- Preprint
(1783 KB) - Metadata XML
- Articles & preprints
- Submission
- Policies
- Peer review
- Editorial board
- About
- EGU publications
- Manuscript tracking
biological pump) and ocean carbon drawdown. These features lead to contrary pump responses to warming, and a stronger pump counter-intuitively leads to less carbon drawdown overall. These results show the importance of including ecological dynamics in models for understanding climate feedbacks.
15 Jul 2020
15 Jul 2020
Abstract. The Earth’s oceans are one of the largest sinks in the Earth system for anthropogenic CO2 emissions, acting as a negative feedback on climate change. Earth system models predict, though, that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved CO2 and biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here we use a recently-developed extension of the cGEnIE Earth system model (ecoGEnIE) featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on the soft-tissue biological pump in response to climate change. We find that including TDR strengthens the biological pump relative to default runs due to increased nutrient recycling, while ECOGEM weakens the biological pump by enabling a shift to smaller plankton classes. However, interactions with concurrent ocean acidification cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs whereas ECOGEM leads to a larger sink. Combining TDR and ECOGEM results in a net strengthening of the biological pump and a small net reduction in carbon sink relative to default. These results clearly illustrate the substantial degree to which ecological dynamics and biodiversity modulate the strength of climate-biosphere feedbacks, and demonstrate that Earth system models need to incorporate more ecological complexity in order to resolve carbon sink weakening.
David I. Armstrong McKay et al.
David I. Armstrong McKay et al.
David I. Armstrong McKay et al.
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
282 | 124 | 19 | 425 | 16 | 24 | 25 |
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
biological pump) and ocean carbon drawdown. These features lead to contrary pump responses to warming, and a stronger pump counter-intuitively leads to less carbon drawdown overall. These results show the importance of including ecological dynamics in models for understanding climate feedbacks.
An interactive open-access journal of the European Geosciences Union