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The Reviewer’s time is greatly appreciated and we believe that by addressing the Re-
viewer’s comments as outlined below, it has enhanced the value and quality of the
paper. A point-by-point response to each comment is detailed below and the amended
manuscript text is provided in quotation marks.

1. They summarize their paper with the text “The goal of this study is thus to test the
hypothesis that CESM version 1.2.2 overestimates warming trends in some regions
because irrigation and CA are excluded. That is, warming rates are hypothesised to
decline – showing signs of cooling, in irrigation- and CA-affected regions when cli-
mate models do account for a theoretical constant level of these land management
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practices. To realise this goal, the following three objectives were formulated: (1) De-
termine spatial warming rates using GCM simulations that account for irrigation and
CA and inspect whether CESM overestimates warming trends; (2) Compare the ob-
served rates of warming to the modelled rates of warming for irrigated and CA pixels,
as well as nonirrigated and non-CA pixels; and (3) Estimate the impact of irrigation on
the spatial average of the warming rates over time (1981-2010) for all land, selected
regions, and irrigated and CA pixels.”

However, the basis to quantify these impacts is flawed, or at least significantly mud-
dled. First, model comparison studies are just model sensitivity studies. Without
an assessment of model skill with the appropriate real world observed data, this is
an incomplete (and potentially misleading) approach. The real world data needs
to be on the spatial and temporal scale of the effect they are assessing (irrigation
and conservation agriculture). The recent GRAINEX project quantified these scales
[https://www.eol.ucar.edu/field_projects/grainex]. The model results should be com-
pared against such data.

Indeed there are numerous regional, mesoscale and local studies that have assessed
the role of irrigation and land management on weather and climate. The authors do
not seem to be familiar with this research. Here are just a few

Adegoke, J.O., R.A. Pielke Sr., J. Eastman, R. Mahmood, and K.G. Hubbard, 2003:
Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic
conditions: A regional atmospheric model study of the U.S. High Plains. Mon. Wea.
Rev., 131, 556-564.

Betts RA. Implications of land ecosystem-atmosphere interactions for strategies
for climate change adaptation and mitigation. Tellus B 2007, 59:602–615.
doi:10.1111/j.1600-0889.2007.00284.x. Boyaj et al, 2020: Increasing heavy rain-
fall events in south India due to changing land use and land cover. QJRMS
https://doi.org/10.1002/qj.3826.
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Chen, C. J., C. C. Chen, M. H. Lo, J. Y. Juang, and C. M. Chang, 2020: Central Taiwan’s
hydroclimate in response to land use/cover change. Env. Res. Lett., 15, 034015

Douglas, E.M., D. Niyogi, S. Frolking, J.B. Yeluripati, R. A. Pielke Sr., N. Niyogi, C.J.
Vörösmarty, and U.C. Mohanty, 2006: Changes in moisture and energy fluxes due to
agricultural land use and irrigation in the Indian Monsoon Belt. Geophys. Res. Letts,
33, doi:10.1029/2006GL026550.

He, Y., E. Lee, and J. S. Mankin, 2019: Seasonal tropospheric cooling in Northeast
China associated with cropland expansion. Env. Res. Lett. 15, 034032.

Hossain, F., J. Arnold, E. Beighley, C. Brown, S. Burian, J. Chen, S. Madadgar, A.
Mitra, D. Niyogi, R.A. Pielke Sr., V. Tidwell, and D. Wegner, 2015: Local-to-regional
landscape drivers of extreme weather and climate: Implications for water infrastructure
resilience. J. Hydrol. Eng., 10.1061/(ASCE)HE.1943- 5584.0001210 , 02515002.

Pielke Sr., R.A., 2001: Influence of the spatial distribution of vegetation and soils on
the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151-177.

Pielke Sr., R.A., R. Mahmood, and C. McAlpine, 2016: Land’s complex role in climate
change. Physics Today, 69(11), 40.

Ullah et al 2020: How Vegetation Spatially Alters the Response of Precipitation and
Air Temperature? Evidence from Pakistan. Asian Journal of Atmospheric Environment
14(2): 133-145.

Woldemichael, A.T., F. Hossain, and R. A. Pielke Sr., 2014: Impacts of post-dam land-
use/land-cover changes on modification of extreme precipitation in contrasting hydro-
climate and terrain features. J. Hydrometeor., 15, 777–800, doi:10.1175/JHM-D-13-
085.1.

Zhang, T., R. Mahmood, X. Lin, and R.A. Pielke Sr., 2019: Irrigation impacts on min-
imum and maximum surface moist enthalpy in the Central Great Plains of the USA.
Weather and Climate Extremes, 23, https://doi.org/10.1016/j.wace.2019.100197.
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Reply. Thank you for raising these important points. We firstly wish to highlight that our
work is not merely a model sensitivity study, as we compare our simulations against
three observational products (see Figure 2 and Table 1 in the paper). Figure 2 has now
been updated (shown below as ‘Response Figure 1’) to display the absolute change
in spatial root-mean-square error for the IRR and CA ensemble relative to the CTL
ensemble over different regions and with respect to 3 observational products. The
paper’s Table 1 details the bias and spatial RMSE of the ensemble mean warming
trends of the CTL, IRR and CA experiments versus the observational products. We
do however agree that including additional observational products for comparison at
the subgrid scale would improve the completeness of the approach. The products
recommended by the Reviewer are appreciated, but given the global scope of our
analysis as well as the focus on trends; we feel that the spatial and temporal coverage
of this data is inadequate for validation of global model outputs. To resolve this and
address the Reviewer’s point, we have added an analysis of the E-OBS European CDG
data. Please see our response to Reviewer point 3 below for full details regarding this
additional analysis.

We also agree as to the benefits of including more local studies that have assessed the
role of irrigation and land management on weather and climate. Thus, the introduction
has been substantially reworked to now read as follows:

"Conservation agriculture (CA), which involves crop residue management, crop rota-
tion (Carrer et al., 2018; Lombardozzi et al., 2018) and minimal or no tillage (Kassam
et al., 2015), can create climate feedbacks due to the presence of a crop residue over
CA land change both the radiative and hydrological properties at the surface (Davin et
al., 2014). Hirsch et al. (2018) explored whether applying the no-till component of CA
within the Community Earth System Model (CESM) improves the simulation of present-
day climate. They found that the surface temperature response was influenced by three
competing effects: (1) a surface albedo increase – which reduces the availability of en-
ergy for partitioning between the sensible and latent heat fluxes; (2) increased surface
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resistance (e.g. from mulch) – which reduces soil evaporation; and (3) increased soil
moisture retention leading to enhanced transpiration. The local cooling response to
CA was somewhat counteracted by grid-scale changes in climate over North America,
Europe, and Asia because of negative atmospheric feedbacks. That is, the decrease
in evapotranspiration (ET) – both due to higher albedo and higher soil resistance –
appeared to activate a decrease in cloud cover in the model that increases incoming
shortwave radiation and therefore temperature via enhanced sensible heating. Grid-
scale changes in climate counteracting local responses to land use change has also
been demonstrated by Malyshev et al. (2015) who showed that the subgrid signal of
land use change in near surface temperature was diminished by the averaging with
undisturbed portions of the grid cells. The importance of local-scale responses to land
cover change has also been indicated in observation-based studies (e.g., Mahmood et
al., 2013; Li et al., 2016), yet few global-scale modelling studies examine the local land
surface response to land management (Paulot et al., 2018; Meier et al., 2018).

Using GCMs, such as CESM, to simulate landâĂŘatmosphere interactions for investi-
gating the effects of irrigation and agricultural conversion has been criticized as insuf-
ficient (Niyogi et al., 2002). This is partly because their coarse resolution (e.g. of order
100 km) hampers their performances in describing the present-day climate at the re-
gional scale (Jiang et al., 2016). Furthermore, economic, societal and water resource
factors are ignored – a void that initiated the so-called ‘bottom-up’ approach to evalu-
ating the effects of land-use change (Douglas et al., 2006). Regarding the applicability
of the knowledge produced by GCMs, they do not provide the skill required at the spa-
tial scale to offer practical responses at the infrastructure scale (Hossain et al., 2015).
Despite these constraints, GCMs remain a prime tool for projecting changes in the cli-
mate system (Fajardo et al., 2020; Gupta et al., 2020; Hofer et al., 2020). Examples
include the GCMs that are part of the latest Coupled Model Intercomparison Project
(CMIP6) and used by the IPCC in consecutive assessment reports (Yazdandoost et al.,
2020). However, these GCMs largely exclude agricultural management. In particular,
no CMIP5 model incorporates irrigation or CA and only three CMIP6 models include
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irrigation, while none have CA. Pielke et al. (2011) suggested that landscape change
is omitted from the CMIP5 models because the direct radiative impact of global land-
scape is a lower order than the radiative forcing from greenhouse gas emissions. This
constitutes a reason to investigate their inclusion. That is, to distinguish between the
effects of land management and other large-scale forcings such as a doubling of CO2
(Schultz et al., 2016), it is important to evaluate these processes in the GCMs and
ultimately gain insight into the contrasts of impacts between regions under different
climate regimes.

Considering the potential effects of irrigation and CA on climate (Thiery et al., 2017), it
is possible that the discrepancies between climate models and observations regarding
temperature changes (Donat et al., 2017) are because the models exclude the effect of
agricultural management techniques on temperature. The goal of this study is thus to
test the hypothesis that CESM version 1.2.2 overestimates warming trends in some re-
gions because irrigation and CA are excluded. That is, warming rates are hypothesized
to increase at a slower rate – showing signs of cooling, in irrigation- and CA-affected
regions when climate models do account for a theoretical constant level of these land
management practices. To realise this goal, the following objectives were formulated:
(1) Determine spatial warming rates using simulations that account for irrigation and
CA and inspect whether CESM overestimates warming trends; (2) Compare the ob-
served rates of warming to the modelled rates of warming for irrigated and CA pixels,
as well as non-irrigated and non-CA pixels; and (3) Estimate the impact of irrigation on
the spatial average of the warming rates over time for all land, selected regions, and
irrigated and CA pixels.”

2. Unfortunately, the study does not have fine enough spatial resolution to realistically
resolve these land use effects. As a result, the effects will likely be muted and quite
possibly misrepresented. Even examining sub pixel (grid interval) model data is insuffi-
cient as local and mesoscale effects are missed. As they report “The period 1976-2010
was simulated with a horizontal pixel resolution of 0.9◦ latitude × 1.25◦ longitude.” This
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is much too coarse. Indeed since at least 4 grid increments are required to have
some confidence that a feature is adequately resolved, their effective resolution is no
finer than 3.6◦ latitude by 5◦ longitude. Similarly, their observational analyses used to
evaluate the model results are too coarse. They write “For evaluation purposes, obser-
vational datasets for annual mean T2m with a spatial resolution of 0.5âŮę × 0.5âŮę
for the same time period were obtained from the Climate Research Unit (CRU) (Harris
et al., 2014). Annual mean TXx observational datasets were obtained from the daily
Global Historical Climatology Network extremes data set (GHCNDEX) (Donat et al.,
2013a) and the Hadley Centre extremes data set (HadEX2) (Donat et al., 2013b) with
a spatial resolution of 2.5âŮę × 2.5âŮę “

Reply. An underlying premise of this paper is that GCMs remain the primary tool for
providing long-term projected changes in the climate system and have been often used
for studying land cover and land management effects on climate. Unfortunately there
currently is no global model that can be run for long integrations at the spatial resolution
required to fully resolve field-scale land management variations including contrasts of
the irrigation/CA impact between regions under different climate regimes. So while we
acknowledge that the effects play out more at the local scale and are therefore better
captured with high-resolution RCMs, we believe it is still relevant to also evaluate these
processes in the GCMs. To resolve this (and in combination with addressing Reviewer’s
point 1), we elaborate on the RCM literature and include a justification of using a GCM
in the revised introduction, as follows (also detailed in paragraph 2 of our response to
the Reviewer’s point 1):

“Using GCMs, such as CESM, to simulate landâĂŘatmosphere interactions for inves-
tigating the effects of irrigation and agricultural conversion has been criticized as in-
sufficient (Niyogi et al., 2002). This is partly because their coarse resolution (e.g. of
order 100 km) limits their ability to resolve land surface heterogeniety at the regional
scale (Jiang et al., 2016). Furthermore, economic, societal and water resource fac-
tors are ignored – a void that initiated the so-called ‘bottom-up’ approach to evaluating
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the effects of land-use change (Douglas et al., 2006). Regarding the applicability of
the knowledge produced by GCMs, they do not provide the skill required at the spa-
tial scale to offer practical responses at the infrastructure scale (Hossain et al., 2015).
Despite these constraints, GCMs remain a prime tool for projecting changes in the cli-
mate system (Fajardo et al., 2020; Gupta et al., 2020; Hofer et al., 2020). Examples
include the GCMs that are part of the latest Coupled Model Intercomparison Project
(CMIP6) and used by the IPCC in consecutive assessment reports (Yazdandoost et al.,
2020). However, these GCMs largely exclude agricultural management. In particular,
no CMIP5 model incorporates irrigation or CA and only three CMIP6 models include
irrigation, while none have CA. Pielke et al. (2011) suggested that landscape change
is omitted from the CMIP5 models because the direct radiative impact of global land-
scape is a lower order than the radiative forcing from greenhouse gas emissions. This
constitutes a reason to investigate their inclusion. That is, to distinguish between the
effects of land management and other large-scale forcings such as a doubling of CO2
(Schultz et al., 2016), it is important to evaluate these processes in the GCMs and
ultimately gain insight into the contrasts of impacts between regions under different
climate regimes.”

3. And, as I mentioned above, even using sub-grid decomposition is significantly in-
complete. They write “To examine heterogeneous influences within grid cells, subgrid
tiles that represent local physical, biogeochemical, and ecological characteristics – and
therefore local (subgrid) influences of irrigation and CA – were evaluated against re-
gional (grid-scale) influences. Up to 21 surface tiles may occur within one grid cell in
CLM4, including glacier, wetland, lake, urban, bare soil and 16 PFTs.” While useful in
a model sensitivity study, its lack of connection to real world data for locations where
actual irrigation and conservation agriculture are occurring is a serious oversight. In
their recommendations they write “The findings overall emphasise the need for a more
in-depth evaluation of the sensitivity of future climate projections to irrigation and CA-
induced temperature changes. A sensitivity analysis, using transient irrigation and CA
extents, as well as additional land management techniques and climate models based
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on CMIP6 output, , is recommended.” I agree with the first sentence. The second sen-
tence, however, is incomplete as a necessary condition. Real world testing of the skill
of the models with respect to how land management affects the weather and climate
is required. This must be completed using real world data that is on the appropriate
space and time scales. This is not the case for this paper.

Reply. Thank you for raising this important point. As noted under point 1, our work
goes beyond that of a model sensitivity study, as we compare our simulations against
three observational products, but indeed none at the subgrid scale. We have therefore
used real world data from the E-OBS European CDG dataset to conduct additional
analysis. As a regional data set, it has a higher spatial resolution and therefore allows
us to test the skill of the models with respect to the local effects of land management.
The E-OBS data was regridded to the CESM resolution using bilinear remapping for
use in this study. It captures well the MED SREX region used in this study. Please see
Response Figure 2 below for the surface radiative temperature (TS) slope results over
irrigated pixels (NB: this chart will not be in the revised paper but is included here to
visually introduce the new observation dataset used).

Below are the (spatial) average of the (TS) warming rates for the MED region over (left)
irrigated pixels for the irrigated and rainfed crop tiles; (right) CA pixels for the CA and
CM crop tiles. Note here the slope bias has improved with the irrigated crop tile data
(versus the rainfed) – see table below for data. Both of these charts have been added
to Figure 7 in the paper.

The table below contains the bias and spatial RMSE of the slopes versus the E-OBS
product. These results have been added to the paper as Table 3, as well as the fol-
lowing description and interpretation of the results. For the subgrid irrigation (IRRSUB)
ensemble, TS warming trends are overestimated by âĹij0.004 K yr-1 across irrigated
MED pixels, which is an improvement in terms of bias when compared to the subgrid
data that does not account for irrigation (i.e. RAIN). However, according to the change
in the spatial RMSE, accounting for irrigation does not improve the simulation skill for
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trends over MED irrigated pixels. This is likely because RMSE is more sensitive to
outliers – whereas the bias is based on the spatial mean.

4. They also write “This will support decision-making when planning land management
strategies that combine resource use efficiency with climate change adaptation and
mitigation, enabling sustainable intensification of land management to meet mitigation
targets and future demand for food, fuel, fibre, and water.” The authors should be made
aware that there are much more inclusive tools to assess sustainability. Sensitivity
results from global models is, at best, a small part on the regional and local scales.
Examples of such an approach are published in Cross, M. S., et al. (2012). "The
Adaptation for Conservation Targets (ACT) framework: a tool for incorporating climate
change into natural resource management." Environmental Management 50(3): 341-
351. DOI: 10.1007/s00267-012-9893-7.

Hanamean, J.R. Jr., R.A. Pielke Sr., C.L. Castro, D.S. Ojima, B.C. Reed, and Z. Gao,
2003: Vegetation impacts on maximum and minimum temperatures in northeast Col-
orado. Meteorological Applications, 10, 203-215.

Hossain, F., E. Beighley, S. Burian, J. Chen, A. Mitra, D. Niyogi, R.A. Pielke Sr., and D.
Wegner, 2017: Review approaches and recommendations for improving resilience of
water management infrastructure: The case for large dams. J. Infrastructure Systems,
23, Issue 4, Dec. 2017, DOI: 10.1061/(ASCE)IS.1943-555X.0000370.

Kittel, T.G.F., et al. (2011). "A vulnerability-based strategy for incorporating climate
change in regional conservation planning: Framework and case study for the British
Columbia Central Interior." BC Journal of Ecosystems and Management 12(1): 7-35.
http://jem.forrex.org/index.php/jem/article/view/89.

Kittel, T.G.F. 2013. “The Vulnerability of Biodiversity to Rapid Climate Change.” Pp.
185-201 (Chapter 4.15), in: Vulnerability of Ecosystems to Climate, T.R. Seastedt
and K. Suding (Eds.), Vol. 4 in: Climate Vulnerability: Understanding and Address-
ing Threats to Essential Resources, R.A. Pielke, Sr. (Editor-in- Chief). Elsevier Inc.,
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Academic Press, Oxford. DOI: 10.1016/B978-0-12-384703-4.00437-8

Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D., & Hamilton, H. (2020). Multiple
axes of ecological vulnerability to climate change. Global Change Biology, 26, 2798–
2813

Ordonez, A., 2020. Points of view matter when assessing biodiversity vulnerability to
environmental changes. Global Change Biology, 26(5), pp.2734-2736.

Pielke Sr., R.A., R. Wilby, D. Niyogi, F. Hossain, K. Dairaku, J. Adegoke, G. Kallos,
T. Seastedt, and K. Suding, 2012: Dealing with complexity and extreme events using
a bottom-up, resource-based vulnerability perspective. Extreme Events and Natural
Hazards: The Complexity Perspective Geophysical Monograph Series 196 © 2012.
American Geophysical Union. All Rights Reserved. 10.1029/2011GM001086.

Romero-Lankao, P., et al. 2012: Vulnerability to temperature-related hazards: a
meta-analysis and meta- knowledge approach. Glob. Environ. Change, http://
dx.doi.org/10.1016/j.gloenvcha.2012.04.002.

Stohlgren, T.J. and C.S. Jarnevich. 2009. Risk assessment of invasive species. In:
M.N. Clout and P.A. Williams (eds.). Invasive Species Management: A Handbook of
Principles and Techniques. New York: Oxford University Press. p. 19-35.

Reply. We believe that the inclusion of other tools to assess sustainability, such as the
ACT framework example provided above is beyond the scope of this study and would
detract from its unity. However, we do concur that the final sentence in the paper,
referred to by the reviewer above, was too sweeping, and thus the final paragraph has
been amended to read:

“The findings overall provide valuable context on how model complexity can impact the
simulation of trends and emphasise the need for a more in-depth evaluation of the sen-
sitivity of future climate projections to irrigation and CA-induced temperature changes.
A sensitivity analysis, using transient irrigation and CA extents, as well as additional
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land management techniques, within coupled climate models based on CMIP6 out-
put, is recommended. In this way, the variance can be approximated and the relative
contributions of the uncertainty sources to the total uncertainty in the model output,
as well as the relative importance of irrigation and CA to the total warming trends,
can be quantified and compared. If the fundamental uncertainties relating to model
structure dominate, then a more detailed analysis than the regression approach used
in this study is suggested. This will support decision-making on the incorporation of
agricultural management processes in future GCM projects.”

5. Thus, while I am pleased to see a study examining the effects of irrigation and con-
servation agriculture on climate, the study has significant shortcomings as summarized
in this review.

Reply. Thank you for your time and effort on our paper and for raising important points.
We believe our resolve of these points has helped to improve our paper, which is much
appreciated.

Please also note the supplement to this comment:
https://esd.copernicus.org/preprints/esd-2020-35/esd-2020-35-AC2-supplement.pdf

Interactive comment on Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-35,
2020.
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Response Figure 1 (replacing the paper’s Figure 2). Added value of including irrigation and CA in the simulated warming trends 
over 1981-2010. Absolute change in spatial root-mean-square error (RMSE) for the (a) IRR and (b) CA ensemble relative to the CTL 
ensemble over different regions (x axis) and with respect to 3 observational products (y axis). Considered regions are the SREX 
regions where irrigation is extensive (as highlighted in the paper’s Figure 1a) and where CA is extensive (see Figure 1b of the paper), 
in addition to global land, global irrigated land and global CA land. Observational products are for near-surface air temperature T2m 
(CRU), annual maximum daytime temperature TXx (GHCNDEX and HadEX2). The spatial RMSEs are computed for the ensemble 
mean warming trend in every pixel, and subsequently averaged over the selected region. Regions with an observational coverage 
below 50% are marked in white.  
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Fig. 1. Response Figure 1 (replacing the paper’s Figure 2).
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Response Figure 2. The warming trends of surface radiative temperature (TS) for the MED SREX region over irrigated pixels based 
on the E-OBS European CDG dataset for the period 1981-2010. 

	

Fig. 2. Response Figure 2
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Response Figure 3 (added to Figure 7 of the paper). Average of the TS warming rates over (left) irrigated pixels for the irrigated and 
rainfed crop tiles; (right) CA pixels for the CA and CM crop tiles. Data points specify the mean TS values within the crop tiles and 
pixels specified. The slope was estimated using Sen’s slope for the rainfed/CM (red), irrigated/CA (blue) experiments, as well as the E-
OBS European CDG dataset (green).  
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Fig. 3. Response Figure 3 (added to Figure 7 of the paper).
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