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Abstract. Using a machine learning technique,
:::::::::
Steady-state

:
collapse trajectories of the Atlantic Meridional Overturning Cir-

culation
:::::::
(AMOC)

:::::
under

:::::::::
freshwater

::::::
forcing

:
from climate models of intermediate complexity are fitted to a simple model based

on the Langevin equation. A total of six parameters are sufficient to quantitatively describe the collapses seen in these simula-

tionsunder a freshwater forcing. Reversing the freshwater forcing results in asymmetric behaviour that is less well captured and

would
:::::::
appears

::
to require a more complicated model.

:::
The

::::::::
Langevin

:::::
model

::::::
allows

:::
for

::::::::::
comparison

:::::::
between

::::::
models

:::
that

:::::::
display5

::
an

::::::
AMOC

::::::::
collapse.

::::::::
Variation

:::::::
between

:::
the

::::::
climate

:::::::
models

::::::
studied

::::
here

::
is

::::::
mainly

:::
due

::
to
:::

the
:::::::
strength

:::
of

:::
the

:::::
stable

::::::
AMOC

::::
and

::
the

:::::::
strength

:::
of

::
the

::::::::
response

::
to

:
a
:::::::::
freshwater

:::::::
forcing.

:

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is an important circulation in the Atlantic ocean. It is also an im-

portant part of the climate system overall due to the heat it transports from the South Atlantic to the North Atlantic (Ganachaud10

and Wunsch, 2000; Vellinga and Wood, 2002). The AMOC therefore has a substantial influence on the (western) European

climate and a weakening of the AMOC might cause changes in the European climate and weather–see Weijer et al. (2019) for

a review
::::::
weather. The AMOC has also been identified as one of Earth’s ‘tipping elements’ where a rapid change on markedly

faster times scales could take place in the (near) future (Lenton et al., 2008). The Atlantic Meridional Overturning Circulation

(AMOC )
::::::
AMOC

:
is partly buoyancy driven by the deep water formations in the North Atlantic subpolar gyre which produces15

the North Atlantic Deep Water (NADW) (e.g. Rahmstorf (2000)). The AMOC might be bistable
:::::::
bi-stable

:
in nature which

means it admits an ‘off’ state, with little or no transport from north to south, as a counterpart to its current ‘on’ state (Broecker

et al., 1985).

Palaeoclimate records of the last glacial maximum and early holocene
:::::
period show a rapid switching of temperature, which

might be associated with the presence/absence of a vigorous AMOC as exists today (Dansgaard et al., 1993). The possibility20

of a bistable AMOC being the cause of these rapid changes has been noted (Broecker et al., 1990). With the current climate

warming rapidly, the stability of the AMOC is of particular interest (Collins et al., 2013) and climate modelling projections

indicate the AMOC strength will decrease under an increase of CO2. Recent measurements show the AMOC has decreased in
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strength (Smeed et al., 2018). An understanding of the possibly bistable nature of the AMOC is therefore relevant to understand

the consequences of climate change.
:::
See

::::::::::::::::
Weijer et al. (2019)

::
for

::
a
::::::
review

::
on

:::::::
AMOC

::::::::
bistability.

:
25

The Langevin equation has been posited before as appropriate
:::::::
suitable to capture the essential dynamics of an AMOC

collapse (Ditlevsen and Johnsen, 2010; Berglund and Gentz, 2002). It has also been used elsewhere as the basis for describing

the dynamics of climate sub-systems (Livina et al., 2010) and the AMOC in particular (Kleinen et al., 2003; Held and Kleinen,

2004). A fourth order potential function is used in Ditlevsen and Johnsen (2010); Berglund and Gentz (2002) because it is

the minimum required for having three distinct solutions (double wells). This potential function has two parameters which30

are–presumed to be–functions
::
are

:::::::::
presumed

::
to

:::
be

::::::::
functions of the freshwater forcing. Variation in the freshwater forcing is

assumed to directly drive changes in AMOC strength by changing the potential function in the Langevin equation.
::::::::
Although

::
the

:::::::::
hysteresis

:::::
loops

::
of

:::
the

:::::::
AMOC

::::::
include

::::
both

:
a
::::::::

collapse
:::
and

:
a
::::::::::

resurgence
:::::
point,

:::
we

:::
will

::::
only

:::::::
attempt

::
to

::::::
model

:::
the

:::::::
collapse

::::
from

:::
the

:::::
stable

::::
‘on’

::::::
branch

::
to

:::
the

:::::
stable

::::
‘off’

:::::::
branch.

Though the Langevin equation has played a role in the conceptual picture of bistability and tipping points in the climate,35

but it has not been used to actually fit the parameters to a (simulated) AMOC collapse. Here, we attempt to construct a simple

model based on the Langevin equation and fit its dynamics to salt-advection driven collapse trajectories of the AMOC seen

in climate models (Rahmstorf et al., 2005). The result is a set of parameters that quantitatively describe the AMOC collapse

process.
::::
This

::::::
derived

::::::
model

::::::
defines

::
a
::::::::::::::
low-dimensional

::::::::
manifold

:::
that

::::::::
captures

:::
the

:::::::
essential

:::::::
AMOC

:::::::
collapse

:::::::::::::
characteristics.

::
To

:::
the

::::::
extent

:::
that

:::
the

::::::::::::::
low-dimensional

::::::
model

::
is

:::::::::
successful

::
in

::::::::
capturing

:::
the

:::::
more

:::::::
complex

::::::
model

::::
this

::::::
method

:::::
could

::::
also

:::
be40

::::
used

::
to

::::::
predict

:::
the

::::::::
parameter

:::::
range

::::::
where

::
in

:
a
::::::
model

:
a
::::::::
collapse

:::::
would

:::::
occur.

:::
At

:::::::
present,

::::::::
however,

:
it
::
is

::::::::
intended

::
to

::::::
provide

::
a

:::::::::::::
characterisation

::
of

:::
the

:::::::
collapse

:::
that

::::
will

:::::
allow

::::::::::
comparison

:::::::
between

::::::
climate

:::::::
models.

Section 2 sketches the theoretical background of the Langevin equation and of the salt-advection mechanism. In Section 3 we

fit the proposed Langevin model to the AMOC collapse trajectories seen in a set of climate models of intermediate complexity

(EMICs) taken from Rahmstorf et al. (2005). We end with a discussion and conclusions in Section 4.45

2 The Langevin model

An increase in surface air temperatures, or an increase in P-E (precipitation - evaporation) of freshwater surface flux
::::::::
increased

::::::
surface

:::::::::
freshwater

:::
flux

:::
by

:::::::
changes

::
in

:::::::::::
precipitation

:::::
minus

::::::::::
evaporation, will decrease the buoyancy in the shallow layer of the

deep water formation regions in the North Atlantic subpolar gyre. The deep water formation is reduced, and the southward

meridional flow reduced. In principle, this mechanism can reduce the AMOC to zero gradually if fully buoyancy-driven. A50

salt-advection feedback mechanism that leads to a bimodal AMOC was proposed by Stommel (1961). In this mechanism, the

deep southward flow couples to the surface return flowvia upwelling or other mechanisms in the Southern Ocean, affecting

the salinity in
::::::
salinity

:::::::::
anomalies

:::
in

:::
the

:::::
North

::::::::
Atlantic

:::
are

::::::::
amplified

:::
by

:::
the

::::::::::
overturning

:::::
flow,

::::::
which

::
in

::::
turn

:::::::
controls

:
the

North Atlantic subpolar gyre. A reduction in salinitydecreases buoyancy, and this positive feedback accelerates the process

of AMOC weakening and a collapse results on relatively short timescales.
::::::
salinity.

:::::::
Positive

:::::::::
anomalies

:::
are

:::::::::::
strengthened

::::
and55
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:::::::
negative

::::::::
anomalies

:::::::::
weakened;

:::
this

::::::
results

::
in

:
a
:::::::
positive

::::::::
feedback

:::::::
between

::
the

:::::::
salinity

::::::::
anomalies

::::
and

::
the

:::::::::::
overturning.

:::::::::
Bistability,

::::::::
consisting

::
of

::
a

:::::
strong

::::
and

:
a
:::::
weak

::::::
AMOC

:::::
state,

:::
and

:::::::
possible

::::::
abrupt

:::::::::
transitions

:::::
result.

:
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Figure 1. Example trajectory
::::::::
bifurcation

:::::::
diagram of the AMOC (Ψ) in response to a control variable µ. The red branch is the on-state

(upper), blue the off-state (lower). The trajectory
::::
upper

::::::
branch deforms when closer to the bifurcation points which are connected though

the repellor that forms the trench of the distribution (dashed line). The two bifurcations points are indicated as µ+ (collapse point) and µ−

(re-invigouration
:::::::
resurgence

:
point). Top ± symbols indicate unimodal (+) or bimodal (−) regime.

Fig. 1 shows a conceptual picture of the two stable AMOC (index) states. The AMOC is a zero-dimensional variable arrived

at
:::::
scalar

:::::::
variable

:::::::
obtained

:
by integrating the overturning transport and selecting its maximum value (typically located in the

subtropical North Atlantic). In red, the upper branch is drawn up to the collapse point where a bifurcation occurs. The real60

AMOC in the current climate moves along this branch from the left, to the right, towards its (assumed) collapse point. The

branch in blue is the counterpart of the upper branch and represents the off state of the AMOC and ends in another bifurcation

point to the left where the AMOC jumps back to full strength. The dashed line (repellor) separates the two basins of attraction

associated with the two stable branches (attractors). At the bifurcation point one of the two basins of attraction ceases to
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exist
:::::::
vanishes

:
and a qualitative change takes place in the potential function (the number of solutions for a given value of the65

freshwater forcing µ goes from 2 to 3
:
to

::
1).

Below we will derive a model based on the Langevin equation that captures the essential dynamics of a bimodal AMOC

under a freshwater forcing µ.

2.1 Multiple stable AMOC states

The conceptual picture of the AMOC being a zero-dimensional variable that is driven by stochastic forces trapped in a po-70

tential is similar to that of a particle’s motion described by Langevin dynamics (Lemons et al., 1908). The Langevin equation

(Gardiner, 2004; Ditlevsen and Johnsen, 2010),

ẋ=−∂xUµ(x) +ση (1)

describes the position of a noise-driven particle (x) trapped in a potential function U . The stochastic term is a white noise

process (η) scaled with an intensity parameter σ. At first we will ignore the stochastic nature of the AMOC collapse process75

and focus on the deterministic behaviour.

The (deterministic) bistability
::::::
double

::::
well

::::::::
potential seen in Fig. 1 has been studied mainly in a qualitative way(within

catastrophe theory)
:::::::::
extensively

::::::
studied

::::
and

::::::
applied,

::::
also

::
in

:
a
::::::::::
quantitative

::::
way.

:::
But

::
to

:::
our

:::::::::
knowledge

::
it
:::
has

:::
not

::::
been

:::::::::::
quantitatively

::::::
applied

::
to

::::::
AMOC

:::::::::
hysteresis

:::::
using

:::
the

::::::::
Langevin

:::::::
equation

::
in

:::::::
complex

:::::::::
numerical

::::::
climate

:::::::
models

::::::
before.

::::::
studied

::::::
mainly

::::::::::
qualitatively

::
in

:::::::::
connection

::::
with

:::
the

::::::::
Langevin

::::::::
equation.

::::::
AMOC

::::::::
bistability

::::
has,

:::::::
however,

:::::
been

::::::
studied

:::::::::::
quantitatively80

::
in

:::
e.g.

::::::::::::::::::
Boulton et al. (2014)

::::
using

:::::::
transient

::::
runs. In Poston and Stewart (1978) an extensive treatment is given why

:
,
::
in

:::::::
addition

::
to

:
a
::::::
scaling

:::
and

:::::::
shifting,

:
only two parameters are sufficient to describe the bistability. These two parameters

:::::
From

:
a
:::::
fourth

:::::
order

:::::::::
polynomial

:::
for

:::
U ,

:::
the

::::
third

:::
and

::::::
fourth

:::::
order

:::::::::
coefficients

::::
can

::
be

:::::::::
eliminated.

::::
The

::::
two

::::::::
remaining

::::::::::
coefficients

::
in

:::
the

::::::::::
polynomial

describe the critical behaviour, not just locally near the critical points, but the entire trajectory under a suitable transforma-

tion. (The behaviour at small scale is fundamentally tied to the global behaviour.) A direct consequence is that only partial85

information, in the form of a piece of the trajectory, should suffice to describe the entire trajectory (the full hysteresis loop).

The potential function takes the form (Gardiner, 2004; Ditlevsen and Johnsen, 2010)

−U(x) =−1

4
x4 +

β

2
x2 +αx. (2)

The two parameter
:::::::::
parameters

:::
α,β

:
are functions of the freshwater forcing µ. The AMOC state variable Ψ requires an affine

transformation (Cobb, 1980),90

α= α(µ)

β = β(µ)

x= (Ψ−λ)/ν.

To fit the model trajectories we need to find expressions for α and β, and suitable values for the transformation parameters λ

and ν. The
::
In

:::
the

::::::::
literature

::
α

::
is

:::::::
referred

::
to

::
as

:::
the

::::::
normal

::::::
factor,

:::
and

::
β
:::
the

:::::::
splitting

::::::
factor

::::::::::::::::::::::
(Poston and Stewart, 1978).

:::
In

:::
the95
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:::::::::
bifurcation

:::::::
diagram

:::
the value of ν is roughly

::::::::::::
approximately

:
the distance in Ψ between the bifurcation point on the top branch

to the bifurcation point on the lower branch. The
::::::::
Similarly,

:::
the value of λ is roughly

:::::::::::
approximately

:
the Ψ value between the

bifurcation points at µ±. The transformation uses λ to shift the trajectory and ν to scale it. Below we describe the potential

visually and state additional constraints that follow from the demand that the freshwater forcing is the only variable that

determines the dynamical behaviour.100

2.2 Potential description

In Fig. 2 an overview of the qualitatively different forms of potential are shown (−U(x), right panels) together with their

derivative functions (−∂xU , left panels). Dots indicate the location of critical points and are related to the number of wells

in the potential. The top panels show the typical bimodal form (I) with two stable states and one unstable one in the middle.

Below these are the three possible unimodal states (E). These occur for forcing values to the left of µ− and to the right of µ+.105

The panels B1 and B2 are the submanifolds that separates the unimodal regime from the bimodal regime. These two meet in

the cusp point P , as shown in the bottom panels. See Poston and Stewart (1978) for further details.

In Fig. 3 the stability landscape
::::::
diagram

:
is shown where the areas indicated are those with qualitatively different behaviour

seen in Fig. 2. See also Poston and Stewart (1978) for similar diagrammes
:::::::
diagrams. The cusp point P is the singular point

where no proper solution can exist because only the trivial solution
::
(all

::::::::::
parameters

:::
are

:::::
valued

:::
0) is allowed here (both collapse110

:::::::::
bifurcation points µ± and AMOC strength are at zero). The two parameters are α and β and are the two coefficients in the

potential function. Their values change because of their dependency on the forcing value (µ).

Our aim is to arrive at a description that matches a track
:::::
series of µ values across the stability landscape

:::::::
diagram. The two

parameters α,β are independent but can be parametrised
:::::::::::
parameterised by other variables that map them to observations. In

the literature α is referred to as the normal factor, and β the splitting factor (Poston and Stewart, 1978). If parametrised
::
If115

:::::::::::
parameterised

:
by a single variablethe track

:
,
:::
the

:::::
values

:::
of

:::
(α,

::
β)

:
across the stability surface is

::
are

::
a one-dimensional

:::::
subset,

as suggested by the AMOC index. On one side of the cusp point, along the splitting axis (β), only a unimodal regime exists,

while on the other side two regimes exist with the modes at relative distances apart.

2.3 Constraints

With a varying α there exist
::
an

:::::::
interval

:::::::
between

:
two critical points (α±) in between which the distribution is bimodal and120

unimodal outside that interval. Because the AMOC trajectory is 1-dimensional
::
and

::
µ
::
is
::::
also

::::::::::::
1-dimensional, there must be a

relation between α and β that reduces dimensionality from two to one dimensions. When passing through the critical point α+,

the number of potential wells goes from two to one. Similarly, moving through α− changes the number of wells from one to

two (for given µ±). The two critical points of ∂xU , µ±, can be found analytically for µ± real and being degenerate solutions.

It can be shown (Birkhoff and Mac Lane, 1970, p. 106) that the discriminant D = 27α2−4β3 = 0 (
:::
i.e. real solutions) needs to125

be solved for α to obtain the two critical solutions that relate α and β. It is at these solutions that the number of critical points

changes at forcing values µ±. (When D < 0 there are three distinct real solutions which corresponds to the bimodal regime,

when D > 0 there is only one distinct real solution, which corresponds to the unimodal regime.) When any two of the roots are
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I

−∂xU −U

−∂xU −U

E

B1

−∂xU −U

B2

−∂xU −U

P

−∂xU −U

x x

Figure 2. Sample potentials (right) and their derivatives (left) for (top to bottom) the three possible varieties of bimodal state (I), three types

of unimodal state (E), the two pathological cases where D = 0 (B1 and B2), and the cusp catastrophe point (P ). Dots indicate the critical

points. (Scaling is not uniform between panels. Note the choice of negative sign of the potential U .)
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Figure 3. Discriminant determining the stability and number of critical points. The splitting factor β and normal factor α describe the stability

landscape
::::::
diagram. The bimodal regime (I) is separated from the unimodal regime (E) by two lines (B1,2) which meet in the point P .

the same, the number of extrema goes from 3 to 2 (or 1 if all are the same) and the solutions become degenerate (this occurs at

B1,2 in Fig. 3).130

Solving for α gives two solutions that are the critical values as functions of β,

α± =± 2
√

3

9
(β)

3/2 or α± =∓ 2
√

3

9
(β)

3/2
,

with β ≥ 0 for real solutions. The points α± correspond to where the lines B1,2 in Fig. 3 are passed when moving across the

stability surface.

For α+ < 0 −U(1)< 0. This corresponds with the AMOC undergoing a collapse at µ+ from an on state to an off state, and135

the correct choice of sign is

α± =∓ 2
√

3

9
(β±)

3/2
, (3)
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with α± and β± the values corresponding to µ±. The track across the stability landscape is
::::::::
Changing

::
µ

::
in

:::
the

::::::::::
bifurcation

:::::::
diagram

::::::::::
corresponds

::
to

:::::::
moving from curve B2 to curve B1 and Eq. 3 relates the two stability parameters α and β at the two

critical forcing values µ±.140

2.3.1 Linear functions α,β

The value of β does not need to be fixed (to α±:::
α± :::

and
::
in

:::::::
general there is a corresponding β± at the respective critical points)

and a varying β corresponds to a slanted track across the stability landscape in Fig. 3.
:
.We assume linear functions for α and β,

α(µ) = α0 +µδα

β(µ) = β0 +µδβ,145

reducing the dependency to these four parameters. Linear functions are the most simple
:::::::
simplest non-trivial dependencies,

while adding non-linear parameters introduces further unknowns, making this the most parsimonious parametrisation that

captures the first order behaviour. Also, intuitively we can understand the pair (α, β
::
δα,

:::
δβ) as the angle under which the

system moves to the bifurcation point (B1,2) in Fig. 3), which locally only requires the values of α and β up to first order.

Poston and Stewart (1978, p. 59) also remark that the system’s local behaviour is essentially the same between critical points,150

which means a linear expansion should suffice for fitting the upper branch. From this parametrisation we can determine the

offset α0 and rate δα in terms of β0 and δβ,

α+ = α0 +µ+δα=−2
√

3

9
(β+)

3/2 and

α− = α0 +µ−δα= +
2
√

3

9
(β−)

3/2

gives155

δα=−2
√

3

9

(β+)
3/2

+ (β−)
3/2

µ+−µ−
(4)

α0 = α(µ= 0) =

√
3

9

[
−(β+)

3/2
+ (β−)

3/2
]
− 1

2
δα(µ+ +µ−) . (5)

This constrains the values of α, leaving only β as a free variable, which is then parametrised
:::::::::::
parameterised by β0 and δβ. Note

that only solutions with β± > 0 are valid. Also, values for β0 and δβ0 that result in a track that crosses
::::::
crossing

:
B2 in another

point besides β− are unsuitable. (The curves B1,2 are each intersected by a straight line in at most two points, and we require160

intersection at a single point only.)

2.4 Stochastic interpretation

With the deterministic framework in place, the stochastic nature can be reintroduced.We obtain a distribution needed to fit the

parameters of the potential function .
::::
The

:::::::
potential

:::::::
function

:::
can

:::
be

:::::::
replaced

::
by

:
a
::::::::::
distribution

:::::
which

::
is

:::
the

::::::::
stationary

::::::::::
distribution

::
in

:::
the

:::::::::
asymptotic

::::
limit

::::
(i.e.

:::
the

::::
long

::::
term

:::::::::
behaviour

::
of

:::::::
repeated

::::::::
sampling

:::
of

:::
the

::::::::
hysteresis

:::::
loop).

:
As shown by Cobb (1978),165

this distribution belongs to the exponential family.
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For a polynomial function as the potential, the distribution obtained is from the exponential family, which is a generalisation

of the exponential distribution (Balakrishnan and Nevzorov, 2004) where any function can determine the exponent value. The

potential, we had already supposed to be described by
:::
The

:::::::
potential

::
(a fourth-order polynomialin the previous section,

:
)
:
gives

the probability distribution
:::::::::::
(Cobb, 1978)170

P (x,α,β) = Ce−2/σ2U(x) = Ce2/σ
2(−1/4x4+β/2x2+αx). (6)

Note that
::::
The

:::::
factor

:
C = C(α,β) and does not have a (known) analytical expression for the general case,

:::
but

::::
can

:::
be

::::::::
computed

::::::::::
numerically

::::
(and

::::::::
therefore

::::
used

:::
as

:
a
:::::::::
likelihood

:::::::
function

::
in

:::
the

::::
next

::::::::
section).

::::
This

:::
can

:::
be

::::
done

:::::::::
accurately

::::
with

:::
an

:::::::
adaptive

:::::::::
quadrature

::::::
method

::::::::::::::::::
(Piessens et al., 2012)

:
,
::::::
though

::
it

::::::
suffers

::::
from

:::::::::
numerical

:::::::::
limitations. The value of σ is a measure

of intrinsic variation in the AMOC.
::::
Note

:::
that

::
σ
::
is

:
a
::::::::
measure

::
of

:::::::
additive

::::
noise

::::::::
(because

:::
we

::::::
assume

::::
that

:
σ
::

is
:::
not

:::::::::
dependent

:::
on175

::
µ)

:::
and

:::::
other

:::::::
choices,

::::
such

:::
as

:::::::::::
multiplicative

::::::
noise,

:::
can

::
be

:::::
made

:::::::::::::::::::
(Das and Kantz, 2020)

:
. See Gardiner (2004) for a derivation

of this distribution using the Fokker-Planck equation, from which also the Langevin equation can be derived. Note
:::::
Also,

::::
note

that σ→σ/ν because to
::
of

:
the scaling with ν we introduced in Section 2.1.

A sample collapse trajectory
::
An

:::::::
example

::::::::::
bifurcation

:::::::
diagram with corresponding distribution is shown in Fig. 4. The grey

:::::
purple

:
lines indicate the (fixed) positions of the bifurcation points. The dashed grey line marks the positions of the unstable180

solution (repellor) in between the two attractor branches which separates the two basins of attraction. Note that the bifurcation

points are extremal in the sense that no bimodality can exists beyond them. With the trajectories being noisy and driven along

the attractor, there is (always) some probability of a ‘noise-induced’ transition. The state shifts from one basin of attraction

to the other, crossing the repellor, and the AMOC rapidly moves from one attractor to the other. For this reason, the sampled

bimodality region might be larger than is apparent from a particular sample AMOC trajectory.
:
A
::::::

larger
::::
noise

:::::
level

:::
(as

::::
seen

::
in185

::::::
AMOC

::::::::::
observations

:::::::::::::::::
Smeed et al. (2018))

::::::
would

:::::::
increase

::
the

:::::::::
likelihood

::
of

:
a
:::::::
collapse

::::::
before

:::
the

::::::
AMOC

:::::::
reaches

:::
the

:::::::::
bifurcation

:::::
point.

The distributions in Figs 5 show that qualitatively distinct behaviour occurs when α or β are varied. For both parameters,

a change from a unimodal to a bimodal distribution can be seen. These changes correspond directly to
::::
Each

::::::
distinct

::::::
shape

::
of

::
the

::::::::::
distribution

:::
can

:::
be

::::::::
identified

::::
with

:::
one

:::
of the potential functions in Fig. 2. In principle, a change in on only one of the two190

structural parameters (α and β) can move the distribution between unimodal and bimodal forms.

The normalisation of the family of distributions depends on the values of the parameters. Therefore, we are required to

calculate the normalisations factors for each parameter set. This cannot be done analytically, but can be done accurately with

an adaptive quadrature method (Piessens et al., 2012), though it suffers from numerical limitations.

We are now in a position to apply the above to collapse trajectories from climate models.195

3 Simulated AMOC collapse parameter estimation

We describe how to find an optimal solution under the framework arrived at
::::::::
described in the previous section. Using a Bayesian

optimisation procedure, estimated values of β0 and δβ can be found, together with the scaling parameters ν and λ. We will

also estimate the values for µ±, resulting in a six parameter list that describes (the upper branch) of an AMOC collapse.
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Figure 4. Example trajectory with corresponding distribution. Parametrised
::::::::::
Parameterised

:
by λ= 15, ν = 20, σ = 0.12ν, µ+ = 0.2, µ− =

0, β0 = 0.2, δβ = 0; α under constraints in Eqs 4 and 5. The distribution of one of the attractor branches (red: on state, blue: off state)

deforms when closer to the bifurcation points which are connected though the repellor that forms the trench of the distribution (dashed line).

Top ± symbols indicate unimodal (+) or bimodal (−) regime based on the discriminant value (D).The value of σ is relatively large and is

chosen for clarity.
:::
The

:::::
purple

::::
lines

::::::
indicate

:::
the

:::::
(fixed)

:::::::
positions

::
of

:::
the

::::::::
bifurcation

:::::
points.
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α

x

P

β

x

Figure 5. Left: Distributions from the exponential family (Eq. 6) where the parameter β is kept at a fixed value and α is varied. The

distribution transforms from unimodal (back), to bimodal (middle), to a different unimodal distribution (front). The unimodal states have

distinct singular maxima. The bimodal states have a dominant
::::
larger and a weak

:::::
smaller mode, depending on the position within the bimodal

regime; in the middle and inversion from weak to dominant takes place. The relative strength between dominant and weak
::::

modes
:
depends on

σ. Right: Distributions from the exponential family (Eq. 6) where the parameter α is kept at a fixed value and β is varied. A broad unimodal

state (at the back) splits into distinct bimodal states (to the front). In the middle a critical point exists, called the cusp (point P in Fig. 3)

where the split occurs.

The parameters β0 and δβ are independent to
::
of each other, but need to cross the curves B1,2 in Fig. 3) to match the200

corresponding values for µ±. This constraint is satisfied by the resulting values for α0 and δα. (This can still lead to solution

candidates that are not suitable for the collapse trajectories and are eliminated in the sampling process below.) The scaling

parameters are not fully independent because λ < ν
::::
(the

:::::
offset

::::::
cannot

::::::
exceed

:::
the

:::::::
scaling) and knowing where the upper and

lower branches are located already gives a rough estimate.

3.1 Parameter estimation205

Cobb (1978) was able to fit the distribution in Eq. 6 using optimisation techniques (which were numerically unstable and not

very flexible). Though the estimates for the scaling parameters λ and ν can be quite good with this approach, estimating the

trajectory parameters β0 and δβ requires a more flexible method. Knowing which distribution to use, we can fit its parameters

under some measure of goodness-of-fit by machine learning. Specifically, we can use Bayes’ rule to maximise the likelihood

of a parametrised Langevin model Lσ(ν,λ,β0, δβ,µ±) given a trajectory
:::::::
estimate

:::
the

::::::::
posterior

:::::::::
probability

::::::::::
distribution

::
of

:::
the210

:::::::::
parameters

:::::
given

:::
the

:::
data

:
Ψ(µ)(Bolstad, 2010),

P (ν,λ,β0, δβ,µ± |Ψ),.

11



to arrive at the (linearised) posterior distributions of ν, λ, β0, δβ, µ± under the observed Ψ(µ). Bayes’ rule tells us the

probability of a given observation Ψ given the probability of the parameters (marginal on the left, or posterior) is proportional

to the probability given the parameters (marginal on the right, or prior) and the full distribution (likelihood),215

P (ν,λ,β0, δβ,µ± |Ψ)∝ P (Ψ | ν,λ,β0, δβ,µ±)·P (ν,λ,β0, δβ,µ±).

(The right-hand side of Bayes’s rule is called the Bayes factor and can be normalised by the probability of the observed

trajectory P (Ψ) (called the evidence) to obtain an equality.)

Sampling different values from the parameters’ prior distributions will give corresponding values for the posterior dis-

tributions. These resultant posterior distributions can, in turn, be used as prior distributions, yielding a chain of sampled220

parameter vectors. A Bayesian sampler chooses successive values that tend towards greater likelihood of the model, given the

observed trajectory, and will converge towards an optimal fit. This is roughly
:::::::::::
Conceptually,

:::
this

:
what an MCMC (Markov chain

Monte-Carlo) optimiser does (Bolstad, 2010). A widely used sampling algorithm is the Metropolis algorithm (Hastings, 1970)

:::::::::::::::::::::::::::::::::::
(Hastings, 1970; Bernardo and Smith, 2009), which we also use here.1

The models can be fit with uninformative priors, but the sampling process is time consuming because the evaluation of the225

potential (to calculate P (Ψ | ν,λ,β0, δβ,µ±)) requires numerical integration (using a quadrature method), which is costly to

evaluate (the exponential family of distributions cannot, in general, be evaluated analytically).

3.1.1 Prior distributions

The prior distribution of a parameter represents all the information known about that parameter before confrontation with the

observed values (Bolstad, 2010). With ν and λ introduced earlier, the state variable x undergoes an affine transformation and230

normalises the polynomial. These transform the AMOC state variable (Ψ) with a shift (λ) and a scaling (ν). The shift λ cannot

exceed the normalisation ν, giving an upper bound on λ. Also, we note the lower limit of the lower branch, meaning λ must be

larger than this minimum value. Similarly, the scaling ν cannot be larger than the maximum value of the AMOC on the upper

branch. We expect the linear parametrisation of α and β introduced in the previous section to be O(1).

We are nonetheless still faced with infinite support on the coefficients of the expansion of the parameters (β0, δβ). We235

therefore transform β0 and δβ, with support (−∞,∞), using the arctan function to map to (−π/2,π/2). After such a transfor-

mation, we can sample from the flat prior distribution on that interval with most of the probability mass on ‘reasonable’ values

(i.e. O(1)). For β0 and δβ this transformation will be usedand α will follow from the constraints in Eqs 5 and 4. An overview

1This algorithm has been implemented in many software packages.
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of priors is
:::
The

::::::::
following

::::
prior

:::::::::::
distributions

:::
are

::::
used:

ν = U(min(AMOC),max(AMOC))240

λ= U(min(AMOC),ν)

µ+ = U(µS+,µUP)

µ− = U(µDN,µS-)

tan(β0) = U(−π/2,π/2)

tan(δβ) = U(−π/2,π/2),245

with min(AMOC) and max(AMOC) is the minimum/maximum values in an observed collapse trajectory. U is the uniform

distribution on indicated intervals. The intervals values of the collapse points µ± we stipulate as being bounded by where the

trajectories merge (µUP and µDN) and the inner values (µS- and µS+) observed in the trajectories (within which bimodality is

demanded, see Fig. 6). 2

3.2 Fitting EMIC collapse trajectories250

An AMOC collapse was induced in six models of intermediate complexity in Rahmstorf et al. (2005) by applying a freshwater

forcing to the North-Atlantic subtropical gyre region that reduced the salinity in the subpolar gyre to its north. In
:::
Six

::
of

:::::
these

::::::
models

::::
have

:
a
::::
3-D

:::::
ocean

:::::::::::
components;

::
in Fig. 6 the trajectories of those collapses are reproduced (right column, the freshwater

flux has been labelled µ here) together with their numerical derivatives (left column).
::::::
columns

:::
in

:::
the

:::::::
panels).

::
In

::::
Tab.

::
1

:::
the

::::::
models

:::
are

:::::
listed.

::::
The

::::::
forcing

:::::
values

:::
of

:
µ
:::
are

::::::
known

:::
and

:::
the

:::::
same

:::
for

::::
each

::::::
climate

::::::
model.

:::::
Each

:::::
model

::::
was

:::
run

::
to

::::::::::
equilibrium255

::
for

:::::
each

::::::
forcing

:::::
value;

:::::
there

::
is

:::::::
therefore

:::
no

::::::
explicit

::::
time

::::::::::
dependence

::
in
:::
the

:::::::::
hysteresis

:::::
loops

::::::
shown. Both the AMOC strength

and the forcing value have units Sv (=106 m s−1). Note that the bifurcation points (µ±) must lie within the range where the

trajectories appear bimodal.

The trajectories are taken from the numerical Earth System Models (EMICs) Rahmstorf et al. (2005, Fig. 2, bottom panel)

by extracting the data points directly from the graphic in the electronic publication3. The numerical derivatives show where the260

AMOC changes quickest as a response to the change in freshwater forcing. Each model has two peaks where the changes are

largest, one for each change between stable branches. These peaks are located at the repellor in between the two attractors (the

stable branches). At the repellor only unstable solutions exist and the AMOC is driven to a more stable solution, away from

these states.
2To ensure the signs

:::::
exclude

:::::::
parameter

::::
values

:::
that

:::
lead

::
to
:::::::::
intersections of the discriminants are the same

:::
B1,2::::

more
:::
than

::::
once, we added an additional

constraint as a sharp-peaked likelihood on the discriminant that follows from the proposed solutions and that follows from
:::::::
artificially

::::::
decrease

:
the

observed trajectory
::::::

likelihood
::
of

::::
these

:::::
values. This helps

:::
The

::::::::
discriminant

::
of
:

the fitting process by explicitly excluding invalid solutions with incorrect

modality
:::::::
polynomial

::
at

:::
each

:::::
forcing

::::
value

::::::
indicates

::::
when

::
this

::
is

:::::
needed.

3
::
The

::::
figure

:::
we

:::
used

::
is

:
a
::::
vector

:::::
graphic

:::
and

::
the

:::
data

::
set

:::
can

::
be

::::::
retrieved

:::
from

::
it
::
by

::::::
inverting

::
the

:::
plot

::::::
matrices

:::
used

::
to

:::
map

::
the

::::::
original

:::
data

:
to
:::
the

::::
values

::
in

::
the

::::
graph.

:::
We

:::
can

:::::
replicate

:::
the

:::
data

:
in
:::

this
::::::
manner.
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Figure 6. Absolute values of numerical derivatives (left) from the trajectories of AMOC strength as function of freshwater forcing to the right

(taken from Rahmstorf et al. (2005, Fig. 2, bottom panel),
:::::::::
reproduced

::::
with

::::::::
permission

::::
from

:::
the

::::::::
publisher:

:::::::
American

::::::::::
Geophysical

:::::
Union).

In red the upper branch, blue the lower branch. Top to bottom
:::
Left

::::::
column: UVic

:::::
Bremen, MOM iso

:::::::::
ECBilt-CLIO,

:::::::::::::
C-GOLDSTEIN;

::::
right

::::::
column: MOM hor, C-GOLDSTEIN, Bremen

::::
MOM

:::
iso, ECBilt-CLIO

::::
UVic.Vertical solid lines mark µ= 0 (blue) and µ= 0.2 (red); vertical

dashed lines mark the chosen boundary values for µ±. All values in
::::
have units of Sv.
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:::::
model

::::
#data

:::::
points

::::
ocean

:::::::::
component

::::::::
atmosphere

:::::::::
component

:::::::
reference

::::::
Bremen

:::
2461

: ::::::::
large-scale

:::::::::
geostrophic

:::::
energy

::::::
balance

::::::::::::::
Prange et al. (2003)

::::::::::
ECBilt-CLIO

::
243

: ::
3D

:::::::
primitive

::::::::
equations

:::::::::::::
quasi-geostrophic

:::::::::::::::
Goosse et al. (2001)

::::::::::::
C-GOLDSTEIN

: ::
849

: ::
3D

::::::::
simplified

: ::::::::::::
energy-moisture

::::::
balance

::::::::::::::::::::
Edwards and Marsh (2005)

:::::
MOM

:::
hor

:::
1233

: ::
3D

:::::::
primitive

::::::::
equations

::::::
(MOM)

:::::
simple

:::::
energy

::::::
balance

: :::::::::::::::::::::::::
Rahmstorf and Willebrand (1995)

:::::
MOM

::
iso

: :::
1442

: ::
as

:::::
above,

:::
with

::::::::
isopycnal

:::::
mixing

:::::
simple

:::::
energy

::::::
balance

:

::::
UVic

::
464

: ::
3D

:::::::
primitive

::::::::
equations

::::::
(MOM)

::::::::::::
energy-moisture

::::::
balance

:::::::::::::::
Weaver et al. (2001)

Table 1.
::::::::
Overview

:
of
::::::

models
::::
used.

::::
Each

::::
data

::::
point

::
is

:::::::::
independent

::::
from

::
the

:::::
others

::::::
because

::::
each

::
is

::
the

:::::
result

::
of

:
a
::::
quasi

:::::
steady

::::
state

:::
run.

::::
The

:::::
number

::
of
::::
data

:::::
points

:::
used

::
is
:::::
given.

:::
The

:::::::
summary

::
of
:::
the

::::
type

:
of
:::::

model
:::::::::
component

:::
and

::::::::
references

::
are

:::::
taken

::::
from

:::::::::::::::::
Rahmstorf et al. (2005).

model σ µ− µ+ present day

UVic
::::::
Bremen

:
0.260

::::
0.181 [-0.020

:::::
-0.018, 0.010] [0.188, 0.225

::::
0.120,

:::::
0.220] ( 0.080, 25.0

::::
0.070,

::::
18.8)-

MOM iso
::::::::::
ECBilt-CLIO 0.216

::::
0.176 [-0.010, 0.020

:::::
-0.044,

:::::
0.030] [0.150

::::
0.115, 0.210] (0.050, 22.8)-MOM hor 0.526-0.010, 0.0100.130, 0.200( 0.110, 20.0)-

:::::
-0.110,

:::::
18.2)+

C-GOLDSTEIN 0.122 [-0.100, 0.035] [0.115, 0.190] (-0.100, 29.0)+

Bremen
:::::
MOM

:::
hor 0.181

::::
0.526 [-0.018,

:::::
-0.010,

:
0.010] [0.120, 0.220

::::
0.130,

:::::
0.200] ( 0.070, 18.8)

::::
0.110,

:::::
20.0)-

ECBilt-CLIO
:::::
MOM

:::
iso 0.176

::::
0.216 [-0.044, 0.030

:::::
-0.010,

:::::
0.020] [0.115,

::::
0.150,

:
0.210] ( -0.110, 18.2)+

::::
0.050,

:::::
22.8)-

::::
UVic

::::
0.260 [

:::::
-0.020,

::::
0.010] [

:::::
0.188,

::::
0.225] (

:::::
0.080,

:::::
25.0)-

Table 2. Overview of models, the estimated standard deviation with the upper branch fitted to a linear function (note that the original

trajectories had already been smoothed), the ranges of µ±, the location of present day in the models, and whether the present day value is in

the unimodal regime (+) or not (-). All values in
:::
have

:
units of Sv.

If no other mechanisms apart from the salt advection are important we expect the bifurcation points to lie beyond the observed265

transition points because a noise-induced transition pushes the AMOC into the off-state sooner. (Note that although the collapse

points are expected to lie before these peaks, low levels of noise will obscure this effect.) The dashed lines indicate the regions

where we will search for the optimum values of µ±. These differ from the fixed 0 and 0.2 values chosen by (Rahmstorf et al.,

2005), who also shifted the trajectories to align on these values. The dragged-out descent to the lower branch (e.g. the model

Bremen) indicates that the salt-advection mechanism does not necessarily result in an abrupt collapse in the trajectory.270

Before fitting, the upper and lower branches were extended to the left and right to fill the space of −0.2< µ < 0.4. A linear

fit was use to produce additional values of the corresponding branches (at the same density of those points already present).

All models then occupy the same freshwater forcing space. This is desirable because not all models have a lower branch that

is fully sampled (specifically, UVic). The lower branch was extended with a negative rate of increase if the lower branch was

moving upwards with increasing µ (MOM hor and MOM iso).275

Because we want
:::
Our

:::::
main

::::
goal

:
is
:
to model the collapse of the AMOC, only the behaviour of the upper branch and

::::::::
transition

::::
from

:::::::::
on-branch

::
to

:::::::::
off-branch,

::::
that

::
is,

:::
the

:::::
upper

:::::
right

:::
half

:::
of

:::
the

::::::::
hysteresis

::::::
curve,

:::
and

:::
not

:::
so

:::::
much

:::
the

::::::::
dynamics

::::
that

::::::
govern
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::
the

::::::
lower

::::::
branch.

:::::
Also,

:::::::
because

:::
we

:::::::
assume

::::
that

:::::
other

::::::::
dynamics

::::::
govern

:::
the

::::::
lower

::::::
branch

:::
and

::::
our

::::::
simple

:::::
model

::::
has

::
to

:::
be

:::::::
extended

::
to
:::::::

account
:::
for

:::::
those

:::::::::
dynamics.

:::
We

::::::
ignore

:::
the

::::
data

:::
on the lower branch beyond µ+ is of interest. We expect these

:::::
before

:::
the

:::::::
collapse

:::::
point

::
so

:::
the

:::
fits

::::::
would

:::
not

::
be

:::::::::
influenced

:::
by

::::
these

::::::
points.

:::
We

::::::
expect

:::
the

:::::::::
remaining points of the trajectory280

do
:
to

:
be dominated by the salt-advection mechanism. The hysteresis loop is exemplified in the trajectory of C-GOLDSTEIN.

This model shows a smooth path with a relatively rapid transition region–but not a collapse as such by appearance.

We start by identifying some characteristic points in the trajectories in Tab. 2. The σ (variance of the process) of the models

is not given in Rahmstorf et al. (2005) or elsewhere in the literature, but was estimated as the deviation with a fitted function

to (part of)
:::
the

:::
left

::::
most

:
the top branch(note

:
.
:::::
(Note that smoothing was already applied in Rahmstorf et al. (2005), lowering285

the variance of the trajectories)
:
.
:::::::
Because

:::
we

::::
want

:::
to

::
fit

:::
the

:::::::
collapse

::::::::
trajectory

:::
as

:::::
given,

:::
we

:::
use

:::
the

::::::::
variance

::
as

::::::
evident

:::::
from

::
the

::::::
data.)

::
In

::::::::
principle,

::
σ
:::::
could

::::
also

:::
be

::::::::
estimated

::
as

::
a

::::::::
parameter

:::
in

:::
the

::::::::
Bayesian

:::::::::::
optimisation,

:::
but

::::
that

:::::
would

::::::::::::
unnecessarily

::::::
enlarge

:::
the

:::::
search

:::::
space. Note that the ‘off-state’ of the AMOC in these models is not 0, but ∼ 2Sv of AMOC strength. If the

salt-advection mechanism were the only operative effect, we expect this value to be ≤ 0. If a reverse advection cell emerges as

the lower hysteresis branch, this value is negative.290

The model trajectories are apparently driven by the forcing value, which means we should be able to explain the behaviour

of the hysteresis using this variable as the only driver applied to the Langevin model.

In Fig. 7 fitted distributions are shown for linearly parametrised sample paths through the stability space (also tabulated

in Tab. 7). The β parameter changes linearly and α follows from the constraints in Eqs. 4 and 5. Blue and red lines indicate

the prior bounds for µ− and µ+, respectively.
::
3).

::::
The

::::::::
parameter

::::::
values

::
of

:::::
these

:::::::::::
distributions

:::
are

:::
the

::::::
means

::
of

:::
the

::::::::
posterior295

::::::::::
distributions.

:
The dashed grey line marks the positions of the unstable solution (repellor) in between the two attractor branches

which separates the two basins of attraction.

model ν
:::::
Bremen

:
λ
::::::::::
ECBilt-CLIO β0 :::::::::::

C-GOLDSTEIN
:

δβ
::::
MOM

:::
hor

:
µ− ::::

MOM
:::
iso µ+::::

UVic

UVic
:
ν 23.32

:::
20.8

::::::::::
±1.8 · 10−1 10.39

:::
14.1

:::::::::
±2.5 · 10−1 0.3523

:::
24.0

:::::::::
±2.4 · 10−1

:
-1.051

:::
27.9

:::::::::
±2.5 · 10−1

:
-0.004

::::
25.4

:::::::::
±3.3 · 10−1 0.219

:::
23.3

::::::::::
±3.7 · 10−1

MOM iso
:
λ 25.38

:::
8.18

::::::::::
±6.5 · 10−3 9.395

:::
8.37

:::::::::
±2.0 · 10−2 0.293

:::
10.1

:::::::::
±1.5 · 10−2 -1.259

:::
11.4

:::::::::
±4.5 · 10−2

:
0.020

:::
9.41

::::::::::
±3.4 · 10−2 0.159

:::
10.4

::::::::::
±9.9 · 10−2

MOM hor
::
β0 27.93

::::
0.278

:::::::::
±5.2 · 10−3 11.36

::::
0.250

:::::::::
±9.8 · 10−3

:
0.2719

::::
0.272

:::::::::
±5.5 · 10−3 -1.339

::::
0.272

::::::::::
±4.6 · 10−3 0.010

::::
0.293

:::::::::
±1.1 · 10−2 0.136

::::
0.352

:::::::::
±1.2 · 10−2

C-GOLDSTEIN
::
δβ 23.99

::::
-1.34

:::::::::
±2.5 · 10−2 10.12

::::
-1.30

:::::::::
±5.0 · 10−2

:
0.2715

:::
-1.46

::::::::::
±3.1 · 10−2 -1.458

::::
-1.34

:::::::::
±3.2 · 10−2

:
0.035

::::
-1.26

:::::::::
±3.6 · 10−2 0.129

::::
-1.05

:::::::::
±3.8 · 10−2

Bremen 20.75
::
µ− 8.184

::::
0.010

:::::::::
±9.4 · 10−5 0.2778

::::
0.029

:::::::::
±8.9 · 10−4 -1.339

::::
0.035

::::::::::
±5.4 · 10−5 0.010

:::::::::
±1.7 · 10−4 0.139

::::
0.020

:::::::::
±1.5 · 10−4

:::::
-0.004

:::::::::
±8.2 · 10−3

ECBilt-CLIO
:::
µ+ 14.1

:::
0.14

:::::::::
±5.8 · 10−4

:
8.369

:::
0.13

:::::::::
±1.1 · 10−3 0.2497

:::
0.13

:::::::::
±5.8 · 10−4

:
-1.303

:::
0.14

:::::::::
±2.3 · 10−3

:
0.029

:::
0.16

::::::::::
±1.7 · 10−3 0.131

:::
0.22

::::::::::
±2.2 · 10−3

Table 3. Parameters
::::
Mean

:::::
values

:::
and

:::::::
standard

:::::::
deviations

::
of
:::::::::
parameters corresponding to the fitted functions in Fig 7.

The fits with a linear track
:::::
series through the (α,β) parameter space result in a mismatch between the behaviour seen on

lower branches and that on the upper branches. In particular, the upper branch shows a non-linear degradation, where the fitted

distributions do not. This is less obvious for UVic and ECBilt-CLIO, but especially apparent for the two MOM models.300
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Figure 7. Estimated distributions under changing µ. Top-left to bottom-right
:::
Left

::::::
column: UVic

:::::
Bremen, MOM iso

::::::::::
ECBilt-CLIO,

::::::::::::
C-GOLDSTEIN;

::::
right

:::::::
column:

:
MOM hor, C-GOLDSTEIN, Bremen

:::::
MOM

::
iso, ECBilt-CLIO

::::
UVic. Vertical dashed lines mark the cho-

sen boundary values for µ±, with solid lines the fit values. Grey dashed line indicates the local minimum in the distribution (trench). Top ±
symbols indicate the sign of the discriminant D for the fitted distribution (+ for unimodal, − for bimodal). Distribution spreads have been

inflated with a factor ν/2 to make them visible. All values in
::::
have units of Sv.
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4 Discussion and conclusion

We derived a simple model of AMOC collapse based on Langevin dynamics (Eq. 1) with a changing freshwater forcing (µ) and

applied this to EMIC simulated collapse trajectories taken from Rahmstorf et al. (2005). The collapse occurs at a bifurcation

point µ+ which appears smaller than given in (Rahmstorf et al., 2005). A corresponding bifurcation point µ− relates an abrupt

transition back to the on-state. Additionally, a linear parameterisation through state space couples to the freshwater applied to305

the North Atlantic subtropical gyre region. The AMOC also requires an offset and scaling parameter to be fitted (λ and ν).

These six parameters are sufficient to describe the abrupt collapse /re-invigouration of the AMOC that leads to a hysteresis

loop under varying freshwater forcing.
:::
The

:::::::::
resurgence

::
of

::::
the

::::::
AMOC

::
is

:::
not

:::
the

:::::
same

::
as

:::
the

:::::::
collapse

:::::::
process

:::
and

:::
we

::::
did

:::
not

::::::
attempt

::
to

::::::
obtain

::
an

:::::::
accurate

::
fit

::
of

::::
that

::::
part

::
of

:::
the

::::::::
hysteresis

:::::
loop.

:::
Any

:::::::
process

:::::
which

::::::
allows

::::
two

:::::
stable

:::::
states

::::
with

:::::
rapid

::::::::
transitions

::::::::
between

::::
them

::::
and

::
an

::::::::::
asymmetric

:::::::
response

::
to
:::
the

:::::::
forcing310

::::
could

::
in
::::::::
principle

::
be

::::::::
described

:::
by

:::
our

::::::
method.

:::::
Other

::::
such

::::::::::
geophysical

::::::::
processes

:::::
might

:::
be

::
ice

:::::
sheet

::::
mass

::::
loss

::::
(e.g.

::::::::::::::::::
Robinson et al. (2012)

:
),
:::::
forest

:::::::
dieback

::::
(e.g.

:::::::::::::::
Staal et al. (2016)

:
),

:::
and

::::
lake

:::::::
turbidity

::::::::::::::::::::::::
(Scheffer and van Nes, 2007)

:
.

The AMOC collapse and re-invigouration
:::::::::
resurgence

:
seen in these models cannot be completely fitted with Langevin dy-

namics due to the asymmetry in the lower vs the upper branch. It is, however, possible to fit the change in the upper branch

of the AMOC–the ‘on-state’–as it moves towards a critical point and the dominant salt-advection feedback mechanism breaks315

down.

We note that Rahmstorf et al. (2005) determine the AMOC strength as the maximum of the meridional volume transport

in the North Atlantic and might explain the asymmetry between the two branches. If for a reverse overturning cell the wrong

metric has been used then the lower branch location is not correct. It is conceivable that the Langevin model results in better

fits if Rahmstorf et al. (2005) had sampled |max(Ψ)|
:::::::
max(|Ψ|)

:
instead of max(Ψ), which would have resulted in a better320

metric of the lower branch. With the metric used it is not apparent whether a reversed overturning cell was present or not

because it was not sampled if the AMOC had taken on a negative value. Therefore, there is no obvious way to model the

asymmetry between the two branches, and obtain a full description. The two branches could be separated by associating each

with a different overturning cell. The upper branch is identified with the NADW-driven cell, while a reverse cell is responsible

for the lower branch. If indeed a reverse overturning cell (as described in e.g. Yin and Stouffer (2007)) dominates the lower325

AMOC branch, two separate overturning cells are responsible for the observed trajectories, and the two branches then cannot

be expected to fit with the same parameter set.

However, another possible explanation is that (two) separate mechanisms are responsible for the upper and lower branch

dependency on µ. Possible mechanisms include possible mechanisms include the influence of wind-stress, SPG
:::::
North

:::::::
Atlantic

:::::::
subpolar

::::
gyre convective instability (Hofmann and Rahmstorf, 2009), or other pathways of deep water formation (Heuzé, 2017).330

Also, changes in the ITCZ (inter-tropical convergence zone) due to ocean-atmosphere feedbacks are possible (Green et al.,

2019); these can, in turn, can affect the salinity of the North Atlantic subtropical gyre region. However, Mecking et al. (2017)

showed that for a high-resolution model the salt-advection feedback was nevertheless stronger than the ITCZ effects. Also,

Gent (2018) notes that the EMICs in Rahmstorf et al. (2005) have reduced air-sea interaction feedbacks compared to more
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modern and more complicated fully coupled ocean-atmosphere models; stronger feedbacks lead to greater AMOC stability.335

Other wind coupling can occur further south through a coupling with the ACC (Antarctic Circumpolar Current) which is based

on the thermal wind relation (Marshall and Johnson, 2017).

A third explanation is that deep water formation is a local process, and as a result an asymmetry is to be expected between

the two branches. Local convection can, however, be subject to global controls and be associated with a sinking branch which

occurs in conjunction with deep convection, but is not directly driven by it, see Spall and Pickart (2001) for
:
a detailed discus-340

sion. The AMOC could develop a reverse cell where the overturning is driven by Antarctic Intermediate Water (AAIW), which

is not part of the conceptual picture presented here (Yin and Stouffer, 2007; Jackson et al., 2017). The reverse cell introduces

an asymmetry in the collapse trajectories because the driver of deep water formation is not in the North Atlantic, and might

break our assumption that both the on and off branches are controlled by the same process. It is therefore difficult to estimate

the return path of the AMOC if the lower branch has additional drivers from the dominant salt-advection mechanism of the345

upper branch. Forcing values appropriate for the lower branch might be different than those found for the upper branch.

Furthermore, the methodology used in this paper comes with difficulties in the numerical implementation. The fit procedure

requires the normalisation of each distribution in the µ timeseries. Because no analytic solution exist a numerical approach is

needed. The numerical integration adds to the computational costs of the fits. The Markov chain method is
:::
also prone to find

local optima. Also, the cost of numerical integration necessitates stopping the fits at shorter chains than (perhaps) are needed, an350

analytic formulation of the integrand would alleviate this but none exists to our knowledge. Modern sampling algorithms allow

for gradient information to be used, which is effective when sampling a higher dimensional parameter space (the Metropolis

algorithm used in this paper has greater difficulty as the dimensionality of the parameter space increases). It is possible for

non-admissible solutions to be generated; in which case, the sampler is effectively reduced to a random searcher, till its finds a

solution subspace to optimise under. (Tighter constraints on the prior distributions could be beneficial here. )355

As stated in Rahmstorf et al. (2005), the EMIC trajectories had already been smoothed, resulting in a smaller variance;

a smaller variance leads to distributions that are more sharply peaked. This increases the computational cost of integrating

the distributions numerically. Smoothing can also add to the inertia seen in the collapses, but might be due to other reasons

such as stopping the EMIC simulations before equilibration of the AMOC collapse, leaving the AMOC in a winding-down

state. Also, it is not clear how long the models in Rahmstorf et al. (2005) were integrated per freshwater forcing value. If the360

integrations were done for an insufficient amount of time, the AMOC collapse is incomplete, leaving the measured value out

of equilibrium. The intermediate points in the collapse trajectories beyond the bifurcation points indicate that either the sample

points are inaccurate or other processes are involved in the AMOC.

Finally, the fitted collapse trajectories were done on an ensemble of EMICs, which arguably are not sufficiently representative

of the real climate.
::
As

::::::
noted

::
by

:::::::::::
Gent (2018),

:::
the

:::::::::
hysteresis

:::::::::
behaviour

:::
has

:::
not

:::::
been

::::::::::
investigated

::::
fully

:::
in

::::::
models

::
of
:::::::

greater365

:::::::::
complexity

::::
than

:::::::
EMICs;

::
the

::::::::::::
computational

::::
cost

:::::
being

:::
the

:::::::::
prohibitive.

:
The question arises to what extent the procedure outlined

in this paper can be applied to more complicated models such as those in the CMIP archives (Taylor et al., 2012). These models

do not show a full collapse trajectory like those in Rahmstorf et al. (2005), which means no sample points of the lower branch

are available. If it is indeed possible to use direct numerical stochastic integration of the Langevin equation, no lower branch
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needs to be sampled. Sampling from the prior distributions and optimising under the observed upper branch should also lead370

to robust estimates. Another advantage is that the probability distribution can be assumed Gaussian when on the upper branch.

::::
Also,

::::::
CMIP

:::::::
provides

:::::
times

:::::
series

::
of

:::::
forced

::::
runs.

:::
To

:::::::
validate

:::
our

:::::::
method,

:
a
:::::::
transient

:::
run

:::::::
requires

::::::
known

::::::::::
equilibrium

:::::::::
bifurcation

:::::
points,

::::::
under

:
a
::::::
slowly

::::::::
changing

::
µ,

:::
and

:::::::
include

::
an

:::::::
AMOC

:::::::
collapse.

:
Using a simple box model, transition probabilities for an

AMOC collapse have been determined by Castellana et al. (2019). From the CMIP ensemble a similar estimate might be

obtainedusing a direct numerical stochastic integration approach
:
,
::
or

::
at

:::::
least

:::
the

:::::::
collapse

::::::::::::
characteristics

:::
of

::::::
various

:::::::
models375

:::
can

::
be

:::::::::
compared. Provided the CMIP models accurately capture the behaviour of the real AMOC and the freshwater forcing

counterpart (our µ) can be identified, an estimate can be made of the distance of the current climate state to the collapse

point.
:::::::::
Freshwater

::::::::
quantities

::::
such

:::
as

:::
Mov:::::

have
::::
been

::::::
posited

::::
(e.g.

::::::::::::::::::
Drijfhout et al. (2011)

:
)
::
as

:::::
being

:::::::
suitable

::::::::
indicators

::
of

:::::::
AMOC

:::::::
stability.

:
It
::
is
:::::::
possible

::::
that

::::
Mov :::::

relates
::
to

::
µ

:::
and

:::
can

:::
be

::::
used

::
to

::::::
extend

:::
our

::::::
method

::
to

::::::::
transient

::::
runs,

:::
but

::
at

::::::
present

::
in

::
is

::::::::
unknown

::::::
whether

::::
this

:::
can

:::
be

:::::
done. It is therefore still an open question how probable an AMOC collapse is in more realistic models,380

and reality, but with the method outlined in this paper a first step could be made in answering those questions
:::
this

:::::::
question.
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The paper by van den Berk et al "Collapse of the Atlantic Meridional Overturning de-
scribed by Langevin dynamics" is an interesting application of the classic analytical
approach of Poston and Stewart with introduced stochasticity for modelling AMOC tra-
jectories of the EMICs published in [Rahmstorf et al 2005]. I think the paper should be
published after a minor revision.

R: We thank the reviewer for helpful comments and suggestions. Below you can find our responses.

The title should be corrected: "Modelling collapse of the Atlantic Meridional Overturn-
ing using the Langevin dynamics".

[x]R: Our suggestion would be "Characterisation of Atlantic Meridional Overturning hysteresis 
using Langevin dynamics" to emphasise the purpose of the paper better, that is, using a reduced set 
of numbers to quantitatively describe the AMOC collapse under a freshwater forcing.

As the authors admit themselves, EMICs are not sufficiently, representative of the real climate. 
Also, given the number of parameters the authors use to fit their model (six) and their geometrical 
origin (see description of ν and λ), I understand why the authors claim that only the freshwater 
forcing is the variable that determines the dynamical b

[x]R: Unfortunately, here seems to be a typesetting problem at ESD that renders some of the 
comments to be unreadable. As we understand it, the question is about using only freshwater as 
forcing for studying AMOC stability. The other possible forcing effect is thermal, and in principle a 
sufficiently large warming could also halt deep water formation and induce a collapse of the 
AMOC. However, in this paper we intend to explain the hysteresis behaviour shown in Rahmstorf 
et al. (2005), which is obtained by changing the freshwater forcing. As a result, we use this forcing 
as the dynamical variable that controls the stability regime of the AMOC. This point is discussed in 
the text now. 

It would be interesting to see how the model can be used for forecast of bifurcations.
The authors perform derivation of the model parameters using Bayesian framework,
but once the model has been fully formed and the parameters are obtained for several
EMICs, can the authors attempt forecast or hindcast of the bifurcating time series?

[x]R: We thank the reviewer for this interesting comment which could be explored in further 
research. A forecast from a partial AMOC weakening series would require an estimate of future 
freshwater forcing, and maybe making use of EMIC (or GCM) derived values as estimates. We 
added a paragraph in the Discussion section where we consider options along these lines for future 
research. 

[Rahmstorf et al 2005] paper used 11 models and only hysteresis loops were presented
(not actual AMOC trajectories)
https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2005GL023655?download=true

[x]R: Our calculations are very time consuming. For this reason we decided to focus on the 6 
models with most complete representations of the physics amongst the numerical models and 
disregard the 5 models without a 3-D ocean component. We consider that their characterisation is 
too far removed from the real world or CMIP class numerical models. This is now explained in the 
text (L227).



Can a figure be added with plotted time series that could be derived from the obtained
model? For example, for the set of parameters averaged over a set of the selected
EMICs? I wonder how realistic could be the time series and at what time scale it could
forecast an AMOC bifurcation?
[x]R: This is a good suggestion, but unfortunately no timeseries were given in the published data. 
To derive those new runs would have to be made. The hysteresis loops are obtained by changing the
forcing with small steps and then obtaining a new (quasi) equilibrium state for the changed forcing.

I understand that the framework is quite heavy computationally. Can the authors add
discussion on how applicable can be this approach in other areas of geosciences
where similar potential models may be used?

[x]:R: In principle, any hysteresis curve that is produced under a forcing where the lambda and nu 
transformations suffice to normalise the curve could be used. The calculation is indeed quite heavy 
in computational terms, but not more time-consuming for a hysteresis curve obtained in a full Earth 
System Model than for a hystresis curve from a much simpler EMIC. Other geophysical processes 
might be icesheet mass loss (e.g. Robinson, Alexander & Calov, Reinhard & Ganopolski, Andrey. 
(2012). Multistability and critical thresholds of the Greenland Ice Sheet. Nature Climate Change. 
2.), forest dieback (e.g. Staal, A., Dekker, S.C., Xu, C. et al. Bistability, Spatial Interaction, and the 
Distribution of Tropical Forests and Savannas. Ecosystems 19, 1080–1091 (2016)), or lake turbidity
(Scheffer, M., van Nes, E.H. Shallow lakes theory revisited: various alternative regimes driven by 
climate, nutrients, depth and lake size. Hydrobiologia 584, 455–466 (2007). Any process which 
allows two stable states with rapid transitions between them and an asymmetric response to the 
forcing could be described by our method.
Paragraph added (2nd) in discussion.

The authors derived datasets from the published figures - is it allowed practice?
Shouldn’t they be obtained from the authors as datasets? Can the authors add in-
formation about the derived datasets in the table (number of points, etc)? Also, can
more recent EMICs be used?

[x]R: We strongly support the development of open science and making data findable and 
accessible. Unfortunately, we have not been able to obtain the original datasets from the authors (we
received no reply to our requests). The (individual points of the) measured values were retrieved 
from the plots by inverting the transformation matrices. This can be done for certain plots that are 
converted to pdf from plotting software such as Matlab. The dataset is then numerically the same as 
the set used to produce the plots in Rahmstorf et al (2005). The publisher allows for the use of 
individual graphics from their publications: we will note this in the text (L233).

[x]We have included a table with additional information about the dataset.

[x]In principle any hysteresis curve can be used, but we have not expanded the data set beyond the 
Rahmstorf et al set.

Further comments

The abstract should be modified to say that model is fitted to the trajectories.

[x] R: Corrected.

In the first paragraph, AMOC acronym is introduced twice.



[x] R: 2nd mention removed.

Instead of "invigoration" it is better to say "re-activation".

[x] R: Corrected with “resurgence” as suggested by our other reviewer.

Line 90 – "diagrams"

[x] R: Corrected.

Figure 2 - labels in all panels should be of the same font size

[x]R: Replotted with the same label size.

Line 124 - "the simplest"

[x] R: Corrected.

Line 152 - grey lines are mentioned in Figure 4, not clear which, maybe make them
dashed? Similarly, dashed lines in Figs. 6,7 are impossible to see - enlarge these
figures and all labels.

[x] R: Replotted with a colour different from grey and enlarge the labels.

Table 1 should be expanded to include more information on the selected models -
countries, resolution, etc.

[x] R: Table included.



This is an interesting paper, which aims to describe the collapse and hysteresis of the
AMOC observed in intermediate complexity climate models subject to freshwater forc-
ing by low-dimensional Langevin dynamics as a stochastic bifurcation of a double well
potential. Substantial revisions are necessary to improve the clarity of the manuscript
and to support the conclusions.

R: We thank the reviewer for the detailed comments and valuable suggestions. Below are our 
revised comments and performed alternations.

General comments
1.) It is not clear what the purpose of the paper is. The authors do not state what
their model is able to explain or predict.
Is the purpose to predict the exact parameter value of a collapse? Or at least to develop a method to 
do this?

[x] R: Our aim is to investigate whether it is possible to model the outcome of complex numerical 
models with a low dimensional model and thereby enhance understanding of the physics of an 
AMOC collapse and its hysteresis behaviour. The Langevin model defines a low-dimensional 
manifold that captures the essential collapse characteristics. To the extent that the low-dimensional 
model is successful in capturing the more complex model this investigation can indeed be seen as 
the development of a method to predict the parameter range where in a model a collapse would 
occur. The method is thus partly geared toward providing a means of prediction, but (at present) 
mainly to provide some characterisation of the collapse that will allow comparison between climate 
models. If a good fit can be found, then we can further explain the non-dynamical nature of the 
AMOC variations. As we show, this is partially the case. We have stated in the introduction where 
the purpose of the paper is defined. 

Are there prospects to apply the method to observational data?

[x] R: Since the forcing is a freshwater anomaly in the North Atlantic, we would need to estimate 
the counterpart in the real world. Moreover, the forcing values at the bifurcations have to be known.
At present, this is not the case for the real world, and in models it is model-dependent. An attempt 
could be made to relate the forcing to an indicator that can be linked to the bifurcation points, for 
instance Mov, the freshwater transport by the overturning. This should first be tested in more 
comprehensive numerical models before applying it to observations. If this can be done, then from 
the transient change in mu and with knowledge of sigma from observed AMOC variations, a 
predictive model for the likelihood of an AMOC collapse could be developed. We have added a 
paragraph in the Discussion section with an outlook of future research.  

Or is an aim to understand dynamically what is happening in realistic climate models?
This should be stated in the introduction

[x] R: We would like to see this paper as a first step to say more about the behaviour of the AMOC 
in complex numerical climate models such as used in the CMIP model intercomparisons. In 
particular, we propose a simplified low-dimensional model that is able to explain (and predict) 
bifurcation (tipping) points and abrupt change in the AMOC. Ultimately, this could be used to 
investigate abrupt behaviour in CMIP models, and how likely abrupt changes would be, even if not 
simulated by the model. Without a-priori knowledge of the freshwater-forcing values associated 
with the model’s bifurcation points, first must be investigated whether mu can be linked to a general
indicator like Mov (see the comment above).  We have stated the purpose of the paper more clearly 
in the introduction and add the outlook above to the discussion section.



(P2L29ff). It is also unclear whether they want to only/mostly model the AMOC collapse
(as stated at some points in the paper) or also the resurgence.

[x] R: We are mainly interested in modelling the collapse, not the resurgence. We note this in the 
manuscript as “Although the hysteresis loops of the AMOC include both a collapse and a 
resurgence, we will only attempt to model the collapse from the stable on-branch to the stable off-
branch.”

2.) Regarding the conclusions, how can the authors say that the model successfully captures the 
dynamics?
They don’t compare with other models of higher or lower complexity, nor do they have any metric 
that shows goodness of fit or anything similar. This would be necessary to make such a conclusion.

[x] R: We thank the reviewer for this comment. We will add the posterior spread to show the 
goodness of fit. To explore and compare with other low-dimensional models than the Langevin 
model is beyond the scope of this paper (the six included already form a multi-model ensemble). A 
possible next step could be to apply the Langevin model to a transient run where mu depends on 
time. The AMOC should eventually collapse when increasing the freshwater forcing and we can 
have greater confidence in the applicability of our approach after testing it to such a transient 
simulation.

3.) The manuscript is not very well written and hard to follow. The terminology is often
unclear. (E.g. what is a “track”, and how does the use of “stability landscape” apply
here? See specific comments.) Some corrections are given under “technical correc-
tions”, but the language and terminology has to be generally improved throughout the
manuscript. Furthermore, I believe the manuscript can be shortened severely. What
the authors want to get across can be said more efficiently. Many things are mentioned
twice or more (see specific and technical comments for suggestions). Finally, the labels
in multiple figures are unreadable.

[x] R: We critically reviewed the text. We comment on identified issues with the specific comments 
below. In short, the terminology has been clarified, and parts of the text that were confusing have 
been removed. The figures have been improved with larger and consistent fonts for the labels.

4.) The data acquisition seems problematic. I am not sure whether it is viable for this
journal to present a data analysis based on visually extracted data from a figure of
another publication.
Accordingly, the quality of the data is a major drawback of the
study (e.g. arbitrary smoothing and AMOC metric).
Their main problem in fitting the data might be due to the specific metric that is shown in the 
Rahmstorf et al. (2005) figures, so it is a shame that the authors are not able to resolve that.

[x] R: Indeed, the data has been obtained from the figures of the paper. However, it is not visually 
extracted as the reviewer suggests. The figure we used is a vector graphic and the dataset can be 
retrieved from it by inverting the plot matrices used to map the original data to the values in the 
graph. We can exactly replicate the data used for this figure in this manner. In order to validate this 
method, we asked for the original data from Rahmstorf et al. (2005) but have not received a reply at
present.
Less smoothing, and presumably larger noise levels, would likely show a stochastic collapse more 
easily.
We fully agree with this remark but want to emphasize that the main goal here is to develop and test
a method to capture complex model behaviour with a simple low-order model. The methodology 



described here is not affected by smoothing, only the assessment how well the method works is 
somewhat hindered by this.

5.) The description of their method contains many errors, and is incomplete. An explicit
expression for the likelihood, as well as details of the Metropolis-Hastings implemen-
tation are missing.

[x] R: We agree that more detail could be given, but we believe a description of the Metropolis-
Hastings algorithm is too much detail for this paper as it is well established and already described in
many textbooks. We added a reference to the textbook of Bernardo & Smith which describes this 
algorithm.

In the discussion, the authors name difficulties in the numerical implementation as a possible reason
for the failure of their fit to describe the lower AMOC branch, but it is for the reader not possible to 
assess whether this is relevant, since no details or robustness tests are given.
Furthermore, it is not stated how many data points the respective data sets contain, and it is not 
mentioned that the authors assume successive data points to be independent.

[x]R: Indeed, it is important to assess the robustness of our implementation. To further detail the 
validity methodology and outcome, we added a table with model characteristics and state that each 
point is independent.
Bremen: 2461
EC-Bilt-CLIO: 243
C-GOLDSTEIN: 849
MOM hor: 1233
MOM iso: 1442
UVIC: 464
In addition, we want to emphasize that our main goal is to model the transition from on-branch to 
off-branch, that is, the upper right half of the hysteresis curve, and not so much the dynamics that 
govern the lower branch, also because we assume that other dynamics govern the lower branch and 
our simple model has to be extended to account for those dynamics. 

It is also not mentioned how the maximum of the posterior parameter distributions is picked.

[x]R: The most likely value is the mean of the posterior distribution. This does assume that the 
posterior distributions are unimodal. We will discuss this in the text.

6.) Finally, several questions regarding the methodology.
 a) Why do the authors not try to estimate sigma with their Bayesian method?

[x]R: In principle this can be done. The variation in the hysteresis loops appears constant and can 
therefore be estimated more easily by other means. This does add to the computational costs and 
expands the search space, however, making it more difficult to find solutions. Therefore, we did not 
follow this method. We will mention this in the text (L261).
Why not include observational noise?

[x]R: Observational noise of the real AMOC would have a larger spread than the sigma we 
obtained. Synthetic series on the basis of the found parameters could indeed be generated with such 
a noise level. However, we intend to fit the intermediate complexity model outcome, using the data 
of that particular model. AMOC collapse and its likelihood at a given point in parameter space is 
model-dependent. One of the essential parameters in this dependency, is the model-dependent 



sigma.  Therefore, we prefer to use the sigma that is characteristic of each particular model. This 
point is now discussed in the paper (L257).

This could handle the fact that the data is filtered arbitrarily. It could also completely change the 
locations of the inferred bifurcation points.

[x] R: The bifurcation points are determined by the limit (non-stochastic) solutions. A noise driven 
transition could occur, however, and push the points that bound the hysteresis curve further inwards,
towards each other. We will mention this limitation more clearly in the paper (L241).

 b) To make the paper more understandable it would be good to note explicitly early in the 
manuscript that the movement of mu is actually known.

[x]R: We agree with the reviewer. We added “The forcing values of mu are known and the same for 
each climate model.”
However, the values of mu+ and mu- are not, and model-dependent.

c) Why not try multiplicative noise? (see also e.g. Das/Kantz Phys. Rev. E 101, 062145, 2020) This 
should relatively easily give a model that describes the asymmetric behavior.

[x] R: Multiplicative noise is state dependent, while we have made the assumption that the noise 
level is constant; therefore, we used additive noise. We will discuss this point in the text (L160).

d) It should be noted explicitly that there is no time dependency of the data. I wonder why they 
choose not to fit to time series instead? This would allow to treat the non-equilibrium nature of the 
data. Also, it would be much more applicable to observational data and to make predictions.

[x]R: Indeed, we will add a remark that each data point corresponds to a fixed value of mu and is 
not time dependent. No timeseries are available, however. Each mu value represents a separate 
climate model run which has run (more or less) to equilibrium. We need to be able to estimate mu+ 
and mu- from the models, and this can only be done from a hysteresis-curve which indeed contains 
equilibrium solutions and no time-dependence. We agree that a logical next step is to apply the 
method on time-dependent runs, but to validate the model it is needed that we know the equilibrium
bifurcations points as well for that model, and that the time-dependent runs are based on a slowly-
changing mu and include an AMOC collapse. There are not many models available that answer all 
these requirements. We added a paragraph in the Discussion section where we mention this point.

e) Why not only move along alpha at a certain fixed beta? Is moving both parameters
supported by the data significantly better?

[x]R: Early attempts with a fixed beta resulted in worse fits; therefore, we opted not to restrict beta. 
Removed (see comment P14L255)

Specific comments
Abstract: “Machine learning”: To my knowledge MCMC is not considered a machine
learning technique. The abstract needs to be expanded to better reflect the motivation
of the study, what their method enables them to do, and their conclusions.

[x] R: We will remove mentioning machine learning. We will also add to the abstract: “The 
Langevin model allows for comparison between models that display an AMOC collapse. Variation 
between climate models studied here is mainly in the strength of the stable AMOC and the strength 
of the response to a freshwater forcing.”



P2L42-45: This is a not a very clear explanation of the salt advection feedback. The
main point is that North Atlantic salinity anomalies (positive/negative) are amplified by
their effect on the overturning flow (strengthening/weakening), the strength of which
controls the North Atlantic salinity.
 This is thus a positive feedback and leads to bi-stability with the associated possibility of abrupt 
transitions.

[x]R: Rewritten as suggested.

P2L53: “. . .number of solutions for a given value of the freshwater forcing goes from 2
to 3. . . “. Should say “goes from 3 to 1” as the bifurcation point is crossed. (There are
2 solutions precisely at the bifurcation point, but I think this saddle-node fixed point is
not relevant here.)

[x] R: Corrected this as suggested.

P3 Caption Fig.1: The terminology of this figure is not appropriate and furthermore not
understandable at this point within the manuscript. No trajectory is shown, but a bifur-
cation diagram.

[x] R: Correct,  renamed to “bifurcation diagram”.

They have to be more specific with what they mean by a deformation of the “trajectory”.
Also, at this position within the manuscript, it is completely unclear what they mean with “trench of
the distribution”.
Either leave out or explain in the main text.

[x] R: Use of “trench” removed from the text.

Furthermore, I suggest to use the term “resurgence point” for mu-, and use that
terminology throughout the paper.

[x] R: Suggestion in agreement with our other reviewer, replaced with “resurgence point”.

Note that e.g. in P5L91, mu+/- are being referred to as “collapse points”.

[x] R: Replaced “collapse points” with “bifurcation points”.

P4L64: Can the authors elaborate why they think a double well potential has mainly
been studied qualitatively? I would argue that this simple and general mathematical
model has been studied quantitatively to an exceptional degree.

[x] R: The reviewer is correct that this model has been extensively studied and applied. But to our 
knowledge it has not been quantitatively applied to AMOC collapse in complex numerical climate 
models or observational data in the way as we present here. We will replace “studied mainly in a 
qualitative way (within catastrophe theory)” with “the double well potential has been extensively 
studied and applied, also in a quantitative way. But to our knowledge it has not been quantitatively 
applied to AMOC hysteresis using the Langevin equation in complex numerical climate models 
before.
Bolton et al (Boulton, C., Allison, L. & Lenton, T. Early warning signals of Atlantic Meridional 
Overturning Circulation collapse in a fully coupled climate model. Nat Commun 5, 5752 (2014).) 



do study an AMOC hysteresis loop qualitatively, but do not mention the Langevin equation. We 
added Bolton et al to our references and discuss its relevance as a quantitative study of  AMOC 
bistability, specifically, the transient run studied in that paper and how it could relate to the 
Langevin model.

P4L65ff: It is a bit confusing when the authors first say that 2 parameters are enough to
describe bi-stability, but then use another 2 parameters to scale and shift to the AMOC
variable.
Maybe it would be better to first explicitly say that by a shift and scale of the variable x, one can 
eliminate the third order term as well as the fourth order coefficient.

[x] R: The reviewer is correct, indeed that is their purpose: to reduce the polynomial to a smaller set
such that only the minimal number of parameters remain. Added clarification as suggested (L77). 

Both of these transformation do not influence the global bifurcation behavior. Then,
they can state that a shift and scaling is considered when fitting to the climate model
data.

[x] R: The reviewer is right, because the topology is not affected. We added a remark added as 
suggested (L92).

P4L78-81: Can the authors elaborate why they obtain these rough estimates for the
parameters, and how they are insensitive to other parameter values?

[x] R: These are not estimates but interpretations that can be linked to the bifurcation diagram. We 
will replace “The value of nu is roughly … “ with “In the bifurcation diagram the value of nu is 
roughly … .” And likewise for lambda.

P5L90-91: When speaking about “solution” what exactly do the authors mean?

[x] R: In this case we mean that only the trivial solution exists: only 0 as the value for all variables. 
This is further explained in the text (L104).

P5L92-97: This section is a bit unclear. Can the authors define a “track”, and what
does it mean to be one-dimensional?

[x] R: We removed the notion of a “track”. It being 1-dimensional means that because the hysteresis
loop is 1-dimensional the values (alpha, beta) as a function of mu are as well.

The fact that alpha and beta are called normal and splitting factor is better mentioned earlier.

[x] R: Sentence moved up.

A more clear distinction of “parameter” and “variable” would be appropriate.

[x] R: We have clarified the text such that the Rahmstorf set has data mu and psi; alpha and beta are 
the stability parameters (which in turn are expressed as a rate and offset); nu and lambda are the 
scaling parameters, and mu+/- the bifurcation points.

P5L101: This argument is unclear to me. The fact that the AMOC is scalar variable
should not constrain the path through the stability landscape in any way.



Do the authors rather want to say that in the climate model experiments there is only a single 
control parameter mu, and that by assuming a linear dependency of both alpha and beta on
mu, they can express some parameters by the extremal values of mu?

[x] R: Indeed, mu is the only control parameter. By assuming linearity a reduced set of equations 
can be determined later on.  This is now explained in the text (L139).

P8L127-129: Maybe the authors can elaborate more specifically on why these argu-
ments are relevant in order to neglect a non-linear change of either mu or alpha/beta?

[x] R: We will remove these lines, they are not needed for the argument.

P8L141-146: Improve this explanation. When introducing stochasticity, the asymptotic
dynamics for each parameter value give rise to a stationary density.

[x] R: The reviewer is correct, we added “The potential function can be replaced by a distribution 
which is the stationary distribution in the asymptotic limit (i.e. the long term behaviour of repeated 
sampling of the hysteresis loop).”.

In the case of the scalar potential, this distribution can be given analytically up to a normalization 
factor. Thus, the distribution can be used as a likelihood function (if I understand correctly) for
parameter inference with MCMC.

[x] R: The reviewer is correct, we added. “ but can be computed numerically (and therefore used as 
a likelihood function in the next section)”

P9L157: What is the “sampled” bi-modality region?

[x] R: Sampled as in where the dataset has values. We  dropped “sampled”.

P9L160: “These changes correspond directly to the potential functions in Fig. 2.” What
is meant by this?

[x] R: We mean that the distribution functions can be linked to the different characteristic shapes of 
the polynomial catalogued in fig 2. We will rewrite as “Each distinct shape of  the distribution can 
be linked to one of the potential functions in Fig 2.”. 

P10L174: Can the authors explain why lambda < nu in general?

[x] R: The offset (lambda) cannot exceed the scaling factor (nu) because the offset needs to be 
roughly in the middle of the two stable branches.

Caption Figure 5: The terminology is unclear. What is meant by a “singular” maximum?

[x] R: Removed (superfluous)

What is meant by the dominant and the weak mode, and what is the inversion?

[x] R: For a bimodal distribution there is a mode with more probability mass than the other which 
we call the dominant mode and the model with less mass the weak mode. And inversion is where 
these modes switch in strength: the dominant turn weak and the weak turns dominant. Replaced 
with “small” and “large”. 



There are also grammatical errors (“...in the middle and inversion from weak. . .”).

[x] R: “in the middle and inversion from weak to dominant takes place” removed from caption.

P11L180: I think a more precise statement would be that they estimate the posterior
probability distribution of the parameters, given the data psi(mu).
Furthermore, the following equation does not define the likelihood but the posterior distribution.

[x]R: Yes, the reviewer  is correct; rewritten as suggested: the equations states that the posterior 
distribution is proportional to the likelihood multiplies with the prior distribution.

P11L183: Why linearised?

[x]R: Removed, this related to linearisation of beta0, delta beta, etc

P11L184-188: This statement of Bayes’ rule is not correct, please revise. The right
hand side is not called Bayes’ factor (which arises in model comparison).

[x]R: We removed L187-188.

P12L209-219: The constants muS+ etc. are not properly introduced and should be
shown in one of the figures.

[x] R: These are given in the caption of fig 6. Reference to the figure given in the text.

The footnote 2 needs to be explained better.

[x] R: This is a technicality in how we defined the optimiser. Rewritten to explain that this is useful 
to avoid solutions that intersect the B1 or B2 twice (see also P17L308-310 below).

Caption Table 1: Why is a linear function used and not a higher order polynomial?
This does not seem to be very suitable to the data.

[x] R: We only fitted the beginning (left part) of the upper branch and assumed a constant sigma. 
clarification to the text added (L255). 

P13L228-230: This is not very precise wording. What do the authors mean with “un-
stable” and “more stable” solutions?

[x] R: Removed “more”. Stability relates solely to the attractors and repellor.

P14L242-245: What do the authors want to say here? It comes as a surprise to me
that suddenly only the data for mu > mu+ should be relevant?

[x] R: We ignore the data on the lower branch before the collapse point because we did not want it 
to influence the fits, especially because we are only interested in the collapse from the upper branch.
This is now mentioned in the text (L32,L249).

And why do they now claim that the model C-GOLDSTEIN does not “appear” to show a collapse?



[x] R: Removed: our intent was to comment of the smoothness of the trajectory, but it is 
unnecessary,

P14L252-253: Unclear what the authors are trying to say.

[x] R: We  removed these lines, they are redundant.

P14L259: What is meant by “non-linear degradation”?

[x] R: We mean the part of the hysteresis loop after the collapse point: before that point the change 
was fairly linear, but after it is strongly non-linear.  Removed

P15L267: In what way is the model sufficient to describe the data? Certainly the “re-
invigouration” is not well captured.

[x] R: The  aim was to model the collapse; the resurgence appears more difficult. Added a 
clarification to emphasise this point and estimate a goodness of fit. 

P17L308-310: Unclear what is meant here. What are “non-admissible” solutions?

[x] R: An inadmissible solution is one where the curve through (alpha, beta) space intersects one of 
the subspace B1,2 twice. Because B1,2 are concave this is a possibility. Removed from text

P17L313-315: Unclear. Smoothing might be due to other reasons?

[x] R: Perhaps, but is not mentioned in  Rahmstorf (2005).

P17L323: What is meant by “direct numerical stochastic integration”?

[x] R: This remark was originally intended to point out another way to perform the calculations: by 
solving the SDE directly. We now believe this remark to be redundant and removed it.

P17L330: How exactly does this paper present a step forward to assess the likelihood
of a future collapse of the AMOC?
The method presented here relies on previously modeled collapses of the AMOC with realistic 
climate models.
How does the method generate additional information?

[x] R: If the characterisation has predictive values, more complex climate models can be used to 
derive a collapse point if the freshwater forcing at the bifurcation points can be estimated. It is also 
a way to compare the collapse characteristics of various models. If the freshwater forcing at the 
bifurcation points can be generalised and linked to a robust indicator (such as, perhaps,  Mov), the 
method can be applied to the real world as well. We agree, there are quit some steps in between the 
method outlined here and its extension to the modelled and observed timeseries. We will expand the
discussion on this point.

Technical corrections

[x] R:  We are in agreement with all corrections below

P1L15: last glacial maximum and early holocene -> last glacial period



[x] R: Replaced as suggested.

P2L26: . . . which are presumed to be functions . . .

[x] R: Corrected.

C6P2L30: ...and tipping points in the climate, it has not been . . .

[x] R: Corrected.

P2L38: . . . or an increased surface freshwater flux by changes in precipitation minus
evaporation. . .

[x] R: Corrected.

P2L46: scalar variable obtained by integrating …
[x] Corrected.

P2L52: . . . one of the two basins of attraction vanishes . . .

[x] R: Corrected.

P7L126: rather “(delta alpha, delta beta)”?

[x] R: Correct: changes in alpha, beta: corrected.
P8L142: Remove: As shown by Cobb (1978), this distribution belongs to the exponen-
tial family.

[x] R: We removed this.

P8L144: The polynomial potential introduced in the previous section, we had
already. . ., gives the probability . . .

[x]R: Corrected.

P8L148: Note that C = C(alpha,beta), which does not have…

[x]R: Corrected.

P8L150: . . . because of the scaling …

[x] R: corrected.

P8L152 and Fig. 4 caption: In what way is this a sample collapse trajectory, or an
example trajectory?

[x] R: This should indeed be example, not sample.

P9L161: . . . a change in only one . . .

[x] R: Corrected



P9L163-165: Why not say this at P8L148? It is a bit redundant otherwise.

[x] R: We moved these lines to P8L148.

P10L168: arrived at -> described

[x] R: Corrected

P10L171: independent of each other

[x] R: Corrected.

P11L180: The method used is not considered machine learning.

[x] R: Removed.

P11L190: Does not seem to be relevant, as it is not done here.

[x] R: This sentence relates to  “These resultant posterior distributions can, in turn, be used as prior 
distributions, yielding a chain of sampled parameter vectors.” It is roughly how the sampler works, 
but we removed this because it is redundant.

P11L194-196: This is partly redundant, and it is not clear why the authors mean that
the model can be fit with uninformative priors.

[x] R: We removed the part about uninformative priors: it is unnecessary.

P11L199-200: Redundant.

[x] R: We replaced “With ν and λ introduced earlier, the state variable x undergoes an affine 
transformation and normalises the polynomial. These ...” with “The parameters  ν and λ … ”

P11L207: Redundant.

[x] R: Removed.

P11L207-208: An overview of priors is: The following prior distributions are used:

[x]R: Corrected.

P14L243: do -> to

[x]R: Corrected.

P14L254: Why “sample” paths? The authors are showing distributions, which is exactly
contrary to showing sample paths.

[x]R: We removed “ … for linearly parametrised sample paths through the stability space” … “

P14L255: Redundant.



[x]R: We removed “The β parameter changes linearly and α follows from the constraints in Eqs. 4 
and 5. Blue and red lines indicate the prior bounds for μ − and μ + , respectively.”

P15L265: couples -> models. Why “additionally”?

[x]R: This is not needed:  we removed “Additionally, a linear parameterisation through state space 
couples to the freshwater applied to the North Atlantic subtropical gyre region.”

P16L275: Do they mean arg(max(|psi|)) ?

[x] R: We mean max(|psi|),  corrected.

P17L309 till its -> until it

[x] R: Sentence removed


