
1)I am concerned about the use of the Granger causality method since this assumes linear 

dynamics and Gaussian statistics. The MJO is probably a non-linear phenomenon. Did 

you also test the convergent cross-mapping approach by Sugihara? In a recently published 

studies we have shown that time-lagged CCM and machine learning approaches are much 

better: Huang, Y., C. Franzke, N. Yuan and Z. Fu, C1 ESDD Interactive comment Printer-

friendly version Discussion paper 2020: Systematic identification of causal relations in 

high-dimensional chaotic systems: Application to Stratopshere-Troposphere coupling. 

Clim. Dyn., in press. https://link.springer.com/article/10.1007/s00382-020-05394-

0Huang, Y., Z. Fu and C. Franzke, 2020: Detecting causality from time series in a 

machine learning framework. Chaos, 30, 063116. 

 

R: In this article, we have used the PDC method to infer Granger causality between 

multiple time-series in the frequency domain. The main advantage of PDC and Granger 

causality is that it is theoretically related to the mutual information rate (MIR) between 

signals (see Takahashi et. al 2010 Information theoretic interpretation of frequency 

domain connectivity measures. 

Biological Cybernetics, v.103, p. 463-469, 2010.; Geweke, J. F. (1984). Measures of 

conditional linear dependence and feedback between time series. Journal of the American 

Statistical Association, 79(388), 907-915.). Information-theoretic quantities are usually 

costly to estimate directly from time-series since it relies on the estimation of multi-

dimensional probability distributions. As proved in Takahashi et. al 2010, PDC is a 

Gaussian approximation to the MIR. This means that if the time-series are stationary and 

Gaussian PDC provides an exact estimate for the MIR, when the time-series are not 

Gaussian (possibly due to underlying nonlinearities) the PDC will capture part but not all 

of the information flow between the time-series. 

There are many "causality" estimation methods in the literature, all of them with some 

advantages and drawbacks. Among the several causality detection methods the 

Convergent-Cross Mapping (CCM) method is proposed as a method that is capable to 

capture couplings in highly-nonlinear settings since it relies phase-space embedding 

procedures. CCM. However, it comes with a few drawbacks that would require more in-

depth investigation before we could apply it in the present setting, namely: 

(1)   CCM is a bi-variate measure. Granger causality and PDC are genuinely 

multivariate measures. 

(2)   CCM may lead to wrong or misleading results when moderate to high levels 

of noise are present (see Mønster, D., Fusaroli, R., Tylén, K., Roepstorff, A., & 

Sherson, J. F. (2017). Causal inference from noisy time-series data—Testing the 

Convergent Cross-Mapping algorithm in the presence of noise and external 

influence. Future Generation Computer Systems, 73, 52-62.). Granger causality 

and PDC are designed to work for signals with stochasticity. 

(3) CCM does not have an automated way to decide the optimal lag between time 

series. Granger causality and PDC are based on autoregessive process in which 

order estimation is well studied. 

(4) There are no theoretical guarantees for the statistical properties of CCM. Both 

PDC and Granger causality are at very well studied measures in which there are 

thousands of articles applying it and we understand well their statistical properties 

(Lutkepohl, 2005; Takahashi et al., 2007). 

  



Finally, although PDC is a stochastic linear method, it correctly reconstruct the 

topology of networks of nonlinear oscillators (see Winterhalder, M., Schelter, B., & 

Timmer, J. (2007). Detecting coupling directions in multivariate oscillatory 

systems. International Journal of Bifurcation and Chaos, 17(10), 3735-3739.), 

Moreover, it has been successfully and extensively used to infer information flow in 

highly nonlinear time-series data in neuroscience (Bressler, S. L., & Seth, A. K. 

(2011). Wiener–Granger causality: a well established 

methodology. Neuroimage, 58(2), 323-329.). The fact that PDC can detect nonlinear 

interactions is not difficult to understand, given that linear regression also can see 

nonlinear interaction unless the nonlinearity is highly non-monotonic. 

 

2) It is not really clear to me how you compute the time series you then use for the 

analysis. Are these just the projections of particular normal modes? If yes, how many 

normal modes do you use to represent the MJO and QBO? Or do you use just one normal 

mode for the respective wave type? 

R:The time-series associated with the normal modes that we used correspond the the 

energy of a group of modes defined by: 
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Where g is the acceleration of gravity, 𝐷𝑚 is the equivalent height of the m-th vertical 

index, 𝜒𝑘𝑚𝑛(𝑡) is the complex amplitude of the normal mode with zonal wave number k, 

meridional index n and vertical index m. M=43, K=32 and N are the respective truncation 

numbers for each index. For the MJO we selected the three first three even meridional 

indices for the Rossby modes (no selection on the vertical and zonal modes). 

 

3) While the MJO normal modes have large amplitudes during MJO events and the set of 

normal modes are also then coherent. However, the normal modes can also have large 

amplitudes during non-MJO/QBO events. So, I think your results on the MJO time scale 

might be robust but I am not sure whether your results are related to the MJO on longer 

time scales; there probably is an effect of the QBO/ozone on the particular normal modes 

but I do not think you have shown that this is really related to the MJO.  

In the present version of the manuscript we have included the composite analysis as 

suggested by this referee. This analysis clearly shows a difference in the long term 

behavior of the MJO-related modes, this was done for the QBO timescale (~28 months), 

and probably accounts for the causality between QBO modes and MJO modes at this time 

scale. Differences at other time-scales such as the solar cycle timescale still need to the 

investigated in more detail. 

4) The quality of some of the figures is rather poor (Figs. 3, 10, 11). 



R:Due to the large number of figures we were having problems compiling the file, which 

lead us to include figures with lower resolution, in the new version of the manuscript we 

included figures with better resolution. 

 5) What do the diagonal plots in Fig. 1 represent? Is that the causality of the time series 

with itself? What can I learn from this?  

R:The diagonal plots correspond to the power spectrum of each of the variables, which is 

equivalent to the PDC of between the variable and itself. 

6) How do you compute the significance of the causal relations? A brief description would 

be useful.  

R:In this version of the manuscript we have included a description of the statistics, in 

particular how we obtain the conficence intervals of the PDC. We refer back to our 

response to the first question of referee #1. 

“We apologize that we did not describe the statistics with sufficient details. PDC is a 

function of the coefficients of vector autoregressive model. Given that the coeffcients are 

asymptotically jointly normally distributed, we can use the delta method (Serfling, 1980) 

to analytically calculate the asymptotic statistics for PDC. After a straighforward but 

tedious algebraic computation, we can show that PDC at frequency lambda is distributed 

asymptotically (under the null hypothesis of zero PDC) as the weighted sum of two chi-

square with one degree of freedom (Takahashi et al., 2007). Therefore, we can use this 

asymptotic distribution to calculate the p-values. For details of the derivation, we refer to 

Takahashi et al. (2007).  

Significance levels for frequency domain quantities are controled only point-wise as this 

is the standard everywhere. The reason for this is that the point estimates for neighboring 

frequencies are highly correlated. Therefore, standard correction like bonferroni or even 

FDR that assume independence or weak dependence give the wrong signficance level.  

Every single article that we found where PDC, coherence or bi-coherence were used and 

the signficance level is reported use the frequency-wise significance level (for 

representative examples see Huybers and Curry, 2006 and Came et al., 2007). For PDC 

it is easy to see that the use of frequency-wise significance level is reasonable given that 

the PDC values for different frequencies are the fourier transform of the same coefficents 

of the autoregressive process. The fact that lower frequency have fewer samples are taken 

care by higher threshold values for PDC at lower frequencies.  We added the following 

brief description of the statistics for PDC in the main text.  

“PDC is a function of the coefficients of vector autoregressive model. Given that the 

coeffcients are asymptotically jointly normally distributed, we can use the delta method 

(Serfling, 1980) to obtain analytically the asymptotic statistics for PDC. After na 

algebraic computation we can show that PDC at frequency lambda is distributed 

asymptotically (under the null hypothesis of zero PDC) as the weighted sum of two chi-

square with one degree of freedom (Takahashi et al., 2007). Therefore, we can use the the 

asymptotic distribution to calculate the p-value. For details of the derivation, we refer to 

Takahashi et al. (2007). The significance level used in the article for PDC is the 

frequency-wise value as it is the standard for frequency domain analysis given the high 



correlation between the point estimates for neighboring frequencies (see e.g. Huybers and 

Curry, 2006; Came et al., 2007).”  

 

” 

7) There is a recent paper: Franzke, C., D. Jelic, S. Lee and S. Feldstein, 2019: Systematic 

Decomposition of the MJO and its Northern Hemispheric Extra-Tropical Response into 

Rossby and Inertio-Gravity Components. Q. J. Roy. Meteorol. Soc., 145, 1147-1164. 

They use a composite approach which might be better suited to investigate the MJO and 

QBO. Using linear regression might mix too many non-events into the analysis. C2 ESDD 

Interactive comment Printer-friendly version Discussion paper. 

 

R:In the present version of the manuscript we have included an analysis derived from the 

reference suggest by the referee “Systematic Decomposition of the MJO and its Northern 

Hemispheric Extra-Tropical Response into Rossby and Inertio-Gravity Components. Q. 

J. Roy. Meteorol. Soc., 145, 1147-1164.”. We believe that this analysis has lead to a better 

understanding of how the QBO affects each normal mode component of the MJO (ROT 

and Kelvin). In what follows we include the corresponding figures with corresponding 

descriptions. 

 



 

Figure 2.7.1: MJO phase diagram showing all points (days) in which (𝑅𝑀𝑀1
2 +

𝑅𝑀𝑀1
2 ≥ 1). Points marked in red  

 

In order to exclude the cases in which the RMM index is not associated with a MJO event 

we excluded all cases in which (𝑅𝑀𝑀1
2 + 𝑅𝑀𝑀1

2 < 1)., among those cases we separated 

the ones for which the stratospheric zonal wind at 30Mb was positive (red) and negative 

(blue) in the figure 2.7.1. The MJO phase diagram was divided into 8 phases as in Franzke 

et. al 2019. For which QBO (positive or negative) state and for which MJO phase 

(i=1,2,…,8) we calculated the mean velocity and pressure fields associated with ROT and 

Kelvin modes at 200 Mb. 

Figures 2.7.2 and 2.7.3 are display respectively the composites associated with the 

reconstructions of velocity and geopotential height fields associated with ROT modes for 

each of the 8 MJO phases with positive stratospheric zonal wind at 30 mb (SZW30+) and 

negative (SZW30+). In order to compare both composites we compute the difference 



between SZW30+ and SZW30- of each field for each MJO phase. This is displayed in 

figure 2.7.4. We notice that for phases 1-3 the difference (of the geopotential height fields 

represented by the hatched region) is statistically significant for almost the entire domain. 

For phase 4 the fields are more similar with small regions with significant difference, 

associated with Rossby double vortices. Between phases 5-8 the areas with significant 

difference become larger again. 

 

Figure 2.7.2: Reconstruction of the velocity and geopotential height fields associated with 

ROT modes with SZW30+ at 200 Mb. 



 

 

Figure 2.7.3: Reconstruction of the velocity and geopotential height fields associated with 

ROT modes with SZW30- at 200 Mb. 

 



 

Figure 2.7.4: Difference between of the velocity and geopotential height fields associated 

with ROT modes with SZW30+ and SZW30-. The hatched region corresponds to 

significant difference of the geopotential height values under 5% confidence level. 

 

 



 

Figure 2.7.5: Reconstruction of the velocity and geopotential height fields associated with 

Kelvin modes with SZW30+ at 200 Mb. 

 



 

Figure 2.7.6: Reconstruction of the velocity and geopotential height fields associated with 

Kelvin modes with SZW30- at 200 Mb. 

 

Figures 2.7.5 and 2.7.6 display respectively the composites associated with the 

reconstructions of velocity and geopotential height fields  associated with the Kelvin 

mode for each of the 8 MJO phases with positive stratospheric zonal wind at 30 mb 

(SZW30+) and negative (SZW30+). In order to compare both composites we compute 

the difference between SZW30+ and SZW30- of each field for each MJO phase. This is 



displayed in figure 2.7.7. We notice that for phases 1-3 the difference (of the geopotential 

height fields represented by the hatched region) is statistically significant for almost the 

entire domain. Unlike in the case of ROT modes, for the Kelvin modes the distribution of 

statistically significant difference is more even throughout a MJO cycle with a larger area 

on phase 2 and more similar fields on phase 4. It is possible to notice a propagation pattern 

with negative geopotential height anomaly beginning at phase 4 and ending at phase 7. 

 

 

 



Figure 2.7.7: Difference between of the velocity and geopotential height fields associated 

with Kelvin modes with SZW30+ and SZW30-. The hatched region corresponds to 

significant difference of the geopotential height values under 5% confidence level. 

 

 

 8) Please correct “Frankze” to “Franzke” in the references. 

The correction was made. 

 


