
Interactive comment on “Agricultural management effects on mean and 
extreme temperature trends” by Aine M. Gormley-Gallagher et al.  

Anonymous Referee #1  

Received and published: 16 August 2020  

This paper looks at the effects of prescribed representations of conservation agriculture and irrigation on mean annual 2m and maximum 
daytime temperature in CESM. There is some interesting analysis and potential for results that could be useful for the community. There are 
aspects of the sub-grid scale vs grid scale analysis, and possibility for critique of whether more processes enhance model skill, that are 
intriguing. The figures are generally well presented. However, there are several issues that need to be addressed.  

We greatly thank the reviewer for the appreciation of the manuscript and for the constructive comments, which greatly helped to improve 
the quality of the study. Here below, we provide a point-by-point response to each comment. The modified manuscript text is shown in 
italics. 

1. The paper reads like a combination of previously published results (specifically, the ensembles used are already published in 
Theiry et al. (2017) and Hirsch et al. (2018)). That might be unfair, but the regression analyses is simple and it seems unlikely it 
wasn’t done separately for CA and irrigation, and much of the explanatory analysis references these two papers. It is the 
responsibility of the authors to show clearly why this is novel compared to what has come before.  

Reply. We confirm that the analysis presented here is based on simulations that have been published previously. However, we believe that 
this new study moves beyond the state of the art in three ways. First, the main novelty of the current study lies in the explicit focus on trends, 
whereas previous studies focused on the influence of land management on the climatology (of means and extreme indicators). Second, the 
explicit focus on the subgrid versus grid-scale response offers important new insights on the local land surface land surface response to land 
management. Third, this study for the first time explicitly considers the radiative forcing resulting from realistic land management. We find 
that the positive radiative forcing signal arising from enhanced atmospheric water vapour is too weak to offset the local cooling from the 
irrigation-induced increase in the latent heat flux. This is been emphasised more clearly by including new evidence on the latent and sensible 
heat fluxes (warming/cooling trends as well as spatial averages) and the results and abstract have been adjusted to reflect these results as 
well as the reviewer’s Point 2 and Point 6. 

The new abstract reads as: 

Abstract. Understanding and quantifying land management impacts on local climate is important for distinguishing 
between the effects of land management and large-scale climate forcings. This study for the first time explicitly 
considers the radiative forcing resulting from realistic land management and offers new insights on the local land 
surface response to land management. Regression-based trend analysis is applied to observations and present-day 
ensemble simulations with the Community Earth System Model (CESM) version 1.2.2 to assess the impact of 
irrigation and conservation agriculture (CA) on warming trends using an approach that is less sensitive to 
temperature extremes. At the regional scale, an irrigation- and CA-induced acceleration of the annual mean near-
surface air temperature (T2m) warming trends and the annual maximum daytime temperature (TXx) warming trends 
were evident. Estimation of the impact of irrigation and CA on the spatial average of the warming trends indicated 
that irrigation and CA have a pulse cooling effect on T2m and TXx, after which the warming trends increase at a 
greater rate than the control simulations. This differed at the local (subgrid) scale under irrigation where surface 
temperature cooling and the dampening of warming trends were both evident. As the local surface warming trends, 
in contrast to regional trends, do not account for atmospheric (water vapour) feedbacks, their dampening confirms 
the importance of atmospheric feedbacks (water vapour forcing) in explaining the enhanced regional trends. At the 
land surface, the positive radiative forcing signal arising from enhanced atmospheric water vapour is too weak to 
offset the local cooling from the irrigation-induced increase in the evaporative fraction. Our results underline that 
agricultural management has complex and nonnegligible impacts on the local climate and highlight the need to 
carefully represent and evaluate land management in climate models. 

The new evidence, which has been added to the paper’s Figure 6, 7 and 8, includes the subgrid-scale differences between the irrigated and 
rainfed crop tile in the IRR ensemble and between CA and conventionally managed (CM) crops, for the latent heat flux (LHF) (Response 
Figure 1a and 1b below) and the sensible heat flux (SHF) (1c and 1d below). Grid-scale differences between the CTL and IRR ensemble 
and between CA and CM crops for LHF (Response Figure 2a and 2b) and SHF (2b and 2c) are also included over irrigated/CA pixels for 
comparative purposes, as detailed below. In addition, to the paper’s Figure 8, data on the spatial average of the SHF and LHF warming rates 
for the irrigated and rainfed crop tiles over irrigated pixels, is now included, as shown in our Response Figure 3. 

 



 

 

  
Response Figure 1 (added to Figure 7 of the paper). Subgrid-scale differences between the irrigated and rainfed crop 
tile in the IRR ensemble (irrigated minus rainfed) (a and c) and between CA and conventionally managed (CM) crops 
(CA minus CM) (b and). For LHF (a-b) and SHF (c-d), displayed over irrigated/CA pixels for comparative purposes. 
Differences are based on the ensemble mean warming trends of each experiment for 1981–2010. Hatching denotes less 
than 10% change induced by the model on mean warming trends of lumped ensemble members.  
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Response Figure 2 (added to Figure 6 in the paper). Grid-scale differences between the CTL and IRR ensemble (IRR 
minus CTL) (a and c) and between the CTL and CA ensemble (CA minus CTL) (b and dj). For LHF (a-b) and SHF (c-
d), displayed over irrigated/CA pixels for comparative purposes. Differences are based on the ensemble mean warming 
trends of each experiment for 1981–2010. Hatching denotes less than 10% change induced by the model on mean 
warming trends of lumped ensemble members.  

	

	
Response Figure 3 (added as Figure 8g and 8h in the paper). Spatial average of the SHF (left) and LHF (right) warming 
rates for the irrigated and rainfed crop tiles over irrigated pixels. Data points specify the mean LHF and SHF values 
within the crop tiles and pixels specified. The slope was estimated using Sen’s slope for the rainfed/CM (red), 
irrigated/CA (blue) experiments for the years 1981-2010.  

 

2. The results (as shown in Table 1 especially) are difficult to reconcile with the statements made in the abstract and conclusions. 
Looking at Table 1, if the smallest RMSE (or the anomalies closest to zero) are considered, the Control simulation is better ∼ 2/3 
of the time. The abstract says, “our results underline. . . the need to account for land management in climate projections”. Surely 
the opposite is true, as the Control scenario does better by the measure most used to assess model skill. Even within the results, 
there appear to be contradictions. Line 218: “the impact of irrigation and CA on the modeled spatially averaged temperatures. . . 
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is an overall cooling effect”. Line 223: “for the IRR and CA models. . . the spatially averaged T2m and TXx warming rates are 
higher than those of the CTL model”.  

Reply. The CTL simulation is better when considering the extreme (TXx) temperature results but not when considering mean temperatures 
(T2m). Particularly in the case of T2m for irrigation, the results in Table 1 show all cases are better all of the time. In one case for CA (all 
land), the RMSEs are equivalent, but otherwise the CTL RMSE is higher. So we disagree that the opposite is true in general, but we do agree 
that the statement in the abstract can be refined. The adjusted abstract statement reads as follows: 

Our results underline that agricultural management has complex and nonnegligible impacts on the local climate and highlight 
the need to carefully represent and evaluate land management in climate models. 

Regarding the apparent contradiction between lines 218 and 223, the ‘cooling effect’ noted in line 218 (Figure 4) refers to a decrease in 
absolute temperature, that is, the intercept of the regression. Line 223, on the other hand, does refer to the trend over time, that is, the slope 
of the regression. This distinction has now been clarified in the text, which now reads: 

However, the impact of irrigation and CA on the modelled spatially averaged temperatures improves the closeness to that of the 
observations, i.e. there is an overall decrease in absolute temperature (Figure 4a-d), which is consistent with current theory 
(Kueppers et al., 2007; Saeed et al., 2009; Kueppers and Snyder, 2012; Thiery et al., 2017, 2020; Hirsch et al., 2018).  

3. Some of the results are presented in such a way as to be somewhat misleading. For instance, the values in Figure 2 (% change in 
RMSE) with the colored categorization (which, being visual, is much stronger evidence to the reader than a table) can be compared 
with the equivalent anomaly in Table 1 (RMSE). For irrigation (IRR-CTL) the RMSE T2m (CRU) difference is -0.002, and the 
figure categorization is - 5-10%. For irrigation (IRR-CTL) the RMSE TXx GHCNDEX difference is +0.004, and the figure 
categorization is 0-5%. i.e. a difference in RMSE that is twice as big, is categorised as half the size in terms of color. This means 
that it looks as though the CA and IRR simulations are doing much better than if the simple RMSE is considered.  

Reply. We agree with this point. In the revised figure 2, we now present the absolute change in the RMSE data (in K), as detailed in our 
Response Figure 3. 

 
 

Response Figure 3 (replacing the paper’s Figure 2). Added value of including irrigation and CA in the simulated warming trends 
over 1981-2010. Absolute change in spatial root-mean-square error (RMSE) for the (a) IRR and (b) CA ensemble relative to the 
CTL ensemble over different regions (x axis) and with respect to 3 observational products (y axis). Considered regions are the 
SREX regions where irrigation is extensive (as highlighted in Figure 1a) and where CA is extensive (Figure 1b), in addition to 
global land, global irrigated land and global CA land. Observational products are for near-surface air temperature T2m (CRU), 
annual maximum daytime temperature TXx (GHCNDEX and HadEX2). The spatial RMSEs are computed for the ensemble mean 
warming trend in every pixel, and subsequently averaged over the selected region. Regions with an observational coverage below 
50% are marked in white.  

4. Some of the results are inconsistent with each other. For instance, on line 182, the range of temperature anomaly compared to 
observations is given as 0.007 - 0.03 in the text, but in Table 1 it is 0.007 – 0.024 (usually a number is rounded down when the 
last value is below 5). Or line 179 where the text says 0.004 for the Control, but Table 1 says 0.006. Figure 4b shows TXx HadEX2 
on top of IRR and CNT much higher, but Table 1 shows CTL and IRR with differences from HadEX2 of 0.008 and 0.012 
respectively.  

Reply. The 0.007 - 0.03 in the text refers to the range of temperature anomaly for all three (CTL, IRR and CA) experiments, not just the 
CTL, which is consistent with the data in Table 1 (the 0.03 K yr-1 TXx bias is noted for the GHCNDEX observations and the IRR ensemble). 
This has now been clarified in the text, as follows:   

On average, the CTL, IRR and CA ensembles overestimate TXx warming trends by ∼0.007–0.03 K yr-1 over all land pixels. Over 
irrigated pixels, the CTL and IRR ensemble overestimate TXx by ∼0.008–0.013 K yr-1. Over CA pixels, the CTL and CA ensemble 
overestimate TXx by ∼0.006–0.013 K yr-1. 
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For the reviewer’s point regarding line 179, indeed the text referring to CTL T2m bias should read according to the data in Table 1 – i.e. 
0.006. In order to also address the reviewer’s point 7 below, we have addressed this by not including the statement in the text that specifies 
the CTL result, but displayed this data in Table 1 only. 

Regarding the reviewer’s final point on Figure 4b, the Table 1 differences stated are consistent with Figure 4b. The slope of HadEX2 in 
Figure 4b is 0.026 K/yr, the slope of CTL is 0.034 K/yr and the slope of IRR is 0.038 K/yr, which renders a bias of 0.008 K/yr for CTL and 
0.012 K/yr for IRR, as detailed in Table 1. To ensure it is clear that Table 1 presents the bias and RMSE of the slopes (and not any other 
temperature parameter), the caption has been edited to state:  

Bias and spatial RMSE of the ensemble mean warming trends (slopes) of the CTL, IRR and CA experiments versus the 
observational products for the years 1981-2010a. 

5. The introduction does not do a good job of introducing the main point of the paper. The first paragraph sets up the issue that 
observations show less warming in TXx than T2m, but models get it the other way around (TXx warms more than T2m). But we 
basically don’t hear about this issue again. Subsequent paragraphs in the introduction are brief summaries of key papers (by the 
authors) and do not provide the cohesive overview of each topic a reader needs in an introduction, instead being based around a 
particular reference.  

Reply. Thank you for highlighting this area for improvement. The introduction has now been substantially reworked to improve the storyline, 
update the cited studies, include a discussion on the relevance of GCMs when studying LULC effects on climate, motivate the subgrid 
perspective, and highlight the novelty of the study. The revised introduction now reads:   

According to observational and global climate model (GCM) data, temperatures associated with hot extremes have increased 
consistent with global anthropogenic climate change (Sillmann and Croci-Maspoli, 2009; Donat et al., 2013a, 2013b; Hartmann 
et al., 2013; Pendergrass and Hartmann, 2014; Fischer and Knutti, 2015). However, hot spots of accelerated warming in annual 
maximum daytime temperature (TXx) relative to local mean temperature (T2m) simulated by climate models from phase 5 of the 
World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project (CMIP5) are spatially inconsistent with 
observations (Donat et al., 2017). This is particularly the case over southeast China, South America, north America and parts of 
Australia and Europe. In these regions, the modelled TXx warming from the midtwentieth century (1951–1980) to the late 
20th/early 21st century (1981–2010) was greater than the modelled T2m warming. In contrast to the models, the observations 
showed that TXx warmed at a slower rate than T2m. Further analysis of the CMIP5 ensemble over central Europe by Vogel et al. 
(2018) highlighted that several GCMs overestimate the observed negative correlation between summer precipitation and TXx, 
resulting in too strong future drying and associated TXx increases under RCP8.5. This underlines the importance of a correct 
representation of land-atmosphere coupling for simulating changes in temperature extremes at regional scales. These 
discrepancies between multiple GCMs and observations raise the questions as to whether: (1) these model results can be used to 
reliably project changes in local temperature extremes; (2) the discrepancies remain if the rates at which warming occurs over a 
time period is examined, which less sensitive to outliers common in extreme temperature data than the absolute temperature 
difference between two time periods, as used in Donat et al. (2017); and (3) the inclusion of more processes that represent land-
atmosphere coupling would enhance model skill.  
 
Agricultural land management techniques, including irrigation and conservation agriculture, can have a cooling effect on hot 
temperature extremes (Davin et al., 2014; Hirsch et al., 2017; Thiery et al., 2017, 2020; Chen and Dirmeyer, 2019; Hauser et al., 
2019; Jia et al., 2019). Irrigation diverts surface and groundwater resources to agricultural land to increase crop production 
(Fereres and Soriano, 2007). The addition of this water to the land surface is balanced by the loss of water via runoff, deep 
percolation, soil storage and/or evapotranspiration (ET) (Fereres and Connor, 2004). Under drier conditions, less evaporative 
cooling leads to amplified warming because the energy budget becomes dominated by sensible heating instead of latent heating 
(Donat et al., 2017). If irrigation water is added to the surface, this increases soil moisture as well as latent heat flux over the 
summer months, leading to more evaporative cooling at the land surface. This irrigation-induced surface cooling via enhanced 
evaporation contrasts with a potential pathway whereby irrigation increases atmospheric temperatures via enhanced atmospheric 
water vapour (leading to a positive radiative forcing; IPCC, 2001; Boucher et al., 2004). 
 
Conservation agriculture (CA), which involves crop residue management, crop rotation (Carrer et al., 2018; Lombardozzi et al., 
2018) and minimal or no tillage (Kassam et al., 2015), can create climate feedbacks due to the presence of a crop residue over 
CA land change both the radiative and hydrological properties at the surface (Davin et al., 2014). Hirsch et al. (2018) explored 
whether applying the no-till component of CA within the Community Earth System Model (CESM) improves the simulation of 
present-day climate. They found that the surface temperature response was influenced by three competing effects: (1) a surface 
albedo increase – which reduces the availability of energy for partitioning between the sensible and latent heat fluxes; (2) 
increased surface resistance (e.g. from mulch) – which reduces soil evaporation; and (3) increased soil moisture retention leading 
to enhanced transpiration. The local cooling response to CA was somewhat counteracted by grid-scale changes in climate over 
North America, Europe, and Asia because of negative atmospheric feedbacks. Grid-scale changes in climate counteracting local 
responses to land use change has also been demonstrated by Malyshev et al. (2015) who showed that the subgrid signal of land 
use change in near surface temperature was diminished by the averaging with undisturbed portions of the pixels. The importance 
of local-scale responses to land cover change has also been indicated in observation-based studies (e.g., Mahmood et al., 2014; 
Li et al., 2015), yet few global-scale modelling studies examine the local land surface response to land management (Paulot et al., 
2018; Meier et al., 2018). 
 
Using GCMs, such as CESM, to simulate land‐atmosphere interactions for investigating the effects of irrigation and agricultural 
conversion has been criticized as insufficient (Niyogi et al., 2002). This is partly because their coarse resolution (e.g. of order 100 
km) hampers their performances in describing the present-day climate at the regional scale (Jiang et al., 2016). Furthermore, 
economic, societal and water resource factors are ignored – a void that initiated the so-called ‘bottom-up’ approach to evaluating 



the effects of land-use change (Douglas et al., 2006). Regarding the applicability of the knowledge produced by GCMs, they do 
not provide the skill required at the spatial scale to offer practical responses at the infrastructure scale (Hossain et al., 2015). 
Despite these constraints, GCMs remain a prime tool for projecting changes in the climate system (Fajardo et al., 2020; Gupta et 
al., 2020; Hofer et al., 2020). Examples include the GCMs that are part of the latest Coupled Model Intercomparison Project 
(CMIP6) and used by the IPCC in consecutive assessment reports (Yazdandoost et al., 2021). However, these GCMs largely 
exclude agricultural management. In particular, no CMIP5 model incorporates irrigation or CA and only three CMIP6 models 
include irrigation, while none have CA. Pielke et al. (2011) suggested that landscape change is omitted from the CMIP5 models 
because the direct radiative impact of global landscape is a lower order than the radiative forcing from greenhouse gas emissions. 
This constitutes a reason to investigate their inclusion. That is, to distinguish between the effects of land management and other 
large-scale forcings such as rising CO2 concentrations (Schultz et al., 2016), it is important to evaluate these processes in the 
GCMs and ultimately gain insight into the contrasts of impacts between regions under different climate regimes. 

 
Considering the potential effects of irrigation and CA on climate (Thiery et al., 2017), it is possible that the discrepancies between 
climate models and observations regarding temperature changes (Donat et al., 2017) are because the models exclude the effect of 
agricultural management techniques on temperature. The goal of this study is thus to test the hypothesis that CESM version 1.2.2 
overestimates warming trends in some regions because irrigation and CA are excluded. That is, warming rates are hypothesized 
to increase at a slower rate – showing signs of cooling, in irrigation- and CA-affected regions when climate models do account 
for a theoretical constant level of these land management practices. To realise this goal, the following objectives were formulated: 
(1) determine spatial warming rates using simulations that account for irrigation and CA and inspect whether CESM overestimates 
warming trends; (2) compare the observed rates of warming to the modelled rates of warming for irrigated and CA pixels, as well 
as non-irrigated and non-CA pixels; and (3) estimate the impact of irrigation on the spatial average of the warming rates over 
time for all land, selected regions, and irrigated and CA pixels. Within this framework, the novelty of this study lies in (i) an explicit 
focus on land management impacts on trends as opposed to the climatology; (ii) a comparison of the subgrid versus grid-scale 
response, offering important new insights on the local land surface land surface response to land management; and (iii) 
consideration of the radiative forcing resulting from realistic land management. 

 
 

6. The abstract doesn’t do a good job of summarizing the paper. It goes straight to “we did things” without explaining why the reader 
should be interested, or what the relevance is, then goes to “it’s important” without presenting the evidence of why it is important. 
It provides no context for what was done, then the emphasis on the “pulse cooling” in the abstract is not followed through in the 
results. The subgrid scale aspect seems to be the most novel part of the paper, but since the rationale for it isn’t explained clearly 
in the methods or results, it’s a minority of the results section, there’s no comparison for the scale of the water vapor feedbacks, 
and no clear explanation of why the water vapor feedbacks are responsible for the differences between the grid scale and subgrid 
scale, it’s not convincing.  

Reply. Thank you for this suggestion, we now reworked the abstract. Due to the addition of new data on the latent and sensible heat fluxes 
(see response to reviewer’s point 9 below), we now clarify in the abstract that an increase in the LHF is responsible for the differences 
between the grid scale and subgrid scale. That is, at the land surface, the positive radiative forcing signal originating from the enhanced 
atmospheric water vapour is too weak to offset the local cooling from the irrigation-induced increase in the latent heat flux. The updated 
abstract is detailed under our response to the reviewer’s Point 1. Also regarding this comment, in our abstract, introduction and results 
section, a rationale for the subgrid scale aspect is now provided. Specifically, because we are looking at irrigation or CA-induced impacts at 
the land surface, It is important to understand and quantify the effects of land management as such on local climate in order to distinguish 
between the effects of land management and other large-scale forcings such as a doubling of CO2. 

7. The results section has paragraphs where the numbers in Tables are repeated, (with some unexplained deviations, as discussed 
above) with little attempt to give a view of what the results mean for the model’s performance. There is no point in having a table 
if the text repeats what it says, and vice versa. There is absolutely a place for straightforward analysis and simple statements, but 
it needs to enhance clarity, not just be a list.  

Reply. The section where we feel this point was most relevant has been substantially condensed (i.e. manuscript Section 3.2), to read: 

Neither irrigation nor CA has a cooling effect on T2m and TXx warming rates in irrigated/CA or non-irrigated/CA regions (Figure 
3 and Table 2). The results suggest a slight irrigation- and CA-induced acceleration of the annual T2m and TXx warming trends, 
rather than the hypothesised cooling. For instance, irrigation induced an increased T2m warming rate of 0.0023 K yr-1 on average 
over land and 0.004 K yr-1 across all irrigated pixels. To put these increases into context, the mean T2m CRU observed warming 
trend over irrigated pixels was 0.029 K yr-1.  

In addition, the text providing the ranges in Section 3.1 has been written more concisely, as described above under the reviewer’s Point 4. 

8. The Tables and Figures all need more detail in the captions, to help explain what they are and why they differ (and why those 
differences were deemed necessary). For instance: Table 1 – which years go towards the values? Table 2 – what are the “impact 
of irrigation and CA on various climatological values”, because 0.026 K yr-1 for T2m doesn’t make any sense as a number for the 
Control if it’s supposed to be IRR – CTL as described in the caption. Figure 4 – presumably when it says “average” it’s the mean, 
but then line 378 says “median”, which is a notably different average.  

Reply. Thank you for this suggestion. The caption for Table 1 has been updated to resolve this point as well as the Reviewer’s point 4, to 
read: 



Bias and spatial RMSE of the ensemble mean warming trends (slopes) of the CTL, IRR and CA experiments versus the 
observational products for the years 1981-2010.   

The caption for Table 2 (now Table 3 in the paper) has been updated to read:  

Impact of irrigation and CA on various climatological values (absolute slope differences calculated as IRR minus CTL and CA 
minus CTL for grid-scale, IRRSUB minus RAIN and CASUB minus CM for subgrid-scale) for the years 1981-2010.  

Regarding the spatial average (Figure 4 and 7), these figures show the mean temperature for all the pixels within each mask specified (i.e. 
all land, irrigated pixels or CA pixels) – plotted on the y-axis, for each year. The slope detailed in the figures was estimated using Sen’s 
slope – so that all slope data used in this study is attained in the same way. As Sen’s estimator takes the median slope (it was chosen as the 
nonparametric alternative to linear regression so that the slope is less sensitive to temperature outliers), the study conclusion thus notes (line 
378):  

Insight into how modelled temperature is affected in its median by irrigation and CA over time was provided. 

The captions for Figures 4 and 7 (Figure 4 and Figure 8 in the revised paper) have been updated to clarify this. Figure 4’s caption is:  

Spatial average of the warming rates for T2m (a, c and e), TXx (b, d and f), SHF (g and h), LHF (i and j) and ET (k and l) for the 
CESM ensembles and observations. Data points specify the mean T2m and TXx temperatures, SHF and LHF and ET volumes for 
irrigated pixels (a, b, g, I and k), CA pixels (c, d, h, j and l), and (e-f) all land pixels.  The slope was estimated using Sen’s slope 
for the CTL (red), IRR (blue), CA (cyan), CRU (purple), HadEX2 (yellow), and GHCNDEX (black) temperatures. 

The new caption for Figure 7 (i.e. Figure 8 in the revised paper) reads:  

Average	of	the	subgrid-scale	warming	rates	for	TS	(a-f),	the	SHF	(g)	and	LHF	(h)	over	(a	and	g)	irrigated	pixels	for	the	irrigated	
and	rainfed	crop	tiles;	(b	and	h)	CA	pixels	for	the	CA	and	CM	crop	tiles;	(b)	all	pixels	for	the	irrigated	and	rainfed	crop	tiles;	(d)	
all	pixels	for	the	CA	and	CM	crop	tiles;	(e)	irrigated	pixels	over	the	MED	SREX	region;	and	(f)	CA	pixels	over	the	MED	SREX	
region.	Data	points	are	the	mean	TS,	LHF	and	SHF	values	within	the	crop	tiles	and	pixels	specified.	The	slope	was	estimated	
using	Sen’s	slope	for	the	rainfed/CM	(red),	irrigated/CA	(blue)	experiments.	For	(a),	(b),	(c),	(d),	(e)	and	(f)	the	regions	where	
less	than	50%	of	the	land	pixels	did	not	contain	a	value	were	excluded.	For	all	land	pixels	(g	and	h),	the	minimum	number	of	
land	pixels	that	needed	to	contain	a	value	in	order	to	be	retained	in	the	analysis	was	15%.	

In addition, the caption for Figure 1 has been updated to include reasons why the boxes differ and help explain better the distinctions, to 
read: 

Figure 1. (a) Percentage of each grid cell equipped for irrigation (%) (Siebert et al., 2005). (b) Potential estimate of CA extent 
mapped to the CLM crop PFT (Prestele et al., 2018). The red boxes in (a) denote the regional domains where irrigation is extensive 
and were thus examined in greater detail including Western North America (WNA), Central North America (CNA), south Europe 
and Mediterranean (MED), West Asia (WAS), South Asia (SAS), Southeast Asia (SEA), and East Asia (EAS). The red boxes in (b) 
denote the regional domains where CA is extensive and were thus examined in greater detail including WNA, CNA, MED, South-
eastern South America (SSA), Central Europe (CEU) and Southern Australia (SAU).  

Figure 2 has been edited to read: 

Figure 2. Added value of including irrigation and CA in the simulated warming trends over 1981-2010. Absolute change in spatial 
root-mean-square error (RMSE) for the (a) IRR and (b) CA ensemble relative to the CTL ensemble over different regions (x axis) 
and with respect to 3 observational products (y axis). Considered regions are the SREX regions where irrigation is extensive (as 
highlighted in Figure 1a) and where CA is extensive (Figure 1b), in addition to global land, global irrigated land and global CA 
land. Observational products are for near-surface air temperature T2m (CRU), annual maximum daytime temperature TXx 
(GHCNDEX and HadEX2). The spatial RMSEs are computed for the ensemble mean warming trend in every pixel, and 
subsequently averaged over the selected region. Regions with an observational coverage below 50% are marked in white.  

And the grid-scale and subgrid-scale maps have been separated into Figure 6 and Figure 7, with the following captions: 
 

Figure 6. Grid-scale differences between the CTL and IRR ensemble (IRR minus CTL) (a, c, e, g and i) and between the CTL and 
CA ensemble (CA minus CTL) (b, d, f, h and j). For Ts (a-b), TMQ (c-d), ET (e-f), LHF (g-h) and SHF (i-j), displayed over 
irrigated/CA pixels for comparative purposes. Differences are based on the ensemble mean warming trends of each experiment 
for 1981–2010. Hatching denotes less than 10% change induced by the model on mean warming trends of lumped ensemble 
members.  

Figure 7. Subgrid-scale differences between the irrigated and rainfed crop tile in the IRR ensemble (irrigated minus rainfed) (a, 
c, e and g) and between CA and conventionally managed (CM) crops (CA minus CM) (b, d, f and h). For Ts (a-b), ET (c-d), LHF 
(e-f) and SHF (g-h), displayed over irrigated/CA pixels for comparative purposes. Differences are based on the ensemble mean 
warming trends of each experiment for 1981–2010. Hatching denotes less than 10% change induced by the model on mean 
warming trends of lumped ensemble members.  

 
 



9. The results section has times where it would benefit from showing more evidence. For instance, the two paragraphs starting line 
228 speculate that latent and sensible heat partitioning and changes in ET are responsible for the differences between CA and IRR, 
and the Control. But instead of exploring these and showing how the latent heat changes, there is just references to previous papers. 
I.e. it is not a result, it is a summary of previously published research. Similarly, the paragraphs line 289 – 315 contain a lot of 
speculation and references and not enough evidence.  

Reply. New sets of results have been added that provide evidence on the changes in the latent heat flux (LHF) and sensible heat flux (SHF). 
Trend data on the grid- and subgrid-scale LHF and SHF has been provided in Table 3. Figure 6 and Figure 7 now allow for a comparison 
between the subgrid and grid scale LHF and SHF changes for irrigated and CA land, while the new Figure 8 details the spatial average of 
LHF and SHF on irrigated pixels (for the figure additions, please see above under the Reviewer’s Point 1). This has also helped to address 
the reviewer’s Point 10 below regarding the discussion section below and the inclusion of a reflection on uncertainties in the partitioning of 
latent and sensible heat when albedo changes. 

10. The discussion section is missing, at the very least: cloud uncertainties (different models do them differently, and they are 
notoriously difficult to resolve, so that these results rely on them is problematic); uncertainties in the partitioning of latent and 
sensible heat when albedo changes (i.e. Bowen ratio; the fact that the CA increase in albedo is a huge assumption, as soil albedo 
is very heterogeneous and dependent partly on soil moisture (thus the CA modeled might be doing the wrong thing in many areas); 
the representation of transpiration in the model, and the fact that presumably the crop/vegetation cover is the same when in reality 
these changes would affect the LAI of the crop; the canopy interception and soil interception representation in the model, which 
affects the evaporation and thus how much the irrigation and CA affect the evaporation.  

Reply. Paragraphs in the discussion section have been rewritten to address these points as follows: 

Paragraph 3: 
Although this study was constructed with great care and built on a state-of-the-art modelling suite, several future developments 
could improve understanding of the impact of irrigation and CA on climate. Firstly, the quality of the model(s) could be improved 
by using transient irrigation and CA extents and new land cover datasets from the 6th phase of the Coupled Model Intercomparison 
Project (CMIP6) (Lawrence et al., 2016). In this study, a static irrigation map for the year 2000 was used for the whole simulation 
period. This likely contributes to our results being conservative. If, for instance, irrigation expands over time, the cooling effect 
may become stronger and thus affect the warming trends. Furthermore, the extent to which the increase in surface albedo (i.e. the 
first competing effect of CA) affects the sensible and latent heat fluxes partly depends on soil moisture, which too is not static.  
Also, CMIP6 experiments are based on annual emissions, whereas CMIP5 was based on decadal emissions and CMIP6 models 
were updated with irrigation-related features and land cover maps that incorporate irrigation and CA expansion over time 
(Goddard et al., 2013; Miao et al., 2014; Boer et al., 2016; Meinshausen et al., 2017; Stouffer et al., 2017). CMIP6 models may 
therefore improve the dynamics between irrigation, CA and climate change, provided that they represent these land management 
techniques in their surface schemes. 
 
Paragraph 4: 
The second consideration is that all simulations used in this study (5 control, 5 irrigation and 5 CA) were from a single model. 
Ensembles completed as such with the same model but different simulations (i.e. based on different initial conditions) characterise 
the uncertainty associated with internal climate variability only, while multi-model ensembles also account for the impact of model 
differences (Tebaldi and Knutti, 2007; Knutti et al., 2010). This limitation can impact cloud uncertainties. Hirsch et al. (2017) 
found that the CESM tends to produce large cloud feedbacks over Central Europe, Central North America, North Asia, and South 
Asia when more energy is reflected at the surface. Irrigation-induced increases in latent heat fluxes led to more water vapor in 
the lower atmosphere, which generated low-level clouds (see also Sherwood et al., 2017). This limited shortwave radiation and 
hence the amount of energy available at the surface because the increased cloud cover reflected more downward shortwave 
radiation above the cloud layer, resulting in surface cooling. This was enhanced by a corresponding decrease in sensible heat 
fluxes, reflecting the decrease in the amount of energy available at the surface and/or the increase in latent heating. The impact 
of cloud cover combined with land management change remains challenging to resolve. Therefore, this study should ideally be 
repeated with other models. Donat et al. (2017), for instance, conducted their study on 20 CMIP5 models, but these models did 
not incorporate irrigation and CA.  
 
Paragraph 6: 
The final consideration is whether regression-based models are suitable for analysing changes in highly variable climate data, 
particularly annual extreme temperature data (von Storch, 2006). Essentially, the regression slope blends forced temperature 
change and variability, to provide an estimation of the temperature variation over time – within which variance can be lost due to 
noisy data. Whether the TXx and T2m temperatures were first spatially averaged and then the slope retrieved or if each slope was 
estimated for each pixel and then the overall trends examined, the outcome remains. This is unsurprising considering that in the 
spatial averaging the noise contributions are averaged out, while the individual regression data suffers from the variance loss 
related to regression. However, when applied to over 60 years of observational data, the regression model used in this study 
showed similar trends to using the difference between the past and the present average temperatures (not shown). This implies 
that the irrigation and CA-inclusive climate system may require a longer timeframe (than the 30 years plus a 5-year spin-up period 
used) for trends to overtake the natural variability. Additionally, rather than aggregating all months, trends during individual 
months or seasons could be examined. This can affect, for instance, the influence of irrigation on Ts, which has a clear seasonal 
pattern, with more cooling during the driest and/or hottest months (Thiery et al., 2017). A smaller magnitude in TXx response to 
CA at the subgrid-scale has also been noted during the summer season due to a larger leaf area index (LAI) reducing soil surface 
exposure and thus the contrast between CA and conventionally managed crops (Hirsch et al., 2018). Furthermore, the 
implementation of CA within CESM does not capture crop planting and harvesting cycling (Davin et al., 2014), which would affect 
the LAI of the crop and potentially the effect of CA on surface climate. 



Thank you for your time and effort in helping to improve our paper. It is great appreciated.  

 

	  



Interactive comment on “Agricultural management effects on mean and 
extreme temperature trends” by Aine M. Gormley-Gallagher et al.  

Anonymous Referee #2  

Received and published: 28 December 2020  

The authors’ summary statement in the abstract is certainly an informative conclusion. They write 
 “Our results underline that agricultural management has complex and nonnegligible impacts on the local climate and highlights the 
need to account for land management in climate projections.” 
 
And further that 
 “It remains challenging to resolve this, however, because it is difficult to separate land management from other effects in GCMs – 
particularly natural climate variability (Cook et al., 2015)”. 
 
The Reviewer’s time is greatly appreciated, and we believe that by addressing the Reviewer’s comments as outlined below, it has enhanced 
the value and quality of the paper. A point-by-point response to each comment is detailed below and the amended manuscript text is 
provided in italics. 

 
1. They summarize their paper with the text 

 “The goal of this study is thus to test the hypothesis that CESM version 1.2.2 overestimates warming trends in some regions 
because irrigation and CA are excluded. That is, warming rates are hypothesised to decline – showing signs of cooling, in 
irrigation- and CA-affected regions when climate models do account for a theoretical constant level of these land management 
practices. To realise this goal, the following three objectives were formulated: (1) Determine spatial warming rates using GCM 
simulations that account for irrigation and CA and inspect whether CESM overestimates warming trends; (2) Compare the 
observed rates of warming to the modelled rates of warming for irrigated and CA pixels, as well as nonirrigated and non-CA 
pixels; and (3) Estimate the impact of irrigation on the spatial average of the warming rates over time (1981-2010) for all land, 
selected regions, and irrigated and CA pixels.” 

 

However, the basis to quantify these impacts is flawed, or at least significantly muddled. First, model comparison studies are 
just model sensitivity studies. Without an assessment of model skill with the appropriate real world observed data, this is an 
incomplete (and potentially misleading) approach. The real world data needs to be on the spatial and temporal scale of the effect 
they are assessing (irrigation and conservation agriculture). The recent GRAINEX project quantified these scales 
[https://www.eol.ucar.edu/field_projects/grainex]. The model results should be compared against such data. 

 

Indeed there are numerous regional, mesoscale and local studies that have assessed the role of irrigation and land management 
on weather and climate. The authors do not seem to be familiar with this research. Here are just a few 

 

Adegoke, J.O., R.A. Pielke Sr., J. Eastman, R. Mahmood, and K.G. Hubbard, 2003: Impact of irrigation on midsummer 
surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. High Plains. 
Mon. Wea. Rev., 131, 556-564. 
 

Betts RA. Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and 
mitigation. Tellus B 2007, 59:602–615. doi:10.1111/j.1600-0889.2007.00284.x. 
Boyaj et al, 2020: Increasing heavy rainfall events in south India due to changing land use and land cover. QJRMS 
https://doi.org/10.1002/qj.3826.  
 

Chen, C. J., C. C. Chen, M. H. Lo, J. Y. Juang, and C. M. Chang, 2020: Central Taiwan’s hydroclimate in response to 
land use/cover change. Env. Res. Lett., 15, 034015 
 

Douglas, E.M., D. Niyogi, S. Frolking, J.B. Yeluripati, R. A. Pielke Sr., N. Niyogi, C.J. Vörösmarty, and U.C. Mohanty, 
2006: Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. 
Geophys. Res. Letts, 33, doi:10.1029/2006GL026550.  
 

He, Y., E. Lee, and J. S. Mankin, 2019: Seasonal tropospheric cooling in Northeast China associated with cropland expansion. 
Env. Res. Lett. 15, 034032. 
 

Hossain, F., J. Arnold, E. Beighley, C. Brown, S. Burian, J. Chen, S. Madadgar, A. Mitra, D. Niyogi, R.A. Pielke Sr., V. 
Tidwell, and D. Wegner, 2015: Local-to-regional landscape drivers of extreme weather and climate: Implications for water 
infrastructure resilience. J. Hydrol. Eng., 10.1061/(ASCE)HE.1943- 5584.0001210 , 02515002. 
 

Pielke Sr., R.A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective 
rainfall. Rev. Geophys., 39, 151-177. 
 

Pielke Sr., R.A., R. Mahmood, and C. McAlpine, 2016: Land’s complex role in climate change. Physics Today, 69(11), 40. 
 

Ullah et al 2020: How Vegetation Spatially Alters the Response of Precipitation and Air Temperature? Evidence from 
Pakistan. Asian Journal of Atmospheric Environment 14(2): 133- 145. 
 

Woldemichael, A.T., F. Hossain, and R. A. Pielke Sr., 2014: Impacts of post-dam land-use/land-cover changes on 
modification of extreme precipitation in contrasting hydro-climate and terrain features. J. Hydrometeor., 15, 777–800, 
doi:10.1175/JHM-D-13-085.1.  
 

Zhang, T., R. Mahmood, X. Lin, and R.A. Pielke Sr., 2019: Irrigation impacts on minimum and maximum surface moist 
enthalpy in the Central Great Plains of the USA. Weather and Climate Extremes, 23, 
https://doi.org/10.1016/j.wace.2019.100197. 

 
Reply. Thank you for raising these important points. We firstly wish to highlight that our work is not merely a model sensitivity study, as 
we compare our simulations against three observational products (see Figure 2 and Table 1 in the paper). Figure 2 has now been updated 



(shown below as ‘Response Figure 1’) to display the absolute change in spatial root-mean-square error for the IRR and CA ensemble 
relative to the CTL ensemble over different regions and with respect to 3 observational products. The paper’s Table 1 details the bias and 
spatial RMSE of the ensemble mean warming trends of the CTL, IRR and CA experiments versus the observational products. We do 
however agree that including additional observational products for comparison at the subgrid scale would improve the completeness of 
the approach. The products recommended by the Reviewer are appreciated, but given the global scope of our analysis as well as the focus 
on trends; we feel that the spatial and temporal coverage of this data is inadequate for validation of global model outputs. To resolve this 
and address the Reviewer’s point, we have added an analysis of the E-OBS European CDG data. Please see our response to Reviewer 
point 3 below for full details regarding this additional analysis. 

 
 

Response Figure 1 (Figure 2 in the paper). Added value of including irrigation and CA in the simulated warming trends over 
1981-2010. Absolute change in spatial root-mean-square error (RMSE) for the (a) IRR and (b) CA ensemble relative to the CTL 
ensemble over different regions (x axis) and with respect to 3 observational products (y axis). Considered regions are the SREX 
regions where irrigation is extensive (as highlighted in the paper’s Figure 1a) and where CA is extensive (see Figure 1b of the 
paper), in addition to global land, global irrigated land and global CA land. Observational products are for near-surface air 
temperature T2m (CRU), annual maximum daytime temperature TXx (GHCNDEX and HadEX2). The spatial RMSEs are computed 
for the ensemble mean warming trend in every pixel, and subsequently averaged over the selected region. Regions with an 
observational coverage below 50% are marked in white.  

 
We also agree as to the benefits of including more local studies that have assessed the role of irrigation and land management on weather 
and climate. Thus, the introduction has been substantially reworked to now read as follows: 

 

“Conservation agriculture (CA), which involves crop residue management, crop rotation (Carrer et al., 2018; Lombardozzi 
et al., 2018) and minimal or no tillage (Kassam et al., 2015), can create climate feedbacks due to the presence of a crop residue 
over CA land that change both the radiative and hydrological properties at the surface (Davin et al., 2014). Hirsch et al. 
(2018) explored whether applying the no-till component of CA within the Community Earth System Model (CESM) improves 
the simulation of present-day climate. They found that the surface temperature response was influenced by three competing 
effects: (1) a surface albedo increase – which reduces the availability of energy for partitioning between the sensible and 
latent heat fluxes; (2) increased surface resistance (e.g. from mulch) – which reduces soil evaporation; and (3) increased soil 
moisture retention leading to enhanced transpiration. The local cooling response to CA was somewhat counteracted by grid-
scale changes in climate over North America, Europe, and Asia because of negative atmospheric feedbacks. Grid-scale 
changes in climate counteracting local responses to land use change has also been demonstrated by Malyshev et al. (2015) 
who showed that the subgrid signal of land use change in near surface temperature was diminished by the averaging with 
undisturbed portions of the pixels. The importance of local-scale responses to land cover change has also been indicated in 
observation-based studies (e.g., Mahmood et al., 2014; Li et al., 2015), yet few global-scale modelling studies examine the 
local land surface response to land management (Paulot et al., 2018; Meier et al., 2018). 
 
Using GCMs, such as CESM, to simulate land‐atmosphere interactions for investigating the effects of irrigation and 
agricultural conversion has been criticized as insufficient (Niyogi et al., 2002). This is partly because their coarse resolution 
(e.g., of order 100 km) hampers their performances in describing the present-day climate at the regional scale (Jiang et al., 
2016). Furthermore, economic, societal and water resource factors are ignored – a void that initiated the so-called ‘bottom-
up’ approach to evaluating the effects of land-use change (Douglas et al., 2006). Regarding the applicability of the knowledge 
produced by GCMs, they do not provide the skill required at the spatial scale to offer practical responses at the infrastructure 
scale (Hossain et al., 2015). Despite these constraints, GCMs remain a prime tool for projecting changes in the climate system 
(Fajardo et al., 2020; Gupta et al., 2020; Hofer et al., 2020). Examples include the GCMs that are part of the latest Coupled 
Model Intercomparison Project (CMIP6) and used by the IPCC in consecutive assessment reports (Yazdandoost et al., 2021). 
However, these GCMs largely exclude agricultural management. In particular, no CMIP5 model incorporates irrigation or 
CA and only three CMIP6 models include irrigation, while none have CA. Pielke et al. (2011) suggested that landscape change 
is omitted from the CMIP5 models because the direct radiative impact of global landscape is a lower order than the radiative 
forcing from greenhouse gas emissions. This constitutes a reason to investigate their inclusion. That is, to distinguish between 
the effects of land management and other large-scale forcings such as rising CO2 concentrations (Schultz et al., 2016), it is 
important to evaluate these processes in the GCMs and ultimately gain insight into the contrasts of impacts between regions 
under different climate regimes. 
 
The goal of this study is thus to test the hypothesis that CESM version 1.2.2 overestimates warming trends in some regions 
because irrigation and CA are excluded. That is, warming rates are hypothesised to increase at a slower rate – showing signs 
of cooling, in irrigation- and CA-affected regions when climate models do account for a theoretical constant level of these 
land management practices. To realise this goal, the following objectives were formulated: (1) determine spatial warming 
rates using simulations that account for irrigation and CA and inspect whether CESM overestimates warming trends; (2) 
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compare the observed rates of warming to the modelled rates of warming for irrigated and CA pixels, as well as non-irrigated 
and non-CA pixels; and (3) estimate the impact of irrigation on the spatial average of the warming rates over time for all land, 
selected regions, and irrigated and CA pixels. Within this framework, the novelty of this study lies in (i) an explicit focus on 
land management impacts on trends as opposed to the climatology; (ii) a comparison of the subgrid versus grid-scale response, 
offering important new insights on the local land surface land surface response to land management; and (iii) consideration 
of the radiative forcing resulting from realistic land management.” 

 
 

2. Unfortunately, the study does not have fine enough spatial resolution to realistically resolve these land use effects. As a result, 
the effects will likely be muted and quite possibly misrepresented. Even examining sub pixel (grid interval) model data is 
insufficient as local and mesoscale effects are missed. 
As they report 
 “The period 1976-2010 was simulated with a horizontal pixel resolution of 0.9° latitude × 1.25° longitude.” 
This is much too coarse. Indeed since at least 4 grid increments are required to have some confidence that a feature is 
adequately resolved, their effective resolution is no finer than 3.6° latitude by 5° longitude. 
Similarly, their observational analyses used to evaluate the model results are too coarse. They write 
 “For evaluation purposes, observational datasets for annual mean T2m with a spatial resolution of 0.5◦ × 0.5◦ for the same time 
period were obtained from the Climate Research Unit (CRU) (Harris et al., 2014). Annual mean TXx observational datasets were 
obtained from the daily Global Historical Climatology Network extremes data set (GHCNDEX) (Donat et al., 2013a) and the 
Hadley Centre extremes data set (HadEX2) (Donat et al., 2013b) with a spatial resolution of 2.5◦ × 2.5◦ “ 
 

Reply. An underlying premise of this paper is that GCMs remain the primary tool for providing long-term projected changes in the 
climate system and have been often used for studying land cover and land management effects on climate. Unfortunately there currently 
is no global model that can be run for long integrations at the spatial resolution required to fully resolve field-scale land management 
variations including contrasts of the irrigation/CA impact between regions under different climate regimes. So while we acknowledge 
that the effects play out more at the local scale and are therefore better captured with high-resolution RCMs, we believe it is still relevant 
to also evaluate these processes in the GCMs. To resolve this (and in combination with addressing Reviewer’s point 1), we elaborate on 
the RCM literature and include a justification of using a GCM in the revised introduction, as follows (also detailed in paragraph 2 of our 
response to the Reviewer’s point 1):   
 

“Using GCMs, such as CESM, to simulate land‐atmosphere interactions for investigating the effects of irrigation and 
agricultural conversion has been criticized as insufficient (Niyogi et al., 2002). This is partly because their coarse resolution 
(e.g. of order 100 km) limits their ability to resolve land surface heterogeniety at the regional scale (Jiang et al., 2016). 
Furthermore, economic, societal and water resource factors are ignored – a void that initiated the so-called ‘bottom-up’ 
approach to evaluating the effects of land-use change (Douglas et al., 2006). Regarding the applicability of the knowledge 
produced by GCMs, they do not provide the skill required at the spatial scale to offer practical responses at the infrastructure 
scale (Hossain et al., 2015). Despite these constraints, GCMs remain a prime tool for projecting changes in the climate system 
(Fajardo et al., 2020; Gupta et al., 2020; Hofer et al., 2020). Examples include the GCMs that are part of the latest Coupled 
Model Intercomparison Project (CMIP6) and used by the IPCC in consecutive assessment reports (Yazdandoost et al., 2020). 
However, these GCMs largely exclude agricultural management. In particular, no CMIP5 model incorporates irrigation or 
CA and only three CMIP6 models include irrigation, while none have CA. Pielke et al. (2011) suggested that landscape change 
is omitted from the CMIP5 models because the direct radiative impact of global landscape is a lower order than the radiative 
forcing from greenhouse gas emissions. This constitutes a reason to investigate their inclusion. That is, to distinguish between 
the effects of land management and other large-scale forcings such as a doubling of CO2 (Schultz et al., 2016), it is important 
to evaluate these processes in the GCMs and ultimately gain insight into the contrasts of impacts between regions under 
different climate regimes.” 

 
 

3. And, as I mentioned above, even using sub-grid decomposition is significantly incomplete. They write 
 “To examine heterogeneous influences within grid cells, subgrid tiles that represent local physical, biogeochemical, and 
ecological characteristics – and therefore local (subgrid) influences of irrigation and CA – were evaluated against regional 
(grid-scale) influences. Up to 21 surface tiles may occur within one grid cell in CLM4, including glacier, wetland, lake, urban, 
bare soil and 16 PFTs.” 
While useful in a model sensitivity study, its lack of connection to real world data for locations where actual irrigation and 
conservation agriculture are occurring is a serious oversight. 
In their recommendations they write 
 “The findings overall emphasise the need for a more in-depth evaluation of the sensitivity of future climate projections 
to irrigation and CA-induced temperature changes. A sensitivity analysis, using transient irrigation and CA extents, as 
well as additional land management techniques and climate models based on CMIP6 output, , is recommended.” 
I agree with the first sentence. The second sentence, however, is incomplete as a necessary condition. Real world testing of the 
skill of the models with respect to how land management affects the weather and climate is required. This must be completed 
using real world data that is on the appropriate space and time scales. This is not the case for this paper. 

 
 

Reply. Thank you for raising this important point. As noted under point 1, our work goes beyond that of a model sensitivity study, as we 
compare our simulations against three observational products, but indeed none at the subgrid scale. We have therefore used real world 
data from the E-OBS European CDG dataset to conduct additional analysis. As a regional data set, it has a higher spatial resolution and 
therefore allows us to test the skill of the models with respect to the local effects of land management. The E-OBS data was regridded to 
the CESM resolution using bilinear remapping for use in this study. It captures well the MED SREX region used in this study. Please see 
Response Figure 2 below for the surface radiative temperature (TS) slope results over irrigated pixels (NB: this chart will not be in the 
revised paper but is included here to visually introduce the new observation dataset used).  
 



 

 
Response Figure 2. The warming trends of surface radiative temperature (TS) for the MED SREX region over irrigated pixels 
based on the E-OBS European CDG dataset for the period 1981-2010. 

 
Below are the (spatial) average of the (TS) warming rates for the MED region over (left) irrigated pixels for the irrigated and rainfed crop 
tiles; (right) CA pixels for the CA and CM crop tiles. Note here the slope bias has improved with the irrigated crop tile data (versus the 
rainfed) – see table below for data. Both of these charts have been added to Figure 8 in the paper. 
 

	
Response Figure 3 (added as Figure 8e and 8f in the paper). Average of the TS warming rates over (left) irrigated pixels for the 
irrigated and rainfed crop tiles; (right) CA pixels for the CA and CM crop tiles. Data points specify the mean TS values within 
the crop tiles and pixels specified. The slope was estimated using Sen’s slope for the rainfed/CM (red), irrigated/CA (blue) 
experiments, as well as the E-OBS European CDG dataset (green).  

 
 
The table below contains the bias and spatial RMSE of the slopes versus the E-OBS product. These results have been added to the paper as 
Table 2, as well as the following description and interpretation of the results. For the subgrid irrigation (IRRSUB) ensemble, TS warming 
trends are overestimated by ∼0.004 K yr-1 across irrigated MED pixels, which is an improvement in terms of bias when compared to the 
subgrid data that does not account for irrigation (i.e. RAIN). However, according to the change in the spatial RMSE, accounting for irrigation 
does not improve the simulation skill for trends over MED irrigated pixels. This is likely because RMSE is more sensitive to outliers – 
whereas the bias is based on the spatial mean.  

 
Response Table 1 (added as Table 2 in the paper). Bias and Spatial RMSE of the Ensemble Mean Warming Trends (Slopes) of the 
RAIN, IRRSUB, CASUB and CM Experiments Versus the E-OBS (K yr-1) Observational Product for the years 1981-2010.   
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All MED pixels bias Irrigated MED 
pixels bias 

CA MED pixels 
bias 

All MED pixels RMSE Irrigated MED 
pixels RMSE 

CA MED pixels 
RMSE 

RAIN CM IRRSUB CASUB RAIN IRRSUB CM CASUB RAIN CM IRRSUB CASUB RAIN IRRSUB CM CASUB 

0.032 0.033 0.022 0.035 0.015 0.004 0.013 0.022 0.040 0.039 0.031 0.026 0.028 0.031 0.027 0.026 

 
 
 

4. They also write 
 “This will support decision-making when planning land management strategies that combine resource use efficiency with 
climate change adaptation and mitigation, enabling sustainable intensification of land management to meet mitigation targets 
and future demand for food, fuel, fibre, and water.” 
The authors should be made aware that there are much more inclusive tools to assess sustainability. Sensitivity results from 
global models is, at best, a small part on the regional and local scales. Examples of such an approach are published in 

Cross, M. S., et al. (2012). "The Adaptation for Conservation Targets (ACT) framework: a tool for incorporating climate 
change into natural resource management." Environmental Management 50(3): 341-351. DOI: 10.1007/s00267-012-
9893-7. 
 

Hanamean, J.R. Jr., R.A. Pielke Sr., C.L. Castro, D.S. Ojima, B.C. Reed, and Z. Gao, 2003: Vegetation impacts on 
maximum and minimum temperatures in northeast Colorado. Meteorological Applications, 10, 203-215. 
 

Hossain, F., E. Beighley, S. Burian, J. Chen, A. Mitra, D. Niyogi, R.A. Pielke Sr., and D. Wegner, 2017: Review 
approaches and recommendations for improving resilience of water management infrastructure: The case for large dams. 
J. Infrastructure Systems, 23, Issue 4, Dec. 2017, DOI: 10.1061/(ASCE)IS.1943-555X.0000370. 
 

Kittel, T.G.F., et al. (2011). "A vulnerability-based strategy for incorporating climate change in regional conservation 
planning: Framework and case study for the British Columbia Central Interior." BC Journal of Ecosystems and 
Management 12(1): 7-35. http://jem.forrex.org/index.php/jem/article/view/89. 
 

Kittel, T.G.F. 2013. “The Vulnerability of Biodiversity to Rapid Climate Change.” Pp. 185-201 (Chapter 4.15), in: 
Vulnerability of Ecosystems to Climate, T.R. Seastedt and K. Suding (Eds.), Vol. 4 in: Climate Vulnerability: 
Understanding and Addressing Threats to Essential Resources, R.A. Pielke, Sr. (Editor-in- Chief). Elsevier Inc., Academic 
Press, Oxford. DOI: 10.1016/B978-0-12-384703-4.00437-8 
 

Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D., & Hamilton, H. (2020). Multiple axes of ecological vulnerability 
to climate change. Global Change Biology, 26, 2798–2813 
 

Ordonez, A., 2020. Points of view matter when assessing biodiversity vulnerability to environmental changes. Global 
Change Biology, 26(5), pp.2734-2736. 
 

Pielke Sr., R.A., R. Wilby, D. Niyogi, F. Hossain, K. Dairaku, J. Adegoke, G. Kallos, T. Seastedt, and K. Suding, 2012: 
Dealing with complexity and extreme events using a bottom-up, resource-based vulnerability perspective. Extreme Events 
and Natural Hazards: The Complexity Perspective Geophysical Monograph Series 196 © 2012. American Geophysical 
Union. All Rights Reserved. 10.1029/2011GM001086. 
 

Romero-Lankao, P., et al. 2012: Vulnerability to temperature-related hazards: a meta-analysis and meta- knowledge 
approach. Glob. Environ. Change, http:// dx.doi.org/10.1016/j.gloenvcha.2012.04.002. 
 

Stohlgren, T.J. and C.S. Jarnevich. 2009. Risk assessment of invasive species. In: M.N. Clout and P.A. Williams (eds.). 
Invasive Species Management: A Handbook of Principles and Techniques. New York: Oxford University Press. p. 19-
35. 

 
Reply. We believe that the inclusion of other tools to assess sustainability, such as the ACT framework example provided above 
is beyond the scope of this study and would detract from its unity. However, we do concur that the final sentence in the paper, 
referred to by the reviewer above, was too sweeping, and thus the final paragraph has been amended to read: 

 
“The findings overall provide valuable context on how model complexity can impact the simulation of trends and 
emphasise the need for a more in-depth evaluation of the sensitivity of future climate projections to irrigation and 
CA-induced temperature changes. A sensitivity analysis, using transient irrigation and CA extents, as well as 
additional land management techniques, within coupled climate models based on CMIP6 output, is recommended. In 
this way, the variance can be approximated and the relative contributions of the uncertainty sources to the total 
uncertainty in the model output, as well as the relative importance of irrigation and CA to the total warming trends, 
can be quantified and compared. If the fundamental uncertainties relating to model structure dominate, then a more 
detailed analysis than the regression approach used in this study is suggested. This will support decision-making on 
the incorporation of agricultural management processes in future GCM projects.” 

 
 

5. Thus, while I am pleased to see a study examining the effects of irrigation and conservation agriculture on climate, the 
study has significant shortcomings as summarized in this review. 

Reply. Thank you for your time and effort on our paper and for raising important points. We believe our resolve of these points has 
helped to improve our paper, which is much appreciated. 

 

 



EDITOR	REPLY	POINTS	
	
Thank	you	for	submitting	your	manuscript	to	Earth	System	Dynamics.	Before	sending	it	to	review,	
I	request	some	initial	changes	to	help	with	clarity.	
	
1.	You	frame	the	aim	of	the	study	as	being:	
"to	assess	if	climate	models	overestimate	warming	trends	because	theoretical	constant	levels	
of	irrigation	and	conservation	agriculture	(CA)	are	excluded"	
It	does	not	quite	make	sense	to	me	to	include	"theoretical	constant	levels	of	irrigation	and	CA"	at	
this	point	-	from	my	initial	reading	of	the	paper	and	understanding	of	CMIP5-generation	models	
including	CESM,	it	seems	more	that	you	are	examining	whether	models	overestimate	warming	
trends	simply	because	irrigation	and	CA	are	excluded,	regardless	of	whether	they	are	
theoretically	constant	or	not.	
Also,	I	don't	think	it	is	appropriate	to	make	this	a	statement	about	climate	models	in	general,	since	
(as	you	note)	you	are	only	looking	at	CESM.	
Furthermore,	since	climate	models	tend	to	evolve	over	time	and	have	multiple	or	successive	
versions,	it	is	important	to	identify	exactly	which	version	of	the	model	is	being	looked	at.	
So	I	would	suggest	that	it	would	be	more	appropriate	to	say:	
"to	assess	if	CESMvn1.2,	as	used	in	CMIP5,	overestimates	warming	trends	because	theoretical	
constant	levels	of	irrigation	and	conservation	agriculture	(CA)	are	excluded"	
This	applies	both	in	the	abstract	an	in	similar	statements	in	the	main	text.	
	
Reply.	We	have	changed	the	text	where	necessary	to	specify	“CESM	version	1.2.2”	wherever	it	used	
to	say	“climate	models”	when	describing	the	scope	of	the	study.	We	have	also	left	out	the	words	
“theoretical	constant	level”	in	those	sentences,	as	advised.	We	finally	note	that	we	run	the	model	in	
AMIP	mode,	and	therefore	wish	to	be	cautious	with	referencing	to	CMIP5.		
	
	
2.	Following	the	above,	it	would	be	useful	to	give	more	context	to	the	extent	of	the	discrepancy	
between	models	and	observations	described	in	the	first	paragraph	of	the	introduction.	Do	all	
CMIP5	models	show	the	discrepancy	you	describe?	Since	you	are	using	CESM	vn1.2	only,	how	
representative	is	this	model	of	family	of	CMIP5	models	in	this	respect?	
	
Reply:	Two	earlier	studies	sparked	the	idea	for	this	research:	Donat	et	al.	(2017	GRL),	showing	that	
regional	warming	rates	of	hot	extremes	in	CMIP5	models	are	inconsistent	with	observations	across	
several	 regions,	 and	 Vogel	 et	 al.	 (2018	 ESD),	 showing	 that	 some	 CMIP5	 models	 exhibit	
unrealistically	strong	warming	of	hot	extreme	over	Europe.	Unfortunately,	Donat	et	al.	(2017)	only	
display	 multi-model	 mean	 results,	 which	 do	 not	 allow	 us	 to	 make	 statements	 regarding	 the	
ensemble	spread	and	 the	 location	of	CESM	within	 the	ensemble.	We	have	 therefore	now	added	
more	information	on	Vogel	et	al.	(2018)	in	the	introduction	of	the	manuscript.	
	
	
3.	Please	could	you	clarify	in	section	2.1	whether	you	are	looking	at	irrigation	and	CA	separately	
or	together?	Since	your	hypothesis	is	that	their	exclusion	has	biased	the	results	in	CMIP5	models,	
the	reader	might	expect	that	you	would	look	at	their	combined	effect,	but	my	reading	of	your	
experimental	design	suggests	that	you	only	applied	them	separately	and	not	together	-	is	that	
correct?	Either	way,	please	clarify.	
	
Reply:	 In	 the	 first	sentence	of	section	2.1,	we	have	 included	the	words	“either…	or”	 in	order	 to	
clarify	that	irrigation	and	conservation	agriculture	were	indeed	modelled	separately.	
	
4.	I	think	your	figures	may	be	be	difficult	to	access	for	readers	(including	potential	reviewers)	
with	some	types	of	colourblindness	since	red	and	green	are	often	used	together.	I	suspect	that	



Figures	2	and	4	may	be	particularly	challenging.	Can	you	use	a	different	colour	palette	for	Figure	2	
and	use	symbols	and/or	different	line	styles	as	well	as	colours	in	Figure	4?	
	
Reply:	The	colour	palette	for	Figure	2	has	been	modified	as	follows.	
	

 
 

Figure 2. Added value of including irrigation and CA in the simulated warming trends over 1981-2010. Absolute change in spatial 
root-mean-square error (RMSE) for the (a) IRR and (b) CA ensemble relative to the CTL ensemble over different regions (x axis) 
and with respect to 3 observational products (y axis). Considered regions are the SREX regions where irrigation is extensive (as 
highlighted in the paper’s Figure 1a) and where CA is extensive (see Figure 1b of the paper), in addition to global land, global 
irrigated land and global CA land. Observational products are for near-surface air temperature T2m (CRU), annual maximum 
daytime temperature TXx (GHCNDEX and HadEX2). The spatial RMSEs are computed for the ensemble mean warming trend in 
every pixel, and subsequently averaged over the selected region. Regions with an observational coverage below 50% are marked 
in white.  

	
Also,	the	colour	palette	and	symbols	for	Figure	4	has	been	modified	as	follows:	
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Figure 4. Spatial average of the warming rates for T2m (a, c and e), TXx (b, d and f), SHF (g and h), LHF (i and j) and ET (k and 
l) for the CESM ensembles and observations. Data points specify the mean T2m and TXx temperatures, SHF and LHF and ET 
volumes for irrigated pixels (a, b, g, I and k), CA pixels (c, d, h, j and l), and (e-f) all land pixels.  The slope was estimated using 
Sen’s slope for the CTL (red), IRR (blue), CA (cyan), CRU (purple), HadEX2 (yellow), and GHCNDEX (black) temperatures. 

 

5.	In	Figure	5,	panels	(a)	and	(b)	look	identical,	and	this	is	not	surprising	since	the	differences	
shown	in	panel	(c)	are	smaller	than	the	increments	in	(a)	and	(b).	I	suggest	dropping	panel	(b).	
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Reply:	Figure	5	has	been	updated	as	detailed	below.	
	
	
	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 5. (a) Top-of-atmosphere (TOA) net radiation Rn,TOA [W m-2] in the CTL ensemble. (b) Impact of irrigation on Rn,TOA. 
Difference (IRR-CTL) is based on the ensemble mean of each experiment for 1981–2010. 

	
If	you	are	able	to	improve	the	clarity	of	the	manuscript	following	the	above	suggestions,	I	will	be	
happy	to	send	it	out	for	the	review	and	discussion.	
	
Best	regards	
	
Richard	Betts	(Editor)	
	
Reply.	Many	thanks	for	your	time	and	support	–	it	is	greatly	valued	and	appreciated.	
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