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esd-2020-37: “A new view of heat wave dynamics and predictability over the 

Eastern Mediterranean” by Assaf Hochman, Sebastian Scher, Julian Quinting, 

Joaquim Pinto and Gabriele Messori. 

 

Point by point response to Reviewer 1: 

Reviewer 1: In this paper, the authors employ an approach from dynamical systems theory to 

quantify the (intrinsic) predictability of atmospheric states based on reanalysis data during cold 

and hot extremes over the Eastern Mediterranean. This is complemented with GEFS 

reforecasts, which are used to infer forecast uncertainty, or practical predictability. While the 

distinction and investigation of practical and intrinsic predictability is not new (e.g. Melhauser 

& Zhang, 2012), I am not aware of any comparable publications in the context of heatwaves. 

In addition, a simple Lagrangian model is used to reveal the origin of near-surface air masses 

during hot and cold extreme events. The resulting paper is nicely structured, not too lengthy 

and certainly an interesting read. I only have two minor comments and a few additional 

comments, questions and suggestions, as the manuscript is well written and understandable. 

Response: Thank you for the positive feedback. We have addressed all of the Reviewer’s 

comments in the revised version of the manuscript as described below. 

 

Reviewer 1: In Melhauser & Zhang (2012), the classic Lorenz (1969) paper is cited multiple 

times; whereas intrinsic predictability is first defined as “the extent to which prediction is 

possible if an optimum procedure is used”, it is then also related to knowledge of the 

‘atmospheric state’. 

Now, here, the authors do not cite any study when they claim that “As opposed to the practical 

predictability, the intrinsic predictability only depends on the characteristics of the atmosphere 

itself.” Even though I understand that authors might want to stick to historical definitions, to 

me, it makes only little sense to limit the forecasting system to the atmosphere. An increasing 

amount of evidence shows that the Earth’s surface does not only supply the atmosphere with 

heat and moisture, but, to some extent, also exerts control over it (e.g. Koster et al., 2010; 

Dirmeyer et al., 2018). Knowledge of the land (and ocean) surface state thus implies improved 

predictability up to sub-seasonal timescales (thanks to, e.g., soil memory). 

To be clear, I believe the focus on the atmosphere in this study makes sense, but I would still 

like to question why this ‘intrinsic’ predictability should be purely atmospheric by any 

means. To me, it seems like Lorenz (1969) emphasized the knowledge of all governing 

equations as well as observing the initial state, and I do not see why this would not include 
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other components of the Earth System. 

Response: We agree with the Reviewer’s comment. Indeed, the atmospheric state depends 

not only on the atmosphere, but is influenced by interactions with land and ocean. However, 

it is important to note that in many – albeit certainly not all – cases these interactions 

influence the atmosphere at time scales longer than those we consider in our analysis (e.g., 

Entin et al., 2000), and act as a seasonal-scale preconditioning to extremely high summer 

temperatures (e.g. the mechanism discussed in the Zampieri et al. (2009) study the Reviewer 

cites in his second comment). We have rephrased the sentences related to this notion. We 

have specifically clarified that, while we take a predominantly atmospheric perspective, 

centered on synoptic timescales, there is ample evidence of the importance of surface 

interactions with other “spheres” of the climate system, not least for controlling atmospheric 

predictability (such as in the experiments described in the Koster et al. (2010) study the 

Reviewer pointed us to). In this respect, we read and referenced the relevant literature 

suggested by the Reviewer. The added text can be found in lines: 15-17, 84, 90-92, 419-422 

of the revised version of the manuscript. 

 

Reference:  

Entin JK, Robock A, Vinnikov KY, Hollinger SE, Liu S, Namkhai A. 2000. Temporal and 

spatial scales of observed soil moisture variations in the extra tropics. Journal of 

Geophysical Research 105(D9): 11865– 11877. https://doi.org/10.1029/2000JD900051  

 

Reviewer 1: Concerning the 2010 heatwave analysis: while it is interesting to show that the air 

parcels tracked back in time were warmer than on average even 10 days in the past in this 

specific case, Bieli et al. (2015), e.g., already found that high temperatures in the Balkans area 

tend to be primarily the result of high starting temperatures combined with extensive descent, 

enabling strong adiabatic heating. The authors also attempt to explain why particularly the 

metrics calculated on SLP differ so strongly from those calculated on Z500. I am using this 

opportunity to refer to my previous comment here – perhaps the fact that the evolution of the 

atmospheric state closer to the surface tends to follow less of a clear pattern, or “the larger 

spread in dynamical systems properties across the different heat waves for SLP than for Z500”, 

is partially caused by interactions with the land surface. Naturally, these interactions 

predominantly affect the lowermost parts of the troposphere, and to provide an example, it can 

actually be seen (if the different units are accounted for) in Fig. 12 of Zampieri et al. (2009) 

that unusually dry soils affect SLP more than Z500 in a modelling experiment. I thus think that 
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the 2010 heatwave part needs a bit more attention, as currently, the main message is that the 

single case is similar to the climatology with respect to Z500 evolution during heatwaves, but 

highly different in terms of SLP, and in my opinion, this is not explained sufficiently (see also 

comments above and concerning L. 296 below). 

Response: Thank you for this comment and for pointing us to some useful references we had 

overlooked. We agree that the discussion of the 2010 heat wave could be extended with respect 

to the differences between the dynamical systems analysis close to the surface and at 500 hPa. 

We now discuss the possible influence air-sea interactions may have on the dynamical systems 

metrics at surface level in the revised manuscript. Soil moisture, on the other hand, may not be 

an important factor for controlling heat waves over the South-Eastern part of the Mediterranean, 

but rather more important in the North-Eastern areas (Zittis et al., 2014). It may however be 

possible that low soil moisture in the regions where the air parcels originate influence the 

intensity of Eastern Mediterranean heat waves. We have added a discussion of this point in the 

revised manuscript. We have further read the references suggested by the Reviewer and we 

referred to them in the revised version of the manuscript were applicable. The revised text can 

be found in lines: 361-364, 386, 417-422 of the revised version of the manuscript. 

 

Reference:  

Zittis G, Hadjinicolaou P, Lelieveld J. 2014. Role of soil moisture in the amplification of 

climate warming in the eastern Mediterranean and the Middle East. Climate Research 59: 

27-37. https://doi.org/10.3354/cr01205  

 

Reviewer 1: L. 36: Feeling the heat, 2018 (comma missing?) 

Response: A comma has been added. This can be found in line 37 of the revised version of the 

manuscript. 

 

Reviewer 1: L. 49: Saaroni and Ziv,2000 (space missing?) 

Response: A space has been added. This can be found in line 55 of the revised version of the 

manuscript. 

 

Reviewer 1: L. 126: If the CSI comprises the boundary layer height, then why is it absent 

from the equation below (L. 130)? Also, in the cited Saaroni et al. (2017), the atmospheric 

boundary layer height itself is barely mentioned, but rather the (height of the) persistent marine 

inversion. I thus recommend slightly editing (or shortening) this part to further enhance the 
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consistency and clarity of the text. 

Response: We agree with the Reviewer. We have reformulated this part of the manuscript 

according to Saaroni et al. (2017). The revised text can be found in lines: 59 and 135 of the 

revised version of the manuscript. 

 

Reviewer 1: L. 212: Is there any reason for this choice, i.e. initializing trajectories between 

the surface and 90 hPa above, other than simplicity? To me, it seems more intuitive to always 

track the air masses within the atmospheric boundary layer back in time, whose height may 

vary from day to day, and tends to be (positively) anomalous particularly during heatwaves 

(this might not be the case in the study area of interest, but was certainly true for the 

‘epicenter’ of the 2010 Russian heatwave; see, e.g. Miralles et al., 2014). However, 

considering that Dayan et al. (2002) demonstrated only little synoptic-scale influence on 

summer ABL heights compared to the distance to the coast, the usage of a constant layer 

to be tracked backward might be entirely justified, but perhaps the authors can still elaborate 

on their choice. 

Response: Thank you for this comment. According to recent studies, the planetary boundary 

layer height in Israel during summer is ~600 – 900m above the surface (Uzan et al., 2016; 

2020). Assuming that the pressure decreases by 1 hPa every 8m height difference, 90 hPa 

corresponds to about 720m, thus 90hPa can be considered a reasonable choice.  

We have further evaluated the trajectories that start from 90hPa above the surface and higher 

(Figure R1). We find that at these levels the picture is somewhat different.  Air parcels 

associated with heat waves are located over the Mediterranean Sea and east of Israel prior to 

the heat wave (Figure R1a). Air parcels associated with cool days originate mostly over the 

Atlantic and Europe and are transported downstream (Figure R1b). This further indicates that 

our trajectory analysis successfully identifies air parcels in the boundary layer, which have a 

different path than those in the free troposphere. Moreover, the thermodynamic properties of 

the air parcels do not show any noticeable differences between heat waves and cool days 

(Figure R1c-f). We have elaborated on the choices we made with regards to the back 

trajectories’ analysis as described above in the revised version of the manuscript. The revised 

text can be found in lines: 272-275 of the revised version of the manuscript.  

 

Reference 

Uzan L, Egert S, Alpert P. 2016. Ceilometer evaluation of the eastern Mediterranean summer 

boundary layer height – first study of two Israeli sites. Atmospheric Measurement 
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Techniques 9: 4387–4398. https://doi.org/10.5194/amt-9-4387-2016 

Uzan L, Egert S, Khain P, Levi Y, Vadislavsky E, Alpert P. 2020. Ceilometers as planetary 

boundary layer height detectors and a corrective tool for COSMO and IFS models. 

Atmospheric Chemistry and Physics 20: 12177-12192. https://doi.org/10.5194/acp-20-

12177-2020  

 

Figure R1 Same as Figure 2, but for trajectories initialized from 90hPa above the surface and higher with the 

uncertainty around the median trajectories of 25 – 75% of the trajectories. 

 

Reviewer 1: L. 240: It is quite interesting that the specific humidity does not increase nearly 

as much in the last 48 hours prior to arrival during heatwaves as for cold extremes, but is this 

only a consequence of different ‘inflow’, i.e. more trajectories over the Mediterranean Sea? 

Of course, this cannot be gauged solely by a visual comparison of Figs. 2a & 2b (in which, to 

me, the trajectory densities shortly before arrival do not seem to differ much), but I would also 

suspect that additional factors are at play – such as, e.g., enhanced convective activity (and 

hence moistening of the troposphere). 
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Response: Thank you very much for this suggestion. Our additional analysis reveals that for 

most of the time, the portion of terrestrial back-trajectories is similar for heat waves and cool 

days (new Figure S2). It is only at about 72 to 24 hours prior to the events that the portion of 

terrestrial (marine) back-trajectories is lower (higher) for cool days than for heat waves (new 

Figure S2). This is in line with the evolution in specific humidity along the trajectories, which 

increases more strongly for the cool days than for the heat waves (Fig. 2f). The increase of 

moisture is most likely related to the passing of the air masses over the Mediterranean Sea. As 

a caveat, this analysis does not account for local processes such as the convective activity 

mentioned by the Reviewer. We have revised the text accordingly and added Figure S2 as a 

Supplementary Figure. The revised text can be found in lines: 305-308 of the revised version 

of the manuscript. 

New Figure S2 The portion of trajectories over land, as defined by the ERA-Interim land-sea mask, for heat 

waves (red line) and cool days (blue line). The x-axis shows time lags (in h) relative to the first day of CSI ≥ 

90% or CSI ≤ 10% and at 12UTC. 

 

Reviewer 1: L. 264: “The build-up towards this type of event is characterized by an increase 

in θ (decrease in persistence) and a decrease in d (Fig. 4d).” This comment also concerns the 

Methods section; I think the authors provide a good overview of the two dynamical system 

metrics, but perhaps it would be helpful to explicitly state that, as explained by Moloney et 

al. (2019), more (expanding) dimensions around the state of interest (or degrees of freedom, 

I suppose) imply less predictability. Or, in other words, lower d suggests higher predictability 

– this is actually stated as such on L. 335 in the Summary, but as far as am I concerned, not 

before. Perhaps it would seem a bit confusing to edit the sentence I am quoting above (L. 

264), as in this example (Fig. 4d), persistence decreases, yet predictability as gauged by the 

local dimension d increases. Still, I believe I am not the only reader who would appreciate a 

bit more guidance throughout the manuscript. 
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Response: We have clarified these points and provided a more intuitive qualitative 

interpretation of the metrics earlier in the manuscript, focusing on their relation with the 

intrinsic predictability. To that end, we have completely re-structured Sect. 2.3 to provide 

both a clearer intuitive explanation of the metrics and a more detailed description of the 

mathematical background to ensure the reproducibility of our results. The revised text can be 

found in lines: 94-95, 135-234 and 329-330 of the revised version of the manuscript. 

 

Reviewer 1: L. 280: “The pattern somewhat resembles the temporal evolution of d computed 

on SLP (cf. Fig. 5e and Fig. 4c), but stands in stark contrast to the pattern computed on Z500”. 

While I agree that there is a stark contrast to the pattern shown in Fig. 4a (Z500), I find this 

resemblance a bit difficult to spot, as the peaks in d and msl spread appear to be shifted by about 

one day. Is there any obvious reason for this? Also, I imagine this would look different for 

shorter or longer lead times, so come to think of it, why not 24 hours less or more? This is not 

a request to repeat the entire analysis for different lead times (probably out of scope anyways), 

but I am just curious if the authors looked into this and if so, how much this choice even matters 

in the first place. 

Response: Thank you for this comment. Since the spread and error are computed every 24 

hours and the dynamical systems metrics are instantaneous in time (local in phase-space) and 

computed from the 6-hourly data, we believe that a shift of up to 24-hours may be reasonable. 

We have further tested a 24-hour shorter lead time and found that the peak in the spread is at 

about 0 h, resembling the peak in d computed on SLP (Figure R3, left panel). We have discussed 

this point briefly in the revised text, as we have indeed not described in detail the sensitivity of 

our results to the choice of lead-time. The revised text can be found in lines: 344-348 of the 

revised version of the manuscript. 

 

Figure R3 Same as Figure 5e, f but for a 24-hour shorter lead time. 

 

Reviewer 1: L. 296: “We further hypothesize that differences between the single case and the 

climatology may be related to the relatively small day to day variations during summer over 
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the Eastern Mediterranean, which make it challenging to depict the exact onset of a heat 

wave”. Could you please elaborate how the challenges related to defining the onset of a 

heatwave could contribute to the extreme differences between the 2010 case and the 

climatology, but only for SLP and not Z500 – this is not obvious to me. 

Response: When comparing the climatology of the temporal evolution of d and θ for Z500 

(Fig. 4a) with the single case (Fig. 6b) it is relatively easy to see that in both there is an increase 

in d and θ as the heat wave develops. On the other hand, when comparing the temporal 

evolution of d and θ for SLP (Fig. 4c with Fig. 6c), one can see that depicting the exact time 

the heat wave starts is very important for comparison. Still, in both Figures d increases and θ 

decreases at some point in the chosen time window, but the timing of these trends is shifted 

between the climatology (Fig. 4c) and the single case (Fig. 6c). We have clarified this in the 

revised version of the manuscript. The revised text can be found in lines: 366-371 of the 

revised version of the manuscript. 

 

Reviewer 1: L. 303: Concerning the anticyclonic wave breaking, if my understanding is 

correct, then this can be seen in Fig. 8, as the trough east of the ridge centered over European 

Russia, clearly visible from Fig. 8b onward, is tilted (southwest-northeast; Davini et al., 2012) 

and advected westward (consistent with the definition given in Quandt et al., 2019). I suggest 

adding a brief description along these lines for readers unfamiliar with the terminology, this 

would also prevent readers from overlooking Fig. 8 (which, currently, is only mentioned but 

not discussed in the main text). 

Response: Thank you for this suggestion. The Reviewer is correct with regard to the 

anticyclonic Rossby wave breaking shown in Fig. 8. We have added some more information 

on this for the reader and discussed Fig. 8 more in detail in the revised version of the 

manuscript. The revised text can be found in lines: 376-381 of the revised version of the 

manuscript. 

 

Reviewer 1: L. 305: (Quandt et al., 2019), played (comma missing?) 

Response: A comma has been added. This can be found in line: 378 of the revised version of 

the manuscript. 

 

Reviewer 1: L. 322 (+ 365, 511): Kuene ⇒ Keune  

Response: The typo has been corrected. This can be found in lines: 456 and 618 of the revised 

version of the manuscript. 
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Reviewer 1: Fig. 5: While a few sentences in the Methods explain what is really shown in 

Fig. 5, I believe the caption might benefit from a small addition, hinting at the fact that 

results are plotted for their corresponding initialization times. 

Response: We have expanded the caption of Fig. 5 to explain that the results are plotted 

for initialization time. The added text can be found in lines: 773-774 of the revised version 

of the manuscript. 

 

Reviewer 1: Fig. 9: I suggest using red colors for the upper 10% of CSI, as in previous 

figures, and plotting the 2010 heatwave results in black (or any other color than blue) instead. 

Response:  We have changed the Figure according to the Reviewer’s suggestion (see below 

new Figure 9). 

 

New Figure 9 Forecast spread/skill for the mid-August 2010 heat wave, centered (0 h) on 15.8.2010 at 12UTC 

(black line). The mean temporal evolution of the ensemble model spread for Tmax (a), SLP (c) and absolute error 

for Tmax (b) of forecasts with lead-time 69h, initialized at different time lags with respect to the event, computed 

every 24 hours. The heat waves (upper 10% of CSI - red lines) are displayed for reference. A 95% bootstrap 
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confidence interval for all heatwaves is displayed in shading. 

 

Reviewer 1: References 

Bieli, M., Pfahl, S. & Wernli, H. A lagrangian investigation of hot and cold 

temperature extremes in Europe. Q. J. R. Meteorol. Soc. 141, 98–108 (2015). 

 

Davini, P., Cagnazzo, C., Gualdi, S. & Navarra, A. Bidimensional diagnostics, variability, and 

trends of northern hemisphere blocking. J. Clim. 25, 6496–6509 (2012). 

 

Dayan, U., Lifshitz-Goldreich, B. & Pick, K. Spatial and structural variation of the 

atmospheric boundary layer during summer in Israel-profiler and rawinsonde measurements. 

J. Appl. Meteorol. 41, 447–457 (2002). 

 

Dirmeyer, P. A., Halder, S. & Bombardi, R. On the Harvest of Predictability From Land States 

in a Global Forecast Model. J. Geophys. Res. Atmos. 123, 13,111-13,127 (2018). 

 

Koster, R. D. et al. Contribution of land surface initialization to subseasonal forecast skill: 

First results from a multi-model experiment. Geophys. Res. Lett. 37, 1–6 (2010). 

 

Levi, Y., Shilo, E. & Setter, I. Climatology of a summer coastal boundary layer with 1290-

MHz wind profiler radar and a WRF simulation. J. Appl. Meteorol. Climatol. 50, 1815–

1826 (2011). 

 

Lorenz, E. N. Atmospheric Predictability as Revealed by Naturally Occurring Analogues. 

J. Atmos. Sci. 26, 636–646 (1969). 

 

Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-

heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. 

Nat. Geosci. 7, 345–349 (2014). 

 

Melhauser, C. & Zhang, F. Practical and intrinsic predictability of severe and convective 

weather at the mesoscales. J. Atmos. Sci. 69, 3350–3371 (2012). 

 

Moloney, N. R., Faranda, D. & Sato, Y. An overview of the extremal index. Chaos 29, (2019). 
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Quandt, L. A., Keller, J. H., Martius, O., Pinto, J. G. & Jones, S. C. Ensemble sensitivity 

analysis of the blocking system over Russia in summer 2010. Mon. Weather Rev. 147, 657–

675 (2019). 

 

Saaroni, H., Savir, A. & Ziv, B. Synoptic classification of the summer season for the Levant 

using an ‘environment to climate’ approach. Int. J. Climatol. 37, 4684–4699 (2017). 

 

Zampieri, M. et al. Hot European Summers and the Role of Soil Moisture in the Propagation 

of Mediterranean Drought. J. Clim. 22, 4747–4758 (2009) 

 

Response: Thank you for providing these references. We have cited them where applicable and 

referred to them in the revised version of the manuscript. 
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esd-2020-37: “A new view of heat wave dynamics and predictability over the Eastern 

Mediterranean” by Assaf Hochman, Sebastian Scher, Julian Quinting, Joaquim Pinto 

and Gabriele Messori. 

 

Point by point response to Reviewer 2: 

Reviewer 2: The study titled “A New View of Heat Wave Dynamics and Predictability over the 

Eastern Mediterranean” by Hochman et al., presents a fresh viewpoint on the dynamics and 

predictability of heat waves in the Eastern Mediterranean by using both dynamical system theory 

and an ensemble of NWP models. This study continues the line of previous papers by the authors, 

dealing with the dynamics of cold spells, and weather regimes in the Eastern Mediterranean in 

general, which is an interesting viewpoint on a well-studied subject. This study stands out, by 

showing comparisons to ensemble NWP results, which seems really promising and puts this 

viewpoint in perspective. The study presents the climatology of the heat waves from this viewpoint, 

along with a complementary analysis of back-trajectories, showing the origins of air parcels – which 

is interesting on its own. Furthermore, a specific heat-wave case-study is presented and analyzed, 

showing the evolution of this unique heat wave. To my view, the study addresses relevant and current 

problems, and shows a novel concept to answering such problems. I think this paper is worth 

publishing in ESD, after addressing some points, as follows: 

Response: Thank you for the positive feedback. We have addressed all of the Reviewer’s comments 

in the revised version of the manuscript as described below. 

 

Reviewer 2:  Sect. 2.3, and in general: I feel that there is not enough “intuition” in the description 

of the dynamical system metrics. For example, it is hard for me to understand what exactly is the 

meaning of θ-1 (“quantifies the persistence of the system in the neighborhood of the state of interest, 

and tends to be very sensitive to small changes in the state of the system”). I do realize this notion 

was already mentioned in quite a few papers in recent years, however, I feel that me (and the other 

readers) of this paper can benefit from a more intuitive explanation of the metrics. Moreover, the 

possibility of other readers to repeat such an analysis is limited by the fact you refer to other studies 

on how to estimate the parameters. I believe the parameter estimation should be further detailed, at 

least in the supplementary material, including the report on the errors in estimating the parameters.  

Response: Thank you for this comment. We understand the need for both a clearer intuitive 
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explanation, to aid the understanding of our study, and a more complete analytical derivation of the 

metrics, to ensure that our study is self-contained and allows reproducibility of our results. To this 

end, we have completely re-structured Sect. 2.3 to provide both a clearer intuitive explanation of the 

metrics and a more detailed description of the mathematical background. We also reference earlier 

uncertainty estimates for the calculation of the parameters. The revised text can be found in lines: 

156-234 of the revised version of the manuscript.  

 

Reviewer 2: It could be worthy to expand much the discussion about the differences between the 

intrinsic and the practical predictability. Such a discussion could be exampled and explained using 

the presented case study, by showing how exactly can you elevate the dynamical system theory in 

predicting this heatwave better than using only the ensemble of NWP. Could this be performed and 

displayed in the paper?  

Response: Thank you for this important comment. The practical predictability relies on the 

performance of a numerical forecast model. As such, it blends model and data assimilation biases 

with the intrinsic characteristics of the atmospheric flow. Moreover, when restricting the analysis to 

a single realization of an ensemble forecast, such as in our case study, even a perfect ensemble may 

not provide a good skill-spread relationship. That is, even a perfect ensemble may have a spread that 

does not reflect the actual forecast error. In the specific case we analyze here, Tmax spread and error 

were well correlated, and matched an increase in local dimension. In other cases, the ensemble 

forecast can have, posteriori, a bad spread-error relationship. In these cases, local dimension and/or 

persistence trends that seem to contradict a low ensemble spread may serve as warning of a 

potentially poor spread-error relationship. We have extended the discussion on how exactly can the 

dynamical systems metrics be used to better predict heat waves, and support this by providing an 

example of the 2003 heatwave that displays the undesirable spread-error characteristics described 

above.  The added text can be found in lines: 442-451 of the revised version of the manuscript. 

 

Reviewer 2: Another point which I think you should address, is the portion of the back-trajectories 

which is terrestrial vs. the marine portion. It seems to me there could be much of a difference between 

the heat waves and the cold days. Am I correct?  

Response: Thank you very much for this suggestion. Our additional analysis reveals that for most 

of the time, the portion of terrestrial back-trajectories is similar for heat waves and cold days (new 

Figure S2). It is only 72 to 24 hours prior to the events that the portion of terrestrial (marine) back-
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trajectories is lower (higher) for cool days than for heat waves (new Figure S2). This is in line with 

the evolution in specific humidity along the trajectories, which increases more strongly for the cool 

days than for the heat waves (Figure 2f). The increase of moisture is most likely related to the passing 

of the air masses over the Mediterranean Sea. We have revised the text accordingly and have added 

new Figure S2 as a Supplementary Figure. The revised text can be found in lines: 303-308 of the 

revised version of the manuscript. 

New Figure S2 The portion of trajectories over land, as defined by the ERA-Interim land-sea mask, for heat waves (red 

line) and cool days (blue line). The x-axis shows time lags (in h) relative to the first day of CSI ≥ 90% or CSI ≤ 10% and 

at 12UTC. 

 

 

Reviewer 2: L44: “(e.g., Goldreich et al., 2003)”. Consider citing (Kushnir et al., 2017). 

Response: The reference has been cited in the revised version of the manuscript. This can be found 

in line: 46 of the revised version of the manuscript. 

 

Reviewer 2:  L48-L52: some of this description seems appropriate to describe the generally mild 

temperatures and small inter-daily variability which was mentioned at the beginning of the 

paragraph. Please consider having some of this description moved to the beginning of the paragraph, 

and leave out only the part which is unique to low-temp days (possibly emphasize the role of the 

upper-level trough).  

Response: We have revised the paragraph according to the Reviewer’s suggestion. The revised text 

can be found in lines: 45-55 of the revised version of the manuscript. 

 

Reviewer 2: L58: “∼55,000 excess deaths”: where? 
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Response: In eastern Europe western Russia (Barriopedro et al., 2011; Katsafados et al., 2014). We 

have updated the text accordingly. The revised text can be found in line: 63 of the revised version of 

the manuscript. 

 

Reviewer 2: L62: “record-breaking”: in terms of duration? Extent? Temperatures? Please address 

this in the text.  

Response: We have addressed this in the text. Indeed, record-breaking here is in terms of 

temperatures (https://ims.gov.il/sites/default/files/aug10.pdf ). The revised text can be found in line: 

66 of the revised version of the manuscript. 

 

Reviewer 2: L69: “A framework”: which framework? Is it yours or in general? 

Response: The general framework of the Lagrangian back trajectories. We have clarified this in the 

revised version of the manuscript. This can be found in lines: 73-74 of the revised version of the 

manuscript. 

 

Reviewer 2:  L133: The term “Etesian winds” was not introduced before. To me it seems like a good 

idea to present it in the paragraph describing the summer climatology of the Eastern Mediterranean.  

Response: We appreciate this term may not be known to all readers, and we have introduced it in 

the paragraph describing the summer climatology of the eastern Mediterranean according to the 

Reviewer’s suggestion. The added text can be found in lines: 48-50 of the revised version of the 

manuscript. 

 

Reviewer 2: Sect. 2.2: please elaborate on why the CSI is better at describing heat waves than, e.g., 

the temperature alone. This could be done by using examples or just a further explanation on other 

effects these heat waves consist of. 

Response: We have elaborated on the advantages of the CSI index with respect to temperature alone. 

Indeed, this index incorporates the inversion base height and the heat stress. It therefore includes 

also humidity and circulation rather than only temperature (Saaroni et al., 2017). This means that the 

CSI relates more directly to the impacts of a heatwave on, for example, human physiology, than a 

conventional temperature-based measure (Epstein and Moran, 2006). The added text can be found 

in lines: 136-138 of the revised version of the manuscript. 
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Reference: 

Epstein Y, Moran DS. Thermal Comfort and the Heat Stress Indices. Vol. 44, Industrial Health. 

2006. 

  

Reviewer 2:  L174-179: Does this seasonal cycle related to the synoptic-scale circulation? If it is, I 

am not sure why it is reasonable to subtract it from the data. 

Response: We show that the seasonal cycle of the dynamical systems metrics is related to the 

synoptic scale circulation. Since we are comparing individual days/events during different parts of 

the summer season, it is better to de-seasonalize the data in order to study the anomalies. I.e., we test 

whether heat waves are synoptically and dynamically unusual with respect to the other days in the 

same part of the season. If we did not do this, the seasonal cycle would be “embedded” into our 

anomalies, biasing the results depending on which part of the summer season the selected episodes 

occurred in. As a practical example, imagine a scenario where the seasonal cycle of d peaks during 

month “x” of summer, and is lowest during month “x+2”. We next consider a heatwave during month 

“x” which has a d in-line with climatology, and a heatwave in month “x+2” which has a d above 

climatology for that month, but lower than the d of the heatwave during month “x”. If we did not de-

seasonalize d we would draw the incorrect conclusion that the first heatwave has an unusually high 

d and that the second heatwave has a low d. We have clarified this point in the revised version of the 

manuscript. The added text can be found in lines: 228-233 of the revised version of the manuscript. 

 

Reviewer 2:  L190: Could you write explicitly if this interpolation is done on the horizontal axis 

only or on the vertical axis as well? 

Response: We have clarified that the interpolation was done on the horizontal axis in the revised 

version of the manuscript. This can be found in line: 249 of the revised version of the manuscript. 

 

Reviewer 2:  L191: I did not understand what the reason was for choosing 69 hours as the lead time. 

Please elaborate. 
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Response: We have rephrased the paragraph in the methods section to clarify the choice of 69 hours.  

Indeed, The GEFS reforecasts are initialized at 00UTC and are available at three-hour intervals. 

Since our analysis focuses on heat waves, we estimate the spread/skill for maximum temperature 

and SLP at a lead-time of 69 hours, while the maximum temperature is defined between 45 h and 69 

h. Given the three-hour interval of the forecast data, and bearing in mind that each station’s maximum 

temperature is recorded between 20UTC and 20UTC of the next day, this time-window roughly 

corresponds to the definition of maximum temperature for the station data. We did however test a 

24-hour shorter lead time and found that our main conclusions remain the same (see for example 

Figure R1). The revised text can be found in lines: 251–255 of the revised version of the manuscript. 

Figure R1 Same as Figure 5e, f but for a 24-hour shorter lead time. 

 

Reviewer 2: L200: the bootstrapping and the statistical tests are already mentioned elsewhere, and 

to my opinion should not be detailed twice. However, it will be good if you could explain what was 

the variable on which the bootstrapping was applied on, and how many repetitions were made.  

Response: Thank you for this suggestion. We now mention the statistical tests used only in Section 

2.3 and elaborate that we bootstrapped the mean of the events and that the number of repetitions in 

the bootstrapping test is 104. The revised text can be found in lines: 224-227 and 260-261 of the 

revised version of the manuscript. 

 

Reviewer 2: L209-210: where do you start the trajectories from? Are they spread all over the 

domain? Is it only from the 5 stations?  

Response: The trajectories are initialized from fixed points in the whole domain. We have specified 

this in the revised version of the manuscript. The revised text can be found in line: 269-271 of the 

revised version of the manuscript. 

 

Reviewer 2: L224: “upper level ridge” vs. trough: please write more precisely, that the center of the 

high is to the southeast of the study area, as it is hard to tell from this map weather the Eastern 
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Mediterranean is affected by the ridge or the trough to the northwest (it actually seems in between 

them).  

Response: We have clarified this point in the revised version of the manuscript. The revised text can 

be found in lines: 284-285 of the revised version of the manuscript. 

 

Reviewer 2: L224-226: please make sure the SLP intervals are the same in panels a and b, as it is 

hard to understand which of these situations is associated with a deeper/shallower longer/shorter 

Persian trough (might be worth mentioning this as well).  

Response: Thank you for this suggestion. We have changed the Figure (see below new Figure 1) so 

that it will contain the same intervals in Fig. 1a and Fig. 1b according to the Reviewer’s suggestion. 

The revised text can be found in lines: 287-288 of the revised version of the manuscript. 

New Figure 1 Mean sea level pressure (SLP in hPa, white contours) and 500 hPa geopotential height (Z500 in m, shaded 

in color) for the 10% of days with the highest (heat waves) and lowest (cool days) Climatic Stress Index (CSI) values. 

(a) Heat wave days mean composite; (b) cool days mean composite; (c) heat waves minus cool days. 
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Reviewer 2: L227-242: I am not convinced that the median back-trajectory is a good representation 

of the paths of the air parcels. For example, the median track for the cool days is out of the highest 

density region (if I understand the plot correctly). This means, it could also be some compromise 

between trajectories passing over the Black Sea, and trajectories passing over the Mediterranean. 

Could you please explain why the median is a good representation? Could you convince me (and the 

readers) why should those maps not be read differently? For example, one can argue the main 

difference between the trajectories is that during heat waves more tracks are arriving after the passage 

over continental regions (Turkey), while during cold spells, tracks are arriving from the Black and 

Aegean seas.  

Response: Thank you for this comment. We have revised Figure 2 so that it will contain the 

uncertainty around the median (New Figure 2). Indeed, we show that the uncertainty is relatively 

small in the -48 hours prior to arrival of air parcels in the Eastern Mediterranean. This exemplifies 

that the median trajectory is a reasonable choice to make. As a caveat, this does not rule out a bimodal 

distribution of the trajectories, although the streamlines may be partly used to evaluate whether this 

is likely in the specific cases we consider here. The revised text can be found in lines: 750-756 of 

the revised version of the manuscript. 

New Figure 2 Same as the original Figure 2, but now also displaying the uncertainty of 25 – 75% around the median 

trajectories in crosses at different time lags.  
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Reviewer 2: L251: “Zero. . .” please add one of the following, or a similar description: x-axis / Time 

/ abscissa.  

Response: We have added the word x-axis in the revised version of the manuscript. This can be 

found in lines: 317-319 of the revised version of the manuscript. 

 

Reviewer 2: L267-275: Could you please give an intuition about the numbers shown in Fig. 4? For 

example, what does zero on the y-axis means? What is the difference between an increase of d and 

an increase of theta?  

Response: The numbers shown in Fig. 4 are deviations from the climatology, and thus should be 

interpreted in a relative sense. A value of zero on the y-axis implies that the events we chose are not 

different from the climatology of the days they occurred in.  

Concerning the second part of the Reviewer’s question, d and θ relate to different aspects of the 

atmosphere’s intrinsic predictability. The local dimension is a proxy for the “complexity” (here we 

use the term in a very broad and mathematically imprecise sense) of the evolution of the atmosphere 

about a given reference state. The persistence tells us how rapidly the evolution described by d 

happens. While the two metrics are overall correlated, there are cases where they diverge. In such 

cases, there is no exact rule to determine which of the two will “dominate”, and an evaluation must 

be made in relation to our physical understanding of the weather phenomenon being studied. We 

have summarized the above points in the revised version of the manuscript. The revised text can be 

found in lines: 317-319 and 329-330 of the revised version of the manuscript. 

 

Reviewer 2: L277-283: It is not clear to me what can we learn from the abserr graphs. Is this the 

error computed relative to the stations? 

Response: Indeed, this is the error computed relative to the stations. Both the spread and absolute 

error relate to the practical predictability as defined in Sect. 1 and in Sect. 2.4. We have elaborated 

on the use of both scores to estimate the practical predictability in Sect. 2.4 of the revised version of 

the manuscript. Specifically, the correlation between the ensemble spread and skill of the NWP 

model indicates how well the ensemble describes a priori the practical predictability of the 

atmospheric configuration we are considering (Whitaker and Loughe, 1998). The added text can be 

found in lines: 244-246 and 441-446 of the revised version of the manuscript. 
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Reference:  

Whitaker JS, Loughe AF. 1998. The relationship between ensemble spread and ensemble mean 

skill. Monthly Weather Review 126: 3292–3302. https://doi.org/10.1175/1520-

0493(1998)126<3292:TRBESA>2.0.CO;2 

 

Reviewer 2: L306: What do we learn from Fig. 8? Please enhance its description or cut it out of the 

main body (it could be transferred to the supplementary).  

Response: We have extended the description of Figure 8, which describes the large-scale situation 

during the 2010 heat wave. We especially focused on the effect the Rossby wave breaking may have 

on the generation of this extreme heat wave. the added text can be found in lines: 376-381 of the 

revised version of the manuscript.  

 

Reviewer 2: L390: Could you also provide a table showing the d and Theta for the analyzed times?  

Response: We will add the computed d and θ metrics to the KIT open data repository as soon as 

possible (https://www.bibliothek.kit.edu/english/kitopen.php  ).  

 

Reviewer 2: Figure 1: The color scale of panels a and b is not the same (panel a uses green colors in 

the middle of the SLP range, while panel b uses only yellows). Please match the color scales. 

Furthermore, please either write the interval of the SLP contours or add labels to some of them, so it 

could be easier to compare between the plots. 

Response: We have revised the Figure according to the Reviewer’s suggestion (see new Figure 1 

above).  

 

Reviewer 2:  Figure 3: either the SLP and Z500 labels were swapped or their mentioning in the 

figure caption. Please also explain what is represented by each dot. Is it the 12 UTC d and theta from 

the NCEP for each of the analyzed days? If so, please write something in that spirit.  

Response: The labels were not swapped. Regarding the second question from the Reviewer, the dots 

represent the daily values of d and θ for days either exceeding the 90% of CSI or below the 10% of 

CSI. We have added this in the caption of Figure 3 of the revised version of the manuscript. The 

added text can be found in line: 758 of the revised version of the manuscript. 

 

Reviewer 2: Figure 7a, b: Could you please make the blue colors somewhat transparent? It is harder 
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to read the map in the opaque form of the trajectory’s densities.  

Response: We have made the colors transparent so the Figure is more readable. Please see the new 

version of Figure 7a, b below. 

New Figure 7a, b Same as Figure 7a, b, but with transparent blue colors. 

 

 

Reviewer 2: Figure S1: Please add either topography or some measure of the summer-climate 

(average temp. / max temp.) to the map. In this way the readers could assess why are the 5 stations 

are representative of the climate.  

Response: We have added the average summer (July-August) temperature to the Figure, in order to 

better show the representative nature of the stations. Please see new Figure S1 below. 
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New Figure S1 The five homogenized stations on top of the average summer (July-August) temperature over Israel for 

1995-2009 (https://ims.gov.il/he/climateAtlas; shading in color - ˚C).  

 

Reviewer 2: Technical corrections L46: “On the upper levels”: please consider adding the words 

“of the troposphere”.  

Response: The words have been added according to the Reviewer’s suggestion. This can be found 

in line: 51 of the revised version of the manuscript. 

 

Reviewer 2: L49: “Saaroni and Ziv,2000”: please add a space before the “2000”.  

Response: A space has been added. This can be found in line: 55 of the revised version of the 

manuscript. 

 

Reviewer 2: L89: Please consider deleting the word “thus”.  

Response: The word ‘thus’ has been deleted in the revised version of the manuscript, according to 
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the Reviewer’s suggestion.  

 

Reviewer 2: L141: “. . . nine out of eleven days”: please add “on average”.  

Response: The words have been added in the revised version of the manuscript, according to the 

Reviewer’s suggestion. This can be found in line: 152 of the revised version of the manuscript. 

 

Reviewer 2: References: Kushnir, Y., Dayan, U., Ziv, B., Morin, E. and Enzel, Y.: Climate of the 

Levant: phenomena and mechanisms, in Quaternary of the Levant: environments, climate change, 

and humans, edited by Y. Enzel and B.-Y. Ofer, pp. 31–44, Cambridge University Press, Cambridge, 

UK., 2017.  

 
Response: Thank you for providing this reference. It has been cited in the revised version of the 

manuscript, according to the Reviewer's suggestion. This can be found in line: 46 of the revised 

version of the manuscript. 
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Abstract. Skillful forecasts of extreme weather events have a major socio-economic relevance. Here, we compare two 

complementary approaches to diagnose the predictability of extreme weather: recent developments in dynamical systems 

theory and numerical ensemble weather forecasts. The former allows us to define atmospheric configurations in terms of their 

persistence and local dimension, which inform on how the atmosphere evolves to and from a given state of interest. These 15 

metrics may be used as proxies for the intrinsic predictability of the atmosphere, which only depends on the atmosphere’s 

properties. Ensemble weather forecasts inform on the practical predictability of the atmosphere, which partly depends on the 

performance of the numerical model used. We focus on heat waves affecting the Eastern Mediterranean. These are identified 

using the Climatic Stress Index (CSI), which was explicitly developed for the summer weather conditions in this region and 

differentiates between heat waves (upper decile) and cool days (lower decile). Significant differences are found between the 20 

two groups from both the dynamical systems and the numerical weather prediction perspectives. Specifically, heat waves show 

relatively stable flow characteristics (high intrinsic predictability), but comparatively low practical predictability (large model 

spread/error). For 500 hPa geopotential height fields, the intrinsic predictability of heat waves is lowest at the event’s onset 

and decay. We relate these results to the physical processes governing Eastern Mediterranean summer heat waves: adiabatic 

descent of the air parcels over the region and the geographical origin of the air parcels over land prior to the onset of a heat 25 

wave. A detailed analysis of the mid-August 2010 record-breaking heat wave provides further insights into the range of 

different regional atmospheric configurations conducive to heat waves. We conclude that the dynamical systems approach can 

be a useful complement to conventional numerical forecasts for understanding the dynamics and predictability of Eastern 

Mediterranean heat waves. 

 30 
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1. Introduction 35 

Heat waves are recognized as a major natural hazard (e.g., Easterling et al., 2000), causing detrimental socio-economic impacts 

(e.g., Feeling the heat, 2018) including excess mortality (e.g., Batisti and Naylor, 2009; Benett et al., 2014; Peterson et al., 

2013; Ballester et al., 2019), agricultural loss (e.g., Deryng et al., 2014) and ecosystem impairment (e.g., Williams, 2014; 

Caldeira et al., 2015). Moreover, heat waves are projected to increase in frequency, intensity and persistence under global 

warming (e.g., Meehl and Tebaldi, 2004; Stott et al., 2004; Fischer and Schär, 2010; Seneviratne et al., 2012; Russo et al., 40 

2014). The Eastern Mediterranean has experienced several extreme heat waves in recent decades (e.g., Kuglitsch et al., 2010) 

and their frequency and intensity are expected to increase in the coming decades (e.g., Giorgi 2006; Seneviratne et al., 2012; 

Lelieveld et al., 2016; Hochman et al., 2018a) upon a background of regional warming and drying (e.g., Barchikovska et al., 

2020). 

The Eastern Mediterranean climate is characterized by wet conditions and mild air temperatures during the winter season and 45 

dry and hot weather conditions during summer (e.g., Goldreich et al., 2003; Kushnir et al., 2017). The summer season is 

characterized by very small inter-daily variability, which is attributable to the dominant and persistent influence of the Persian 

Trough and sub-tropical high-pressure systems. The interaction between these systems leads to persistent north – westerly 

winds of continental origin blowing across the Aegean Sea. These winds are known since ancient times as ‘Etesian winds’ 

(Tyrlis and Lelieveld, 2013). Together with the Mediterranean Sea breeze, moist air can be transported inland (Alpert et al., 50 

1990; Bitan and Saaroni, 1992) as far as the Dead Sea (Kunin et al., 2019). On the upper levels of the Troposphere, large-scale 

subsidence is dominant, thus further hampering the development of clouds and precipitation (Rodwell and Hoskins, 1996; Ziv 

et al., 2004). In spite of this generally low variability, heat waves are not infrequent during the summer (Harpaz et al., 2014). 

Still, episodes when the temperature drops to below-normal values do occur, some of which are accompanied by summer rains 

(Saaroni and Ziv, 2000).  55 

Saaroni et al. (2017) have detected weaknesses in the ability of earlier synoptic classifications (Alpert et al., 2004a; Dayan et 

al., 2012) to describe local weather conditions during the Eastern Mediterranean summer season. The authors proposed a 

‘Climatic Stress Index’ (CSI), which is a combination of the national heat stress index, used operationally by the Israeli 

Meteorological Service, and the height of the marine inversion base height (see Sect. 2.2). The authors argued that this novel 

index improves the classification of heat wave days relative to earlier classifications and additionally links directly to the 60 

potential impacts.  

 A notable heat wave in recent years was the 2010 so-called “Russian heat wave”, which caused ~55,000 excess deaths in 

Eastern Europe and Western Russia (e.g., Barriopedro et al., 2011; Katsafados et al., 2014). The 2010 Northern Hemisphere 

summer saw a strong and persistent blocking ridge at 500 hPa over the Middle East and Eastern Europe (e.g., Grumm 2011; 

Schneidereit et al., 2012; Quandt et al., 2017), leading to unprecedented temperatures at numerous locations (Barriopedro et 65 

al., 2011). The Eastern Mediterranean and Israel experienced a record-breaking (in temperature) heat wave during mid-August 
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of that year (https://ims.gov.il/sites/default/files/aug10.pdf), which interestingly coincided with what is considered the decay 

phase of the Russian heat wave (Quandt et al., 2019). In fact, the Zefat Har-Knaan station (Tab. S1; Fig. S1) recorded a 

temperature of 40.6°C; the highest temperature since 1939, while the Jerusalem station (Tab. S1; Fig. S1) logged a remarkable 

41°C, the absolute record for this station since 1942. The ability to predict and issue appropriate warnings for these types of 70 

events, and more generally weather events lying in the tails of the respective distributions, is of crucial importance for 

mitigation of impacts on human life, agriculture and ecosystems (IPCC 2012; Siebert and Evert, 2014; Williams 2014). 

A general framework that allows a quantitative understanding of processes leading to extreme temperatures during heat waves 

is that based on Lagrangian backward trajectories. In this framework, the temperature of an air parcel increases by: (i) adiabatic 

warming related to descent and (ii) diabatic heating including latent and sensible heat fluxes, short-wave, and long-wave 75 

radiation (Holton 2004). Recent studies revealed that extreme temperatures during heat waves are most often a combination 

of adiabatic warming related to descent and diabatic heating near the surface (e.g., Black et al., 2004; Bieli et al., 2015; Santos 

et al., 2015; Quinting and Reeder, 2017; Zschenderlein et al., 2019). The adiabatic warming is typically associated with upper-

level ridges, which promote subsidence. The strongest diabatically-driven heating does not necessarily occur at the location of 

the heat wave itself, but rather in geographically remote regions (e.g., Quinting and Reeder, 2017; Quinting et al., 2018; 80 

Zschenderlein et al., 2019).  

Focusing more directly on the prediction of the evolution of specific atmospheric configurations, which may lead to heat 

waves, one may consider a partly model-dependent perspective (practical predictability) or a model-independent perspective 

(intrinsic predictability; Melhauser and Zhang, 2012). The practical predictability is heavily reliant on the availability of 

initialization data (Lorenz 1963) and on the correct representation of relevant physical processes in the numerical model being 85 

used. However, it also reflects some characteristics of the atmospheric dynamics (e.g., Ferranti et al., 2015; Matsueda and 

Palmer, 2018). An often-used method for quantifying the practical predictability is the spread or skill of ensemble forecasts 

(e.g., Loken et al., 2019). 

As opposed to the practical predictability, the intrinsic predictability only depends on the characteristics of the atmosphere 

itself. However, it is important to note that the atmosphere is influenced and sometimes even controlled by interactions with 90 

the land and oceans, albeit mostly at longer time scales than those considered in this study (Entin et al., 2000; Koster et al., 

2010; Dirmeyer et al., 2018). Recent developments in dynamical systems theory allow us to quantify the intrinsic predictability 

of instantaneous atmospheric states using two metrics: persistence (θ-1) and local dimension (d). These reflect how the 

atmosphere evolves in the neighborhood of a state of interest (Faranda et al., 2017a). High (low) θ-1 (d) imply high intrinsic 

predictability, whereas low (high) θ-1 (d) suggest low intrinsic predictability. The two forms of atmospheric predictability 95 

depend on different factors, and therefore offer different information. While there is some relation between the two (e.g., Scher 

and Messori, 2018), one should not expect them to always match for individual cases (Hochman et al., 2020a).  
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In the present study, we perform a systematic dynamical systems investigation of the temporal evolution of Eastern 

Mediterranean summer heat waves, and evaluate whether this may provide insights complementary to a more conventional 

analysis of the numerical weather forecasts of such events. Specifically, we hypothesize that the dynamical systems analysis 100 

captures relevant features of these extremes, such as their persistence, which are not always reflected in the numerical weather 

forecast. The dynamical systems framework has recently been leveraged for the study of cold spell dynamics (Hochman et al., 

2020a). 

The paper is organized as follows: Sect. 2 provides a brief description of the methodology, including the used datasets, the CSI 

index, the dynamical systems and forecast skill metrics and the method for backtracking air parcels. Sect. 3 describes the 105 

dynamics of heat waves from both the dynamical system and the numerical weather prediction perspectives and further 

provides a detailed analysis of the mid-August 2010 heat wave over the Eastern Mediterranean as a case study. Finally, Sect. 

4 provides the main conclusions and discusses ideas for future research. 

 

2. Data and methods 110 

2.1 Data  

The bulk of our analysis is based on the National Centers for Environmental Prediction/National Center for Atmospheric 

Research Reanalysis Project (NCEP/NCAR) daily and 6-hourly reanalysis data for 1979 – 2015 (satellite era), on a 2.5° × 2.5° 

horizontal grid (Kalnay et al., 1996). Faranda et al. (2017a) have shown that the conclusions one may infer from the dynamical 

systems analysis are generally insensitive to the dataset’s horizontal spatial resolution, as long as the major structures 115 

characterizing the atmospheric field of interest are resolved. On the contrary, the air parcel tracking (Sect. 2.5) requires data 

on a relatively high horizontal and vertical grid-spacing. Air parcel trajectories are thus computed from 6-hourly ERA-Interim 

data for 1979 – 2015, on a 1° × 1° horizontal grid and 60 vertical levels (Dee et al., 2011).  

The numerical forecasts are acquired from the Global Ensemble Forecast System (GEFS) reforecast v.2 dataset produced by 

NCEP/NCAR (Hamill et al., 2013). Operational Numerical Weather Prediction (NWP) models are frequently updated. 120 

Therefore, archives of operational NWP models are usually inhomogeneous, and thus are not appropriate for studying 

predictability over long time periods. This problem can be mitigated by using so-called reforecasts. For reforecasts, one fixed 

version of an NWP model is used in order to create a standardized set of past forecasts. The GEFS reforecast dataset provides 

a set of daily reforecasts from December 1984 to present. Each reforecast consists of a control forecast and a ten-member 

ensemble on a 0.5° × 0.5° grid spacing. 125 

Finally, we make use of a homogenized station dataset over Israel to assess the forecasts. Instrumental meteorological records 

may be influenced by non-meteorological events, such as station relocation, defects in the instrumentation, environmental 

changes near the station etc. The detrimental effects these may have on the quality of the recorded data can be reduced by 
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homogeneity procedures (Aguilar et al., 2003). Our dataset includes five representative, homogenized stations in Israel with 

an uninterrupted record of maximum temperatures over 1979 – 2015 (Tab. S1, Fig. S1; Yosef et al., 2018). 130 

 

2.2 Heat wave definition according to the Climatic Stress Index (CSI) 

Saaroni et al. (2017) have proposed a new index for classifying the summer days over the Eastern Mediterranean based on the 

'environment to climate' approach (Yarnal 1993; Yarnal et al., 2001). The CSI is comprised of the national heat stress index, 

used operationally by the Israel Meteorological Service, and the marine inversion base height, which is a major factor 135 

influencing the summer weather conditions over the Eastern Mediterranean (Ziv et al., 2004). The index suits the identification 

of heat waves as it is does not merely consider the daily temperature, but rather additional variables, e.g., humidity and 

circulation, which directly relate to the impacts of a heat wave on for example, human physiology (Epstein and Moran, 2006).  

Saaroni et al. (2017) have rigorously evaluated the CSI index with respect to observations and tested a variety of different 

combinations of predictors, which ultimately resulted in a simple multiple regression equation:  140 

𝐶𝑆𝐼 = 92.78 + 0.638𝑇ଵି଼ହ − 0.178∆𝑝 − 1.08𝑝ூ 

Here, 𝑇ଵି଼ହ  is the average regional lower-level temperature over [31°N-34°N; 33°E-37°E]. ∆𝑝 is the average sea level 

pressure over [36°N-44°N; 42°E-54°E] subtracted from the average sea level pressure over [24°N-29°N; 33°E-37°E], which 

is an estimate for the intensity of the Etesian winds (see Sect. 1). 𝑝ூ represents the average sea level pressure over northern 

Iraq [35°N-44°N; 46°E-54°E], which is a proxy for the depth of the Persian Trough.  145 

The analysis described in the next sections is specifically implemented for extremes of the CSI index, i.e., days during which 

the CSI exceeds the 90th percentile of the July and August climatological distribution (hereafter: ‘upper 10% of CSI’ or heat 

waves) versus days when the CSI is below the 10th percentile of the July and August distribution (hereafter ‘lower 10% of CSI’ 

or cool days). The onset of a heat wave (cool days) is taken to be the first day in which the CSI exceeds (subceeds) the 90th 

(10th) percentile threshold at 12UTC (0 h time in the Figures), which ought to roughly match the time of maximum daily 150 

temperature. Alpert et al. (2004b) have argued that July and August represent the mid-summer months, in which the Persian 

Trough occurs on more than nine out of eleven days on average. For additional details on the computation of the CSI index 

and its evaluation, the reader is referred to Saaroni et al. (2017). 

 

2.3 Dynamical systems metrics 155 

We view the atmosphere as a chaotic dynamical system, and leverage a recently-developed method combining extreme value 

theory with Poincaré recurrences (Lucarini et al., 2016; Faranda et al., 2017a) to estimate the dynamical properties of 

atmospheric states. The temporal evolution of the atmosphere can be represented as a long trajectory in a suitably defined 
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phase space. When we use temporally discretised data, such as reanalysis data, we are effectively sampling this trajectory for 

a given time period, for example 6 or 24 hours. An example would be analysing daily latitude-longitude maps of Sea-Level 160 

Pressure (SLP) over the Eastern Mediterranean (technically a special Poincaré section of the full dynamics): each 2-D map 

corresponds to a single point along the aforementioned trajectory, for which we seek to compute instantaneous (in time) and 

local (in phase space) properties. We specifically consider two metrics, which describe instantaneous atmospheric states: the 

local dimension d and the persistence θ-1. In order to compute the local dimension and persistence for a given state of interest 

ξ, which in our example would correspond to a specific SLP map in our dataset, we first define logarithmic returns as: 165 

 

𝑔(𝑥(𝑡), 𝜉) = −𝑙𝑜𝑔 ൫𝑑𝑖𝑠𝑡(𝑥(𝑡), 𝜉)൯ 

 

where dist is the Euclidean distance between two vectors. Thus, we define g such that it is large when the system is in states 

close to ξ, and small when the system is in states far from ξ. In other words, g is large whenever the SLP map on a given day 170 

resembles the SLP map of the day corresponding to the state of interest ξ. 

We next consider all cases in which g exceeds a high threshold s (q, ξ), where q is a high quantile of the series g itself. Here 

we select q to be the 98th percentile of g. For these cases, which correspond to days whose SLP map is very similar to that of 

ξ, we can then define exceedances as: 

 175 

𝑢(𝑡, 𝜉) = 𝑔(𝑥(𝑡), 𝜉) − 𝑠(𝑞, 𝜉) 

 

Given g above the threshold, we compute by how much it is so. The cumulative probability distribution F (u, ξ) of the 

exceedances thus defined, converges to the exponential member of the Generalised Pareto Distribution (GPD; Freitas et al., 

2010; Lucarini et al., 2012). In other words, given a sufficiently long series of SLP maps, we know that the exceedances u 180 

computed from these maps obey the following: 

𝐹(𝑢, 𝜉) ≃ 𝑒
൬ିణ(క)

௨(క)
ఙ(క)

൰
 

 

Here ϑ is the extremal index (Moloney et al., 2019), which we calculate using the Süveges Maximum Likelihood estimator 

(Süveges, 2007), and u and σ are parameters of the distribution, which depend on the chosen ξ. The local dimension is then 185 

obtained as: 
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𝑑(𝜉) =
1

𝜎(𝜉)
 

While the persistence is given by: 

𝜃ିଵ(𝜉) =
∆𝑡

𝜗(𝜉)
 

Where Δt is the time interval between successive time steps in our dataset. In practice, we choose each SLP map in the dataset 190 

in turn as state of interest ξ, which enables us to obtain a value of d and θ-1 for each timestep in our dataset. 

In practical terms, d reflects the geometry of the trajectories in a small region (neighbourhood) of the system’s phase space 

around the state of interest. It is therefore related to the number of active degrees of freedom that the system can explore about 

the state. In other words, it informs on the way the system evolves around the state of interest, and a higher d will correspond 

to a less predictable evolution of the system. The persistence θ-1 quantifies for how long the system resides in the 195 

neighbourhood of the state of interest. An infinite persistence implies a fixed point of the system, such that all successive 

timesteps bring no change to the state of the system. At the opposite end of the spectrum, θ-1 = 1 corresponds to a non-persistent 

state of the dynamics. The dynamical systems persistence tends to be very sensitive to small changes in the state of the system. 

In atmospheric sciences, persistence is often computed as the residence time of the atmosphere within a given cluster of states. 

For example, when computing the persistence of weather regimes, one usually counts for how long the atmosphere remains 200 

within one given weather regime cluster. However, there are typically a small number of clusters, such that each one contains 

a relatively large fraction of the total number of timesteps within the dataset. In our case, we define recurrences based on a 

high threshold such that only a small fraction of timesteps within our dataset qualify as recurrences. By design, θ-1 is thus more 

sensitive to small changes in the atmosphere than the conventional definition of persistence of weather regimes. The two are 

nonetheless related, and relative differences in θ-1 often reflect relative differences in more conventional atmospheric 205 

persistence metrics (Hochman et al., 2019). 

The above derivations hold under a specific set of conditions, which are seldom satisfied by climate, or indeed any real-world 

datasets – such as having infinitely long timeseries. However, there are both formal (Caby et al., 2020) and empirical (Messori 

et al., 2017; Buschow and Friedrichs, 2018) results, which support the application of this framework to natural data. In 

particular, Buschow and Friederichs (2018) have shown that d successfully reflects the dynamical characteristics of the 210 

atmosphere even for datasets where the universal convergence to the exponential member of the GPD is not achieved. Messori 

et al. (2017) have further shown that the persistence estimates for atmospheric data issuing from the Süveges estimator are 

very stable under bootstrap resampling of the intra and inter-cluster times (i.e. the residence times of the trajectory within and 

without the neighbourhood of the state of interest). For more details on the estimation of the dynamical systems metrics, the 

reader is referred to Lucarini et al. (2016) and Faranda et al. (2017a; 2019a).  215 
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The dynamical systems perspective has been fruitfully applied to a range of geophysical and other datasets (e.g. Faranda et al., 

2019b, c; Brunetti et al., 2019; Faranda et al., 2020; Hochman et al., 2020b; De Luca et al., 2020a; Pons et al., 2020). It has 

also been explicitly shown that d and θ-1 can offer an objective characterization of synoptic systems over different geographical 

regions, including the Mediterranean (Hochman et al., 2019; De Luca et al., 2020b), the North Atlantic (Faranda et al., 2017a; 

Messori et al., 2017; Rodrigues et al., 2018) and the full Northern Hemisphere (Faranda et al., 2017b). In this study, we 220 

compute d and θ-1 for daily and 6-hourly 500 hPa geopotential height (Z500) and SLP fields from the NCEP/NCAR reanalysis, 

over the Eastern Mediterranean, placing Israel in the middle of the domain (27.5°N-37.5°N; 30°E-40°E; Fig. 1). To understand 

the differences between heat waves and cool days, we analyse both the CDFs (Cumulative Distribution Functions) and the 

mean temporal evolution of the two groups of days in terms of d and θ-1. The Wilcoxson Rank-Sum (comparing the medians) 

and Kolmogorov-Smirnov (comparing the CDFs) tests are used for estimating the differences between the upper and lower 225 

10% of CSI days at the 5% significance level. A bootstrap sampling test with 104 samples is used to evaluate the 95% 

confidence intervals of the mean temporal evolutions. 

Previous studies have shown that the dynamical systems metrics d and θ-1, have a strong seasonal cycle (Faranda et al., 2017a, 

b; Rodrigues et al., 2018; Hochman et al., 2020a). Thus, we remove the seasonal cycle before comparing the various events.  

Since we are comparing individual days/events during different parts of the summer season, it is better to de-seasonalize the 230 

data in order to study the anomalies. In other words, we test whether heat waves are synoptically and dynamically unusual 

with respect to the cool days in the same part of the season. The seasonal cycle is estimated by averaging the metrics for a 

given time step (e.g., 15 August at 12UTC) over all years, repeating this for all time steps within the year and ultimately 

smoothing the series with a 30-day moving average. 

 235 

2.4 Forecast spread/skill 

To obtain an ensemble forecast, a set of numerical forecasts are performed with either different initial conditions, and/or 

perturbation of physical parametrizations. Ensemble forecasts offer an efficient way of estimating uncertainty by computing 

the ensemble spread. This is quantified by estimating the standard deviation between ensemble members. The spread can be 

taken as an indicator of practical predictability: in a perfect ensemble, a small spread would generally indicate we can determine 240 

with a good degree of confidence the future weather, while a large spread would point towards a larger uncertainty (e.g., Buizza 

1997). This type of approach is commonly used when investigating atmospheric predictability (e.g., Hohenegger et al., 2006; 

Ferranti et al., 2015), although it does have limitations (e.g., Whitaker and Lough, 1998; Hopson 2014).  

An additional frequently used forecast diagnostic is the absolute error, which provides a measure of forecast skill. The 

correlation between the ensemble spread and skill of the NWP model indicates the extent to which the ensemble can be used 245 

to provide an a priori estimate of the practical predictability of the atmospheric configuration we are considering. Here, we 

use the homogeneous station archive mentioned in Sect. 2.1 above as ground truth to estimate the forecasts’ absolute error. In 
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order to remove biases due to topographic differences between the model and the stations, the GEFS reforecast gridded data 

is bilinearly horizontally interpolated to the location of the stations. The bias computed over the whole period is then removed 

for each station.  250 

The GEFS reforecasts are initialized at 00UTC and are available at three-hour intervals. Since our analysis focuses on heat 

waves, we estimate the spread/skill for maximum temperature and SLP at a lead-time of 69 hours, while the maximum 

temperature is defined between 45 h and 69 h. Given the three-hour interval of the forecast data, and bearing in mind that each 

station’s maximum temperature is recorded between 20UTC and 20UTC of the next day, this time-window roughly 

corresponds to the definition of maximum temperature for the station data. Since the dynamical systems metrics offer 255 

information on the temporal evolution of the atmosphere in the neighbourhood of a given reference state, we argue that using 

the time of forecast initialization as temporal coordinate when plotting spread and error is most indicative for comparing the 

dynamical systems and numerical forecasts. In the supplementary material, we also plot the spread/skill for the forecasts 

initialised 69 h before the marked time. Thus, the plots in the main text show forecast initialisation times, while those in the 

supplementary material show the forecast valid times. Statistical inference is accomplished by the same tests mentioned in 260 

Sect. 2.3.  

 

2.5 Air parcel tracking 

 In order to identify typical pathways of air masses leading to situations with high and low CSI values, ten-day backward 

trajectories are computed using the Lagrangian Analysis Tool (LAGRANTO; Wernli and Davies, 1997; Sprenger and Wernli, 265 

2015). The reader is referred to Fig. 2 in Sprenger and Wernli (2015) for a schematic overview of the typical steps taken to 

compute trajectories. The tracking of temperature and potential temperature along the trajectory further allows to quantify the 

contribution of adiabatic and diabatic processes to the anomalous temperatures. The vertical and horizontal wind components 

required for the trajectory computations are acquired from the ERA-Interim reanalysis (Dee et al. 2011, Sect. 2.1). The 

trajectories are initialized at 12UTC from fixed points in the whole study region on the first day of a heat wave or cool days 270 

(Fig. 1). In order to analyze the near-surface air masses, i.e. those related to the hot and cool conditions, we consider trajectories 

that are initialized between the surface and 90 hPa above the surface. According to recent studies, the planetary boundary layer 

height in Israel during summer is ~600 – 900 m above the surface (Uzan et al., 2016; 2020). Assuming hydrostatic balance 

and thus a pressure decrease of approximately 1 hPa every 8m height difference, 90 hPa corresponds to about 720m. Therefore, 

this can be considered a reasonable choice.  275 

The trajectories are calculated from 6-hourly ERA-Interim data and remapped to a 1° regular latitude-longitude grid. Thus, the 

analyzed wind field does not resolve sub grid-scale processes, such as Lagrangian transports due to small convective cells. 

Also, vertical motion associated with short-lived convection between two-time steps is not accounted for. Still, for a 

climatological investigation that is the focus of this study, the trajectory calculation is a suitable diagnostic. 
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3. Results 280 

3.1 Dynamics of heat waves over the Eastern Mediterranean 

We first analyze the differences between heat waves (upper 10% of CSI values) and cool days (lower 10% of CSI values). 

From an atmospheric dynamics’ standpoint, the main difference between the two groups is that heat wave days are associated 

with an upper level ridge, whose center is located in the south – eastern part of the study region (Fig. 1a), while cool days are 

associated with an upper level trough, whose center is located at the north – western part of the study region (Fig. 1b). The 285 

SLP patterns are quite similar in both groups, but the heat waves show lower SLP in the south-west and a higher SLP in the 

north-east compared to the cool days sample (Fig. 1c). This implies stronger pressure gradients in the cool days’ subgroup, 

leading to enhanced cool air advection from the Mediterranean Sea inland, in comparison to the heat wave days. Furthermore, 

the above reveals that the large-scale configuration is an important factor in the generation of a heat wave over the Eastern 

Mediterranean. The backward trajectory air parcel analysis illustrates that the flow preceding an extreme heat wave has a 290 

roughly meridional orientation when traveling over the Eastern Mediterranean and originates over the European continent (Fig. 

2a). On the other hand, the air parcels for cool days often originate over the Atlantic, and take a more zonal pathway across 

the Eastern Mediterranean (Fig. 2b). The initial potential temperature of the heat wave air masses is about 7 K higher than that 

for the cool days (Fig. 2e). The differences in potential temperature between the two groups can mainly be attributed to the 

more continental origin of the air parcels for the heat waves, thus potentially transporting warmer air masses that descend on 295 

their path to the target region. Their descent, which is stronger than for cool days (Fig. 2c), is accompanied by a temperature 

increase of more than 25 K during the ten-day period (Fig. 2d). The potential temperature remains nearly constant until the 

final stages of the descent except for the diurnal cycle (Fig. 2e). Thus, we conclude that the extreme heat is related to an 

adiabatic descent of the air parcels over the Eastern Mediterranean rather than to diabatic heating. In other words, the warm 

air parcels are transported towards the Eastern Mediterranean with the governing westerlies rather than heated up locally over 300 

several days. This supports the findings of Harpaz et al. (2014), who argued that extreme summer heat waves over the Eastern 

Mediterranean are mostly regulated by mid-latitude disturbances rather than by the Asian Monsoon, as previously proposed 

by Ziv et al. (2004). An additional important difference between the two sets of CSI events is that, unlike for the heat waves 

(Fig. 2a, f), the specific humidity of the cool days increases by 2 g kg-1 around t = -48 hours, due to the longer stretch the latter 

air parcels follow over the Mediterranean Sea (Fig. 2b, f) and perhaps some enhanced convection, which our analysis does not 305 

account for. Indeed, comparing the portion of terrestrial back-trajectories for heat waves and cool days (Fig. S2) suggests that 

for most of the time they are quite similar. It is only 72-24 hours prior to the events that the portion of terrestrial back-

trajectories for cool days reaches a minimum and is much lower than for heat waves (Fig. S2). 

From a dynamical systems point of view, the upper and lower 10% of CSI also exhibit substantial differences. Fig. 3 shows a 

phase-plane diagram for d and θ computed on Z500 and SLP for the heat waves and cool days. θ is significantly lower at both 310 

levels for heat waves with respect to cool days, i.e., the former are generally more persistent systems. Statistically significant 

differences in the median local dimensions (d) of the two groups are found only for the Z500 variable, for which the heat 
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waves typically display a lower local dimension (d) than the cool days (Fig. 3a). The clear separation between the two groups, 

especially at upper level (cf. Fig. 3a and Fig. 3b) correlates well with the atmospheric dynamics’ viewpoint, which also shows 

more pronounced differences at Z500 (Fig. 1). This points to the importance of using different variables at different pressure 315 

levels to obtain a comprehensive picture of the dynamics of heat waves. 

Fig. 4 displays the average temporal evolution of d and θ during the selected events, again computed for Z500 and SLP. Zero 

on the x-axis denotes the first day of the event at 12UTC, whereas, a value of zero on the y-axis implies that the events are not 

different from the climatology of the days they occurred in. Substantial differences are found between the time evolutions of 

the upper and lower 10% of the CSI events. For Z500, the temporal evolution of d and θ for heat waves are in phase with each 320 

other, and show a minimum with below climatology values in the 24 h preceding the event onset (Fig. 4a). While there is still 

a considerable spread around the mean, even the upper bounds of our confidence intervals are well below zero in the build-up 

to the events. Instead, cool days display weak positive anomalies of d and θ, but these are almost never significantly different 

from 0 (Fig. 4b). The dynamical systems metrics computed on SLP provide a completely different picture: heat waves typically 

display a weak above-climatology d, which increases towards the event onset and then decreases (Fig. 4c). θ displays a slightly 325 

below-climatology persistence (i.e. positive anomalies) and decreases towards the event onset (Fig. 4c). However, the very 

large spread in the composite evolution, and in particular in d, suggests some caution in over-interpreting the details of these 

evolutions. Cool days are characterized by higher positive anomalies of d and θ in the days preceding the event. The build-up 

towards this type of event is characterized by an increase in θ (decrease in persistence) and a decrease in d (decrease in active 

degrees of freedom; Fig. 4d). The cool days also appear to have a more coherent evolution (lower spread around the mean) 330 

than the heat waves for SLP.  

The differentiation between the two samples is thus more pronounced when computing the metrics on Z500 than on SLP (Fig. 

4), as also shown in the daily distributions (Fig. 3). Moreover, the variability in the temporal evolution of the dynamical 

systems metrics is smaller in Z500 than in SLP (Fig. 4). This points to: i) coherent, and very different, upper level conditions, 

which engender the two sets of CSI days; and ii) a comparatively wide range of possible near-surface patterns leading to severe 335 

heat waves. The latter may be explained by the fact that, given initially warm upper-level air parcels and upper-level subsidence 

leading to rapid adiabatic warming, the occurrence of a heat wave is then relatively insensitive to the details of the surface 

conditions (e.g., Baldi et al., 2006; Harpaz et al., 2014). Our general understanding of the synoptic conditions at surface levels 

further suggests that the delicate interplay between the Persian Trough and Subtropical High systems (Alpert et al., 1990) may 

contribute to the large spread of both heat waves and cool days regarding the dynamical systems metrics computed on SLP. 340 

We analyze next numerical ensemble forecasts from the GEFS reforecast dataset for both sets of events. Substantial differences 

are again found between the two groups (Fig. 5). Both the ensemble spread and the absolute error are significantly higher for 

heat waves than for cool days (Fig. 5). The model spread and absolute error increase before the onset of the heat wave, peaking 

at around 24-48 hours negative lags (Fig. 5). This pattern stands in stark contrast to the temporal evolution of d computed on 

Z500 (cf. Fig. 5a, c, e and Fig. 4a), but somewhat resembles the evolution of d computed on SLP, albeit with a ~24 hours shift 345 
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in time (cf. Fig. 5e and Fig. 4c). Such a shift may be explained by the fact that the spread/skill of the ensemble forecasts are 

computed every 24 hours, while the dynamical systems metrics are instantaneous in time (local in phase-space) and computed 

from 6-hourly data. The reforecasts computed for the individual stations (not shown) resemble the average forecast spread/skill 

(Fig. 5). The corresponding plots for forecast valid time (see Sect. 2.4), are provided in Fig. S3. 

 350 

3.2 Analysis of the mid-August 2010 heat wave over the Eastern Mediterranean 

The mid-August 2010 heat wave over the Eastern Mediterranean was a severe heat wave, which lies in the upper 0.3% of the 

CSI distribution. A detailed analysis of the heat wave highlights both similarities and differences with the climatology of the 

heat wave days (Sect. 3.1). The Z500 and SLP patterns for 15th August 2010 are comparable with the average configuration of 

a heat wave, but show a stronger upper level ridge and meridionally-oriented isobars (cf. Fig. 6a and Fig. 1a). From a dynamical 355 

systems point of view, the 2010 heat wave was also an uncommon extreme, especially for the metrics computed on Z500. The 

dynamical systems metrics’ anomalies computed on this field range between -0.9 and -1.4 for d, and -0.14 and -0.2 for θ (Fig. 

6b). This situates the heat wave in the lower 10% of the respective distributions (see also red dots in Fig. 3a). During its 

evolution, the event displays an increase in both d and θ computed on Z500 and a decrease (increase) in θ (d) computed on 

SLP (Fig. 6b, c). While the Z500 d and θ evolution is roughly comparable to that identified for heat wave days (cf. Fig. 4a and 360 

6b), the SLP d and θ evolutions show profound differences. This may simply reflect the larger spread in dynamical systems 

properties across the different heat waves for SLP than for Z500, which is likely to be partially modulated by interactions 

between the surface and the atmosphere. Naturally, these interactions predominantly affect the lowermost parts of the 

Troposphere. We further hypothesize that differences between the single case and the climatology may be related to the 

relatively small day to day variations during summer over the Eastern Mediterranean, which make it challenging to depict the 365 

exact onset of a heat wave. Indeed, when comparing the climatology of the temporal evolution of d and θ for Z500 (Fig. 4a) 

with the single case (Fig. 6b) it is relatively easy to see that there is an increase in both d and θ as the heat wave develops. On 

the other hand, when comparing the temporal evolution of d and θ for SLP (Fig. 4c with Fig. 6c), one can see that depicting 

the exact time the heat wave starts is very important for comparison. In both Figures, d increases and θ decreases at some point 

in the chosen time window, but the timing of these trends is shifted between the climatology (Fig. 4c) and the single case (Fig. 370 

6c). 

The 2010 heat wave was also uncommon in terms of the large-scale flow and Lagrangian trajectories (Fig. 7). Between -10 to 

-5 days prior to the event, the majority of air parcels were transported in an easterly flow on the southern flank of an anticyclone 

located over Russia. Thus, air parcels came from the Zagros Plateau of Northern Iran, rather than from central Europe as in 

the climatology (cf. Fig. 7a, b and Fig. 2a). Indeed, Zaitchik et al. (2007) have argued that the Zagros Plateau has a strong 375 

influence on extreme summertime heat waves over the Eastern Mediterranean. Here we show that the anti-cyclonic wave 

breaking of the blocking regime over Russia, which interestingly is related to the decay phase of the Russian 2010 heat wave 



13 
 

(Quandt et al., 2019), played an important role in transporting the warm air masses from Northern Iran towards the Eastern 

Mediterranean and Israel (Fig. 7a, b and Fig. 8). This is realized through the trough east of the blocking ridge centered over 

European Russia, which is tilted southwest - northeast and advected westward (Fig. 8b - d, Davini et al., 2012; Quandt et al., 380 

2019).  For the last five days prior to the heatwave (Fig. 7b), the parcel’s trajectories resemble more closely the climatology 

of heat waves (Fig. 2a). Reflecting the different advection pathways, the initial potential temperature and temperature of the 

air parcels are respectively about 2K and 7K higher than the climatology of heat waves (cf. Fig. 7d, e and Fig. 2d, e). 

Accordingly, the hot air masses in the mid-August 2010 heat wave are transported to the Eastern Mediterranean and undergo 

adiabatic heating, rather than being heated up locally. This is in line with the climatology discussed in Sect. 3.1, and heat waves 385 

in other parts of the world (e.g., Bieli et al., 2015; Quinting and Reeder, 2017; Zschenderlein et al., 2019). 

Fig. 9 shows the temporal evolution of the forecast spread/skill for the mid-august 2010 heat wave compared to the heat wave 

climatology. Throughout the lead up and early phases of the event, the forecast displays a lower spread and error than for other 

heat waves. A large decrease in the practical predictability occurs as the event develops, i.e., an increase in the spread/skill for 

maximum temperature (Fig. 9a, b). This mirrors the increase in d and θ computed on Z500 and for d computed on SLP (cf. 390 

Fig. 9a, b with Fig. 6b, c). Indeed, the decay phase of the Russian heat wave was characterized by low practical predictability 

(Matsueda 2011), which may have influenced the predictability over the Eastern Mediterranean. However, it should be noted 

that the spread computed on maximum temperature for the mid-August 2010 heat wave does not correlate well with the spread 

computed on SLP (cf. Fig. 9a with Fig. 9c). Moreover, some striking differences are displayed between the ensemble forecast 

of this single event and the climatology of forecasts for heat waves. These discrepancies may be related to the fact that we are 395 

analyzing a single event, whose error may not reflect the practical predictability of the atmosphere even for a perfect ensemble 

(e.g., Whitaker and Lough, 1998; Buizza et al., 2005; Hopson 2014). The corresponding plots for forecast valid time (see Sect. 

2.4), are provided in Fig. S4. 

 

4.  Summary and conclusions 400 

Heat waves are a major weather-related hazard, especially in an era of rapid climate change. We define heat waves over the 

Eastern Mediterranean according to a state-of-the-art ‘Climatic Stress Index’ (CSI; Saaroni et al., 2017), developed specifically 

for the region’s summer weather conditions. We use a combination of dynamical systems theory, numerical weather forecasts 

and air parcel back-trajectories to investigate the evolution and predictability characteristics of heat waves (high CSI) and cool 

days (low CSI) for the region.  405 

The main conclusions are as follows: significant differences are found between heat waves and cool days from both a 

dynamical systems and numerical weather prediction perspectives. Heat waves show relatively low practical predictability 

(large model spread/low skill) in the ensemble reforecast dataset used here, in spite of the relatively stable flow characteristics 

(high intrinsic predictability) compared to the cool days. When considering Z500, the intrinsic predictability of heat waves 
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over the Eastern Mediterranean is highest, i.e., low local dimension (d) and high persistence (low θ), in the 24 h preceding the 410 

onset of the event, and lowest in the decay phase of the event. Indeed, Lucarini and Gritsun (2020) recently argued that 

atmospheric blocking over the Atlantic also displays such characteristics. The persistent upper level ridge that characterizes 

the heat waves may explain the high intrinsic predictability during the onset phase. The dynamical systems metrics computed 

on SLP show a different temporal evolution to their Z500 counterparts, emphasizing the different characteristics of the 

atmospheric flow at the different vertical levels. Specifically, there is a very large spread across different heat wave events. 415 

We argue that this may be associated with the delicate interplay between the Subtropical High and the Persian Trough at 

surface levels (Alpert et al., 1990), which can lead to a range of different SLP configurations all leading to a heat wave. This 

may further be reasonably attributed to the interactions between the land/sea surface and the atmosphere, which mainly 

influence the lower parts of the Troposphere. However, it is important to note that in many – albeit certainly not all – cases 

these interactions influence the atmosphere at time scales longer than those we consider in our analysis (e.g., Entin et al., 420 

2000), and act as a seasonal-scale preconditioning to extremely high summer temperatures (Zampieri et al., 2009; Zittis et al., 

2014).  

Based on the Lagrangian air parcel analysis, we conclude that the physical processes governing Eastern Mediterranean summer 

heat waves relate to adiabatic descent of the air parcels over the region rather than diabatic heating, in agreement with previous 

findings (e.g., Harpaz et al., 2014). In other words, the air parcels are transported horizontally and vertically towards the 425 

Eastern Mediterranean with the governing westerlies rather than heated up locally over consecutive days. We further conclude 

that the origin of the air parcels over land in the days before the onset of a heat wave plays an important part in its generation.  

A detailed analysis of the record-breaking mid-August 2010 heat wave provides further insights in this respect, by underscoring 

how the parcels, which contributed to the heat wave, were warmer than those of the climatology of heat waves as early as 10 

days prior to the event. Interestingly, the onset of the heat wave over the Eastern Mediterranean was related to the decay phase 430 

of the Russian heat wave (Quandt et al., 2019) and we conclude that the anti-cyclonic Rossby wave breaking over Russia 

contributed to the onset of the Eastern Mediterranean heat wave. The 2010 heat wave showed both differences and similarities 

to other heat waves, highlighting the range of possible atmospheric and dynamical developments leading to high CSI values. 

This is compounded by the general difficulty of analyzing the life-cycle of heat waves, since there is little agreement as to 

what exactly a heat wave is and when it starts and ends (Shaby et al., 2016).  435 

We conclude that the instantaneous dynamical systems metrics of local dimension (d) and persistence (θ-1) provide 

complementary information on extreme summer heat waves compared to the conventional analysis of numerical weather 

forecasts. The discrepancy between the practical and the intrinsic predictability of the heat waves reflects this complementarity. 

For example, we interpret a very persistent system as being intrinsically highly predictable, yet the numerical forecasts we 

analyse display larger spread and error for the more persistent atmospheric configurations. In this respect, having an a priori 440 

measure of the persistence of an atmospheric configuration from dynamical systems can be a useful complement to the 

numerical forecast. Specifically, the practical predictability relies on the performance of a numerical forecast model. As such 
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it blends model and data assimilation biases with the intrinsic characteristics of the atmospheric flow. Moreover, even a perfect 

ensemble may not provide a good skill-spread relationship (Hopson 2014). That is, even a perfect ensemble may have a spread 

that does not always reflect the actual forecast error (Whitaker and Lough, 1998). In the specific case of the heat waves we 445 

analyze here, the spread and skill were well correlated for maximum temperature, but this is not a universal rule. For example, 

the mid-august 2003 heat wave had a very low spread (Tmax spread = 0.2 K, cf. Fig. 5b) and an above average error (Tmax 

absolute error = 1.1 K, cf. Fig. 5d). However, both d and θ computed on Z500 display a strong increase (d = -1.7 to 0.3, θ = -

0.2 to 0.1 over the considered time window, not shown; cf., Fig. 4a and Fig. 6b), pointing to a decrease in intrinsic 

predictability. In such cases, local dimension (d) and/or persistence (θ-1) trends that seem to contradict a low ensemble spread 450 

may serve as a warning of a potentially poor spread-skill relationship.  

As a caveat, the comparison of the practical and intrinsic predictability still carries some interpretation challenges. Although 

the differences between the two can be partly ascribed to the different characteristics of the two measures, they may also be 

subject to the shortcomings of the GEFS ensemble data. In particular, the spread of the GEFS ensemble data, as most NWP 

ensemble forecasts, does not always reflect the practical predictability of the atmospheric flow (e.g., Whitaker and Lough, 455 

1998; Keune et al., 2014). Moreover, our interpretation of the dynamical systems metrics may also be imperfect. Indeed, the 

metrics provide local information in phase space, while the spread and error of an ensemble forecast presumably reflect the 

longer-term evolution of the atmospheric flow. Similar interpretation challenges for the practical vs. intrinsic predictability 

have emerged when studying cold spells over the Eastern Mediterranean (Hochman et al., 2020a). 

Notwithstanding these ongoing challenges, we believe that the novel view presented here, which leverages a dynamical 460 

systems approach for diagnosing extreme weather events, outlines an important avenue of research. We trust that it may be 

successfully applied to other regions and weather extremes in the future. 
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Figure 1 Mean sea level pressure (SLP in hPa, white contours) and 500 hPa geopotential height (Z500 in m, shaded in color) 

for the 10% of days with the highest (heat waves) and lowest (cool days) Climatic Stress Index (CSI) values. (a) Heat wave 

days mean composite; (b) cool days mean composite; (c) heat waves minus cool days. 
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Figure 2 Median backward trajectory for (a) heat waves (upper 10% of CSI) and (b) cool days (lower 10% of CSI), with 750 

circles indicating days (from 10 days before onset to onset). Grey shading show trajectory density 10 days before onset (number 

of trajectories per 1000 km²), while contours show trajectory density for the indicated time lags (5, 2, 1 days before onset, 

contours denote a density of 20 trajectories per 1000 km²). Streamlines of 800 hPa winds averaged between -5 to -1 days are 

included. The inter-quartile range of trajectory positions is shown with crosses for the different time lags. Median evolution of 

(c) pressure (hPa); (d) temperature (K); (e) potential temperature (K); and (f) specific humidity (g kg⁻¹) of air parcels. Heat 755 

waves are indicated in red and cool days in blue. The inter-quartile range is plotted for the physical properties of the air parcels. 

0 h corresponds to the first day of CSI ≥ 90% or CSI ≤ 10% and at 12UTC.  
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Figure 3 A phase-plane diagram for the upper and lower 10% of CSI daily values (heat waves in red and cool days in blue). 

The de-seasonalized dynamical systems metrics (d and θ) were computed for: (a) Z500 and (b) SLP. Dashed lines represent 

the median values of d and θ. The 15.8.2010 is indicated by the black arrows. 760 
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Figure 4 The average temporal evolution of the dynamical systems metrics (d and θ) for heat waves (upper 10% of CSI) and 

cool days (lower 10% of CSI) events. The dynamical systems metrics were computed for: (a, b) Z500 and (c, d) SLP. The 765 

events are centered (0 h) on the first day of CSI ≥ 90% or CSI ≤ 10% and at 12UTC. A 95% bootstrap confidence interval is 

plotted in shading. 
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Figure 5 Forecast spread/skill for heat waves (upper 10% of CSI) and cool days (lower 10% of CSI). The lines show the mean 

temporal evolution of the ensemble model spread for Tmax (a), SLP (e) and absolute error for Tmax (c) of forecasts with lead-

time 69h, initialized at different time lags with respect to the events, calculated every 24 hours. The events are centered (0 h) 770 

on the first day of CSI ≥ 90% or CSI ≤ lower 10% and at 12UTC. The CDFs of the mean ensemble forecast model spread for 

Tmax (b), SLP (f) and absolute error of Tmax (d) for the forecasts with lead-time 69h initialised at 00UTC. A 95% bootstrap 

confidence interval is shown in shading for the temporal evolution plots (a, c, e). The plots are displayed for the time of forecast 

initialization (see Sect. 2.4). 
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Figure 6 A dynamical systems analysis for the mid-august 2010 heat wave. (a)  SLP (white contours in hPa) and Z500 (shading 780 

in m) on 15.8.2010 at 12UTC. The dynamical systems metrics’ (d and θ) temporal evolution centered on 15.8.2010 at 12UTC 

(0 h) computed on (b) Z500 and (c) SLP. 
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Figure 7 Backward trajectory air parcel tracking for the mid-August 2010 heat wave initialized on 15.8.2010 at 12UTC with 

(a) circles indicating days (from -10d to -6d before 15.8.2010 at 12UTC), grey shading indicating trajectory density 10 days 

before onset (number of trajectories per 1000 km²), and stream lines of 800-hPa wind (averaged between -10d to -6d before 785 

15.8.2010 at 12UTC). (b) as in (a), but for -5d to -1d and trajectory density 5 days before onset. Median evolution of (c) height 

(hPa); (d) temperature (K); (e) potential temperature (K); and (f) specific humidity (g kg-1) of the tracked air parcels. The inter-

quartile range is plotted for the physical properties of the air parcels. 0 h corresponds to 15.8.2010 at 12UTC.  
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Figure 8 The large-scale evolution of SLP (white contours in hPa) and Z500 (shaded color in m) for the mid-August 2010 790 

heat wave. a) 14.8.2010 at 12UTC; b) 15.8.2010 at 12UTC; c) 16.8.2010 at 12UTC; and d) 17.8.2010 at 12UTC. 
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Figure 9 Forecast spread/skill for the mid-August 2010 heat wave, centered (0 h) on 15.8.2010 at 12UTC (black line). The 

mean temporal evolution of the ensemble model spread for Tmax (a), SLP (c) and absolute error for Tmax (b) of forecasts 

with lead-time 69h, initialized at different time lags with respect to the event, computed every 24 hours. The heat waves (upper 

10% of CSI - red lines) are displayed for reference. A 95% bootstrap confidence interval for all heatwaves is displayed in 795 

shading.  


