadCRUT4 data, Morice et al., 2012). Because of a cold bias in EC-Earth, in the model this period is 2035-2039.

To create the large ensemble, twenty five
:::::::::
twenty-five ensemble members were branched off from sixteen long transient climate

runs (forced by Representative Concentration Pathway (RCP) 8.5). Each ensemble member was integrated for five years.
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Differences between ensemble members were forced by choosing different seeds in the atmospheric stochastics perturbations

(Buizza et al., 1999). In total there are
::::
This

:::::::
resulted

::
in

:
a
:::::

total
::
of

:
16× 25× 5 = 2000 years of meteorological data, at T15985

horizontal resolution (approximately 1◦). More details on these climate simulations are provided in Van der Wiel et al. (2019b)

.

Biases in the EC-Earth simulations result in unrealistic growing conditions for crops. Therefore, minimum and maximum

temperatures and precipitation fields were bias corrected. The AgMERRA reanalysis (Ruane et al., 2015) was used as ‘truth’.

From AgMERRA the years 1981-2010 were used as a training set, while EC-Earth uses the long transient runs (sixteen ×90

2005-2034). Daily minimum and maximum temperatures were corrected on a grid point basis, a model bias field was defined

as the difference between the model climatology and the AgMERRA climatology. The climatology was defined to be the

mean plus the first three annual harmonics. Daily precipitation was corrected towards having the correct number of rainy days

and total amount of precipitation. Firstly, for each month the number of rainy days in AgMERRA was computed (threshold

0.1 mm/day), then the same threshold was determined for EC-Earth data, which resulted in the same number of rainy days. All95

days with simulated precipitation smaller than this threshold were set to 0 mm/day. Lastly, the total amount of precipitation

was corrected by means of a multiplicative factor, also on a month-by-month basis. Other meteorological variables were not

bias corrected.

Northern Hemisphere winter wheat yields were simulated using the APSIM-Wheat model (Zheng et al., 2014), which is a

process-based model incorporating wheat physiology, water and nitrogen processes under a wide range of growing conditions.100

It was previously used for field (Li et al., 2014), regional (Asseng et al., 2013) and global scale (Rosenzweig et al., 2014) wheat

studies. A grid point-specific sowing date was used based on Sacks et al. (2010). The application of nitrogen was exacted from

Mueller et al. (2012). Soil parameters (including pH, soil total nitrogen, organic carbon content, bulk density and soil moisture

characteristics curves for each of five 20 cm deep soil layers) were derived from the International Soil Profile Dataset
::::
Data

:::
Set

(Batjes, 2012). In addition, we also input the grid-specific thermal time accumulation parameters, which were derived from105

phenology (Sacks et al., 2010) and AgMERRA data. The atmospheric CO2 concentration was set to 394 ppm. The growing

season of winter wheat spans two calendar years (e.g. sowing in November and harvest in June). As such
:
, each climate model

integration of five years covers four winter wheat growing seasons, the 2000 years of EC-Earth climate data thus result in 1600

simulated wheat growing seasons.
::::::
Further

::::::
details

:::
on

:::
the

:::::::
settings

::
of

:::
the

:::::::::::::
APSIM-Wheat

:::::
model

::::
can

::
be

:::::
found

:::
in

::::::::
Appendix

:::
A.

:::
For

:::::
model

:::::::::
validation,

:::
the

:::::::::
grid-based

::::::
wheat

::::
yield

::::::::::
simulations

:::::
were

:::::::::
aggregated

::
to

:::::::::::
country-level

::::
and

::::
then

:::::::
validated

:::::::
against

:::
the110

::::
yield

::::::::
statistics

:::::
during

::::::::::
2011-2015

:::::::::::::::
(FAOSTAT, 2020)

:
.
::::
Most

:::::::::
simulated

:::::
yields

:::
are

::::::
closely

:::::::
related

::
to

::::::::
observed

:::::
yields

::::
(Fig.

:::::
A1),

::::::::
indicating

:
a
:::::
good

:::::
model

:::::::::::
performance.

:

2.2 Data processing

The APSIM model provided crop data for 995 grid points in the Northern Hemisphere. For our analysis, we chose to discard

all grid points
::
for

::::::
which

:::
the

::::::
annual

:::::
mean

:::::
yield

::
is below the 10th percentile of annual mean crop yield

::::
yield

:::::
across

:::
all

::::
grid115

:::::
points because many of these grid points were also associated with unrealistically long (>365 days) or short (<90 days) growing

seasons or had an overall average crop yield of 0 kg/ha. 895 grid points remained for the analysis.
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Figure 1.
::
(a) Mean annual yield over the 1600 years (tonne

::
ton/hectare).

::
(b)

::::::
Relative

::::::::
difference

:::::::
between

:::
the

:::
5th

:::::::
percentile

:::
and

:::
the

:::::
mean

:::::
annual

::::
yield.

:
Grid points discarded for our study are crossed out (specified in the Section 2.2).

At each grid point, a year with yield lower than the 5th percentile for this grid point is considered as a year with crop failure,

and called “bad year" in the remainder, whereas all other years are referred to as “normal years". Grid points for which the 5th

percentile yield was equal to 0 were excluded to avoid the co-occurrence of years without yield in the bad and normal years.120

This excluded 6 more grid points so that 889 remained for further analysis. Figure 1
:
a shows the simulated mean annual yield

and indicates
:::
Fig.

:::
1b

:::::::
displays

:::
the

::::::
relative

:::::::::
difference

:::::::
between

:::
the

:::
5th

:::::::::
percentile

:::
and

:::
the

:::::
mean

::::::
annual

:::::
yield.

:::::
These

::::
two

::::::
figures

:::
also

:::::::
indicate

:
grid points that were discarded for further analysis. Finally, we discarded individual years with a growing season

longer than 365 days, leading to a slightly smaller number of years than 1600 for 82 pixels, i.e. for about 5 % of the grid points.

The data was split into a training and testing dataset
:::
data

:::
set by randomly assigning 70 % of the data to the former and 30 %125

to the latter. For the logistic regression (Section 2.4) explanatory variables and yield were normalised by rescaling them to a

range of [-1, 1] for each grid point individually.

2.3 Explanatory data analysis

The APSIM model uses six meteorological variables on a daily basis as input (dew point temperature (Td), precipitation (Pr),

10 m wind speed (Wind), incoming shortwave radiation (Rad), maximum temperature (Tmax), and minimum temperature130

(Tmin)). From these variables, we additionally calculated vapour pressure deficit (VPD) as an important variable for plant

growth (Rawson et al., 1977; Zhang et al., 2017; Yuan et al., 2019).
::
For

::
a
:::::
given

:::
grid

:::::
point,

:::
the

:::::::
sowing

:::
date

::
is
:::
the

:::::
same

:::
for

:::
the

::::
1600

::::::::
simulated

::::::
years,

:::
but

:::
the

::::::
harvest

::::
dates

::::::
differ.

:::
We

::::::::
therefore

:::::
define

:::
the

:::::::
growing

::::::
season

:::
for

:
a
:::::
given

::::
grid

::::
point

:::
as

::::::
starting

:::
on

5



Table 1. Meteorological drivers used in the analysis

Variable name Description Type

Tmax Maximum temperature Monthly mean

VPD Vapour-pressure deficit Monthly mean

Pr Precipitation Monthly mean

dtr Mean diurnal temperature range in the growing season Climate extreme indicator

frs Number of frost days in the growing season Climate extreme indicator

TXx Maximum temperature in the growing season Climate extreme indicator

TNn Minimum temperature in the growing season Climate extreme indicator

Rx5day Maximum five day precipitation sum in the growing season Climate extreme indicator

TX90p Number of warm days in the growing season with daily Climate extreme indicator

maximum temperature above the 90th percentile a

TN10p Number of cold days in the growing season with daily Climate extreme indicator

minimum temperature below the 10th percentile a

a Note: Percentiles are grid point based, i.e. they are representative for the local climate

::
the

::::::
month

:::::::::
containing

:::
the

:::::::
sowing

:::
date

::::
and

:::::::
finishing

:::::
with

:::
the

:::::
month

:::::::::
containing

:::
the

:::::
latest

:::::::
harvest

::::
date.

:
Figure 2 illustrates the

temporal evolution of composites of these seven variables over the course of a growing season for normal (blue) and bad years135

(red) for one grid point in France (47.7◦ N, 1.1◦ E,
:::::
47.7◦

::
N,

:
Fig. 2a). The composites provide some indication about which of

the meteorological variables may contribute to crop failure. In addition, the temporal evolution of the two composites reveals

during which part of the growing season the different variables are relevant. The various composites suggests that, for this grid

point, 30-day Pr, VPD and Tmax during the summer (June-August) have a high impact on crop yield (Figs. 2c, f and h). The

other variables appear to be less relevant (Figs. 2b, d, e and g). Similar composites for grid points in the US (90.0◦ W, 44.3◦140

N) and in China (118.1◦ E, 30.8◦ N) are shown in Figs. A2 and A3, respectively.

In addition to the seven meteorological variables, we considered seven climate extreme indicators as potential predictors

of crop failure (mean diurnal temperature range, dtr; number of frost days, frs; maximum temperature, TXx; minimum tem-

perature, TNn; maximum five day precipitation sum, Rx5day; number of warm days, TX90p; number of cold days, TN10p;

following Vogel et al., 2019) (Table 1). For both the monthly means of the meteorological variables, as well as for the growing145

season means/totals of the indicators of climate extremes we calculated the Pearson correlation coefficient between the vari-

ables and annual yield (Figs. 3a and b for the same grid point as in Fig. 2 and Figs. 3c and d as average correlation over all

grid points). These correlations are computationally and conceptionally very simple and together with Fig. 2 serve as a first

estimation of the importance of the available variables. Some variables, such as wind speed, do not have a discernible influence

on yield and thus can be neglected for this study. We use monthly means of Tmax, Pr and VPD
:::::
during

:::
the

:::::::
growing

::::::
season, as150

well as the seven extreme indicators for further analysis.
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Figure 2. Daily evolution of meteorological variables used as input for the APSIM model over the course of the year for an exemplary

grid point in France (47.7◦ N, 1.1◦ E, location indicated
:::::
47.7◦

::
N,

:::::
shown

::
as

:
a
:::
red

:::
dot in (a)). Red lines indicate the composite mean of the

bad years (80 seasons), blue lines the composite mean of the normal years (1520 seasons). Shading shows the range between the 10th and

90th percentile of the respective years. Variables shown are (b) dewpoint temperature, (c) 30-day running sum of precipitation, (d) incoming

shortwave radiation, (e) wind speed, (f) maximum temperature, (g) minimum temperature, and (h) vapour pressure deficit (VPD).
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Figure 3. Linear correlations between potential meteorological predictors and annual yield. (a) Correlation between the monthly, seasonal

and growing season (GS) averages of the meteorological variables and annual yield for a grid point in France (47.7◦ N, 1.1◦ E,
:::::
47.7◦

::
N).

(b) Correlation of the climate extreme indicators (Table 1) and annual yield for the same grid point. (c, d) Average of the same correlations

across all Northern Hemisphere grid points.
:::

Note
:::
that

::
(a)

:::::
shows

:::
the

::::::::
correlation

:::
for

::
all

:::::
months

:::::::
included

::
in

::
the

:::::::
growing

:::::
season

::
of

::
the

::::
grid

::::
point

:
in
::::::

France
::::
while

:::
(c)

:::::
shows

:::
the

::::::
average

::::::::
correlation

:::
for

:
a
:::::
given

:::::
month

:::::::
computed

::::
over

:::
all

:::
grid

:::::
points

::::::::
containing

:::
this

:::::
month

::
in
::::

their
:::::::
growing

:::::
season.

2.4 Lasso regression

The aim of this study is to provide an interpretable statistical model able to predict years with extremely low yields (bad years)

with meteorological variables. We use the Least Absolute Shrinkage and Selection Operator (Lasso, Tibshirani, 1996) logistic

regression for an automatic selection of meteorological variables that are statistically linked to low yields. The approach is the155

following
:::::::
explained

::::::
below.

For a given grid point, let Y ∈ {0,1}n be the binary yield vector, with n the number of years. If the year i ∈ {1, . . . ,n} is

a bad year, then Yi = 0, otherwise Yi = 1
::::::
Yi = 1,

::::::::
otherwise

::::::
Yi = 0. Let X1, . . . ,Xp ∈ Rn be the explanatory variables vectors

(monthly meteorological variables and climate extreme indicators, rescaled as explained in Section 2.2). Using a generalized

linear model and, more specifically, a logistic regression, we can identify how much of the occurrence of bad yields is explained160

by which explanatory variable:

P[Y = 0]P[Y = 1]
:::::::

=
1

1 + exp(β0 +β1×X1 + · · ·+βp×Xp)

1

1 + exp(β0 +β1X1 + · · ·+βpXp)
::::::::::::::::::::::::::::

(1)

where β0, β1, . . . , βp are the regression coefficients.
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However, a simple logistic regression presents two challenges here. Firstly, some variables might be highly correlated

(auto-correlation of meteorological variables, e.g. correlation between temperature in May and temperature in June, or the165

correlation of extreme indices with meteorological variables). This correlation implies a high variability of the coefficients.

For instance, if the variables Xj and Xk are highly correlated, the information brought by a high absolute value of βj and

a low absolute value of βk might be the same as the information brought by a low absolute value of βj and a high absolute

value of βk. Another issue is the large number of potential explanatory variables (up to 43 for some grid points). The relatively

straightforward relationship of a generalized linear model (simpler than the crop model equations themselves) allows to reveal170

which meteorological variables explain bad yields best. However, if the number of a priori explanatory variables is very large,

the regression becomes rather complex and many coefficients will be close to zero, rendering an interpretation difficult.

Lasso regression tackles both challenges with an automatic variable selection using a regularization by penalizing the num-

ber of coefficients different from 0 using the `1 norm on the vector of coefficients (Tibshirani, 1996). Thus, the regression

coefficients are obtained by minimizing an objective function consisting of the sum of the usual loss function for logistic175

regression and a penalty term on the coefficient norm:

min
(β0,β)∈Rp+1

−

[
1

n

n∑
i=1

yi·(β0 +xTi β)− log(1 + eβ0+x
T
i β)

]
+λ||β||1, (2)

for a fixed λ > 0. The penalty term on the coefficient norms prevents a high variability of these coefficients. Furthermore, the

`1 norm implies a variable selection. Coefficients associated to non-relevant explanatory variables are set to 0.

We use the R package glmnet (Friedman et al., 2010) to perform the Lasso regression with R version 3.6 (R Core Team,180

2019). Through 10-fold cross-validation in the training dataset
:::
data

:::
set, we obtain the optimal λmin and λ1se = λmin + se

with se the standard error of the lambda that achieves the minimum loss, and the coefficients β, which are the solution to the

optimization in equation (2) for λ= λ1se. Our preference for λ= λ1se is motivated by the balance between number of selected

variables and accuracy of the loss function minimization
:::::::::::::::::::::::::::::::::::
(Friedman et al., 2010; Krstajic et al., 2014). Indeed, less variables

are selected with λ1se than with λmin, because λ1se > λmin and thus the penalty term on the norm of coefficient is stronger,185

but the minimization of the equation (2) is still sensible, because λ1se lies within the uncertainty range of the optimal λ.

2.5 Other models

To compare the performance of the Lasso regression with other regression methods we also perform the analysis with a

Generalized linear model (GLM) and a random forest binary classification.

For the application of the GLM, a pre-selection of the initial variables is required, since the number of predictors is limited.190

Only the variables with the highest Pearson correlation coefficient (ρ > 0.30) were selected as initial predictors from an initial

dataset
::::
data

::
set

:
composed by all months of the growing season for each of the three variables (Tmax, Pr and VPD) and the

seven extreme indicators. Next, the subset of best predictor variables is identified with the leaps algorithm (Furnival and Wilson,

1974). We use the implementation of the R package bestGLM (McLeod et al., 2020),
:::::
using

:
a
::::::::
binomial

::::::
family

::::
with

:
a
::::
logit

::::
link

:::::::
function. Overall, GLM achieves lower performance (Section 2.7) compared to the Lasso logistic regression (not shown). The195

weaknesses of this approach is its sensitivity to outliers and multicollinearity, and overfitting.
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Finally, a random forest approach – a common machine learning technique – was also performed using the R package

randomForest (Breiman, 2001; Liaw and Wiener, 2002) serving as a benchmark for the model performance of the Lasso

logistic regression. The random forest binary classification achieves comparable performance (Section 2.7) but is not superior

to the Lasso approach.200

2.6 Cut-off value
::::::::::
Segregation

:::::::::
threshold adjustment

The cut-off value
::::::::::
segregation

:::::::
threshold

:
for assigning a continuous prediction to either a bad or normal year was adjusted grid

point-wise to account for the unbalanced data set with 19-fold higher occurrences of normal years than bad years. Let s be

the
::::
local

:
segregation threshold between bad year predicted and good year predicted(s is the local cut-off value for each grid

point). In other words, if the probability p= P[Y = 1] predicted for a given grid point by the Lasso logistic regression model205

is greater or equal to s (resp. lower than s), then the year is predicated as a normal
::
bad

:
year (resp. bad

::::::
normal

:
year). We want

to choose s as a good compromise in prediction of normal years and bad years, given that bad years are rare. In other words,

we want to find an optimal trade-off between specificity and sensitivity. To this purpose, a cost function C = C(s) is calculated

based on the false positive rate RFP =RFP(s), the associated cost for a false positive instance CFP, the sum of observed bad

years OBY::::::
normal

:::::
years

::::
ONY, the false negative rate RFN =RFN(s), the associated cost for a false negative instance CFN and210

the sum of observed normal years ONY :::
bad

::::
years

:::::
OBY of the training data set (Hand, 2009). A false positive means that a bad

::::::
normal year was observed while a normal

:::
bad year was predicted, and a false negative refers to the observation of a normal

:::
bad year, whereas a bad

::::::
normal

:
year was predicted. For a given grid point, FP, FN, TP and TN denote the total number of false

positives, false negatives, true positives and true negatives, respectively (Fig. 4). The value of C(s) is given by:

C(s) =RFP(s)CFPOBYNY
::

+RFN(s)CFNONYBY
::
, (3)215

where RFP =
FP

FP + TN
, RFN =

FN
FN + TP

and CFP = CFN = 100. In this study, the cost associated with false positive CFP and

false negatives CFN are given equal weight.

The optimal segregation threshold s∗ for a given grid point is s∗ = argmins∈(0,1)C(s). The cut-off level
:::::::::
segregation

::::::::
threshold

selected in this study is the mean value of s∗ over all grid points.

2.7 Model performance assessment and sensitivity analysis220

Model performance is assessed using the critical success index (CSI). The CSI is frequently used for evaluating the prediction

of rare events, as it neglects the number of correct predictions of non-extremes, which dominate the confusion matrix (Mason,

1989). General performance measures such as the misclassification error are biased by the high number of normal years and

are therefore not meaningful for the assessment of model performance in unbalanced datasets
:::
data

:::
sets

:
with underrepresented

extreme events. The CSI is defined as225

CSI =
TP

TP + FP + FN
. (4)
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Figure 4. Confusion matrix for classification of observed and predicted normal and bad years.

To evaluate the robustness of our model, in addition to the 5th
::
5th

:
percentile threshold we repeated the analysis with

segregation thresholds of 2.5 % and 10 %, reaching qualitatively similar performance. Additionally, we applied two more

combinations of splitting training and testing data set, a 60/40 and 80/20 split. With increasing size of the training data set, the

CSI increased slightly, however at the expense of stochastic under-representation of bad yield years in the smaller testing data230

sets. As a trade-off, we decided for the 70/30 split.

We further explored whether accounting for first order interaction terms between variables would increase performance.

This was done using the R package glinternet (Lim and Hastie, 2015, 2019). Overall, inclusion of interaction terms did

not improve model performance. Because incorporating interaction terms increases model complexity considerably while only

contributing little to model performance, they were not included in our final model.235

The adjustment of the cutoff value
:::::::::
segregation

::::::::
threshold

:
was carried out with equal weight to false positive and false

negative predictions. It can be argued that the latter case – where a normal year is predicted, but crop failure is observed – is

more detrimental and should therefore be given a higher weight. Due to the subjectivity in the determination of this weight,

an adjustment of the weight term was not applied. However, it should be noted that the attribution of a higher weight of false

negative predictions would yield a higher cutoff value
::::
lower

::::::::::
segregation

::::::::
threshold and hence improve the overall CSI.240

3 Results

3.1 Overall performance

The Lasso logistic regression model can predict bad years with an average CSI = 0.43 across all grid points. Best performance

is obtained in the eastern half of the United States with a maximum of CSI = 0.82 (Fig. 5), which decreases eastward
:::::::::
westwards

in the Great Plains and are
:
is
:
lowest in the wheat growing regions located close to the Rocky Mountains. Furthermore, especially245

the most northern and southwestern grid points in North America show generally lower performance
:
a
:::::
lower

:::::::::::
performance

::
in

11



Figure 5. Critical success index (CSI, equation (4)) of the Lasso logistic regression model. (See Section 2.7 for definition).

::::::
general. Also central Europe shows high performances up to CSI = 0.80. A notable regional exception with low performances

can be found in the Alps. Many Asian and African growing regions show medium prediction accuracy such as northern China,

Myanmar, Turkey and the Maghreb, with exceptions of some regions including Pakistan, southern China and Japan, which

show generally low performance
:
a

:::
low

:::::::::::
performance

::
in
:::::::

general. For 30 grid points, it is not possible to obtain reasonable250

predictions of bad years with our approach, indicated by a CSI equal to 0. Overall, regions with high prediction accuracy of

bad years are often those that also have high mean yields (Fig. 1). CSI is positively correlated with mean yield with a Pearson’s

correlation coefficient of ρ= 0.46 (Fig. 6a), an even stronger correlation is found with yield variability (ρ= 0.57) (Fig. 6b).

Figure 6. Correlation between Critical Success Index (CSI) and annual crop yield mean and variability for the 889 pixels included in the

Lasso logistic regression model. (a) Scatterplot between CSI and mean annual yield. (b) Scatterplot between CSI and annual yield standard

deviation.

3.2 Explanatory variables

Here we summarize properties of the variables selected by
:::
the Lasso logistic regression as relevant explanatory variables, i.e.,255

which are statistically linked to bad years. A median of 11 variables per grid point has been selected as explanatory variables,

and for 50 % of grid points the number of selected variables lies between 7 and 14 (Fig. 7a). The inclusion of extreme indicators
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provides a useful addition to the monthly predictors, shown by a median number of two selected extreme indicators per grid

point (Fig. 7b). Grid points without extreme indicators are found only in few areas such as eastern Europe, the Alps and

southern China. 72 % of all grid points include monthly predictors of VPD, Pr and Tmax and almost all grid points (97 %)260

incorporate VPD (Fig. 7c). Interestingly, in the Great Plains (USA) in many cases temperature is not included, whereas in most

other regions of the USA all meteorological variables are selected to achieve a good prediction. In southern China, temperature

is not needed by the models, whereas in the northern areas, usually all meteorological variables are part of the model. In most

wheat growing regions, particularly in northeastern USA, southeastern Europe and Turkey, all four seasons contain relevant

predictors for predicting bad years (Fig
:
. 7d). Generally, the number of seasons included decreases towards the southeastern265

regions in the USA, whereas in western Europe no clear pattern emerges. In lower latitudes such as southern Asia, growing

seasons are generally shorter (Fig. A4) and consequently often only predictors from one or two seasons are included in the

respective models.

At the global scale, VPD in May and June, as well as Pr in April are the predictors which are most often included in the

Lasso regression, followed by the climate extreme indicators diurnal temperature range (dtr) and number of frost days (frs)270

(Fig. 8a). In nearly all cases the sign of the coefficient is negative
:::::::
positive for VPD in May and June, and positive

:::::::
negative

for Pr in April. This implicates that higher VPD increases the risk of crop failure, and similar for the other variables. In North

America and Europe, in addition to dtr and frs, VPD and Pr in spring to early summer are the most frequent monthly predictors

(Fig. 8b, c). The growing season for wheat varies with latitude. Consequently, in more northern regions, mostly in Europe and

North America, monthly predictors from the months between March and July are included in the Lasso regression, whereas in275

southern regions such as in Asia and Africa, November to May are usually the most frequent months (Fig. 8d).

This clear latitudinal shift can be visually identified in North America from February to July, especially for VPD (insert link

to supplementary GIFs here
::
see

:::::
GIFs

::
in

:::
the

:::::::::::::
Supplementary

:::::::
Material). In central Europe the growing season ends latest, thus

VPD in August is usually included in the model. In addition to the most common climate extreme indicators dtr and frs, Rx5day

and TXx are among the most frequent predictors in Asia and North America, respectively. Overall, frs is mostly included in280

northern grid points, with notable exceptions in western Europe (Fig. A5a) and mainly with a negative
:::::::
positive coefficient

(higher frs leads to more crop failure events), which can likely be attributed to the influence of mild maritime climate in those

regions. In contrast, dtr is important in most Asian grid points and especially in western Europe and the Maghreb, whereas

in the Pannonian Basin and Turkey it is a less common predictor (Fig. A5b). The coefficient associated with dtr in the Lasso

regression is mainly negative
::::::
positive, except in parts of India and Myanmar. Some variability in mean diurnal temperature285

range might be beneficial for regions close to the equator where the variability in diurnal temperature is usually low. Generally,

dtr
:::
both

::::
low

:::
and

::::
high

:::
dtr

::::::
values can influence wheat yield both ways

:::::::::
beneficially depending on the growing region, e.g. a low

dtr can be beneficial
:::::::::::
advantageous

:
because of a reduced occurrence of frost days, whereas a higher dtr might indicate a positive

:::
also

:::::::
indicate

:
a
::::::::
favorable

:
effect because of increased solar radiation (Lobell, 2007).

::::::
Rx5day

::
is

::::::::::
predominant

::
in

:::
the

:::::::
western

:::::
USA,

::
the

:::::::
western

:::::::::::::
Mediterranean

:::
and

::::::
central

:::::
Asia

::::
(Fig.

:::::
A5c),

::::::
which

:::
are

::
all

::::::::
growing

::::::
regions

::::
with

::::::::::
comparably

::::
low

:::::::
average

::::::
annual290

:::::::::::
precipitation. TX90p is a common variable in low latitudes with a negative

::::::
positive

:
coefficient, especially in the southern USA

and Myanmar (Fig. A5c
:
d). This indicates that in these regions physiological temperature thresholds are occasionally exceeded,
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Figure 7. Maps illustrating the selected predictors by the Lasso logistical regression. (a) Total number of selected variables. (b) Number of

selected climate extreme indicators. (c) Combination of selected meteorological variables. “None" means that only climate extreme indicators

were selected, “All" means that at least one month from each of the three meteorological variables (VPD, Pr, Tmax) is selected. (d) Number

of selected seasons (out of the four seasons DJF, MAM, JJA, SON).
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Figure 8. For each possible predictor we show the percentage of grid points for which this predictors
:::::::
predictor has a non-zero coefficient in

the Lasso logistic regression. (a) all continents (889 grid points in total), (b) North America (419 grid points), (c) Europe (233 grid points)

and (d) Asia (210 grid points). The extension “Y1" means that the respective month belongs to the first calendar year of the growing season,

while “Y2" means it belongs to the second calendar year of the growing season.

making TX90p a crucial variable in these areas. Rx5day is predominant in the western USA, the western Mediterranean and

central Asia (Fig. A5d), which are all growing regions with comparably low average annual precipitation.
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4 Discussion295

4.1 Predicting bad yield years

In this study, we presented a method for identifying drivers of extreme impacts using crop failure as an example. Such ap-

proaches are highly sought after to identify compound drivers of large impacts (Zscheischler et al., 2020)
:::::::::::::::::::::::::::::::::::::::::
(Zscheischler et al., 2020; Van der Wiel et al., 2020)

. Our method allows to investigate potential drivers at a global scale using a highly automated scheme based on Lasso regres-

sion. The benefits of Lasso regression include its usage for automatic variable selection, its consideration of correlation between300

explanatory variables
:
, and its performance. Moreover, the statistical model obtained provides a logistic linear relationship be-

tween crop failure and selected variables, which is much simpler to interpret than the crop model equations themselves or

results obtained with more complex machine learning approaches.

We defined bad years as years where the annual crop yield is below the 5th percentile and were able to predict those years by

using the Lasso regression with an average CSI of 0.43. This means that on average, the sum of the numbers of false positives305

and false negatives is slightly higher than the number of true negatives
:::::::
positives

:
(or accurate predictions of bad years). Our

model performance is somewhat comparable to results from (Vogel et al., 2019)
:::::::::::::::
Vogel et al. (2019), who were able to explain

46 % of variation in spring wheat anomalies using a similar set of predictors based on a random forest algorithm. In our case,

more sophisticated machine learning regression models such as random forest did not yield better prediction skill, indicating

that performance in the current set-up using monthly predictors for a binary classification of bad years likely cannot be much310

improved. This is probably also related to the fact that predicting extremes of a continuous variable is challenging because no

natural separation between extremes and non-extremes exists. Another challenge arises from the highly asymmetric distribution

of observed bad and normal years. Even though in our case the total amount of samples per grid point is relatively large (1600,

because we used simulated crop yield data) the number of observed bad years is only 80 and thus can still be considered fairly

small. This suggests that an315

:::
We

:::::::
analysed

:::
the

:::::::::
robustness

::
of

:::
our

::::::
results

:::::
using

::
a)

:::
the

::::
10th

::::::::
percentile

::
as

:
a
::::::::
threshold

::
to
:::::::::::
discriminate

:::::::
between

:::
bad

::::
and

::::::
normal

::::
years

::::
and

::
b)

:
a
::::::
smaller

::::
data

:::::
subset

::::
with

::::
only

::::
400

:::::
entries

:::
per

::::
grid

:::::
point

:::
(i.e.

:
a
::::::
quarter

::
of
:::
the

::::::::
available

:::::
data).

:::
The

::::::
spatial

:::::::
patterns

::
of

::
the

:::::::
selected

:::::::::
predictors

:::
and

:::
the

::::
CSI

:::::
using

:::
the

::::
10th

::::::::
percentile

::::::::
threshold

:::
are

::::
very

::::::
similar

::::::::
compared

::
to
:::::
those

::
of

:::
the

:::
5th

:::::::::
percentile

:::
and

:::
the

:::::::
average

:::
CSI

::::::::
increases

:::::::
slightly

::::
from

::::
0.43

:::
to

::::
0.52.

::::::
Using

:
a
::::::
sample

::::
size

::
of

::::
400

:::
we

:::
still

::::::
obtain

::
an

:::::::
average

::::
CSI

::
of

:::::
0.33,

::::::::
indicating

::::
that

:::::::::::
performance

::::::::
decreases

::::
only

:::::::
slightly

::::
with

::::::::::
decreasing

::::
data

::::
size,

:::::
while

::::
the

::::::
spatial

:::::::
patterns

::::::
remain

:::::::::
consistent320

::::::
(results

:::
not

:::::::
shown).

:::::::::::
Furthermore,

:::
the

:::::
spatial

:::::::::
coherence

::
of

:::
our

::::::
results

:::::
(Fig.

::
7)

::::::::::
additionally

:::::::
suggests

:::::::::
robustness

::
of

:::
our

::::::::
analysis.

::
An

:
application of the approach on real data might be even more

:::
still

::
be

:
challenging, as observational sample sizes

::::::::
generally

are much smaller .
:::
than

:::::
even

:::
400

::::::
years.

::
In

::::::::
addition,

:::::::::::
observational

::::
data

::
is
:::::
often

:::
not

::::::::
available

::
at
:::::
such

:::::
spatial

:::::::::
resolution

::::
and

:::::
extent

::
as

::
it
::
is

:::
the

::::
case

:::
for

:::
the

::::
crop

::::::
model

::::
data

::::
used

:::
in

:::
this

:::::
study.

:::::
This

:::
will

:::::
make

::
it
:::::::
difficult

::
to

::::
use

::::::
spatial

::::::::
coherence

:::
of

:::
the

::::::::
identified

::::::
drivers

::
as

:::
an

:::::::
indicator

:::
of

:::::
model

::::::::::
robustness

:::::
when

:::::
using

:::::::::::
observational

::::
data.

:
Furthermore, modelling winter wheat325

yield is particularly challenging due to its long growing season (Vogel et al., 2019).

A limitation to our study design is the pre-selection of potential predictor variables. Here we used monthly mean values

and a number of climate extreme indicators. More flexible averaging time periods for the predictors might result in higher
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prediction accuracy due to better overlap with sensitive periods of the impact variable. For instance, in our crop yield example

meteorological predictors need to coincide with the respective phenological development stage because their impact can vary330

depending on the phenophase. Wheatfor example ,
:::
for

::::::::
example,

:
is known to require wet conditions in the vegetative phase,

however prefers dry conditions during ripening (Seyfert, 1960). Therefore, the application of monthly meteorological predictors

might be insufficient for accurate matching of meteorological drivers to the respective phenological phases. We explored

the option of automatically generating optimal time periods for the meteorological predictors by maximizing the difference

between the composites between normal and bad years. For instance, 30-days cumulative precipitation differs between normal335

and bad years starting in February until end of
:::
and

::::::
ending

::
in August for a grid point in France (Figure

:::
Fig. 2c), wheres

:::::::
whereas

VPD only differs over May through September (Figure
::::
from

:::::
May

::
to

:::::::::
September

:::::
(Fig. 2h). Composite plots for a grid point

in the US and in China are shown in Figures
::::
Figs. A2 and A3, respectively. However, deciding when the separation between

normal and bad years is large enough to start and end the optimal time periods is challenging and difficult to generalize and thus

automate, which was the aim of our method design. Nevertheless, such a well-tuned selection of predictors has the potential to340

improve the prediction of bad years significantly and should thus be explored in future research.

We find a strong correlation of the yearly mean and standard deviation of annual yield with the Lasso regression performance

indicator CSI (Figure
::::
Fig. 6). Low model performance at grid points with low yield variability suggests that the distinction

between normal and bad years is challenging at these locations.
:
,
:::
e.g.

::
in

::::::::
southern

:::::
China

:::
and

::::::
Japan

:::::
(Figs.

::
1b

::::
and

:::
5). Regions

with high annual yield are found primarily in central Europe and the eastern half of the United States, which also represent345

the regions with highest model performances. In contrast, many regions in Asia generally have lower average yields and lower

prediction skill of bad years. This could be related to a calibration bias in the crop model, leading to a better representation

of wheat growing processes in regions where wheat reaches higher yields in the real world. A further explanation for this

phenomenon could be that the crop model is primarily designed for crop growth at typical environmental conditions, whereas

growing regions with conditions at the edge of the ecological niche of wheat might be less well represented.350

Our analysis was based on a time-series model
:::::
fitting

:
a
::::
local

::::::
model

::
at

::::
each

:::::::
location, which is one of the three principal sta-

tistical methods used to link crop yield with weather conditions, along with cross section model and panel model, as explained

in Shi et al. (2013)
::::::
models

:::
and

:::::
panel

:::::::
models,

:::::
which

:::
are

::::::
global

::::::
models

::::
that

:::::
adjust

:::
for

::::::
spatial

::::::::
variability

:::::
using

:::::
fixed

::
or

:::::::
random

:::::
effects

::::::::::::::::::::::::::::::::::
(Lobell and Burke, 2010; Shi et al., 2013). Collinearity between explanatory variables is a recurrent issue when using

these methods (Shi et al., 2013) , that we addressed with the Lasso regression. One example is VPD and Tmax, that might be355

highly correlated, but still might individually contribute relevant information because they have a different impact on the plant

process, as explained in Kern et al. (2018). Lasso regression did not completely discard one of these two variables, despite their

high correlation.

4.2 Important predictors

For most grid points, VPD is the most important monthly predictor of bad years, followed by Pr and Tmax in that order. While360

their importance in time differs between grid points, depending on the timing of the respective growing season (Sippel et al.,

2016), their order changes little across space. In addition, the order of importance of extreme indicators is quite similar in
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North America, Europe and Asia. One notable distinction is the higher importance of Rx5day in Asian grid points compared to

North America and Europe. The consistent selection of similar predictors across large spatial scales may suggest that the Lasso

regression is fairly robust. However, this may also be related to the inevitable simplifications of crop growing processes in the365

employed crop model. In particular, the same model is applied at all locations likely creating certain homogeneity by default.

Kern et al. (2018) conducted a comparable analysis on observed winter wheat crop yield in Hungary. With a linear regression

using a step-wise selection of monthly meteorological variables, they found that
:
a positive anomaly in VPD and Tmin during

May decrease
::::::::
decreases

:
yield. Additionally, April, May

:
, and June appear to be the most relevant months in our global analysis,

which is consistent with regional studies (Kern et al., 2018; Kogan et al., 2013; Ribeiro et al., 2020).370

The
::::::
Climate

:::::::
extreme

::::::::
indicators

:::
are

:::::::::
important

::::::::
predictors

::
as

:::
the

:
occurrence of an extreme weather event in a given year may

induce crop failure , underlining its importance as a predictor for crop failure
:
in

:
a
:::::
given

::::
year. However, in years without such ex-

treme events, crop yield
:::::
yields

:
are still governed by the weather during the growing season (Iizumi and Ramankutty, 2015). We

found that both climate extreme indicators as well as monthly means of common climate variables have proven to be valuable

predictors of years resulting in crop failure. Droughts and heat waves are well known to affect crop yield (Lesk et al., 2016; Ja-375

gadish et al., 2014), and temperature and precipitation explain a large fraction of interannual crop yield variability (Lobell and

Burke, 2008). In contrast, VPD is often overlooked
:
in

:
statistical analyses of crop yield variability (Zhang et al., 2017). We show

that VPD is a key predictor for crop failure. It is known to play a crucial role in plant functioning and is projected to increase

as main limiting driver in the face of climate change (Novick et al., 2016; Grossiord et al., 2020). High VPD values can lead

to plant mortality via carbon starvation and hydraulic failure (McDowell et al., 2011; Cochard, 2019; Grossiord et al., 2020)380

::::::::::::::::::::::::::::::::::::::
(McDowell et al., 2011; Grossiord et al., 2020). However, its covariation with temperature and solar radiation makes it diffi-

cult to disentangle their respective effects (Stocker et al., 2019; Grossiord et al., 2020). There are well-defined temperature

thresholds for wheat, e.g. a temperature of 31 ◦C before flowering is considered to evoke sterile grains and thus reducing

::::::
reduces

:
yield (Porter and Gawith, 1999; Daryanto et al., 2016). Tmax is a secondary predictor in our statistical model, which

is in line with results based on observed and simulated yields (Schauberger et al., 2017), and can be attributed to the rare385

exceedance of critical temperature thresholds in the growing season. Crops are particularly vulnerable during key develop-

ment stages, so extreme events during that time span can lead to large yield reductions, even in case of otherwise favorable

weather conditions during the growing season (Porter and Gawith, 1999; Moriondo and Bindi, 2007). The vulnerability of

wheat to climatic events depends largely on phenophases , and generally wheat possesses a higher sensitivity to temperature

and precipitation during its reproductive phase than during its vegetative phase (Porter and Gawith, 1999; Luo, 2011; Daryanto390

et al., 2016). Future research could investigate the importance of time of occurrence of extreme indicators (Vogel et al., 2019).

For instance, due to climate change false spring events may become more likely in some regions (Moriondo and Bindi, 2007;

Allstadt et al., 2015) and thus the timing of frost days could provide a valuable addition to the model.

The frequent inclusion of the extreme indicators dtr and frs in our regression model highlights that short-term extreme events

can potentially have larger impacts than gradual changes over time (Jentsch et al., 2007). The variable dtr was also identified395

as an important predictor by Vogel et al. (2019), whereas frs was of minor importance for explaining variation in spring wheat
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yield. By contrast, frs is one of the most predominant predictors in our study, which might be explained by the differing growing

season of winter wheat, which is encompassing primarily the cold seasons.

We explored the relevance of interactions between predictors, however
:
;
::::::::
however, this did not significantly improve model

performance. This might hint at the inability of the crop model APSIM
::::::
APSIM

::::
crop

::::::
model

:
to account adequately for such400

compound effects, which is consistent with Ben-Ari et al. (2018), who linked the crop failure 2016 in France to an extraordinary

combination of warm winter temperatures followed by wet spring conditions. The commonly used crops
:::
crop

:
models employed

for crop yield forecasts were not able to predict the 2016 yield failure in France (Ben-Ari et al., 2018).

Overall, our results illustrate the omnipresence of compounding meteorological events for crop failure. In nearly all grid

points, most seasons and meteorological variables were relevant to predict years with crop failure (Fig. 7). This suggests405

that the co-occurrence of certain weather conditions as well as the combination of weather conditions in different seasons

are associated with crop failure. With our approach with
:::
we have identified meteorological conditions that are statistically

linked to crop failure. To identify
:::
Our

::::::
results

:::::::
confirm

::::
prior

:::::::
findings

:::
by

:::::::::::::::::::::
Van der Wiel et al. (2020)

:::
that

::::
such

:::::::::
conditions

:::
are

:::
not

:::::::::
necessarily

:::::::
extreme,

::::
but

:::
can

::::
also

::
be

:::::::::
moderate.

::::::::
However,

:::
for

::::::::::::
interpretation

::
of

:::
the

:::::::
selected

:::::::
variable

:::
set

::::
one

::::::
should

::
be

::::::
aware

:::
that

:::
the

::::::::
variables

::
in

:::
our

::::::
model

:::
are

:::::::
selected

:::::
based

::
on

::::::::::
correlation

:::
and

::::
thus

:::::::::
attributing

::::
them

:::
as

:::::::
potential

::::::::
physical

::::::
drivers

:::::
needs410

:::::
further

:::::::
careful

:::::::::::
investigation.

::
To

:::::::
identify

::::
such

:
causal relationships, more advanced methods from the emerging field of causal

inference could by
::
be

:
employed (Runge et al., 2019).

5 Conclusions

In this paper, we presented a robust statistical approach – namely Lasso logistic regression – for predicting crop failure and

automatically selecting relevant predictors among a large number of meteorological variables and climate extreme indicators.415

We illustrated our approach on 1600 years of simulated winter wheat yield for the Northern Hemisphere under present-day

climate conditions. Lasso regression can serve as a tool for identifying important variables with automated variable selection,

while accounting for collinearity and achieving overall good predictive power. Consistent with earlier knowledge, we find that

predicting crop failure requires accounting for a number of different meteorological drivers at different times of the growing

season, which is illustrated by the large amount of variables at all seasons included in our statistical model (Fig. 7). This420

indicates that compounding effects are ubiquitous across time and meteorological drivers, and highlights the usefulness of

approaches such as Lasso regression to reveal multiple meteorological drivers of crop failure. We identified vapour pressure

deficit as one key variable to predict crop failure, which underlines the importance of its consideration in statistical crop yield

models, in particular because it is often overlooked in statistical analyses of crop yield variability. Furthermore, climate extreme

indicators such as diurnal temperature range and the number of frost days have proven to be valuable additions to the predictive425

models, highlighting the necessity to address not only monthly mean conditions, but especially also climatic extremes in such

models. Overall this study helps to enhance the knowledge required to improve seasonal forecasts and undertake adaptation

measures against crop failure. The flexibility of our approach allows an application to other climate impacts that are influenced

by a large range of variables varying with seasonality, for instance wildfires or flooding.
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Code and data availability. The code to reproduce the figures is available from GitHub (https://github.com/jo-vogel/Identify_crop_yield_430

drivers). The climate and crop simulations are available from Karin van der Wiel (wiel@knmi.nl) and Tianyi Zhang (zhangty@post.iap.ac.cn)

upon request, respectively.

Video supplement. The Supplementary Material contains GIFs showing monthly binary maps of whether a specific predictor was included

to predict crop failure by the Lasso logistic regression. GIFs are provided for a) VPD, b) Tmax and c) Pr. The extension “Y1" means that the

respective month belongs to the first calendar year of the growing season, while “Y2" means it belongs to the second calendar year of the435

growing season.

Appendix A:
:::::::::::::
APSIM-Wheat

:::::
model

:::::::
settings

:::::
Eleven

::::::::::::
phenological

::::::
phases

:::
are

:::::::
included

:::
in

:::
the

:::::::::::::
APSIM-Wheat

:::::
model

::::
and

:::
the

::::::
length

::
of

:::::
each

:::::
phase

::
is
:::::::::
simulated

:::::
based

:::
on

::::::
thermal

::::
time

::::::::::::
accumulation,

::::::
which

::
is

:::::::
adjusted

:::
for

:::::
other

::::::
factors

::::
such

::
as

::::::::::::
vernalisation,

::::::::::
photoperiod

::::
and

:::::::
nitrogen.

:::
To

::::::::
calculate

::::::
thermal

:::::
time,

:::::
crown

::::::::
minimum

:::::::
(Tcmin)

::::
and

::::::::
maximum

:::::::
(Tcmax)

:::::::::::
temperatures

:::
are

::::
first

::::::::
simulated

:::
for

:::::::::::
non-freezing

:::::::::::
temperatures440

:::::
(Tmin:::

and
::::::
Tmax,

::::::::
equations

:::
A1

:::
and

:::
A2)

::::
and

::::
then

::::
used

::
to

:::::::
compute

:::
the

:::::
crown

:::::
mean

::::::::::
temperature

::::
(Tc, :::::::

equation
::::
A3).

::::::
Finally,

:::::
daily

::::::
thermal

::::
time

::::::
(∆TT)

::
is

::::::::
calculated

:::::
based

::
on

:::::
three

:::::::
cardinal

::::::::::
temperatures

::::::
(Tbase,::::

Topt:::
and

::::::::
Tceiling ,

:::::::
equation

:::
A4)

:::::::::::::::::
(Zheng et al., 2014)

:
:

Tcmax
:::::

=
:

2 +Tmax(0.4 + 0.0018(Hsnow − 15)2) Tmax < 0

Tmax Tmax ≥ 0
:::::::::::::::::::::::::::::::::::::::::::

(A1)

Tcmin
::::

=
:

2 +Tmin(0.4 + 0.0018(Hsnow − 15)2) Tmin < 0

Tmin Tmin ≥ 0
:::::::::::::::::::::::::::::::::::::::::::

(A2)445

Tc
:

=
:

(Tcmin +Tcmax)

2
::::::::::::::

(A3)

∆TT
::::

=
:


Tc Tbase < Tc ≤ Topt
Topt

Tbase
(Tceiling −Tc) Topt < Tc ≤ Tceiling

0 Tc ≤ Tbase or Tc ≥ Tceiling
::::::::::::::::::::::::::::::::::::::::::

(A4)

:::::
where

::::::
Hsnow :

is
:::
set

::
to

::
0

:::
and

::::::
Tbase, ::::

Topt,:::
and

:::::::
Tceiling:::

are
:::
set

::
to

::
0,

::
26

::::
and

::
34

::::

◦C,
::::::::::
respectively.

:

:::
The

:::::::::
dry-matter

::::::::::::
above-ground

::::::::
biomass

:::::
(∆Q,

::::::::
equation

::::
A8)

::
is

:::::::::
calculated

::
as

::
a
::::::::
potential

:::::::
biomass

::::::::::::
accumulation

::::::::
resulting

::::
from

::::::::
radiation

::::::::::
interception

::::::
(∆Qr):::

and
::::

soil
:::::
water

:::::::::
deficiency

::::::
(∆Qw)

:::::::::::::::::
(Zheng et al., 2014).

::::
The

::::::::
radiation

::::::
limited

:::::::::::
dry-biomass450

:::::::::::
accumulation

::::::
(∆Qr, :::::::

equation
::::
A6)

::
is

:::::::::
calculated

::
by

:::
the

::::::::::
intercepted

:::::::
radiation

::::
(I),

:::::::
radiation

::::
use

::::::::
efficiency

::::::
(RUE),

:::::
stress

::::::
factor
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:::
(fs):::

and
:::::::

carbon
::::::
dioxide

:::::
factor

::::
(fc).::::

The
:::::
stress

::::::
factor

:::
(fs):::::::::

comprises
:::::::
stresses

:::
that

:::::
crops

::::
may

:::::::::
encounter

::::::
during

::::::
growth

::::
and

::
is

::
the

:::::::::
minimum

:::::
value

::
of

::
a
::::::::::
temperature

:::::
factor

::::::::
(fT,photo)

::::
and

::
a

:::::::
nitrogen

:::::
factor

:::::::::
(fN,photo)::::::::

(equation
::::
A5).

::::
The

:::::::::::
water-limited

::::
dry

:::::::::::
above-ground

:::::::
biomass

:::::::
(∆Qw,

:::::::
equation

::::
A7)

::
is
::

a
:::::::
function

:::
of

::::::::::::::
radiation-limited

:::
dry

::::::::::::
above-ground

:::::::
biomass

:::::::
(∆Qr),:::

the
:::::

ratio

:::::::
between

:::
the

::::
daily

:::::
water

::::::
uptake

:::::
(Wu)

:::
and

:::::::
demand

:::::
(Wd):

:
455

fs
:

=
:

min(fT,photo,fN,photo)
:::::::::::::::::::

(A5)

∆Qr
::::

=
:

I ·RUE · fs · fc
:::::::::::::

(A6)

∆Qw
::::

=
:

∆Qr
Wu

Wd
:::::::

(A7)

∆Q
:::

=
:

∆Qr Wu =Wd

∆Qw Wu <Wd
::::::::::::::::

(A8)
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Appendix B: Additional figures460
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Figure A1.
::::::::
Comparison

:::::::
between

::
the

::::::::::::
country-specific

::::::::
simulated

:::::
yields

:::
and

::::
yield

::::::
statistics

::::::::::::::
(FAOSTAT, 2020).

::::
The

:::::
dashed

:::
line

::
is

::
the

:::
1:1

::::
line.
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Figure A2. As Figure 2, but for a grid point in the United States (90.0◦ W, 44.3◦ N).
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Figure A3. As Figure 2, but for a grid point in China (118.1◦ E, 30.8◦ N).
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Figure A4. Number of months in the growing season (number of months between the earliest sowing date and the latest harvest date). The

growing season starts at the month containing the sowing date and ends with the month containing the latest harvest date, among the 1600

model years. We discarded years with harvest date later than 365 days after the sowing date. Some growing seasons are 13 months long

because we include both the entire first month and the entire last month.
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Figure A5. Selected climate extreme indicators (Table 1) in the Lasso logistic regression model for each location. Diurnal temperature range

(dtr, a), number of frost days (frs, b), TX90p
::::::
Rx5day

:
(c) and Rx5day

:::::
TX90p

:
(d).
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