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Abstract. Steady-state collapse trajectories
:::::::::
Hysteresis

:::::::
diagrams

:
of the Atlantic Meridional Overturning Circulation (AMOC)

under freshwater forcing from climate models of intermediate complexity are fitted to a simple model based on the Langevin

equation. A total of six parameters are sufficient to quantitatively describe the collapses seen in these simulations. Reversing

the freshwater forcing results in asymmetric behaviour that is less well captured and appears to require a more complicated

model. The Langevin model allows for comparison between models that display an AMOC collapse. Variation
::::::::::
Differences5

between the climate models studied here is
::
are

:
mainly due to the strength of the stable AMOC and the strength of the response

to a freshwater forcing.

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is an important circulation in the Atlantic ocean. It is also an im-

portant part of the climate system overall due to the heat it transports from the South Atlantic to the North Atlantic (Ganachaud10

and Wunsch, 2000; Vellinga and Wood, 2002). The AMOC therefore has a substantial influence on the (western) European

climate and a weakening of the AMOC might cause changes in the European climate and weather. The AMOC has also been

identified as one of Earth’s ‘tipping elements’ where a rapid change on markedly faster times scales could take place in the

(near) future (Lenton et al., 2008). The AMOC is partly buoyancy driven by the deep water formations in the North Atlantic

subpolar gyre which produces the North Atlantic Deep Water (NADW) (e.g. Rahmstorf (2000)). The AMOC might be bi-stable15

in nature which means it admits an ‘off’ state, with little or no transport from north to south, as a counterpart to its current ‘on’

state (Broecker et al., 1985).

Palaeoclimate records of the last glacial period show a rapid switching of temperature, which might be associated with the

presence/absence of a vigorous AMOC as exists today (Dansgaard et al., 1993). The possibility of a bistable AMOC being the

cause of these rapid changes has been noted (Broecker et al., 1990). With the current climate warming rapidly, the stability of20

the AMOC is of particular interest (Collins et al., 2013) and climate modelling projections indicate the AMOC strength will

decrease under an increase of CO2. Recent measurements show the AMOC has decreased in strength (Smeed et al., 2018).

An understanding of the possibly bistable nature of the AMOC is therefore relevant to understand the consequences of climate

change. See Weijer et al. (2019) for a review on AMOC bistability.
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The Langevin equation has been posited before as suitable to capture the essential dynamics of an AMOC collapse (Ditlevsen25

and Johnsen, 2010; Berglund and Gentz, 2002). It has also been used elsewhere as the basis for describing the dynamics

of climate sub-systems (Livina et al., 2010)
::::::::::::::::::::::::::::::::::::::::::
(Kwasniok and Lohmann, 2009; Livina et al., 2010) and the AMOC in particular

(Kleinen et al., 2003; Held and Kleinen, 2004). A fourth order potential function is used in Ditlevsen and Johnsen (2010);

Berglund and Gentz (2002) because it is the minimum required for having three distinct solutions (double wells). This potential

function has two parameters which are presumed to be functions of the freshwater forcing. Variation in the freshwater forcing30

is assumed to directly drive changes in AMOC strength by changing the potential function in the Langevin equation. Although

the hysteresis loops of the AMOC include both a collapse and a resurgence point, we will only attempt to model the collapse

from the stable ‘on’ branch to the stable ‘off’ branch.

Though the Langevin equation has played a role in the conceptual picture of bistability and tipping points in the climate, it

has not been used to actually fit the parameters to a (simulated) AMOC collapse. Here, we attempt to construct a simple model35

based on the Langevin equation and fit its dynamics to salt-advection driven collapse trajectories of the AMOC seen in climate

models (Rahmstorf et al., 2005). The result is a set of parameters that quantitatively describe the AMOC collapse process. This

derived model defines a low-dimensional manifold that captures the essential AMOC collapse characteristics. To the extent

that the low-dimensional model is successful in capturing the more complex model this method could also be used to predict

the parameter range where in a model a collapse would occur. At present, however, it is intended to provide a characterisation40

of the collapse that will allow comparison between climate models.

Section 2 sketches the theoretical background of the Langevin equation and of the salt-advection mechanism. In Section 3 we

fit the proposed Langevin model to the AMOC collapse trajectories seen in a set of climate models of intermediate complexity

(EMICs) taken from Rahmstorf et al. (2005). We end with a discussion and conclusions in Section 4.

2 The Langevin model45

An increase in surface air temperatures, or an increased surface freshwater flux by changes in precipitation minus evaporation,

will decrease the buoyancy in the shallow layer of the deep water formation regions in the North Atlantic subpolar gyre. The

deep water formation is reduced, and the southward meridional flow reduced. In principle, this mechanism can reduce the

AMOC to zero gradually if fully buoyancy-driven. A salt-advection feedback mechanism that leads to a bimodal AMOC was

proposed by Stommel (1961). In this mechanism, salinity anomalies in the North Atlantic are amplified by the overturning50

flow, which in turn controls the North Atlantic salinity. Positive anomalies are strengthened and negative anomalies weakened;

this results in a positive feedback between the salinity anomalies and the overturning. Bistability, consisting of a strong and a

weak AMOC state, and possible abrupt transitions result.

Fig. 1 shows a conceptual picture of the two stable AMOC (index) states. The AMOC is a scalar variable obtained by

integrating the overturning transport and selecting its maximum value (typically located in the subtropical North Atlantic). In55

red, the upper branch is drawn up to the collapse point where a bifurcation occurs. The real AMOC in the current climate

moves along this branch from the left, to the right, towards its (assumed) collapse point. The branch in blue is the counterpart
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Figure 1. Example bifurcation diagram of the AMOC (Ψ) in response to a control variable µ. The red branch is the on-state (upper), blue the

off-state (lower). The upper branch deforms when closer to the bifurcation points which are connected though the repellor (dashed line). The

two bifurcations points are indicated as µ+ (collapse point) and µ− (resurgence point). Top ± symbols indicate unimodal (+) or bimodal

(−) regime.
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of the upper branch and represents the off state of the AMOC and ends in another bifurcation point to the left where the AMOC

jumps back to full strength. The dashed line (repellor) separates the two basins of attraction associated with the two stable

branches (attractors). At the bifurcation point one of the two basins of attraction vanishes and a qualitative change takes place60

in the potential function (the number of solutions for a given value of the freshwater forcing µ goes from 3 to 1).

Below we will derive a model based on the Langevin equation that captures the essential dynamics of a bimodal AMOC

under a freshwater forcing µ.

2.1 Multiple stable AMOC states

The conceptual picture of the AMOC being a zero-dimensional variable that is driven by stochastic forces trapped in a po-65

tential is similar to that of a particle’s motion described by Langevin dynamics (Lemons et al., 1908). The Langevin equation

(Gardiner, 2004; Ditlevsen and Johnsen, 2010),

ẋ=−∂xUµ(x) +ση (1)

describes the position of a noise-driven particle (x) trapped in a potential function U . The stochastic term is a white noise

process (η) scaled with an intensity parameter σ. At first we will ignore the stochastic nature of the AMOC collapse process70

and focus on the deterministic behaviour.

The double well potential seen in Fig. 1 has been extensively studied and applied, also in a quantitative way. But to our

knowledge it has not been quantitatively applied to AMOC hysteresis using the Langevin equation in complex numerical

climate models before.

studied mainly qualitatively in connection with the Langevin equation. AMOC bistability has, however, been studied quan-75

titatively in e.g. Boulton et al. (2014) using transient runs. In Poston and Stewart (1978) an extensive treatment is given why, in

addition to a scaling and shifting, only two parameters are sufficient to describe the bistability. From a fourth order polynomial

for U
:::::
More

::::::::
precisely, the third and fourth order coefficients

::::
order

::::
term

::::
and

:::
the

:::::
fourth

:::::
order

:::::::::
coefficient can be eliminated. The

two remaining coefficients in the polynomial describe the critical behaviour, not just locally near the critical points, but the

entire trajectory under a suitable transformation. A direct consequence is that only partial information, in the form of a piece80

of the trajectory, should suffice to describe the entire trajectory (the full hysteresis loop).

The potential function takes the form (Gardiner, 2004; Ditlevsen and Johnsen, 2010)

−U(x) =−1

4
x4 +

β

2
x2 +αx. (2)

The two parameters α,β are functions of the freshwater forcing µ. The AMOC state variable Ψ requires an affine transformation

(Cobb, 1980),85

α= α(µ)

β = β(µ)

x= (Ψ−λ)/ν.
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To fit the model trajectories we need to find expressions for α and β, and suitable values for the transformation parameters

λ and ν. In the literature α is referred to as the normal factor, and β the splitting factor (Poston and Stewart, 1978). In the90

bifurcation diagram the value of ν is approximately the distance in Ψ between the bifurcation point on the top branch to the

bifurcation point on the lower branch. Similarly, the value of λ is approximately the Ψ value between the bifurcation points

at µ±. The transformation uses λ to shift the trajectory and ν to scale it. Below we describe the potential visually and state

additional constraints that follow from the demand that the freshwater forcing is the only variable that determines the dynamical

behaviour.95

2.2 Potential description

In Fig. 2 an overview of the qualitatively different forms of potential are shown (−U(x), right panels) together with their

derivative functions (−∂xU , left panels). Dots indicate the location of critical points and are related to the number of wells

in the potential. The top panels show the typical bimodal form (I) with two stable states and one unstable one in the middle.

Below these are the three possible unimodal states (E). These occur for forcing values to the left of µ− and to the right of µ+.100

The panels B1 and B2 are the submanifolds that separates the unimodal regime from the bimodal regime. These two meet in

the cusp point P , as shown in the bottom panels. See Poston and Stewart (1978) for further details.

In Fig. 3 the stability diagram is shown where the areas indicated are those with qualitatively different behaviour seen in

Fig. 2. See also Poston and Stewart (1978) for similar diagrams. The cusp point P is the singular point where no proper solution

can exist because only the trivial solution (all parameters are valued 0) is allowed here (both bifurcation points µ± and AMOC105

strength are at zero). The two parameters are α and β and are the two coefficients in the potential function. Their values change

because of their dependency on the forcing value (µ).

Our aim is to arrive at a description that matches a series of µ values across the stability diagram. The two parameters α,β are

independent but can be parameterised by other variables that map them to observations. If parameterised by a single variable,

the values of (α, β) across the stability surface are a one-dimensional subset, as suggested by the AMOC index. On one side of110

the cusp point, along the splitting axis (β), only a unimodal regime exists, while on the other side two regimes exist with the

modes at relative distances apart.

2.3 Constraints

With a varying α there exist an interval between two critical points (α±) in between which the distribution is bimodal and

unimodal outside that interval. Because the AMOC trajectory is 1-dimensional and µ is also 1-dimensional, there must be a115

relation between α and β that reduces dimensionality from two to one dimensions. When passing through the critical point α+,

the number of potential wells goes from two to one. Similarly, moving through α− changes the number of wells from one to

two (for given µ±). The two critical points of ∂xU , µ±, can be found analytically for µ± real and being degenerate solutions.

It can be shown (Birkhoff and Mac Lane, 1970, p. 106) that the discriminant D = 27α2−4β3 = 0 (i.e. real solutions) needs to

be solved for α to obtain the two critical solutions that relate α and β. It is at these solutions that the number of critical points120

changes at forcing values µ±. (When D < 0 there are three distinct real solutions which corresponds to the bimodal regime,
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Figure 2. Sample potentials (right) and their derivatives (left) for (top to bottom) the three possible varieties of bimodal state (I), three types

of unimodal state (E), the two pathological cases where D = 0 (B1 and B2), and the cusp catastrophe point (P ). Dots indicate the critical

points. (Scaling is not uniform between panels. Note the choice of negative sign of the potential U .)
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Figure 3. Discriminant determining the stability and number of critical points. The splitting factor β and normal factor α describe the stability

diagram. The bimodal regime (I) is separated from the unimodal regime (E) by two lines (B1,2) which meet in the point P .

when D > 0 there is only one distinct real solution, which corresponds to the unimodal regime.) When any two of the roots are

the same, the number of extrema goes from 3 to 2 (or 1 if all are the same) and the solutions become degenerate (this occurs at

B1,2 in Fig. 3).

Solving for α gives two solutions that are the critical values as functions of β,125

α± =± 2
√

3

9
(β)

3/2 or α± =∓ 2
√

3

9
(β)

3/2
,

with β ≥ 0 for real solutions. The points α± correspond to where the lines B1,2 in Fig. 3 are passed when moving across the

stability surface.

For α+ < 0 −U(1)< 0. This corresponds with the AMOC undergoing a collapse at µ+ from an on state to an off state, and

the correct choice of sign is130

α± =∓ 2
√

3

9
(β±)

3/2
, (3)
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with α± and β± the values corresponding to µ±. Changing µ in the bifurcation diagram corresponds to moving from curve B2

to curve B1 and Eq. 3 relates the two stability parameters α and β at the two critical forcing values µ±.

2.3.1 Linear functions α,β

The value of β does not need to be fixed (to α± and in general there is a corresponding β± at the respective critical points.We135

assume linear functions for α and β,

α(µ) = α0 +µδα

β(µ) = β0 +µδβ,

reducing the dependency to these four parameters. Linear functions are the simplest non-trivial dependencies, while adding

non-linear parameters introduces further unknowns, making this the most parsimonious parametrisation that captures the first140

order behaviour. Also, intuitively we can understand the pair (δα, δβ) as the angle under which the system moves to the

bifurcation point (B1,2) in Fig. 3), which locally only requires the values of α and β up to first order. From this parametrisation

we can determine the offset α0 and rate δα in terms of β0 and δβ,

α+ = α0 +µ+δα=−2
√

3

9
(β+)

3/2 and

α− = α0 +µ−δα= +
2
√

3

9
(β−)

3/2145

gives

δα=−2
√

3

9

(β+)
3/2

+ (β−)
3/2

µ+−µ−
(4)

α0 = α(µ= 0) =

√
3

9

[
−(β+)

3/2
+ (β−)

3/2
]
− 1

2
δα(µ+ +µ−) . (5)

This constrains the values of α, leaving only β as a free variable, which is then parameterised by β0 and δβ. Note that

only solutions with β± > 0 are valid. Also, values for β0 and δβ0 that result in crossing B2 in another point besides β− are150

unsuitable. (The curves B1,2 are each intersected by a straight line in at most two points, and we require intersection at a single

point only.)

2.4 Stochastic interpretation

With the deterministic framework in place, the stochastic nature can be reintroduced.The potential function can be replaced by

a distribution which is the stationary distribution in the asymptotic limit (i.e. the long term behaviour of repeated sampling of155

the hysteresis loop). The potential (a fourth-order polynomial) gives the probability distribution (Cobb, 1978)

P (x,α,β) = Ce−2/σ2U(x) = Ce2/σ
2(−1/4x4+β/2x2+αx). (6)

The factorC = C(α,β) does not have a (known) analytical expression for the general case, but can be computed numerically

(and
:::
can therefore used as a

::::
factor

::
in
:::
the

:
likelihood function in the next section). This can be done accurately with an adaptive
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quadrature method (Piessens et al., 2012), though it suffers from numerical limitations. The value of σ is a measure of intrinsic160

variation in the AMOC. Note that σ is a measure of additive noise (because we assume that σ is not dependent on µ) and

other choices, such as multiplicative noise, can be made (Das and Kantz, 2020). See Gardiner (2004) for a derivation of this

distribution using the Fokker-Planck equation, from which also the Langevin equation can be derived. Also, note that σ→σ/ν
because of the scaling with ν we introduced in Section 2.1.
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Figure 4. Example trajectory with corresponding distribution. Parameterised by λ= 15, ν = 20, σ = 0.12ν, µ+ = 0.2, µ− = 0, β0 = 0.2,

δβ = 0; α under constraints in Eqs 4 and 5. The distribution of one of the attractor branches (red: on state, blue: off state) deforms when

closer to the bifurcation points which are connected though the repellor that forms the trench of the distribution (dashed line). Top ± symbols

indicate unimodal (+) or bimodal (−) regime based on the discriminant value (D).The value of σ is relatively large and is chosen for clarity.

The purple lines indicate the (fixed) positions of the bifurcation points.

An example bifurcation diagram with corresponding distribution is shown in Fig. 4. The purple lines indicate the (fixed)165

positions of the bifurcation points. The dashed grey line marks the positions of the unstable solution (repellor) in between the

two attractor branches which separates the two basins of attraction. Note that the bifurcation points are extremal in the sense

that no bimodality can exists beyond them. With the trajectories being noisy and driven along the attractor, there is (always)
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some probability of a ‘noise-induced’ transition. The state shifts from one basin of attraction to the other, crossing the repellor,

and the AMOC rapidly moves from one attractor to the other. For this reason, the bimodality region might be larger than is170

apparent from a particular sample AMOC trajectory. A larger noise level (as seen in AMOC observations Smeed et al. (2018))

would increase the likelihood of a collapse before the AMOC reaches the bifurcation point.

α

x

P

β

x

Figure 5. Left: Distributions from the exponential family (Eq. 6) where the parameter β is kept at a fixed value and α is varied. The

distribution transforms from unimodal (back), to bimodal (middle), to a different unimodal distribution (front). The bimodal states have a

larger and a smaller mode, depending on the position within the bimodal regime. The relative strength between modes depends on σ. Right:

Distributions from the exponential family (Eq. 6) where the parameter α is kept at a fixed value and β is varied. A broad unimodal state (at

the back) splits into distinct bimodal states (to the front). In the middle a critical point exists, called the cusp (point P in Fig. 3) where the

split occurs.

The distributions in Figs 5 show that qualitatively distinct behaviour occurs when α or β are varied. For both parameters,

a change from a unimodal to a bimodal distribution can be seen. Each distinct shape of the distribution can be identified with

one of the potential functions in Fig. 2. In principle, a change in only one of the two structural parameters (α and β) can move175

the distribution between unimodal and bimodal forms.

We are now in a position to apply the above to collapse trajectories from climate models.

3 AMOC collapse parameter estimation

We describe how to find an optimal solution under the framework described in the previous section. Using a Bayesian opti-

misation procedure, estimated values of β0 and δβ can be found, together with the scaling parameters ν and λ. We will also180

estimate the values for µ±, resulting in a six parameter list that describes (the upper branch) of an AMOC collapse.

The parameters β0 and δβ are independent of each other, but need to cross the curvesB1,2 in Fig. 3) to match the correspond-

ing values for µ±. This constraint is satisfied by the resulting values for α0 and δα. (This can still lead to solution candidates
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that are not suitable for the collapse trajectories and are eliminated in the sampling process below.) The scaling parameters are

not fully independent because λ < ν (the offset cannot exceed the scaling) and knowing where the upper and lower branches185

are located already gives a rough estimate.

3.1 Parameter estimation

Cobb (1978) was able to fit the distribution in Eq. 6 using optimisation techniques (which were numerically unstable and not

very flexible). Though the estimates for the scaling parameters λ and ν can be quite good with this approach, estimating the

trajectory parameters β0 and δβ requires a more flexible method. Knowing which distribution to use, we can estimate the190

posterior probability distribution of the parameters given the data Ψ(µ),

P (ν,λ,β0, δβ,µ± |Ψ).

Bayes’ rule tells us the probability of a given observation Ψ given the probability of the parameters (marginal on the left,

or posterior) is proportional to the probability given the parameters (marginal on the right, or prior) and the full distribution

(likelihood),195

P (ν,λ,β0, δβ,µ± |Ψ)∝ P (Ψ | ν,λ,β0, δβ,µ±)·P (ν,λ,β0, δβ,µ±).

Sampling different values from the parameters’ prior distributions will give corresponding values for the posterior distribu-

tions. A Bayesian sampler chooses successive values that tend towards greater likelihood of the model, given the observed tra-

jectory, and will converge towards an optimal fit. Conceptually, this
::
is what an MCMC (Markov chain Monte-Carlo) optimiser

does (Bolstad, 2010). A widely used sampling algorithm is the Metropolis algorithm (Hastings, 1970; Bernardo and Smith,200

2009), which we also use here. 1
:::
This

::::::::
algorithm

:::
has

:::::
been

::::::::::
implemented

::
in

:::::
many

:::::::
software

::::::::
packages

::::
(e.g.

:::::::::::::::::::::::::::::::::::::
Salvatier et al. (2016); Carpenter et al. (2017)

:
).
:

The sampling process is time consuming because the evaluation of the potential (to calculate P (Ψ | ν,λ,β0, δβ,µ±)) requires

numerical integration (using a quadrature method), which is costly to evaluate (the exponential family of distributions cannot,

in general, be evaluated analytically).205

3.1.1 Prior distributions

The prior distribution of a parameter represents all the information known about that parameter before confrontation with the

observed values (Bolstad, 2010). With ν and λ transform the AMOC state variable (Ψ) with a shift (λ) and a scaling (ν). The

shift λ cannot exceed the normalisation ν, giving an upper bound on λ. Also, we note the lower limit of the lower branch,

meaning λ must be larger than this minimum value. Similarly, the scaling ν cannot be larger than the maximum value of the210

AMOC on the upper branch. We expect the linear parametrisation of α and β introduced in the previous section to be O(1).

We are nonetheless still faced with infinite support on the coefficients of the expansion of the parameters (β0, δβ). We

therefore transform β0 and δβ, with support (−∞,∞), using the arctan function to map to (−π/2,π/2). After such a transfor-
1This algorithm has been implemented in many software packages.
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mation, we can sample from the flat prior distribution on that interval with most of the probability mass on ‘reasonable’ values

(i.e. O(1)). The following prior distributions are used:215

ν = U(min(AMOC),max(AMOC))

λ= U(min(AMOC),ν)

µ+ = U(µS+,µUP)

µ− = U(µDN,µS-)

tan(β0) = U(−π/2,π/2)220

tan(δβ) = U(−π/2,π/2),

with min(AMOC) and max(AMOC) is the minimum/maximum values in an observed collapse trajectory. U is the uniform

distribution on indicated intervals. The intervals values of the collapse points µ± we stipulate as being bounded by where the

trajectories merge (µUP and µDN) and the inner values (µS- and µS+) observed in the trajectories (within which bimodality is

demanded, see Fig. 6). 1225

3.2 Fitting EMIC collapse trajectories

An AMOC collapse was induced in models of intermediate complexity in Rahmstorf et al. (2005) by applying a freshwater

forcing to the North-Atlantic subtropical gyre region that reduced the salinity in the subpolar gyre to its north. Six of these

models have a 3-D ocean components; in Fig. 6 the trajectories of those collapses are reproduced (right column, the freshwater

flux has been labelled µ here) together with their numerical derivatives (left columns in the panels). In Tab. 1 the models are230

listed. The forcing values of µ are known and the same for each climate model. Each model was run to equilibrium for each

forcing value; there is therefore no explicit time dependence in the hysteresis loops shown. Both the AMOC strength and the

forcing value have units Sv (=106 m s−1). Note that the bifurcation points (µ±) must lie within the range where the trajectories

appear bimodal.

The trajectories are taken from the numerical Earth System Models (EMICs) Rahmstorf et al. (2005, Fig. 2, bottom panel)by235

extracting the data points directly from the graphic in the electronic publication2. The numerical derivatives show where the

AMOC changes quickest as a response to the change in freshwater forcing. Each model has two peaks where the changes are

largest, one for each change between stable branches. These peaks are located at the repellor in between the two attractors (the

stable branches). At the repellor only unstable solutions exist and the AMOC is driven to a stable solution, away from these

states.240

If no other mechanisms apart from the salt advection are important we expect the bifurcation points to lie beyond the observed

transition points because a noise-induced transition pushes the AMOC into the off-state sooner. (Note that although the collapse
1To exclude parameter values that lead to intersections of B1,2 more than once, we artificially decrease the likelihood of these values. The discriminant of

the polynomial at each forcing value indicates when this is needed.
2The figure we used is a vector graphic and the data set can be retrieved from it by inverting the plot matrices used to map the original data to the values in

the graph. We can replicate the data in this manner.
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model #data pointsocean component atmosphere component reference

Bremen 2461 large-scale geostrophic energy balance Prange et al. (2003)

ECBilt-CLIO 243 3D primitive equations quasi-geostrophic Goosse et al. (2001)

C-GOLDSTEIN 849 3D simplified energy-moisture balance Edwards and Marsh (2005)

MOM hor 1233 3D primitive equations (MOM) simple energy balance Rahmstorf and Willebrand (1995)

MOM iso 1442 as above, with isopycnal mixing simple energy balance

UVic 464 3D primitive equations (MOM) energy-moisture balance Weaver et al. (2001)

Table 1. Overview of models used. Each data point is independent from the others because each is the result of a quasi steady state run.

The number of data points used is given
::
for

::::
each

:::::
model

:::
was

:::::::
regridded

::::
onto

:
a
::::::
uniform

::::::::
freshwater

::::::
forcing

::::
range

::::::::
consisting

::
of

:::
300

:::::
points. The

summary of the type of model component and references are taken from Rahmstorf et al. (2005).

model σ µ− µ+ present day

Bremen 0.181 [-0.018, 0.010] [0.120, 0.220] ( 0.070, 18.8)-

ECBilt-CLIO 0.176 [-0.044, 0.030] [0.115, 0.210] (-0.110, 18.2)+

C-GOLDSTEIN 0.122 [-0.100, 0.035] [0.115, 0.190] (-0.100, 29.0)+

MOM hor 0.526 [-0.010, 0.010] [0.130, 0.200] ( 0.110, 20.0)-

MOM iso 0.216 [-0.010, 0.020] [0.150, 0.210] ( 0.050, 22.8)-

UVic 0.260 [-0.020, 0.010] [0.188, 0.225] ( 0.080, 25.0)-

Table 2. Overview of models, the estimated standard deviation with the upper branch fitted to a linear function (note that the original

trajectories had already been smoothed), the ranges of µ±, the location of present day in the models, and whether the present day value is in

the unimodal regime (+) or not (-). All values have units Sv.

points are expected to lie before these peaks, low levels of noise will obscure this effect.) The dashed lines indicate the regions

where we will search for the optimum values of µ±. These differ from the fixed 0 and 0.2 values chosen by (Rahmstorf et al.,

2005), who also shifted the trajectories to align on these values.245

Before fitting, the upper and lower branches were extended to the left and right to fill the space of −0.2< µ < 0.4. A linear

fit was use to produce additional values of the corresponding branches (at the same density of those points already present).

All models then occupy the same freshwater forcing space. This is desirable because not all models have a lower branch that

is fully sampled (specifically, UVic). The lower branch was extended with a negative rate of increase if the lower branch was

moving upwards with increasing µ (MOM hor and MOM iso).250

Our main goal is to model the transition from on-branch to
::
the

:
off-branch, that is, the upper right half of the hysteresis curve,

and not so much the dynamics that govern the lower branch. Also, because we assume that other dynamics govern the lower

branch and,
:
our simple model has to be extended to account for those dynamics. We ignore the data on the lower branch before
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Figure 6. Absolute values of numerical derivatives (left) from the trajectories of AMOC strength as function of freshwater forcing to the right

(taken from Rahmstorf et al. (2005, Fig. 2, bottom panel), reproduced with permission from the publisher: American Geophysical Union).

In red the upper branch, blue the lower branch. Left column: Bremen, ECBilt-CLIO, C-GOLDSTEIN; right column: MOM hor, MOM iso,

UVic.Vertical solid lines mark µ= 0 (blue) and µ= 0.2 (red); vertical dashed lines mark the chosen boundary values for µ±. All values

have units Sv.

the collapse point so the fits would not be influenced by these points. We expect the remaining points of the trajectory to be

dominated by the salt-advection mechanism.255

We start by identifying some characteristic points in the trajectories in Tab. 2. The σ (variance of the process) of the models

is not given in Rahmstorf et al. (2005) or elsewhere in the literature, but was estimated as the deviation with a fitted function to

the left most the top branch. (Note that smoothing was already applied in Rahmstorf et al. (2005), lowering the variance of the

trajectories. Because we want to fit the collapse trajectory as given, we use the variance as evident from the data.) In principle,

σ could also be estimated as a parameter in the Bayesian optimisation, but that would unnecessarily enlarge the search space.260

Note that the ‘off-state’ of the AMOC in these models is not 0, but ∼ 2Sv of AMOC strength. If the salt-advection mechanism
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were the only operative effect, we expect this value to be≤ 0. If a reverse advection cell emerges as the lower hysteresis branch,

this value is negative.

In Fig. 7 fitted distributions are shown (also tabulated in Tab. 3). The parameter values of these distributions are the means of

the
::
As

::::
best

::
fit

::::::::::
parameters,

:::
we

::::::
choose

:::
the

:::::
mean

:::::
values

:::
of

:::
the

:::::::
marginal

:
posterior distributions. The dashed grey line marks the265

positions of the unstable solution (repellor) in between the two attractor branches which separates the two basins of attraction.
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Figure 7. Estimated distributions under changing µ. Left column: Bremen, ECBilt-CLIO, C-GOLDSTEIN; right column: MOM hor, MOM

iso, UVic. Vertical dashed lines mark the chosen boundary values for µ±, with solid lines the fit values. Grey dashed line indicates the local

minimum in the distribution (trench). Top ± symbols indicate the sign of the discriminant D for the fitted distribution (+ for unimodal, −
for bimodal). Distribution spreads have been inflated with a factor ν/2 to make them visible. All values have units Sv.

The fits with a linear series through the (α,β) parameter space result in a mismatch between the behaviour seen on lower

branches and that on the upper branches. This is less obvious for UVic and ECBilt-CLIO, but especially apparent for the two

MOM models.
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Bremen
:
ν ECBilt-CLIO

::
λ C-GOLDSTEIN

::
β0 MOM hor

::
δβ MOM iso

::
µ− [

:
Sv] UVic ν

::
µ+ [

::
Sv] 20.8 ±1.8 · 10−1

::::
RMS

:::::::
deviation [

::
Sv]

::::::
Bremen 14.1 ±2.5 · 10−1

::::
21.2 24.0 ±2.4 · 10−1

::::
8.44 27.9 ±2.5 · 10−1

::::
0.28 25.4 ±3.3 · 10−1

::::
-1.32

:
23.3 ±3.7 · 10−1

::::
0.002

: :::
0.14

: :::
0.38

λ
::::::::::
ECBilt-CLIO

:
8.18 ±6.5 · 10−3

::::
13.8 8.37 ±2.0 · 10−2

::::
8.45 10.1 ±1.5 · 10−2

::::
0.26 11.4 ±4.5 · 10−2

::::
-1.24

:
9.41 ±3.4 · 10−2

:::::
0.013 10.4 ±9.9 · 10−2

:::
0.14

: :::
0.60

β0::::::::::::
C-GOLDSTEIN 0.278 ±5.2 · 10−3

:::
24.2

:
0.250 ±9.8 · 10−3

:::
10.7

:
0.272 ±5.5 · 10−3

:::
0.27

:
0.272 ±4.6 · 10−3

::::
-1.39 0.293 ±1.1 · 10−2

::::
0.033 0.352 ±1.2 · 10−2

:::
0.13

:::
0.48

δβ
:::::
MOM

:::
hor -1.34 ±2.5 · 10−2

:::
28.4 -1.30 ±5.0 · 10−2

:::
11.7 -1.46 ±3.1 · 10−2

:::
0.26 -1.34 ±3.2 · 10−2

::::
-1.31 -1.26 ±3.6 · 10−2

::::
0.009 -1.05 ±3.8 · 10−2

:::
0.13

:::
0.98

µ− ::::
MOM

:::
iso 0.010 ±9.4 · 10−5

:::
25.7

:
0.029 ±8.9 · 10−4

:::
8.90

:
0.035 ±5.4 · 10−5

:::
0.32

:
0.010 ±1.7 · 10−4

::::
-1.37 0.020 ±1.5 · 10−4

::::
0.019 -0.004 ±8.2 · 10−3

:::
0.16

: :::
0.83

µ+ :::
UVic

:
0.14 ±5.8 · 10−4

::::
23.5 0.13 ±1.1 · 10−3

::::
10.9 0.13 ±5.8 · 10−4

::::
0.35 0.14 ±2.3 · 10−3

::::
-0.97

:
0.16 ±1.7 · 10−3

:::::
-0.002 0.22 ±2.2 · 10−3

:::
0.81

Table 3. Mean values and standard deviations of parameters corresponding to the fitted functions in Fig. 7.
::
The

::::::::::::::
root-mean-square

:::::::
deviation

:
(a
::::::::
goodness

:
of
::

fit
:::::::
measure)

:::
has

::::
been

:::::::::
determined

::
on

:::
the

::::
upper

::::::
branch

::
up

::
to

::
the

::::
fitted

:::::::
collapse

::::
point.

4 Discussion and conclusion270

We derived a simple model of AMOC collapse based on Langevin dynamics (Eq. 1) with a changing freshwater forcing (µ) and

applied this to EMIC simulated collapse trajectories taken from Rahmstorf et al. (2005). The collapse occurs at a bifurcation

point µ+ which appears smaller than given in (Rahmstorf et al., 2005). A corresponding bifurcation point µ− relates an abrupt

transition back to the on-state. The AMOC also requires an offset and scaling parameter to be fitted (λ and ν). These six

parameters are sufficient to describe the abrupt collapse of the AMOC that leads to
::
as

::::
part

::
of

:
a hysteresis loop under varying275

freshwater forcing. The resurgence of the AMOC is not the same as the collapse process and we did not attempt to obtain an

accurate fit of that part of the hysteresis loop.

Any process which allows two stable states with rapid transitions between them and an asymmetric response to the forcing

could in principle be described by our method. Other such geophysical processes might be ice sheet mass loss (e.g. Robinson

et al. (2012)), forest dieback (e.g. Staal et al. (2016)), and lake turbidity (Scheffer and van Nes, 2007).280

The AMOC collapse and resurgence seen in these models cannot be completely fitted with Langevin dynamics due to the

asymmetry in the lower vs the upper branch.
:::::::::
resurgences

::
of

:::
the

:::::::
AMOC

::::
seen

::
in

::
the

:::::::::
hysteresis

::::::::
diagrams

::::::
behave

::::::::
differently

:::::
from

::
the

:::::::::
collapses.

:::
The

::::::::
Langevin

::::::
model

:
is
:::
too

::::::
simple

::
to

:::::::
capture

::::
both

::::::::
processes.

:
It is, however, possible to fit the change in the upper

branch of the AMOC–the ‘on-state’–as it moves towards a critical point and the dominant salt-advection feedback mechanism

breaks down.285

We note that Rahmstorf et al. (2005) determine the AMOC strength as the maximum of the meridional volume transport

in the North Atlantic and might explain the asymmetry between the two branches. If for a reverse overturning cell the wrong

metric has been used then the lower branch location is not correct. It is conceivable that the Langevin model results in better

fits if Rahmstorf et al. (2005) had sampled max(|Ψ|) instead of max(Ψ), which would have resulted in a better metric of

the lower branch. With the metric used it is not apparent whether a reversed overturning cell was present or not because it290

was not sampled if the AMOC had taken on a negative value. Therefore
:
It
::
is

::::::
unclear

::
to
:::::
what

:::::
extent

:::
the

:::::::
models

::::::::
discussed

::::
here

::::::
develop

::
a
:::::::
reversed

::::::::::
overturning

:::::::::
circulation

:::::
which

::::
can

::::
arise

::
in

:::
3D

::::::
models

::::::::::::::::::::::::::::::::::::::::::
(Weijer and Dijkstra, 2001; Yin and Stouffer, 2007)

:
,
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:::
but

:::::
which

:::
can

::::
also

::
be

:::::::::
suppressed

:::
by

::::::::::
atmospheric

:::::::::
feedbacks

::::::::::::::::::::
(Yin and Stouffer (2007)

:
;
:::::::
however,

:::
see

::::
also

::::::::::::::::::
Mecking et al. (2016)

:
),
::::
and

:::::::
strongly

:::::::
affected

::
by

:::::
gyre

::::::::
dynamics

:::::::::::::::::
(Prange et al., 2003).

::::::
These

:::::
effect

:::
are

:::
not

:::::::
captured

:::
by

:::
the

::::::
simple

::::::::
Langevin

::::::
model

:::::::
proposed

:::::
here,

:::
but

::
at

:::::::
present

:
it
::

is
::::

still
:::::::
unclear

::
to

::::
what

::::::
extent

:::::
these

::::::
effects

:::
are

:::::::
essential

:::
in

::::::::
capturing

:::
the

::::
first

:::::
order

:::::::
stability295

::::::::
properties

::
of

::::
the

:::::::
AMOC.

::
In

:::::
each

::::
case, there is no obvious way to model the asymmetry between the two branches, and

obtain a full description. The two branches could be separated by associating each with a different overturning cell. The upper

branch is identified with the NADW-driven cell, while a reverse cell is responsible for the lower branch. If indeed a reverse

overturning cell (as described in e.g. Yin and Stouffer (2007)) dominates the lower AMOC branch, two separate overturning

cells are responsible for the observed trajectories, and the two branches then cannot be expected to fit with the same parameter300

set.

However, another possible explanation is that (two) separate mechanisms are responsible for the upper and lower branch

dependency on µ. Possible mechanisms include possible mechanisms include the influence of wind-stress, North Atlantic

subpolar gyre convective instability (Hofmann and Rahmstorf, 2009), or other pathways of deep water formation (Heuzé,

2017). Also, changes in the ITCZ (inter-tropical convergence zone) due to ocean-atmosphere feedbacks are possible (Green305

et al., 2019); these can, in turn, can affect the salinity of the North Atlantic subtropical gyre region. However, Mecking et al.

(2017) showed that for a high-resolution model the salt-advection feedback was nevertheless stronger than the ITCZ effects.

Other wind coupling can occur further south through a coupling with the ACC (Antarctic Circumpolar Current) which is based

on the thermal wind relation (Marshall and Johnson, 2017).

A third explanation is that deep water formation is a local process, and as a result an asymmetry is to be expected between310

the two branches. Local convection can, however, be subject to global controls and be associated with a sinking branch which

occurs in conjunction with deep convection, but is not directly driven by it, see Spall and Pickart (2001) for a detailed discus-

sion. The AMOC could develop a reverse cell where the overturning is driven by Antarctic Intermediate Water (AAIW), which

is not part of the conceptual picture presented here (Yin and Stouffer, 2007; Jackson et al., 2017). The reverse cell introduces

an asymmetry in the collapse trajectories because the driver of deep water formation is not in the North Atlantic, and might315

break our assumption that both the on and off branches are controlled by the same process. It is therefore difficult to estimate

the return path of the AMOC if the lower branch has additional drivers from the dominant salt-advection mechanism of the

upper branch. Forcing values appropriate for the lower branch might be different than those found for the upper branch.

Furthermore, the methodology used in this paper comes with difficulties in the numerical implementation. The fit procedure

requires the normalisation of each distribution in the µ timeseries. Because no analytic solution exist a numerical approach is320

needed. The numerical integration adds to the computational costs of the fits. The Markov chain method is also prone to find

local optima. Also, the cost of numerical integration necessitates stopping the fits at shorter chains than (perhaps) are needed, an

analytic formulation of the integrand would alleviate this but none exists to our knowledge. Modern sampling algorithms allow

for gradient information to be used, which is effective when sampling a higher dimensional parameter space (the Metropolis

algorithm used in this paper has greater difficulty as the dimensionality of the parameter space increases). Tighter constraints325

on the prior distributions could be beneficial here.
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As stated in Rahmstorf et al. (2005), the EMIC trajectories had already been smoothed, resulting in a smaller variance; a

smaller variance leads to distributions that are more sharply peaked. This increases the computational cost of integrating the

distributions numerically. Smoothing can also add to the inertia seen in the collapses, but might be due to other reasons such

as stopping the EMIC simulations before equilibration of the AMOC collapse, leaving the AMOC in a winding-down state.330

Also, it is not clear how long the models in Rahmstorf et al. (2005) were integrated
::
for

:::::
1000

:::::
model

:::::
years

:
per freshwater

forcing value
::::::
(which

::::
was

:::::::
changed

::
in

::::
0.05

:::
Sv

::::::::::
increments). If the integrations were done for an insufficient amount of time,

the AMOC collapse is incomplete, leaving the measured value out of equilibrium. The intermediate points in the collapse

trajectories beyond the bifurcation points indicate that either the sample points are inaccurate or other processes are involved

in the AMOC.335

Finally, the fitted collapse trajectories were done on an ensemble of EMICs, which arguably are not sufficiently representa-

tive of the real climate. As noted by Gent (2018), the hysteresis behaviour has not been investigated fully in models of greater

complexity than EMICs; the computational cost being the prohibitive
::
for

::::::
models

::::
with

:::::
high

::::::::
resolution

::::
(and

:::::
short

::::
time

::::::
steps).

:::
The

::::::::
hysteresis

:::::::::
behaviour

::
in

::::::
glacial

::::
state

:::::::
changes

:::
has,

::::::::
however,

::::
been

::::::::::
investigated

::
in

::::::
greater

:::::
detail

:::::
using

::::::
models

::::
with

:::::::::
simplified

::::::::
dynamics

::::
(e.g.

:::::::::::::::::::::::::::::::::
Schiller et al. (1997); Zhang et al. (2017)

:
). The question arises to what extent the procedure outlined in this340

paper can be applied to more complicated models such as those in the CMIP archives (Taylor et al., 2012). These models do

not show a full collapse trajectory like those in Rahmstorf et al. (2005), which means no sample points of the lower branch

are available. Also, CMIP provides times series of forced runs. To validate our method, a transient run requires known equi-

librium bifurcation points, under a slowly changing µ, and include an AMOC collapse. Using a simple box model, transition

probabilities for an AMOC collapse have been determined by Castellana et al. (2019). From the CMIP ensemble a similar345

estimate might be obtained, or at least the collapse characteristics of various models can be compared. Provided the CMIP

models accurately capture the behaviour of the real AMOC and the freshwater forcing counterpart (our µ) can be identified,

an estimate can be made of the distance of the current climate state to the collapse point. Freshwater quantities such as Mov

have been posited (e.g. Drijfhout et al. (2011)) as being suitable indicators of AMOC stability. It is possible that Mov relates

to µ and can be used to extend our method to transient runs, but at present in
:
it
:
is unknown whether this can be done.

:::
The350

:::::::
inclusion

:::
of

:::::::
icesheets

::::
can

:::::
make

:
a
:::::::::
substantial

:::::::::
difference

::
in

:::::::
AMOC

:::::::
recovery

:::::::::::::::::::::
(Ackermann et al., 2020).

:::::
Also,

:::
the

:::::::::::
atmospheric

::::::::
freshwater

::::::::
transport

:::::
might

:::::
have

:
a
:::::::::
stabilising

:::::
effect

:::
on

:::
the

::::::
AMOC

::::
that

::
is

::::::
greater

::::
than

:::
the

:::::::::
freshwater

:::::::::
transports

::
by

:::
the

::::::
ocean

::::::::::::::
(Lohmann, 2003).

::::::
There

::
is,

::::::::
however,

::::
also

::::::::
evidence

::::
that

:::::::
coupled

::::::
climate

:::::::
models

:::::
suffer

:::::
from

:
a
:::::::

salinity
::::
bias

::::
that

::::::
favours

:::
an

::::::
AMOC

::::
that

::
is

:::
too

:::::
stable

::::::::::::::::::::::::::::::::
(Drijfhout et al., 2011; Liu et al., 2017).

::::::
These

::::::
matters

:::
are

:::::::
outside

:::
the

:::::::::
conceptual

::::::
picture

::
of

::::
Mov:::

as

:
a
:::::::
stability

::::::::
indicator.

:
It is therefore still an open question how probable an AMOC collapse is in more realistic models, and355

reality, but with the method outlined in this paper a first step could be made in answering this question.
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Comments to the Author:
Dear authors,
the manuscript has improved and requires only minor revisions. 

1) please follow the suggestions of the referee, and provide a point-by-point answer to the 
comments. 

We thank the editor for the additional comments and suggestions for improvement. Below our 
responses.

2) My own evaluation and following comments can improve the quality of the paper.

a) page 2, lines 25-28: Referencing to double well potential and dynamics of abrupt climate shifts. I 
think the method and application of Livina and others were first described here: Kwasniok, F., and 
G. Lohmann, 2009: Phys. Rev. E, doi: 10.1103/PhysRevE.80.066104
This paper predates the reference to Livina et al (2010) and relates to ice core data. A stochastically 
driven motion in a 4th order polynomial potential is used to model glacial state changes on the 
millennial scale. We have included it as an additional reference.

b) I think that the statement
"1 This algorithm has been implemented in many software packages."
could be avoided as footnote. You could include this statement in the full text and provide 
references.
We have included references to two implementations in the main body of the text.

c) section4, lines 270ff, 282 ff. The Langevin model is a simplified view and many features like the 
gyres are missing. In Prange et al. (2003) it has been shown that even 2D and 3D models can have a
substantial different dynamics because of the missing dimension. I guess that this is even more true 
for the 0-d model. In 3 D models, a reversed flow as off mode does not exist (see e.g. on Fig. 9 of 
their paper) due to the gyres (section 4b). THis might be also related to your statements lines 250 ff 
on page 13, and lines 260 ff on page 14, lines 274 and 283 on page 275. The salinity advection 
mechanism is indeed not the mechanism for the off state. If feel that the speculation with the metric 
(lines 284-286) could take this into account. The way it is written now is somehow misleading.
Indeed, the statements on lines 250 and 260 relate to the differences in upper and lower branches. A 
lower dimensional model necessarily needs to ignore geometry that can be found in higher 
dimensional ones. We have added a remark to highlight this. “It is unclear to what extent the models
discussed here develop a reversed overturning circulation which can arise in 3D models (Weijer and
Dijkstra, 2001; Yin and Stouffer, 2007), but which can also be suppressed by atmospheric feedbacks
(Yin and Stouffer (2007); however, see also Mecking et al. (2016)), and strongly affected by gyre 
dynamics (Prange et al., 2003). These effect are not captured by the simple Langevin model 
proposed here, but at present it is still unclear to what extent these effects are essential in capturing 
the first order stability properties of the AMOC. In each case, there is no obvious...”

d) page 17, line 322: This statement is not correct: "it is not clear how long the models in Rahmstorf
et al. (2005) were integrated per freshwater forcing value". This value is given in the paper. "The 
rate of change of the freshwater input was 0.05 Sv per 1,000 model years." This information could 
be easily included.
We added the integration times and forcing value increment value.

e) page 18, lines 327 ff: The statement "As noted by Gent (2018), the hysteresis behaviour has not 
been investigated fully in models of greater complexity than EMICs" is probably not true. See some



examples by Mikolajewicz (with a higher freshwater rate in the hysteresis) and other colleagues like
Zhang in 2017. Just reformulate.
We have reformulated and added the following references:
Schiller, A., Mikolajewicz, U., & Voss, R. (1997).  The stability of the North Atlantic thermohaline circula-
tion in a coupled ocean‐atmosphere general circulation model. Climate Dynamics,  13(5), 325– 347.
Zhang, X., Knorr, G., Lohmann, G., & Barker, S. (2017).  Abrupt North Atlantic circulation changes in 
response to gradual CO2 forcing in a glacial climate state. Nature Geoscience,  10(7),  518.
It should be noted that the model used in these studies have a simplified physics (such as the large 
scale geostrophic model) and do not have complexity found in current CMIP class models.

f) page 18, line 337 ff: In coupled models M_ov is just describing the oceanic feedback, it implicitly
assumes that the circulation within the Atlantic is a second order effect. In truely coupled 
atmosphere-ocean model is seems that the atmosphere has a similar order of magnitude affecting 
the freshwater (e.g. Lohmann 2003; Ackermann et al. (2020, GRL) and others. In this direction also 
the Liu et al. work is interesting that in not flux-corrected coupled GCMs the salinity bias is so 
strong providing a more monostable behaviour.:w
The atmosphere can be of great importance for AMOC recovery as  Lohmann (2003) and 
Ackermann et al. (2020) show. Work by Liu et al. Shows the climate models to bee too stable due to
salinity biases. We have included these references and expanded the discussion on this point.

Additional remark: We have received the original data files from Rahmstorf et al. (2005) and 
performed the same calculations as presented in the draft versions of the paper on this data set. 
Qualitatively the results are the same, and our conclusions are unchanged. We have also regridded 
these values on a uniform set of forcing values to aid comparison; this also sped up the calculations.
There have been some changes in the graphics and fitted parameter values.



Thank you for the opportunity to review this manuscript again. While it would have been nice
for the authors to address several points more explicitly, which would have helped to increase
the scope of the paper, the corrections helped to make the text more readable and make the
purpose of the paper more clear.

We thank the reviewer for the additional comments and suggestions. Below are our responses. 
Additionally, we have received the original data files from Rahmstorf et al. (2005) and processed 
these after regridding them onto the same freshwater forcing range. The graphics and fit values have
changed, but the qualitative and, therefore, our conclusions have not.

I have a few additional comments:
1.
Regarding how they can substantiate that the model successfully captures the dynamics, the
authors reply:
We will add the posterior spread to show the goodness of fit. To explore and compare with
other low-dimensional models than the Langevin model is beyond the scope of this paper

Here I am not sure what has been added. The densities shown in Fig. 7 were already present
in the previous version, and do not really help here, partly because the distributions have
been inflated by a factor nu/2. What is interesting are differences of the best fit relative to the
data. Maybe the authors could at least quantify the “goodness of fit” of the Langevin model to
the different data sets and compare them, in order to point out where the model has issues
capturing the EMIC behavior (apart from the resurgence of the AMOC).
We have removed the spreads in the table and added a column with the root-mean-square deviation 
calculated on the upper branch up to the collapse points to give an indication of the goodness of fit.

2.
Regarding the best fit parameters, the authors have responded:
The most likely value is the mean of the posterior distribution. This does assume that the
posterior distributions are uni-modal. We will discuss this in the text.

The most likely value is not the mean, but the mode of the distribution. This makes an
especially large difference for skewed distributions and bi-modal distributions. Can the
authors show that the posterior distributions are uni-modal? This needs to be better clarified
in the manuscript. Furthermore, I assume they use the marginal posterior distributions of the
individual parameters.
The corresponding segment in the revised manuscript reads:
“The parameter values of these distributions are the means of the posterior distributions.”
This should be rewritten at least: “As best fit parameters, we choose the mean values of the
marginal posterior distributions.”
The reviewer is correct: neglecting “marginal” is sloppy terminology. Corrected as suggested. 
Although MCMC posterior distributions are typically unimodal, we do not check for this property 
though.

3.
Regarding the normalization factor C, the authors responded:
The reviewer is correct, we added. “ but can be computed numerically (and therefore used as
a likelihood function in the next section)”
Now it reads as if C can be used as likelihood function, rather than P. Please correct.
We changed “...therefore used as a likelihood function…” to  “…can therefore used as a factor in 
the likelihood function…”



4.
P16L272: “These six parameters are sufficient to describe the abrupt collapse of the AMOC
that leads to a hysteresis loop under varying freshwater forcing.”
This statement should be made more precise. It is not the collapse that leads to a hysteresis
loop, both are a result of the same underlying mechanisms. Maybe the authors can say thatthe 
parameters are sufficient to describe an abrupt collapse of the AMOC, as part of a
hysteresis loop under varying freshwater forcing.
Rewritten “...the AMOC that leads to a hysteresis loop …” as ”...the AMOC as part of a hysteresis 
loop...”

5.
P16L272: “... and we did not attempt to obtain an accurate fit of that part of the hysteresis
loop.”
I think it would be fair to say that with the model at hand it is simply not possible to fit the data,
since while asymmetric branches of the hysteresis loop may be obtained, the noise model
used is symmetric. Also, it is not clear what is meant by “the resurgence of the AMOC is not
the same as the collapse”. In a way, when invoking just one positive feedback, it is.
This explanation could be merged with the two very short paragraphs that follow.
Moved sentence down two paragraphs and rewritten. Removed sentence at P16L279.

Technical corrections:
All suggestions and corrections below accepted.

Abstract: “Steady-state collapse trajectories of the AMOC....”
Maybe better terminology can be found? I don’t think that “steady-state trajectories” are a very
intuitive concept, and it is not clear what is meant here. Maybe simply say “hysteresis
diagrams” or the like.
Agreed: this terminology is not clear. Replaced with “Hysteresis diagrams” as suggested.
I also suggest to rewrite: “Differences in between the climate models studied here are mainly
due to…”
Replaced with “ Differences between the climate models studied here are mainly due to...”

P4L74: Remove “studied mainly qualitatively in connection with the Langevin equation”.
removed

P4L77: More precisely, the third order term and the fourth order coefficient can be eliminated.
rewritten

P11L198: “Conceptually, this is what an MCMC…”
corrected

P13L249: “ Our main goal is to model the transition from the on-branch to the off-branch…”
corrected

P13L249: “Also, because we assume that other dynamics govern the lower branch and, our
simple model has would need to be extended to account for those dynamics
corrected

P18L338: ... but at present in it is unknown .…
corrected


