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Abstract.  

Understanding and quantifying land management impacts on local climate is important for distinguishing 

between the effects of land management and large-scale climate forcings. This study for the first time 15 

explicitly considers the radiative forcing resulting from realistic land management and offers new insights 

on the local land surface response to land management. Regression-based trend analysis is applied to 

observations and present-day ensemble simulations with the Community Earth System Model (CESM) 

version 1.2.2 to assess the impact of irrigation and conservation agriculture (CA) on warming trends using 

an approach that is less sensitive to temperature extremes. At the regional scale, an irrigation- and CA-20 

induced acceleration of the annual mean near-surface air temperature (T2m) warming trends and the annual 

maximum daytime temperature (TXx) warming trends were evident. Estimation of the impact of irrigation 

and CA on the spatial average of the warming trends indicated that irrigation and CA have a pulse cooling 

effect on T2m and TXx, after which the warming trends increase at a greater rate than the control 

simulations. This differed at the local (subgrid) scale under irrigation where surface temperature cooling 25 

and the dampening of warming trends were both evident. As the local surface warming trends, in contrast 

to regional trends, do not account for atmospheric (water vapour) feedbacks, their dampening confirms 

the importance of atmospheric feedbacks (water vapour forcing) in explaining the enhanced regional 
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trends. At the land surface, the positive radiative forcing signal arising from enhanced atmospheric water 

vapour is too weak to offset the local cooling from the irrigation-induced increase in the evaporative 30 

fraction. Our results underline that agricultural management has complex and nonnegligible impacts on 

the local climate and highlight the need to evaluate the representation of land management in global 

climate models using climate models of higher resolution. 

 

1 Introduction 35 

According to observational and global climate model (GCM) data, temperatures associated with hot 

extremes have increased consistent with global anthropogenic climate change (Sillmann and Croci-

Maspoli, 2009; Donat et al., 2013a, 2013b; Hartmann et al., 2013; Pendergrass and Hartmann, 2014; 

Fischer and Knutti, 2015). However, hot spots of accelerated warming in annual maximum daytime 

temperature (TXx) relative to local mean temperature (T2m) simulated by climate models from phase 5 of 40 

the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project (CMIP5) 

are spatially inconsistent with observations (Donat et al., 2017). This is particularly the case over 

southeast China, South America, north America and parts of Australia and Europe. In these regions, the 

modelled TXx warming from the mid-twentieth century (1951–1980) to the late 20th/early 21st century 

(1981–2010) was greater than the modelled T2m warming. In contrast to the models, the observations 45 

showed that TXx warmed at a slower rate than T2m. Further analysis of the CMIP5 ensemble over central 

Europe by Vogel et al. (2018) highlighted that several GCMs overestimate the observed negative 

correlation between summer precipitation and TXx, resulting in too strong future drying and associated 

TXx increases under RCP8.5. This underlines the importance of a correct representation of land-

atmosphere coupling for simulating changes in temperature extremes at regional scales. These 50 

discrepancies between multiple GCMs and observations raise the questions as to whether: (1) these model 

results can be used to reliably project changes in local temperature extremes; (2) the discrepancies remain 

if the rates at which warming occurs over a time period is examined, which less sensitive to outliers 

common in extreme temperature data than the absolute temperature difference between two time periods, 
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as used in Donat et al. (2017); and (3) the inclusion of more processes that represent land-atmosphere 55 

coupling would enhance model skill.  

 

Agricultural land management techniques, including irrigation and conservation agriculture, can have a 

cooling effect on hot temperature extremes (Davin et al., 2014; Hirsch et al., 2017; Thiery et al., 2017, 

2020; Chen and Dirmeyer, 2019; Hauser et al., 2019; Jia et al., 2019). Irrigation diverts surface and 60 

groundwater resources to agricultural land to increase crop production (Fereres and Soriano, 2007). The 

addition of this water to the land surface is balanced by the loss of water via runoff, deep percolation, soil 

storage and/or evapotranspiration (ET) (Fereres and Connor, 2004). Under drier conditions, less 

evaporative cooling leads to amplified warming because the energy budget becomes dominated by 

sensible heating instead of latent heating (Donat et al., 2017). If irrigation water is added to the surface, 65 

this increases soil moisture as well as latent heat flux over the summer months, leading to more 

evaporative cooling at the land surface. This irrigation-induced surface cooling, in turn, challenges the 

radiative forcing concept, which assumes that as radiative forcing increases (from enhanced atmospheric 

water vapour) so too does surface temperature (IPCC, 2001; Boucher et al., 2004). 

 70 

Conservation agriculture (CA), which involves crop residue management, crop rotation (Carrer et al., 

2018; Lombardozzi et al., 2018) and minimal or no tillage (Kassam et al., 2015), can create climate 

feedbacks due to the presence of a crop residue over CA land that change both the radiative and 

hydrological properties at the surface (Davin et al., 2014). Hirsch et al. (2018) explored whether applying 

the no-till component of CA within the Community Earth System Model (CESM) improves the simulation 75 

of present-day climate. They found that the surface temperature response was influenced by three 

competing effects: (1) a surface albedo increase – which reduces the availability of energy for partitioning 

between the sensible and latent heat fluxes; (2) increased surface resistance (e.g. from mulch) – which 

reduces soil evaporation; and (3) increased soil moisture retention leading to enhanced transpiration. The 

local cooling response to CA was somewhat counteracted by grid-scale changes in climate over North 80 

America, Europe, and Asia because of negative atmospheric feedbacks. Grid-scale changes in climate 

counteracting local responses to land use change has also been demonstrated by Malyshev et al. (2015) 
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who showed that the subgrid signal of land use change in near surface temperature was diminished by the 

averaging with undisturbed portions of the pixels. The importance of local-scale responses to land cover 

change has also been indicated in observation-based studies (e.g., Mahmood et al., 2014; Li et al., 2015), 85 

yet few global-scale modelling studies examine the local land surface response to land management 

(Paulot et al., 2018; Meier et al., 2018). 

 

Using GCMs, such as CESM, to simulate land‐atmosphere interactions for investigating the effects of 

irrigation and agricultural conversion has been criticized as insufficient (Niyogi et al., 2002). This is partly 90 

because their coarse resolution (e.g., of order 100 km) hampers their performances in describing the 

present-day climate at the regional scale (Jiang et al., 2016). Furthermore, economic, societal and water 

resource factors are ignored – a void that initiated the so-called ‘bottom-up’ approach to evaluating the 

effects of land-use change (Douglas et al., 2006). Regarding the applicability of the knowledge produced 

by GCMs, they do not provide the skill required at the spatial scale to offer practical responses at the 95 

infrastructure scale (Hossain et al., 2015) or in terms of water resource management (Marshall et al., 

2004). Despite these constraints, GCMs remain a prime tool for projecting changes in the climate system 

(Fajardo et al., 2020; Gupta et al., 2020; Hofer et al., 2020). Examples include the GCMs that are part of 

the latest Coupled Model Intercomparison Project (CMIP6) and used by the IPCC in consecutive 

assessment reports (Yazdandoost et al., 2021). However, these GCMs largely exclude agricultural 100 

management. In particular, no CMIP5 model incorporates irrigation or CA and only three CMIP6 models 

include irrigation, while none have CA. Pielke et al. (2011) suggested that landscape change is omitted 

from the CMIP5 models because the direct radiative impact of global landscape is a lower order than the 

radiative forcing from greenhouse gas emissions. This constitutes a reason to investigate their inclusion. 

That is, to distinguish between the effects of land management and other large-scale forcings such as 105 

rising CO2 concentrations (Schultz et al., 2016), it is important to evaluate these processes in the GCMs 

and ultimately gain insight into the contrasts of impacts between regions under different climate regimes. 
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Considering the potential effects of irrigation and CA on climate (Thiery et al., 2017), it is possible that 

the discrepancies between climate models and observations regarding temperature changes (Donat et al., 110 

2017) are because the models exclude the effect of agricultural management techniques on temperature. 

The goal of this study is thus to test the hypothesis that CESM version 1.2.2 overestimates warming trends 

in some regions because irrigation and CA are excluded. That is, warming rates are hypothesised to 

increase at a slower rate – showing signs of cooling, in irrigation- and CA-affected regions when climate 

models do account for a theoretical constant level of these land management practices. To realise this 115 

goal, the following objectives were formulated: (1) determine spatial warming rates using simulations 

that account for irrigation and CA and inspect whether CESM overestimates warming trends; (2) compare 

the observed rates of warming to the modelled rates of warming for irrigated and CA pixels, as well as 

non-irrigated and non-CA pixels; and (3) estimate the impact of irrigation on the spatial average of the 

warming rates over time for all land, selected regions, and irrigated and CA pixels. Within this framework, 120 

the novelty of this study lies in (i) an explicit focus on land management impacts on trends as opposed to 

the climatology; (ii) a comparison of the subgrid versus grid-scale response, offering important new 

insights on the local land surface land surface response to land management; and (iii) consideration of the 

radiative forcing resulting from realistic land management. 

2 Materials and Methods 125 

2.1 Irrigation and conservation agriculture implementation in CESM 

To assess the influence of a theoretical constant level of either irrigation or CA on mean and extreme 

temperatures, we use the Community Earth System Model (CESM) version 1.2.2, which has contributed 

output to CMIP5 (Hurrell et al., 2013). The CESM atmospheric model was version 5.3 of the Community 

Atmosphere Model (CAM5.3) while the land surface model was version 4.0 of the Community Land 130 

Model (CLM4). Sea surface temperatures and sea ice fractions were prescribed from the data set described 

by Hurrell et al. (2008). 
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We analyse the control (1) and experimental (2) simulations presented in Thiery et al. (2017) for irrigation 

and in Hirsch et al. (2018) for CA. This set consists of three 5-member ensembles. 135 

 

The first ensemble, the control (CTL), was set up to capture land-atmosphere components within a 

framework akin to that of the Atmospheric Model Intercomparison Project (AMIP). The period 1976-

2010 was simulated with a horizontal pixel resolution of 0.9° latitude × 1.25° longitude. The first 5 years 

were discarded as spin-up, with trends evaluated for the period 1981-2010. On 1 January 1976, small 140 

random perturbations of 10−14 K were applied to the initial atmospheric temperature conditions. To focus 

on the influence of land–atmosphere interactions, rather than ocean–atmosphere feedbacks on the climate 

system, sea surface temperatures and sea ice fractions were prescribed from the data set described 

by Hurrell et al. (2008). Greenhouse gas concentrations were also prescribed from measurements, and 

satellite‐based observations of vegetation phenology were imposed in CLM4.  145 

 

The second ensemble, the irrigation (IRR) ensemble, follows an identical setup as the CTL experiment 

except that the interactive irrigation module in CLM4 was enabled. As described by Oleson et al. (2013), 

the irrigation parameterization in CLM4 divides the cropland area of each grid cell into non-irrigated and 

irrigated fractions corresponding to the portions that are equipped for irrigation – in accordance with 150 

Siebert et al.'s (2005) global map of irrigated areas (Figure 1a). The area of irrigated cropland in each grid 

cell is assigned as the smaller of the grid cells total cropland area and its area equipped for irrigation. 

What remains of the cropland area in the grid cell is regarded as non-irrigated cropland. It is important to 

note that implementation of transient irrigation was technically not possible in the CESM version 1.2, 

despite transient area equipped for irrigation data being available (Siebert et al., 2005), and therefore 155 

trends in the forcing are not considered. 

 

The third ensemble, the CA ensemble, also follows the CTL experiment setup, but in this case the most 

likely distribution of CA was applied based on the CA dataset developed by Prestele et al. (2018). By 

splitting the existing CLM crop plant functional types (PFT) into a fraction under conservation agriculture 160 

and a fraction under conventional management, both forms of management are possible within a grid cell. 

Although the crop residue is assumed present all year, the implementation ensures that the increased soil 
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albedo effect on the total surface albedo is dampened during the growing season by the inclusion of 

canopy cover (Hirsch et al., 2018). Implementation of transient CA, however, was not possible due to 

data limitation as only a static CA map was available; hence we study a theoretical constant level of CA. 165 

 

To examine heterogeneous influences within grid cells, subgrid tiles that represent local physical, 

biogeochemical, and ecological characteristics – and therefore local (subgrid) influences of irrigation and 

CA – were evaluated against regional (grid‐scale) influences. Up to 21 surface tiles may occur within one 

grid cell in CLM4, including glacier, wetland, lake, urban, bare soil and 16 PFTs. For subgrid irrigation 170 

influences, all tiles are placed on one single soil column, except for the irrigated crop tile. Separating the 

soil columns in this way allows the soils underneath irrigated and rainfed crop tiles to have individual 

responses to atmospheric forcing (Schultz et al., 2016). Therefore, the subgrid-scale difference is the 

irrigated crop tile minus the rainfed crop tile. For subgrid CA influences, using the PFT‐level outputs 

from CLM, it is possible to examine the subgrid‐scale effect by subtracting the conventionally managed 175 

crop tiles from the CA crop tiles. 

 

In addition, land masks were used to define and analyse: (1) all land pixels; (2) irrigated pixels only 

(where grid cells have a nonzero irrigated fraction); (3) CA pixels (the grid cells with a nonzero CA 

fraction) and (4) those regions of the Special Report on Managing the Risks of Extreme Events and 180 

Disasters to Advance Climate Change Adaptation (SREX) (IPCC, 2013) where irrigation and CA is 

extensive (Figure 1). The spatial points outside these masks as well as missing values in the observations 

were excluded (as ‘NaN’ values). These masks were applied to the investigations undertaken in this study. 

As the observational datasets (see below) were remapped to the model grid, this meant the same land 

masks (excluding Antarctica) could be used for each dataset. 185 

2.2 Observational datasets 

For evaluation purposes, observational datasets for annual mean T2m with a spatial resolution of 0.5◦ × 

0.5◦ for the same time period were obtained from the Climate Research Unit (CRU) (Harris et al., 2014). 

Annual mean TXx observational datasets were obtained from the daily Global Historical Climatology 
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Network extremes data set (GHCNDEX) (Donat et al., 2013a) and the Hadley Centre extremes data set 190 

(HadEX2) (Donat et al., 2013b) with a spatial resolution of 2.5◦ × 2.5◦. These observational products were 

regridded to the CESM resolution using second-order conservative remapping (Jones, 1999). Thiery et 

al. (2017) and Hirsch et al. (2018) previously evaluated how the IRR and CA experiments alter the skill 

of CESM simulations (in terms of their agreement with observations). Thiery et al. (2017) demonstrated 

that including irrigation has a small yet robust beneficial effect on the representation of TXx and T2m in 195 

CESM over irrigated and all land pixels. By including CA, Hirsch et al. (2018) showed a general 

improvement in the simulation skill over MED for TXx and T2m and enhanced skill for T2m over WNA, 

CNA, and CEU. 

 

Observational data for the surface radiative temperature (TS) at the subgrid scale were obtained from the 200 

E-OBS European CDG dataset for 1981-2010 over MED pixels. As a regional dataset, it has a higher 

spatial resolution and therefore enabled a skill of the models with respect to the local effects of land 

management. The E-OBS data were regridded to the CESM resolution using bilinear remapping.  

 

2.3 Statistical analysis 205 

The warming rate β was calculated using Sen’s slope approach (Sen, 1968) based on the time and 

temperature values in each grid cell. This means that at each longitude and latitude point on land, there 

are 30 time measurements (1981-2010) with an associated temperature measurement (for each annual 

mean T2m and TXx). Therefore, there are 30x29/2 possible pairs of sample points, rendering 435 pairs for 

each location. 210 

 

Annual TXx and T2m values averaged across all land pixels and all irrigated pixels were computed for the 

CTL, IRR and CA ensemble means, as well as the GHCNDEX (TXx), HadEX2 (TXx) and CRU (T2m) 

observations. A Sen’s slope regression analysis was then carried out on the spatial mean temperatures of 

TXx and T2m change over time (1981-2010) for (a) all pixels, (b) irrigated pixels and (c) CA pixels only, 215 

for both observations and the model ensembles.  
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The spatial mean warming rate across all (land or irrigated) pixels was also calculated. Additionally, all 

pixels within the SREX regions where irrigation is extensive (Thiery et al., 2017) –WNA, CNA, MED, 

WAS, SAS, SEA and EAS – were selected and their spatial means determined and examined. The SREX 220 

regions where CA is extensive (Hirsch et al., 2018) were also examined in greater detail. These include 

WNA, CNA, MED, SSA, CEU and SAU (Figure 1). 

3 Results 

3.1 Model Evaluation 

First, we explore how the existing CESM climate simulation skill (i.e., how well the simulated and 225 

observed trends agree) is altered in IRR and CA relative to the skill obtained in the CTL. The model 

biases and spatial root mean square error (RMSE) values relative to the warming trends of the T2m and 

TXx global observational products are provided in Table 1. For the IRR ensemble, T2m warming trends 

are overestimated by ∼0.001 K yr-1 across irrigated pixels, whereas over CA pixels T2m warming trends 

are overestimated by ∼0.002-0.004 K yr-1 in both the CA and CTL ensemble. On average, the CTL, IRR 230 

and CA ensembles overestimate TXx warming trends by ∼0.007–0.03 K yr-1 over all land pixels. Over 

irrigated pixels, the CTL and IRR ensemble overestimate TXx by ∼0.008–0.013 K yr-1. Over CA pixels, 

the CTL and CA ensemble overestimate TXx by ∼0.006–0.013 K yr-1. This means that while T2m warming 

rates have a slight low bias on average over all land and partially over irrigated areas, TXx warming trends 

are consistently too high over all land, irrigated and CA areas. 235 

 

Second, to investigate how the uncertainty between the different irrigation and CA estimates of warming 

trends influences simulation skill, we examine the added value of including irrigation and CA for TXx 

and T2m over the regions where irrigation and/or the CA extent is greatest, as well as over global land, 

global irrigated land and global CA land (Figure 2). The added value is evaluated by calculating the 240 

absolute change (experiment minus control) in the spatial RMSE. Accounting for irrigation improves the 

simulation skill for trends over MED, WAS and SAS for T2m and over MED, WAS, SAS and SEA for 
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TXx (with HadEX2 as reference product). For WNA, CNA and EAS, the added value is negative or 

limited for both temperature metrics. Accounting for CA improves the simulation skill over CNA, CEU 

and SAU for the T2m and both TXx observational products and over the MED for the T2m and the TXx 245 

HaxEX2 observational products. For WNA, skill is reduced for all CA estimates. If we consider the grid 

cells where the land fraction within the CESM exceeds 50% (“all land”) or just the grid cells that have a 

nonzero irrigation (“Irrigated land”) is present, there is added value for T2m observational product over 

all land and the grid cells where irrigation has been applied. There is limited skill improvement for the 

TXx HadEx2 observational product. For the CA simulations, if we consider all land and the grid cells 250 

with a nonzero CA fraction (“CA land”), the model skill improves for the T2m observational product. 

 

Third, we explore how the CESM climate simulation skill is altered in the subgrid-scale irrigation 

(IRRSUB) and CA crop tiles (CASUB) relative to the skill obtained in the conventionally managed (CM) 

and rainfed crop tiles (RAIN) in the MED region. The model biases and spatial RMSE values relative to 255 

the warming trends of the TS observational product are provided in Table 2. For IRRSUB, TS warming 

trends are overestimated by ∼0.004 K yr-1 across irrigated MED pixels, which is an improvement in terms 

of bias when compared to the subgrid-scale data that does not account for irrigation (i.e., RAIN). 

However, according to the change in the spatial RMSE, accounting for irrigation does not improve the 

simulation skill for trends over MED irrigated pixels. This is likely because RMSE is more sensitive to 260 

outliers – whereas the bias is based on the spatial mean. 

 

3.2 Impact of Irrigation and Conservation Agriculture on Mean and Extreme Warming Trends  

Neither irrigation nor CA has a cooling effect on T2m and TXx warming rates in irrigated/CA or non-

irrigated/CA regions (Figure 3 and Table 3). The results suggest a slight irrigation- and CA-induced 265 

acceleration of the annual T2m and TXx warming trends, rather than the hypothesised cooling. For 

instance, irrigation induced an increased T2m warming rate of 0.0023 K yr-1 on average over land and 

0.004 K yr-1 across all irrigated pixels. To put these increases into context, the mean T2m CRU observed 

warming trend over irrigated pixels was 0.029 K yr-1.  
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 270 

When the annual T2m and TXx temperatures are spatially averaged for each ensemble, the IRR and CTL 

simulations both overestimate the observed values for irrigated pixels (Figure 4a and 4b), and the CA and 

CTL simulations both overestimate the observed values over CA pixels (Figure 4c and 4d). However, the 

impact of irrigation and CA on the modelled spatially averaged temperatures improves the closeness to 

that of the observations, i.e. there is an overall  there is an overall decrease in absolute temperature (Figure 275 

4a-d), which aligns with current theory (Kueppers et al., 2007; Saeed et al., 2009; Kueppers and Snyder, 

2012; Thiery et al., 2017, 2020; Hirsch et al., 2018).  

 

What these results show in addition is, for the IRR and CA models – for all land, irrigated and CA pixels, 

the spatially averaged T2m and TXx warming rates (the slopes) are higher than those of the CTL model. 280 

Therefore, rather than continuous cooling, there is evidence in Figure 4 of a pulse cooling phase during 

the spin-up years (Smith et al., 1998), after which the T2m and TXx warming trends increases at a greater 

rate than the control simulations.  

 

 285 

In the case of CA, because crop residue is more likely to be applied during the summer/dry season (when 

TXx is typically recorded) to reduce evaporation (Figure 4l and Figure 6f), energy is shifted to the sensible 

heat flux (SHF) (Figure 4h and Figure 6j), increasing TXx (Figure 4d). The SHF response is not always 

consistent with the decrease in the latent heat flux (LHF) (Figure 6h), with some increases over Eastern 

South America, Eastern North America, parts of Europe and Southeast Australia.  290 

 

In the case of irrigation, the response also suggests two competing effects: (1) there is more water at the 

surface, so the energy budget shifts to the LHF (Figure 4i, Figure 6g and 6i), resulting in evaporative 

cooling (Figure 4a and 4b); and (2) because irrigation globally adds 418 km3 yr-1 of moisture to the 

atmosphere (Thiery et al., 2017) and as water vapour acts as a greenhouse gas (GHG), it traps outgoing 295 

longwave radiation, radiating it back to the Earth’s surface as downward longwave radiation (Figure 

TMQ), resulting in increased T2m and TXx warming trends (Figure 4a and 4b). The first effect appears 

more pronounced than the second due to the net cooling in Figure 4a and 4b. This means that despite the 
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water vapour (acting as a GHG) increasing downward radiation and the overall energy budget thus 

increasing, most of it still goes to the latent heat flux leading to a net reduction in temperature (as 300 

compared to a situation without irrigation, where the sensible/latent ratio is more in favour of the latter). 

The limited warming effect of irrigation on atmospheric temperatures through water vapour forcing is 

consistent with earlier GCM studies inputting more than twice the amount of water vapour into the 

atmosphere through irrigation (32500 m3 s-1 or 1026 km3 yr-1) and finding limited radiative forcing 

(Boucher et al., 2004; Sherwood et al., 2018).  305 

 

We further investigate the potential warming of the Earth System irrigation-induced enhanced 

atmospheric water vapour by computing the top-of-atmosphere net radiation (Rn,TOA) in the CTL and IRR 

ensembles over the 1981-2010 period (Figure 5). As both ensembles employ prescribed, transient sea 

surface temperatures, the difference in Rn,TOA is a measure of irrigation-induced radiative forcing. The 310 

area-weighted global average Rn,TOA is 0.4961 W m-2 for the CTL ensemble (Figure 5a) and 0.5450 W m-

2 for the IRR ensemble. The radiative forcing from irrigation is therefore 0.0489 W m-2, at least an order 

of magnitude smaller compared to other combined anthropogenic forcings over this period (IPCC, 2013) 

and consistent with previous estimates (Boucher et al., 2004; Sherwood et al., 2018). The positive 

radiative forcing is mainly located over South Asia, and partially offset by negative forcing over central 315 

Asia, Greenland and Antarctica (Figure 5b). Breakdown of the irrigation-induced Rn,TOA change into the 

shortwave and longwave components shows that the forcing is dominated by the longwave signal 

(+0.0583 W m-2), with the shortwave signal even showing signs of a slight albedo increase (-0.0094 W 

m-2), presumably from enhanced low-level cloud cover (Sherwood et al., 2018). The additional water 

vapor in the atmosphere and associated longwave trapping in CESM can thus explain the small, positive 320 

radiative forcing contributing to Earth System warming and associated enhanced near-surface 

temperature trends in irrigated regions (Figure 4a-b), but at the land surface this signal is too weak to 

offset the local pulse cooling from the irrigation-induced increase in evaporative fraction. 
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3.4 Subgrid‐Scale Impacts 325 

Our results indicate a subgrid‐scale cooling effect of irrigation on TS warming trends that is more distinct 

and spatially consistent over irrigated pixels than grid‐scale effects (Figure 6a versus Figure 7a). TS 

warming trends on irrigated tiles are on average -0.008 K yr-1 (-24%) lower than their rainfed 

counterparts, whereas the trends are on average 0.001 K yr-1 (+11%) higher on the grid cell level over 

irrigated land (Table 3). The subgrid-scale influences of irrigation on ET rates over irrigated tiles were 330 

also pronounced as they increased by 0.653 mm yr-1 in comparison to rainfed tiles (Figure 7c and Table 

3). The subgrid‐scale influences of CA on TS warming trends are smaller in comparison to irrigation, with 

only a 0.001 K yr-1 (-3%) dampening of warming trends and ET rates increased by 0.083 mm yr-1 (46%), 

relative to their conventionally managed counterparts (Figure 7b and 7d and Table 3).  

 335 

The cooler warming trends from irrigation at the subgrid-scale (Figure 7a) occurs where the ET rate 

increases (Figure 7g) as well as the latent heat flux (Figure 7e), suggesting the cooling is due to an increase 

in the latent heat flux, which is consistent with Cook et al. (2015) and Thiery et al. (2017). The heightened 

grid-scale TS warming trends (Figure 6a) generally align with a greater TMQ flux (Figure 6c) and 

increased T2m warming trends over irrigated pixels (Figure 3a), which signifies the longwave radiation 340 

trapping potential of the additional atmospheric water vapour. As the impact on trends is small (e.g. T2m 

and Ts warming trends increased, respectively, by 0.004 K yr-1 and 0.001 K yr-1 across irrigated pixels), 

the finding is in agreement with Sherwood et al. (2018) who showed that additional water vapour has a 

small impact on global warming potential mainly because it rains out before reaching the altitudes needed 

to significantly contribute to the greenhouse effect. These findings thus support the concept of radiative 345 

forcing and the proviso that, at the land surface, the water vapour signal does not offset local cooling from 

the irrigation-induced increase in evaporative fraction, as described for Figure 4 and 5 and previously 

proposed by Boucher et al. (2004). However, because the subgrid-scale Ts trends, in contrast to grid-scale 

trends, are computed within the same ensemble and thus do not account for atmospheric (water vapour) 

feedbacks, the sign reversal of irrigation-induced impact on grid-scale and subgrid-scale Ts trends 350 
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confirms the importance of atmospheric feedbacks (water vapour forcing) in explaining the increased 

grid-scale Ts and T2m trends. 

 

When spatially averaged, over all pixels, the TS warming trends at the subgrid-scale show no evidence of 

a pulse cooling phase due to irrigation (Figure 8c), which is in contrast the results over irrigated pixels – 355 

where there is both a cooling effect on TS and a dampening of TS warming trends (Figure 8a). This contrast 

is likely due to a combination of the remote effects of irrigation, the larger contribution of natural 

variability and an increased relative contribution of other components when considering all land pixels 

(Puma and Cook, 2010; Cook et al., 2015; De Vrese et al., 2016; Thiery et al., 2017).  

 360 

Regarding CA, the slight overall warming of TS temperatures (Figure 8b) as well as the increase in TS 

warming trends over CA pixels for the MED region (Figure 8f) is possibly because of the decrease in soil 

evaporation as a result of crop residue over CA land (Figure 6f), inhibiting energy partitioning from the 

SHF (Table 3). The cooling of TS temperatures over all land pixels (Figure 8d) and the slight decline in 

TS warming trends over CA pixels (Figure 8b and Table 3), however, suggests that the effect of increasing 365 

surface albedo and thus reducing the solar energy absorbed by the surface is dominant. Additionally, the 

close correspondence between CA and CM (Figure 8b) may reflect that the temperature response spatially 

is both positive and negative depending on which mechanism dominates and therefore the spatial 

aggregation for all CA and all CM pixels globally loses this (Figure 8d). 

 370 

4 Discussion 

This study examined the hypothesis of whether excluding a theoretical constant level of irrigation and 

CA contributes to the overestimation of warming by an Earth System Model. A Sen’s slope model was 

built and applied to ensemble simulations from the Community Earth System Model that include 

irrigation parameterization to determine if there are spatiotemporal patterns and why they exist. This 375 

unexpectedly showed that warming trends are not dampened due to either irrigation or CA, except for the 

subgrid‐scale effect of irrigation on the warming trends of TS. 
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The key findings of this investigation are a net cooling effect of irrigation and CA on the modelled 

spatially averaged T2m and TXx, but, rather than continuous cooling, the warming trends showed a pulse 380 

cooling phase, after which the sensitivity to climatic change remains. Under irrigation, the opposing 

effects are the result of: (1) evaporative cooling; and (2) atmospheric water vapour strengthening the 

greenhouse effect. Under CA, the contrasting effects are due to: (1) cooling from a tillage-induced 

increase in surface albedo; and (2) reduced soil evaporation due to the presence of crop residue, limiting 

energy partitioning to the latent heat flux. At the subgrid-scale, there was both a cooling effect on TS and 385 

in the dampening of warming trends. This implies that enhanced evaporative cooling is the dominant 

driver of the subgrid-scale temperature trends. 

 

Although this study was constructed with great care and built on a state-of-the-art modelling suite, several 

future developments could improve understanding of the impact of irrigation and CA on climate. Firstly, 390 

the quality of the model(s) could be improved by using transient irrigation and CA extents and new land 

cover datasets from the 6th phase of the Coupled Model Intercomparison Project (CMIP6) (Lawrence et 

al., 2016). In this study, a static irrigation map for the year 2000 was used for the whole simulation period. 

This likely contributes to our results being conservative. If, for instance, irrigation expands over time, the 

cooling effect may become stronger and thus affect the warming trends. Furthermore, the extent to which 395 

the increase in surface albedo (i.e., the first competing effect of CA) affects the sensible and latent heat 

fluxes partly depends on soil moisture, which too is not static. Also, CMIP6 experiments are based on 

annual emissions, whereas CMIP5 was based on decadal emissions and CMIP6 models were updated 

with irrigation-related features and land cover maps that incorporate irrigation and CA expansion over 

time (Goddard et al., 2013; Miao et al., 2014; Boer et al., 2016; Meinshausen et al., 2017; Stouffer et al., 400 

2017). CMIP6 models may therefore improve the dynamics between irrigation, CA and climate change, 

provided that they represent these land management techniques in their surface schemes. 

 

The second consideration is that all simulations used in this study (5 control, 5 irrigation and 5 CA) were 

from a single model. Ensembles completed as such with the same model but different simulations (i.e. 405 
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based on different initial conditions) characterise the uncertainty associated with internal climate 

variability only, while multi-model ensembles also account for the impact of model differences (Tebaldi 

and Knutti, 2007; Knutti et al., 2010). This limitation can impact cloud uncertainties. Hirsch et al. (2017) 

found that the CESM tends to produce large cloud feedbacks over Central Europe, Central North America, 

North Asia, and South Asia when more energy is reflected at the surface. Irrigation-induced increases in 410 

latent heat fluxes led to more water vapor in the lower atmosphere, which generated low-level clouds (see 

also Sherwood et al., 2017). This limited shortwave radiation and hence the amount of energy available 

at the surface because the increased cloud cover reflected more downward shortwave radiation above the 

cloud layer, resulting in surface cooling. This was enhanced by a corresponding decrease in sensible heat 

fluxes, reflecting the decrease in the amount of energy available at the surface and/or the increase in latent 415 

heating. The impact of cloud cover combined with land management change remains challenging to 

resolve. Therefore, this study should ideally be repeated with other models. Donat et al. (2017), for 

instance, conducted their study on 20 CMIP5 models, but these models did not incorporate irrigation and 

CA.  

 420 

Thirdly, irrigation and CA are the only agricultural management practices considered in this study (and 

done so individually), whereas other agricultural management practices have been shown as impactful 

(Luyssaert et al., 2014; Erb et al., 2016, 2018). Trend analysis of integrated land management practices 

could affect the outcome if there is a lumped effect. Building an additional stochastic model could account 

for variations in the distribution of the impact of land management practices on warming trends. This 425 

would enable sensitivity analyses to ascertain the relative importance of irrigation and CA to the total 

warming trends (based on all land management practices), as well as the relative contributions of the 

uncertainty sources (model input, parameter, structure) to the total uncertainty in the model output. 

 

The final consideration is whether regression-based models are suitable for analysing changes in highly 430 

variable climate data, particularly annual extreme temperature data (von Storch, 2006). Essentially, the 

regression slope blends forced temperature change and variability, to provide an estimation of the 

temperature variation over time – within which variance can be lost due to noisy data. Whether the TXx 
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and T2m temperatures were first spatially averaged and then the slope retrieved or if each slope was 

estimated for each pixel and then the overall trends examined, the outcome remains. This is unsurprising 435 

considering that in the spatial averaging the noise contributions are averaged out, while the individual 

regression data suffers from the variance loss related to regression. However, when applied to over 60 

years of observational data, the regression model used in this study showed similar trends to using the 

difference between the past and the present average temperatures (not shown). This implies that the 

irrigation and CA-inclusive climate system may require a longer timeframe (than the 30 years plus a 5-440 

year spin-up period used) for trends to overtake the natural variability. Additionally, rather than 

aggregating all months, trends during individual months or seasons could be examined. This can affect, 

for instance, the influence of irrigation on Ts, which has a clear seasonal pattern, with more cooling during 

the driest and/or hottest months (Thiery et al., 2017). A smaller magnitude in TXx response to CA at the 

subgrid-scale has also been noted during the summer season due to a larger leaf area index (LAI) reducing 445 

soil surface exposure and thus the contrast between CA and conventionally managed crops (Hirsch et al., 

2018). Furthermore, the implementation of CA within CESM does not capture crop planting and 

harvesting cycling (Davin et al., 2014), which would affect the LAI of the crop and potentially the effect 

of CA on surface climate. 

5 Conclusion 450 

In this study the impact of a theoretical constant level of irrigation and CA on warming trends in global 

climate and climate extremes was assessed for the period of 1981–2010 using the Community Earth 

System Model. A Sen’s slope regression-based analysis was performed to compute spatial-explicit 

warming trends and spatially averaged warming trends. Insight into how modelled temperature is affected 

in its median by irrigation and CA over time was provided. 455 

 

An irrigation- and CA-induced acceleration of the annual T2m and TXx warming trends was evident. 

Estimating the impact of irrigation and CA on the spatial average of the warming trends indicated that 

irrigation and CA have a pulse cooling effect on T2m and TXx, after which warming trends increased at a 

greater rate than the control simulations. This differed at the subgrid-scale under irrigation where surface 460 
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temperature cooling and the dampening of warming trends were both evident. Therefore, irrigation-

induced evaporative cooling is a more dominant effect at the local level than the strengthening of the 

greenhouse effect at regional scales as a result of enhanced atmospheric water vapour. 

 

A model evaluation demonstrated that the simulations accounting for irrigation and CA satisfactorily 465 

reproduce observed warming trends in T2m, but not the trends in temperature extremes of TXx. This 

signifies that the GCMs have more trouble representing the greater variability in the extreme 

temperatures, compared to that of the mean annual temperature, and that the Sen’s slope models are more 

suited to the blended variability inherent to annual mean temperatures.  

 470 

The findings overall provide valuable context on how model complexity can impact the simulation of 

trends and emphasise the need for a more in-depth evaluation of the sensitivity of future climate 

projections to irrigation and CA-induced temperature changes. A sensitivity analysis, using transient 

irrigation and CA extents, as well as additional land management techniques, within coupled climate 

models based on CMIP6 output, is recommended. In this way, the variance can be approximated and the 475 

relative contributions of the uncertainty sources to the total uncertainty in the model output, as well as the 

relative importance of irrigation and CA to the total warming trends, can be quantified and compared. If 

the fundamental uncertainties relating to model structure dominate, then a more detailed analysis than the 

regression approach used in this study is suggested. Furthermore, we encourage the community to 

compare the coarser resolution results gained in this GCM study with higher spatial resolution models 480 

and for seasonal and monthly time periods. This will support decision-making on the incorporation of 

agricultural management processes in future GCM projects. 
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 710 

 
Figure 1. (a) Percentage of each grid cell equipped for irrigation (%) (Siebert et al., 2005). (b) Potential estimate of CA extent mapped 

to the CLM crop PFT (Prestele et al., 2018). The red boxes in (a) denote the regional domains where irrigation is extensive and were 

thus examined in greater detail including Western North America (WNA), Central North America (CNA), south Europe and 715 
Mediterranean (MED), West Asia (WAS), South Asia (SAS), Southeast Asia (SEA), and East Asia (EAS). The red boxes in (b) denote 

the regional domains where CA is extensive and were thus examined in greater detail including WNA, CNA, MED, South-eastern 

South America (SSA), Central Europe (CEU) and Southern Australia (SAU).  
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Figure 2. Added value of including irrigation and CA in the simulated warming trends over 1981-2010. Absolute change in spatial 

root-mean-square error (RMSE) for the (a) IRR and (b) CA ensemble relative to the CTL ensemble over different regions (x axis) 

and with respect to 3 observational products (y axis). Considered regions are the SREX regions where irrigation is extensive (as 725 
highlighted in Figure 1a) and where CA is extensive (Figure 1b), in addition to global land, global irrigated land and global CA land. 

Observational products are for near-surface air temperature T2m (CRU), annual maximum daytime temperature TXx (GHCNDEX 

and HadEX2). The spatial RMSEs are computed for the ensemble mean warming trend in every pixel, and subsequently averaged 

over the selected region. Regions with an observational coverage below 50% are marked in white.  
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Figure 4. Spatial average of the warming rates for T2m (a, c and e), TXx (b, d and f), SHF (g and h), LHF (i and j) and ET (k and l) 

for the CESM ensembles and observations. Data points specify the mean T2m and TXx temperatures, SHF and LHF and ET volumes 

for irrigated pixels (a, b, g, I and k), CA pixels (c, d, h, j and l), and (e-f) all land pixels.  The slope was estimated using Sen’s slope 745 
for the CTL (red), IRR (blue), CA (cyan), CRU (purple), HadEX2 (yellow), and GHCNDEX (black) temperatures. 
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Figure 5. Top-of-atmosphere (TOA) net radiation Rn,TOA [W m-2] in (a) the CTL ensemble. (b) Impact of irrigation on Rn,TOA. 

Difference map is based on the ensemble mean of each experiment for 1981–2010. 
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Figure 6. Grid-scale differences between the CTL and IRR ensemble (IRR minus CTL) (a, c, e, g and i) and between the CTL and 

CA ensemble (CA minus CTL) (b, d, f, h and j). For Ts (a-b), TMQ (c-d), ET (e-f), LHF (g-h) and SHF (i-j), displayed over 780 
irrigated/CA pixels for comparative purposes. Differences are based on the ensemble mean warming trends of each experiment for 

1981–2010. Hatching denotes less than 10% change induced by the model on mean warming trends of lumped ensemble members.  
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Figure 7. Subgrid-scale differences between the irrigated and rainfed crop tile in the IRR ensemble (irrigated minus rainfed) (a, c, 

e and g) and between CA and conventionally managed (CM) crops (CA minus CM) (b, d, f and h). For Ts (a-b), ET (c-d), LHF (e-f) 

and SHF (g-h), displayed over irrigated/CA pixels for comparative purposes. Differences are based on the ensemble mean warming 790 
trends of each experiment for 1981–2010. Hatching denotes less than 10% change induced by the model on mean warming trends 

of lumped ensemble members.  
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Figure 8. Average of the subgrid-scale warming rates for TS (a-f), the SHF (g) and LHF (h) over (a and g) irrigated pixels for the 

irrigated and rainfed crop tiles; (b and h) CA pixels for the CA and CM crop tiles; (b) all pixels for the irrigated and rainfed crop 800 
tiles; (d) all pixels for the CA and CM crop tiles; (e) irrigated pixels over the MED SREX region; and (f) CA pixels over the MED 

SREX region. Data points are the mean TS, LHF and SHF values within the crop tiles and pixels specified. The slope was estimated 

using Sen’s slope for the rainfed/CM (red), irrigated/CA (blue) experiments. For (a), (b), (c), (d), (e) and (f) the regions where less 

than 50% of the land pixels did not contain a value were excluded. For all land pixels (g and h), the minimum number of land pixels 

that needed to contain a value in order to be retained in the analysis was 15%. 805 
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Table 1. Bias and spatial RMSE of the ensemble mean warming trends (slopes) of the CTL, IRR and CA experiments versus the 810 
observational products for the years 1981-2010a.   

 All land bias Irrigated land 

bias 

CA land bias All land RMSE Irrigated land 

RMSE 

CA land RMSE 

Physical Quantity 

(Units) 

CTL IRR CA CTL IRR CTL  CA CTL IRR CA CTL IRR  CTL CA 

CRU T2m (K yr-1) -0.006 -0.004 -0.004 -0.003 0.001 0.002 0.004 0.027 0.025 0.027 0.020 0.019 0.018 0.017 

GHCNDEX TXx (K yr-1) 0.024 0.030 0.027 0.009 0.013 0.0 

06 

0.011 0.107 0.111 0.110 0.078 0.082 0.124 0.125 

HadEX2 TXx (K yr-1) 0.007 0.013 0.010 0.008 0.012 0.008 0.013 0.135 0.135 0.136 0.121 0.122 0.086 0.087 

 

aRegions with an observational coverage below 50% are excluded. 

 

 815 
 

Table 2. Bias and spatial RMSE of the subgrid-scale ensemble mean warming trends (slopes) of the RAIN, IRRSUB, CASUB and CM 

Experiments Versus the E-OBS (K yr-1) observational product in the MED region for the years 1981-2010.   

All MED pixels bias Irrigated MED 

pixels bias 

CA MED pixels 

bias 

All MED pixels RMSE Irrigated MED 

pixels RMSE 

CA MED pixels 

RMSE 

RAIN CM IRRSUB CASUB RAIN IRRSUB CM CASUB RAIN CM IRRSUB CASUB RAIN IRRSUB CM CASUB 

0.032 0.033 0.022 0.035 0.015 0.004 0.013 0.022 0.040 0.039 0.031 0.026 0.028 0.031 0.027 0.026 
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Table 3. Impact of irrigation and CA on various climatological values (absolute slope differences calculated as IRR minus CTL and 

CA minus CTL for grid-scale, IRRSUB minus RAIN and CASUB minus CM for subgrid-scale) for the years 1981-2010a.  

  Irrigated Land CA Land 

 Physical Quantity (Units) CTL IRR ABS CTL CA ABS 

Grid-

scale 

T2m (K yr−1) 0.026 0.030 0.004c 0.026 0.028 0.002c 

TXx (K yr−1) 0.034 0.038 0.004c 0.039 0.044 0.005c 

TS (K yr−1) 

LHF (W/m2 yr−1) 

SHF (W/m2 yr−1) 

0.009  

0.029 

-0.010 

0.010 

0.041 

-0.001  

0.001c 

0.012 

0.009 

0.016 

0.029 

-0.010 

0.015 

0.053 

0.004 

-0.001c 

0.024 

0.014 

 Physical Quantity (Units) RAIN IRRSUB ABS CM CASUB ABS 

Subgrid

-scaleb 

TS (K yr−1) 0.038 0.030 -0.008c 0.031 0.030 -0.001c 

ET (mm yr−1) 

LHF (W/m2 yr−1) 

SHF (W/m2 yr−1) 

0.286 

0.004 

0.009 

0.939 

0.060 

0.005 

0.653c 

0.056 

-0.004c 

0.182 

0.009 

0.056 

0.265 

0.014 

0.060 

0.083 

0.005 

0.004 

aABS denotes the absolute change of each given quantity. 825 
bRegions with a coverage below 25% are excluded. For grid-scale calculations, regions with a coverage below 50% are excluded. 

cThe changes significant at the 1% significance level (two‐sided Wilcoxon signed rank test on ensemble mean slopes for 

irrigated/CA pixels. 
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