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Abstract. Skillful forecasts of extreme weather events have a major socio-economic relevance. Here, we compare two 

complementary approaches to diagnose the predictability of extreme weather: recent developments in dynamical systems 

theory and numerical ensemble weather forecasts. The former allows us to define atmospheric configurations in terms of their 

persistence and local dimension, which inform on how the atmosphere evolves to and from a given state of interest. These 

metrics may be used as proxies for the intrinsic predictability of the atmosphere, which depends exclusively on the 15 

atmosphere’s properties. Ensemble weather forecasts inform on the practical predictability of the atmosphere, which primarily 

depends on the performance of the numerical model used. We focus on heat waves affecting the Eastern Mediterranean. These 

are identified using the Climatic Stress Index (CSI), which was explicitly developed for the summer weather conditions in this 

region and differentiates between heat waves (upper decile) and cool days (lower decile). Significant differences are found 

between the two groups from both the dynamical systems and the numerical weather prediction perspectives. Specifically, heat 20 

waves show relatively stable flow characteristics (high intrinsic predictability), but comparatively low practical predictability 

(large model spread/error). For 500 hPa geopotential height fields, the intrinsic predictability of heat waves is lowest at the 

event’s onset and decay. We relate these results to the physical processes governing Eastern Mediterranean summer heat 

waves: adiabatic descent of the air parcels over the region and the geographical origin of the air parcels over land prior to the 

onset of a heat wave. A detailed analysis of the mid-August 2010 record-breaking heat wave provides further insights into the 25 

range of different regional atmospheric configurations conducive to heat waves. We conclude that the dynamical systems 

approach can be a useful complement to conventional numerical forecasts for understanding the dynamics of Eastern 

Mediterranean heat waves. 
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1. Introduction 

Heat waves are recognized as a major natural hazard (e.g., Easterling et al., 2000), causing detrimental socio-economic impacts 35 

(e.g., Feeling the heat 2018) including excess mortality (e.g., Batisti and Naylor 2009; Benett et al., 2014; Peterson et al., 2013; 

Ballester et al., 2019), agricultural loss (e.g., Deryng et al., 2014) and ecosystem impairment (e.g., Williams, 2014; Caldeira 

et al., 2015). Moreover, heat waves are projected to increase in frequency, intensity and persistence under global warming 

(e.g., Meehl and Tebaldi, 2004; Stott et al., 2004; Fischer and Schär, 2010; Seneviratne et al., 2012; Russo et al., 2014). The 

Eastern Mediterranean has experienced several extreme heat waves in recent decades (e.g., Kuglitsch et al., 2010) and their 40 

frequency and intensity are expected to increase in the coming decades (e.g., Giorgi 2006; Seneviratne et al., 2012; Lelieveld 

et al., 2016; Hochman et al., 2018a) upon a background of regional warming and drying (e.g., Barchikovska et al., 2020). 

The Eastern Mediterranean climate is characterized by mild air temperatures during the winter season and dry and hot weather 

conditions during summer (e.g., Goldreich et al., 2003). The summer season is characterized by very small inter-daily 

variability, which is attributable to the dominant and persistent influence of the Persian Trough and sub-tropical high-pressure 45 

systems. On the upper levels, large-scale subsidence is dominant, thus further hampering the development of clouds and 

precipitation (e.g., Rodwell and Hoskins, 1996; Ziv et al., 2004). In spite of this generally low variability, heat waves are not 

infrequent during the summer (Harpaz et al., 2014). At the other end of the scale are episodes when the temperature drops to 

below-normal values, some of which are accompanied by summer rains (Saaroni and Ziv,2000). Such episodes occur when 

the Persian Trough induces northwesterly winds over the Eastern Mediterranean; together with the Mediterranean Sea breeze, 50 

moist and relatively cool air can thus be transported inland (Alpert et al., 1990; Bitan and Saaroni, 1992) as far as the Dead 

Sea (Kunin et al., 2019). 

Saaroni et al. (2017) have detected weaknesses in the ability of earlier synoptic classifications (Alpert et al., 2004a; Dayan et 

al., 2012) to describe local weather conditions during the Eastern Mediterranean summer season. The authors proposed a 

‘Climatic Stress Index’ (CSI), which is a combination of the national heat stress index, used operationally by the Israeli 55 

Meteorological Service, and the height of the boundary layer (see Sect. 2.2). The authors argued that this novel index improves 

the classification of heat wave days relative to earlier classifications and additionally links directly to the potential impacts.  

 A notable heat wave in recent years was the 2010 so-called “Russian heat wave”, which caused ~55,000 excess deaths (e.g., 

Barriopedro et al., 2011; Katsafados et al., 2014). The 2010 Northern Hemisphere summer saw a strong and persistent blocking 

ridge at 500 hPa over the Middle East and Eastern Europe (e.g., Grumm 2011; Schneidereit et al., 2012; Quandt et al., 2017), 60 

leading to unprecedented temperatures at numerous locations (Barriopedro et al., 2011). The Eastern Mediterranean and Israel 

experienced a record-breaking heat wave during mid-August of that year (http://www.ims.gov.il), which interestingly 

coincided with what is considered the decay phase of the Russian heat wave (Quandt et al., 2019). In fact, the Zefat Har-Knaan 

station (Tab. S1; Fig. S1) recorded a temperature of 40.6°C; the highest temperature since 1939, while the Jerusalem station 

(Tab. S1; Fig. S1) logged a remarkable 41°C, the absolute record for this station since 1942. The ability to predict and issue 65 
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appropriate warnings for these types of events, and more generally weather events lying in the tails of the respective 

distributions, is of crucial importance for mitigation of impacts on human life, agriculture and ecosystems (e.g., IPCC 2012; 

Siebert and Evert 2014; Williams 2014). 

A framework that allows a quantitative understanding of processes leading to extreme temperatures during heat waves is that 

based on Lagrangian backward trajectories. In this framework, the temperature of an air parcel increases by: (i) adiabatic 70 

warming related to descent and (ii) diabatic heating including latent and sensible heat fluxes, short-wave, and long-wave 

radiation (Holton 2004). Recent studies revealed that extreme temperatures during heat waves are most often a combination 

of adiabatic warming related to descent and diabatic heating near the surface (e.g., Black et al., 2004; Bieli et al., 2014; Santos 

et al., 2015; Quinting and Reeder 2017; Zschenderlein et al., 2019). The adiabatic warming is typically associated with upper-

level ridges which promote subsidence. The strongest diabatically-driven heating does not necessarily occur at the location of 75 

the heat wave itself but rather in geographically remote regions (e.g., Quinting and Reeder 2017; Quinting et al., 2018; 

Zschenderlein et al., 2019).  

Focusing more directly on the prediction of the evolution of specific atmospheric configurations which may lead to heat waves, 

one may consider a primarily model-dependent perspective (practical predictability) or a model-independent perspective 

(intrinsic predictability). The practical predictability is heavily reliant on the availability of initialization data (Lorentz 1963) 80 

and on the representation of physical processes in the numerical model being used. However, it also reflects some 

characteristics of the atmospheric dynamics (e.g., Ferranti et al., 2015; Matsueda and Palmer 2018). An often-used method for 

quantifying the practical predictability is the spread or skill of ensemble forecasts (e.g., Loken et al., 2019). 

As opposed to the practical predictability, the intrinsic predictability only depends on the characteristics of the atmosphere 

itself. Recent developments in dynamical systems theory allow us to quantify the intrinsic predictability of instantaneous 85 

atmospheric states using two metrics: persistence (θ-1) and local dimension (d). These reflect how the atmosphere evolves in 

the neighborhood of a state of interest (Faranda et al., 2017a). The two forms of atmospheric predictability depend on different 

factors, and therefore offer different information. While there is some relation between the two (e.g., Scher and Messori, 2018), 

one should thus not expect them to match for individual cases.  

In the present study, we perform a systematic dynamical systems evaluation of the temporal evolution of Eastern Mediterranean 90 

summer heat waves, and evaluate whether this may provide insights complementary to a more conventional analysis of the 

numerical weather forecasts of such events. Specifically, we hypothesize that the dynamical systems analysis captures relevant 

features of these extremes, such as their persistence, which are not necessarily reflected in the numerical weather forecast. 

Such a framework has recently been leveraged for the study of cold spell dynamics (Hochman et al., 2020a). 

The paper is organized as follows: Sect. 2 provides a brief description of the methodology, including the used datasets, the CSI 95 

index, the dynamical systems and forecast skill metrics and the method for backtracking air parcels. Sect. 3 describes the 

dynamics of heat waves from both the dynamical system and the numerical weather prediction perspectives and further 
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provides a detailed analysis of the mid-August 2010 heat wave over the Eastern Mediterranean as a case study. Finally, Sect. 

4 provides the main conclusions and discusses ideas for future research. 

 100 

2. Data and methods 

2.1 Data  

The bulk of our analysis is based on the National Centers for Environmental Prediction/National Center for Atmospheric 

Research Reanalysis Project (NCEP/NCAR) daily and 6-hourly reanalysis data for 1979 – 2015 (satellite era), on a 2.5° × 2.5° 

horizontal grid (Kalnay et al., 1996). Faranda et al. (2017a) have shown that the conclusions one may infer from the dynamical 105 

systems analysis are generally insensitive to the dataset’s horizontal spatial resolution, as long as the major structures 

characterizing the atmospheric field of interest are resolved. On the contrary, the air parcel tracking (Sect. 2.4) requires data 

on a relatively high horizontal and vertical grid-spacing. Air parcel trajectories are thus computed from 6-hourly ERA-Interim 

data for 1979 – 2015, on a 1° × 1° horizontal grid and 60 vertical levels (Dee et al. 2011).  

The numerical forecasts are acquired from the Global Ensemble Forecast System (GEFS) reforecast v.2 dataset produced by 110 

NCEP/NCAR (Hamill et al., 2013). Operational Numerical Weather Prediction (NWP) models are frequently updated. 

Therefore, archives of operational NWP models are usually inhomogeneous, and thus are not appropriate for studying 

predictability over long time periods. This problem can be mitigated by using so-called reforecasts. For reforecasts, one fixed 

version of an NWP model is used in order to create a standardized set of past forecasts. The GEFS reforecast dataset provides 

a set of daily reforecasts from December 1984 to present. Each reforecast consists of a control forecast and a ten-member 115 

ensemble on a 0.5° × 0.5° grid spacing. 

Finally, we make use of a homogenized station dataset over Israel to assess the forecasts. Instrumental meteorological records 

may be influenced by non-meteorological events, such as station relocation, defects in the instrumentation, environmental 

changes near the station etc. The detrimental effects these may have on the quality of the recorded data can be reduced by 

homogeneity procedures (Aguilar et al., 2003). Our dataset includes five representative, homogenized stations in Israel with 120 

an uninterrupted record of maximum temperatures over 1979 – 2015 (Tab. S1, Fig. S1; Yosef et al., 2018). 

 

2.2 Heat wave definition according to the Climatic Stress Index (CSI) 

Saaroni et al. (2017) have proposed a new index for classifying the summer days over the Eastern Mediterranean based on the 

'environment to climate' approach (Yarnal 1993; Yarnal et al., 2001). The CSI is comprised of the national heat stress index, 125 

used operationally by the Israel Meteorological Service, and the boundary layer height, which is a major factor influencing the 

summer weather conditions over the Eastern Mediterranean (Ziv et al., 2004). Saaroni et al. (2017) have rigorously evaluated 
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the CSI index with respect to observations and tested a variety of different combinations of predictors, which ultimately 

resulted in a simple multiple regression equation:  

𝐶𝑆𝐼 = 92.78 + 0.638𝑇ଵ଴଴଴ି଼ହ଴ − 0.178∆𝑝 − 1.08𝑝ூ௥௔௤ 130 

Here, 𝑇ଵ଴଴଴ି଼ହ଴ is the average regional lower-level temperature over [31°N-34°N; 33°E-37°E]. ∆𝑝 is the average sea level 

pressure over [36°N-44°N; 42°E-54°E] subtracted from the average sea level pressure over [24°N-29°N; 33°E-37°E], which 

is an estimate for the intensity of the Etesian winds. 𝑝ூ௥௔௤ represents the average sea level pressure over northern Iraq [35°N-

44°N; 46°E-54°E], which is a proxy for the depth of the Persian Trough.  

The analysis described in the next sections is specifically implemented for extremes of the CSI index, i.e., days during which 135 

the CSI exceeds the 90th percentile of the July and August climatological distribution (hereafter: ‘upper 10% of CSI’ or heat 

waves) versus days when the CSI is below the 10th percentile of the July and August distribution (hereafter ‘lower 10% of CSI’ 

or cool days). The onset of a heat wave (cool days) is taken to be the first day in which the CSI exceeds (subceeds) the 90th 

(10th) percentile threshold at 12UTC (0 h time in the Figures), which ought to roughly match the time of maximum daily 

temperature. Alpert et al. (2004b) have argued that July and August represent the mid-summer months, in which the Persian 140 

Trough occurs on more than nine out of eleven days. For additional details on the computation of the CSI index and its 

evaluation, the reader is referred to Saaroni et al. (2017). 

 

2.3 Dynamical systems metrics 

A novel method blending extreme value theory with Poincaré recurrences allows estimating the instantaneous properties of 145 

chaotic dynamical systems (Lucarini et al., 2016; Faranda et al., 2017a). A temporal succession of two-dimensional maps of 

a given atmospheric variable – for example daily latitude-longitude maps of sea-level pressure (SLP) over the Eastern 

Mediterranean – is interpreted as a long trajectory in phase space. Each 2-D map corresponds to a single point along this 

trajectory, for which instantaneous properties are calculated. The analysis focuses on two metrics: the local dimension d and 

the persistence θ-1. 150 

The local dimension d is based on recurrences of the system around a state of interest, for example, a specific daily field of 

SLP.  It originates from the result that the cumulative probability distribution of properly defined recurrences of the system 

converges to the exponential member of the Generalized Pareto Distribution (Freitas et al., 2010; Lucarini et al., 2012). In 

practical terms, d reflects the geometry of the trajectories in a small region (neighborhood) of the system’s phase space around 

the state of interest. It is therefore related to the number of degrees of freedom that the system can explore about the state; in 155 

other words, it informs on the way the system evolves around the state of interest.  

The persistence (θ-1) of a state is obtained by estimating the extremal index (Moloney et al., 2019), here calculated using the 

Süveges (2007) estimator. 𝜃−1 quantifies the persistence of the system in the neighborhood of the state of interest, and tends to 

https://doi.org/10.5194/esd-2020-37
Preprint. Discussion started: 8 July 2020
c© Author(s) 2020. CC BY 4.0 License.



6 
 

be very sensitive to small changes in the state of the system. Nevertheless, Hochman et al. (2019) found that relative differences 

in 𝜃−1 may be related to relative differences in the persistence of different weather regimes. For more details on the estimation 160 

of the dynamical systems metrics, the reader is referred to Lucarini et al. (2016) and Faranda et al. (2017a, 2019a). 

The dynamical systems perspective has been fruitfully applied to a range of climate fields and datasets (e.g. Faranda et al., 

2017a, b; Messori et al., 2017; Rodrigues et al., 2018; Faranda et al., 2019a, b, c; Faranda et al., 2020; Hochman et al., 2019, 

2020b; De Luca et al., 2020). In particular, it has been explicitly shown that d and θ-1 can offer an objective characterization 

of synoptic systems over the Eastern Mediterranean (Hochman et al., 2019) and the North Atlantic (Faranda et al., 2017a; 165 

Messori et al., 2017; Rodrigues et al., 2018). 

In this study, we compute d and θ-1 for daily and 6-hourly 500 hPa geopotential height (Z500) and SLP fields from the 

NCEP/NCAR reanalysis over the Eastern Mediterranean placing Israel in the middle of the domain (27.5°N-37.5°N; 30°E-

40°E; Fig. S1). To understand the differences between heat waves and cool days, we analyze both the CDFs (Cumulative 

Distribution Functions) and the mean temporal evolution of the two groups of days in terms of d and θ-1. The Wilcoxson Rank-170 

Sum (comparing the medians) and Kolmogorov-Smirnov (comparing the CDFs) tests are used for estimating the differences 

between the upper and lower 10% of CSI days at the 5% significance level. A bootstrap sampling test is used to evaluate the 

95% confidence intervals of the mean temporal evolutions. 

Previous studies have shown that the dynamical systems metrics d and θ-1, have a strong seasonal cycle (Faranda et al., 2017a, 

b; Rodrigues et al., 2018). Thus, we remove the seasonal cycle before comparing the various events. The seasonal cycle is 175 

estimated by averaging the metrics for a given time step (e.g., 15 August at 12UTC) over all years, repeating this for all time 

steps within the year and ultimately smoothing the series with a 30-day moving average. 

 

2.4 Forecast spread/skill 

To obtain an ensemble forecast, a few numerical forecasts are performed with either different initial conditions, and/or 180 

perturbation of physical parametrizations. Ensemble forecasts offer an efficient way of estimating uncertainty by computing 

the ensemble spread. This is quantified by estimating the standard deviation between ensemble members. The spread can be 

taken as an indicator of practical predictability: in a perfect ensemble, a small spread would generally indicate we can determine 

with a good degree of confidence the future weather, while a large spread would point towards a larger uncertainty (e.g., Buizza 

1997). This type of approach is commonly used when investigating atmospheric predictability (e.g., Hohenegger et al., 2006; 185 

Ferranti et al., 2015).  

An additional frequently used forecast diagnostic is the absolute error, which provides a measure of forecast skill. Here, we 

use the homogeneous station archive mentioned in Sect. 2.1 above as ground truth to estimate the forecasts’ skill. In order to 
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remove biases due to topographic differences between the model and that of the stations, the GEFS reforecast gridded data is 

bilinearly interpolated to the location of the stations. The bias computed over the whole period is then removed for each station.  190 

The GEFS reforecasts are initialized at 00UTC and are available at three-hour intervals. Since our analysis focuses on heat 

waves, we estimate the spread/skill for maximum temperature and SLP at a lead-time of 69 hours, while the maximum 

temperature is defined between 45 h and 69 h. Given the three-hour interval of the forecast data, and bearing in mind that each 

station’s maximum temperature is recorded between 20UTC and 20UTC of the next day, this time-window roughly 

corresponds to the definition of maximum temperature for the station data. Since the dynamical systems metrics offer 195 

information on the temporal evolution of the atmosphere in the neighbourhood of a given reference state, we argue that using 

the time of forecast initialization as temporal coordinate when plotting spread and error is most indicative for comparing the 

dynamical systems and numerical forecasts. In the supplementary material, we also plot the spread/skill for the forecasts 

initialised 69 h before the marked time. Thus, the plots in the main text show forecast initialisation times, while those in the 

supplementary material show the forecast valid times. A bootstrap test is used to infer the 95% confidence interval of mean 200 

forecast spread and error. The Wilcoxson Rank-Sum (comparing the medians) and Kolmogorov-Smirnov (comparing the 

CDFs) tests are used for comparing forecast diagnostics on different groups of days at the 5% significance level.   

 

2.5 Air parcel tracking 

 In order to identify typical pathways of air masses leading to situations with high and low CSI values, ten-day backward 205 

trajectories are computed using the Lagrangian Analysis Tool (LAGRANTO; Wernli and Davies, 1997; Sprenger and Wernli, 

2015). The tracking of temperature and potential temperature along the trajectory further allows to quantify the contribution 

of adiabatic and diabatic processes to the anomalous temperatures. The vertical and horizontal wind components required for 

the trajectory computations are acquired from the ERA-Interim reanalysis (Dee et al. 2011, Sect. 2.1). The trajectories are 

initialized at 12UTC from the study region on the first day of a heat wave or cool days (Fig. S1). In order to analyze the near-210 

surface air masses, i.e. those related to the hot and cool conditions, we consider trajectories that are initialized between the 

surface and 90 hPa above the surface.  The reader is referred to Fig. 2 in Sprenger and Wernli (2015) for a schematic overview 

of the typical steps taken to compute trajectories.  

The trajectories are calculated from 6-hourly ERA-Interim data and remapped to a 1° regular latitude-longitude grid. Thus, the 

analyzed wind field does not resolve sub grid-scale processes such as Lagrangian transports due to sub grid-scale convective 215 

cells. Also, vertical motion associated with short-lived convection between two-time steps is not accounted for. Still, for a 

climatological investigation that is the focus of this study, the trajectory calculation is a suitable diagnostic. 
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3. Results 220 

3.1 Dynamics of heat waves over the Eastern Mediterranean 

We first analyze the differences between heat waves (upper 10% CSI values) and cool days (lower 10% CSI values). From an 

atmospheric dynamics’ standpoint, the main difference between the two groups is that heat waves days are associated with an 

upper level ridge (Fig. 1a) while cool days are associated with an upper level trough (Fig. 1b). The SLP patterns are quite 

similar in both groups, but the heat waves show lower SLP in the south-west and a higher SLP in the north-east compared to 225 

the cool days sample (Fig. 1c). This reveals that the large-scale configuration is an important factor in the generation of a heat 

wave over the Eastern Mediterranean. The backward trajectory air parcel analysis illustrates that the flow preceding an extreme 

heat wave has a roughly meridional orientation when traveling over the Eastern Mediterranean and originates over the 

European continent (Fig. 2a). On the other hand, the air parcels for cool days often originate over the Atlantic, and take a more 

zonal pathway across the Eastern Mediterranean (Fig. 2b). The initial potential temperature of the heat wave air masses is 230 

about 7 K higher than that for the cool days (Fig. 2e). The differences in potential temperature between the two groups can 

mainly be attributed to the more continental origin of the air parcels for the heat waves, thus transporting potentially warmer 

air masses that descend on their path to the target region. Their descent, which is stronger than for cool days (Fig. 2c), is 

accompanied by a temperature increase of more than 25 K during the ten-day period (Fig. 2d). The potential temperature 

remains nearly constant until the final stages of the descent except for the diurnal cycle (Fig. 2e). Thus, we conclude that the 235 

extreme heat is related to an adiabatic descent of the air parcels over the Eastern Mediterranean rather than to diabatic heating. 

In other words, the warm air parcels are transported towards the Eastern Mediterranean with the governing westerlies rather 

than heated up locally over several days. This supports the findings of Harpaz et al. (2014), who argued that extreme summer 

heat waves over the Eastern Mediterranean are mostly regulated by mid-latitude disturbances rather than by the Asian 

Monsoon, as previously proposed by Ziv et al. (2004). An additional important difference between the two sets of CSI events 240 

is that, unlike for the heat waves (Fig. 2a, f), the specific humidity of the cool days increases by 2 g kg-1 around t = -48 h, due 

to the longer stretch the latter air parcels follow over the Mediterranean Sea (Fig. 2b, f). 

From a dynamical systems point of view, the upper and lower 10% of CSI also exhibit substantial differences. Fig. 3 shows a 

phase-plane diagram for d and θ computed on Z500 and SLP for the heat waves and cool days. θ is significantly lower at both 

levels for heat waves with respect to cool days, i.e., the former are generally more persistent systems. Statistically significant 245 

differences in the median local dimensions (d) of the two groups are found only for the Z500 variable, for which the heat 

waves typically display a lower local dimension (d) than the cool days (Fig. 3a). The clear separation between the two groups, 

especially at upper level (cf. Fig. 3a and Fig. 3b) correlates well with the atmospheric dynamics’ viewpoint, which also shows 

more pronounced differences at Z500 (Fig. 1). This points to the importance of using different variables at different pressure 

levels to obtain a comprehensive picture of the dynamics of heat waves. 250 
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Fig. 4 displays the average temporal evolution of d and θ during the selected events, again computed for Z500 and SLP. Zero 

denotes the first day of the event at 12UTC. Substantial differences are found between the time evolutions of the upper and 

lower 10% of the CSI events. For Z500, the temporal evolution of d and θ for heat waves are in phase with each other, and 

show a minimum with below climatology values in the 24 h preceding the event onset (Fig. 4a). In general, persistent high-

pressure systems have better predictability than low pressure systems (Ceppa and Colucci, 1989). Therefore, the minimum of 255 

d and θ at Z500 may be explained by the positioning of the upper level ridge, seen in Figure 1a, between lower pressure 

regions. While there is still a considerable spread around the mean, even the upper bounds of our confidence intervals are well 

below zero in the build-up to the events. Instead, cool days display weak positive anomalies of d and θ, but these are almost 

never significantly different from 0 (Fig. 4b). The dynamical systems metrics computed on SLP provide a completely different 

picture: heat waves typically display a weak above-climatology d, which increases towards the event onset and then decreases 260 

(Fig. 4c). θ displays a slightly below-climatology persistence (i.e. positive anomalies) and decreases towards the event onset 

(Fig. 4c). However, the very large spread in the composite evolution, and in particular in d, suggests some caution in over-

interpreting the details of these evolutions. Cool days are characterized by higher positive anomalies of d and θ in the days 

preceding the event. The build-up towards this type of event is characterized by an increase in θ (decrease in persistence) and 

a decrease in d (Fig. 4d). The cool days also appear to have a more coherent evolution (lower spread around the mean) than 265 

the heat waves for SLP.  

The differentiation between the two samples is thus more pronounced when computing the metrics on Z500 than on SLP (Fig. 

4), as also shown in the daily distributions (Fig. 3). Moreover, the variability in the temporal evolution of the dynamical 

systems metrics is smaller in Z500 than in SLP (Fig. 4). This points to: i) coherent, and very different, upper level conditions 

which engender the two sets of CSI days; and ii) a comparatively wide range of possible near-surface patterns which all lead 270 

to severe heat waves. The latter may be explained by the fact that, given initially warm upper-level air parcels and upper-level 

subsidence leading to rapid adiabatic warming, the occurrence of a heat wave is then relatively insensitive to the details of the 

surface conditions (e.g., Baldi et al., 2006; Harpaz et al., 2014). Our general understanding of the synoptic conditions at surface 

levels further suggests that the delicate interplay between the Persian Trough and Subtropical High systems (Alpert et al., 

1990) may contribute to the large spread of both heat waves and cool days regarding the dynamical systems metrics computed 275 

on SLP. 

We analyze next numerical ensemble forecasts from the GEFS reforecast dataset for both sets of events. Substantial differences 

are again found between the two groups (Fig. 5). Both the ensemble spread and the absolute error are significantly higher for 

heat waves than for cool days (Fig. 5). The model spread and absolute error increase before the onset of the heat wave, peaking 

at around 24-48 hours negative lags (Fig. 5). The pattern somewhat resembles the temporal evolution of d computed on SLP 280 

(cf. Fig. 5e and Fig. 4c), but stands in stark contrast to the pattern computed on Z500 (cf. Fig. 5a, c, e and Fig. 4a). The 

reforecasts computed for the individual stations (not shown) resemble the average forecast spread/skill (Fig. 5). The 

corresponding plots for forecast valid time (see Sect. 2.4), are provided in Fig. S2. 
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3.2 Analysis of the mid-August 2010 heat wave over the Eastern Mediterranean 285 

The mid-August 2010 heat wave over the Eastern Mediterranean lies in the upper 0.3% of the CSI distribution. A detailed 

analysis of the heat wave highlights both similarities and differences with the climatology of the heat wave days (Sect. 3.1). 

The Z500 and SLP patterns for 15th August 2010 are comparable with the average configuration of a heat wave, but show a 

stronger upper level ridge and meridionally-oriented isobars (cf. Fig. 6a and Fig. 1a). From a dynamical systems point of view, 

the 2010 heat wave was also an uncommon extreme, especially for the metrics computed on Z500. The dynamical systems 290 

metrics’ anomalies computed on this field range between -0.9 and -1.4 for d, and -0.14 and -0.2 for θ (Fig. 6b). This situates 

the heat wave in the lower 10% of the respective distributions (see also red dots in Fig. 3a).  During its evolution, the event 

displays an increase in both d and θ computed on Z500 and a decrease (increase) in θ (d) computed on SLP (Fig. 6b, c). While 

the Z500 d and θ evolution is roughly comparable to that identified for heat wave days (cf. Fig. 4a and 6b), the SLP d and θ 

evolutions show profound differences. This may simply reflect the larger spread in dynamical systems properties across the 295 

different heat waves for SLP than for Z500. We further hypothesize that differences between the single case and the 

climatology may be related to the relatively small day to day variations during summer over the Eastern Mediterranean (Ziv 

et al., 2004), which make it challenging to depict the exact onset of a heat wave.  

The 2010 heat wave was also uncommon in terms of the large-scale flow and Lagrangian trajectories (Fig. 7). Between -10 to 

-5 days prior to the event, the majority of air parcels were transported in an easterly flow on the southern flank of an anticyclone 300 

located over Russia. Thus, air parcels came from the Zagros Plateau of Northern Iran, rather than from central Europe as in 

the climatology (cf. Fig. 7a, b and Fig. 2a). Indeed, Zaitchik et al. (2007) have argued that the Zagros Plateau has a strong 

influence on extreme summertime heat waves over the Eastern Mediterranean. Here we show that the anti-cyclonic wave 

breaking of the blocking regime over Russia, which interestingly is related to the decay phase of the Russian 2010 heat wave 

(Quandt et al., 2019) played an important role in transporting the warm air masses from Northern Iran towards the Eastern 305 

Mediterranean and Israel (Fig. 7a, b and Fig. 8). For the last five days (Fig. 7b), the parcel’s trajectories resemble more closely 

the climatology of heat waves (Fig. 2a). Furthermore, the initial potential temperature and temperature of the air parcels are 

respectively about 2K and 7K higher than the climatology of heat waves (cf. Fig. 7d, e and Fig. 2d, e). Accordingly, the hot 

air masses in the mid-August 2010 heat wave are transported to the Eastern Mediterranean and undergo adiabatic heating, 

rather than being heated up locally. This is in line with the climatology discussed in Sect. 3.1, and heat waves in other parts of 310 

the world (e.g., Quinting and Reeder, 2017; Zschenderlein et al., 2019). 

Fig. 9 shows the temporal evolution of the forecast spread/skill for the mid-august 2010 heat wave compared to the heat wave 

climatology. Throughout the lead up and early phases of the event, the forecast displays a lower spread and error than for other 

heat waves. A large decrease in the practical predictability occurs as the event develops, i.e., an increase in the spread/skill for 

maximum temperature (Fig. 9a, b). This mirrors the increase in d and θ computed on Z500 and for d computed on SLP (cf. 315 
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Fig. 9a, b with Fig. 6b, c). Indeed, the decay phase of the Russian heat wave was characterized by low practical predictability 

(Matsueda 2011), which may have influenced the predictability over the Eastern Mediterranean. However, it should be noted 

that the spread computed on maximum temperature for the mid-August 2010 heat wave does not correlate well with the spread 

computed on SLP (cf. Fig. 9a with Fig. 9c). Moreover, some striking differences are displayed between the ensemble forecast 

of this single event and the climatology of forecasts for heat waves. These discrepancies may be related to the fact that we are 320 

analyzing a single event, whose error may not reflect the practical predictability of the atmosphere even for a perfect ensemble 

(e.g., Buizza et al., 2005; Kuene et al., 2014). The corresponding plots for forecast valid time (see Sect. 2.4), are provided in 

Fig. S3. 

 

4.  Summary and conclusions 325 

Heat waves are a major weather-related hazard, especially in an era of rapid climate change. We define heat waves over the 

Eastern Mediterranean according to a state-of-the-art ‘Climatic Stress Index’ (CSI; Saaroni et al., 2017), developed specifically 

for the region’s summer weather conditions. We use a combination of dynamical systems theory, numerical weather forecasts 

and air parcel back-trajectories to investigate the evolution and predictability characteristics of heat waves (high CSI) and cool 

days (low CSI) for the region.  330 

The main conclusions are as follows: significant differences are found between heat waves and cool days from both a 

dynamical systems and numerical weather prediction perspectives. Heat waves show relatively low practical predictability 

(large model spread/low skill) in the ensemble reforecast dataset used here, in spite of the relatively stable flow characteristics 

(high intrinsic predictability) compared to the cool days. When considering Z500, the intrinsic predictability of heat waves 

over the Eastern Mediterranean is highest, i.e., low local dimension (d) and high persistence (low θ), in the 24 h preceding the 335 

onset of the event, and lowest in the decay phase of the event. Indeed, Lucarini and Gritsun (2020) recently argued that 

atmospheric blocking over the Atlantic also displays such characteristics. The persistent upper level ridge that characterises 

the heat waves may explain the high intrinsic predictability during the onset phase. The dynamical systems metrics computed 

on SLP show a different temporal evolution to their Z500 counterparts, emphasizing the different characteristics of the 

atmospheric flow at the different vertical levels. Specifically, there is a very large spread across different heat wave events. 340 

We argue that this may be associated with the delicate interplay between the Subtropical High and the Persian Trough at 

surface levels (Alpert et al., 1990), which can lead to a range of different SLP configurations all leading to a heat wave. 

Based on the Lagrangian air parcel analysis, we conclude that the physical processes governing Eastern Mediterranean summer 

heat waves relate to adiabatic descent of the air parcels over the region rather than diabatic heating, in agreement with previous 

findings (e.g., Ziv et al., 2004). In other words, the air parcels are transported horizontally and vertically towards the Eastern 345 

Mediterranean with the governing westerlies rather than heated up locally over consecutive days. We further conclude that the 

origin of the air parcels over land in the days before the onset of a heat wave takes an important part in its generation.  
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A detailed analysis of the record-breaking mid-August 2010 heat wave provides further insights in this respect, by underscoring 

how the parcels which contributed to the heat wave were warmer than those of the climatology of heat waves as early as 10 

days prior to the event. Interestingly, the onset of the heat wave over the Eastern Mediterranean was related to the decay phase 350 

of the Russian heat wave (Quandt et al., 2019) and we conclude that the anti-cyclonic Rossby wave breaking over Russia 

contributed to the onset of the Eastern Mediterranean heat wave. The 2010 heat wave showed both differences and similarities 

to other heat waves, highlighting the range of possible atmospheric and dynamical developments leading to high CSI values. 

This is compounded by the general difficulty of analyzing the life-cycle of heat waves, since there is little agreement as to 

what exactly a heat wave is and when it starts and ends (e.g., Shaby et al., 2016).  355 

We conclude that the instantaneous dynamical systems metrics of local dimension (d) and persistence (θ-1) do provide 

complementary information on extreme summer heat waves compared to the conventional analysis of numerical weather 

forecasts. The discrepancy between the practical and the intrinsic predictability of the heat waves reflects this complementarity. 

For example, we interpret a very persistent system as being intrinsically highly predictable, yet the numerical forecasts we 

analyse display larger spread and error for the more persistent atmospheric configurations. In this respect, having an a-priori 360 

measure of the persistence of an atmospheric configuration from dynamical systems can be a useful complement to the 

numerical forecast. As a caveat, the comparison of the practical and intrinsic predictability still carries some interpretation 

challenges. Although the differences between the two can be partly ascribed to the different characteristics of the two measures, 

they may also be subject to the shortcomings of the GEFS ensemble data. In particular, the spread of the GEFS ensemble data, 

as most NWP ensemble forecasts, does not always reflect the practical predictability of the atmospheric flow (e.g., Kuene et 365 

al., 2014). Moreover, our interpretation of the dynamical systems metrics may also be imperfect. Indeed, the metrics provide 

local information in phase space, while the spread and error of an ensemble forecast presumably reflect the longer-term 

evolution of the atmospheric flow. Similar interpretation challenges for the practical vs. intrinsic predictability have emerged 

when studying cold spells (Hochman et al., 2020a). 

Notwithstanding these ongoing challenges, we believe that the novel view presented here, which leverages a dynamical 370 

systems approach for diagnosing extreme weather events, outlines an important avenue of research. We trust that it may be 

successfully applied to other regions and weather extremes in the future. 
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Figure 1 Mean sea level pressure (SLP in hPa, shaded in color) and 500 hPa geopotential height (Z500 in m, white contours) 

for the 10% of days with the highest (heat waves) and lowest (cool days) ‘Climatic Stress Index’ (CSI) values. (a) Upper 10% 630 

of CSI days mean composite (b) lower 10% of CSI days mean composite (c) upper minus lower 10% of CSI days. 
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Figure 2 Median backward trajectory for (a) heat waves (upper 10% of CSI) and (b) cool days (lower 10% of CSI) with circles 

indicating days (from 10 days before onset to onset), trajectory density 10 days before onset (number of trajectories per 1000 650 

km² in shading), and trajectory density for the indicated time lags (5, 2, 1 days before onset, contours denote a density of 20 

trajectories per 1000 km²). Streamlines of 800 hPa winds averaged between -5 to -1 days are included. Median evolution of 

(c) pressure (hPa) (d) temperature (K) (e) potential temperature (K) (f) specific humidity (g kg⁻¹) of air parcels. Heat waves 

are indicated in red and cool days in blue. The inter-quartile range is plotted for the physical properties of the air parcels. 0 h 

corresponds to the first day of CSI ≥ 90% or CSI ≤ 10% and at 12UTC. 655 
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Figure 3 A phase-plane diagram for the upper and lower 10% of CSI days (heat waves in red and cool days in blue). The de-

seasonalized dynamical systems metrics (d and θ) were computed for: (a) Z500 and (b) SLP. Dashed lines represent the median 

values of d and θ. The 15.8.2010 is marked in black arrows. 
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Figure 4 The average temporal evolution of the dynamical systems metrics (d and θ) for heat waves (upper 10% of CSI) and 

cool days (lower 10% of CSI) events. The dynamical systems metrics were computed for: (a, b) Z500 and (c, d) SLP. The 

events are centered (0 h) on the first day of CSI ≥ 90% or CSI ≤ 10% and at 12UTC. A 95% bootstrap confidence interval is 

plotted in shading. 665 
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Figure 5 Forecast spread/skill for heat waves (upper 10% of CSI) vs. cool days (lower 10% of CSI). The lines show the mean 

temporal evolution of the ensemble model spread for Tmax (a), SLP (e) and absolute error for Tmax (c) of forecasts with lead-

time 69h, initialized at different time lags with respect to the events, calculated every 24 hours. The events are centered (0 h) 

on the first day of CSI ≥ 90% or CSI ≤ lower 10% and at 12UTC. The CDFs of the mean ensemble forecast model spread for 

Tmax (b), SLP (f) and absolute error of Tmax (d) for the forecasts with lead-time 69h initialised at 00UTC. A 95% bootstrap 670 

confidence interval is shown in shading for the temporal evolution plots (a, c, e). 
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Figure 6 A dynamical systems analysis for the mid-august 2010 heat wave. (a)  SLP (shading in hPa) and Z500 (white contours 

in m) on 15.8.2010 at 12UTC. The dynamical systems metrics (d and θ) temporal evolution centered on 15.8.2010 at 12UTC 

computed on (b) Z500 and (c) SLP. 680 
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Figure 7 Backward trajectory air parcel tracking for the mid-August 2010 heat wave initialized on 15.8.2010 at 12UTC with 

(a) circles indicating days (from -10d to -6d before 15.8.2010 at 12UTC), trajectory density 10 days before onset (number of 

trajectories per 1000 km² in shading), stream lines of 800-hPa wind (averaged between -10d to -6d before 15.8.2010 at 12UTC). 

(b) as in (a), but for -5d to -1d and trajectory density 5 days before onset (number of trajectories per 1000 km² in shading). 

Median evolution of (c) height (hPa) (d) temperature (K) (e) potential temperature (K) (f) specific humidity (g kg-1) of the 685 

tracked air parcels. The inter-quartile range is plotted for the physical properties of the air parcels. 0 h corresponds to 15.8.2010 

at 12UTC.   
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Figure 8 The large-scale evolution of SLP (white contours in hPa) and Z500 (shaded color in m) for the mid-August 2010 

heat wave. a) 14.8.2010 at 12UTC; b) 15.8.2010 at 12UTC; c) 16.8.2010 at 12UTC; d) 17.8.2010 at 12UTC. 690 
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Figure 9 Forecast spread/skill for the mid-August heat wave centered (0 h) on 15.8.2010 at 12UTC (red line). The mean 

temporal evolution of the ensemble model spread for Tmax (a), SLP (c) and absolute error for Tmax (b) of forecasts with lead-

time 69h, initialized at different time lags with respect to the event, computed every 24 hours. The heat waves (upper 10% of 

CSI - blue line) are displayed for reference. A 95% bootstrap confidence interval for all heatwaves is displayed by the shading.  
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