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The authors’ summary statement in the abstract is certainly an informative conclusion. They write 

“Our results underline that agricultural management has complex and nonnegligible impacts on the local 
climate and highlights the need to account for land management in climate projections.” 

And further that  

“It remains challenging to resolve this, however, because it is difficult to separate land management 
from other effects in GCMs – particularly natural climate variability (Cook et al., 2015)”. 

They summarize their paper with the text 

“The goal of this study is thus to test the hypothesis that CESM version 1.2.2 overestimates warming 
trends in some regions because irrigation and CA are excluded. That is, warming rates are hypothesised 
to decline – showing signs of cooling, in irrigation- and CA-affected regions when climate models do 
account for a theoretical constant level of these land management practices. To realise this goal, the 
following three objectives were formulated: (1) Determine spatial warming rates using GCM simulations 
that account for irrigation and CA and inspect whether CESM overestimates warming trends; (2) 
Compare the observed rates of warming to the modelled rates of warming for irrigated and CA pixels, as 
well as nonirrigated and non-CA pixels; and (3) Estimate the impact of irrigation on the spatial average 
of the warming rates over time (1981-2010) for all land, selected regions, and irrigated and CA pixels.” 

However, the basis to quantify these impacts is flawed, or at least significantly muddled.  First, model 
comparison studies are just model sensitivity studies. Without an assessment of model skill with the 
appropriate real world observed data, this is an incomplete (and potentially misleading) approach. The 
real world data needs to be on the spatial and temporal scale of the effect they are assessing (irrigation 
and conservation agriculture).  The recent GRAINEX project quantified these scales 
[https://www.eol.ucar.edu/field_projects/grainex]. The model results should be compared against such 
data. 

Indeed there are numerous regional, mesoscale and local studies that have assessed the role of 
irrigation and land management on weather and climate. The authors do not seem to be familiar with 
this research. Here are just a few 
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Unfortunately, the study does not have fine enough spatial resolution to realistically resolve these land 
use effects. As a result, the effects will likely be muted and quite possibly misrepresented. Even 
examining sub pixel (grid interval) model data is insufficient as local and mesoscale effects are missed.  

As they report  
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“The period 1976-2010 was simulated with a horizontal pixel resolution of 0.9° latitude × 1.25° 
longitude.” 

This is much too coarse. Indeed since at least 4 grid increments are required to have some confidence 
that a feature is adequately resolved, their effective resolution is no finer than 3.6° latitude by 5° 
longitude. 

Similarly, their observational analyses used to evaluate the model results are too coarse. They write 

“For evaluation purposes, observational datasets for annual mean T2m with a spatial resolution of 0.5◦ × 
0.5◦ for the same time period were obtained from the Climate Research Unit (CRU) (Harris et al., 2014). 
Annual mean TXx observational datasets were obtained from the daily Global Historical Climatology 
Network extremes data set (GHCNDEX) (Donat et al., 2013a) and the Hadley Centre extremes data set 
(HadEX2) (Donat et al., 2013b) with a spatial resolution of 2.5◦ × 2.5◦ “ 

And, as I mentioned above, even using sub-grid decomposition is significantly incomplete.  They write 

“To examine heterogeneous influences within grid cells, subgrid tiles that represent local physical, 
biogeochemical, and ecological characteristics – and therefore local (subgrid) influences of irrigation and 
CA – were evaluated against regional (grid-scale) influences. Up to 21 surface tiles may occur within one 
grid cell in CLM4, including glacier, wetland, lake, urban, bare soil and 16 PFTs.” 

While useful in a model sensitivity study, its lack of connection to real world data for locations where 
actual irrigation and conservation agriculture are occurring is a serious oversight.  

In their recommendations they write 

“The findings overall emphasise the need for a more in-depth evaluation of the sensitivity of future 
climate projections to irrigation and CA-induced temperature changes. A sensitivity analysis, using 
transient irrigation and CA extents, as well as additional land management techniques and climate 
models based on CMIP6 output, , is recommended.” 

I agree with the first sentence. The second sentence, however, is incomplete as a necessary condition. 
Real world testing of the skill of the models with respect to how land management affects the weather 
and climate is required.  This must be completed using real world data that is on the appropriate space 
and time scales. This is not the case for this paper.  

They also write 

“This will support decision-making when planning land management strategies that combine resource 
use efficiency with climate change adaptation and mitigation, enabling sustainable intensification of 
land management to meet mitigation targets and future demand for food, fuel, fibre, and water.” 

The authors should be made aware that there are much more inclusive tools to assess sustainability. 
Sensitivity results from global models is, at best, a small part on the regional and local scales. Examples 
of such an approach are published in 
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Thus, while I am pleased to see a study examining the effects of irrigation and conservation 
agriculture on climate, the study has significant shortcomings as summarized in this review. 
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