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We greatly thank the reviewer for the appreciation of the manuscript and for the con-
structive comments, which greatly helped to improve the quality of the study. Here be-
low, we provide a point-by-point response to each comment. The modified manuscript
text is shown in quotation marks.

1. The paper reads like a combination of previously published results (specifically, the
ensembles used are already published in Theiry et al. (2017) and Hirsch et al. (2018)).
That might be unfair, but the regression analyses is simple and it seems unlikely it
wasn’t done separately for CA and irrigation, and much of the explanatory analysis
references these two papers. It is the responsibility of the authors to show clearly why
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this is novel compared to what has come before.

Reply. We confirm that the analysis presented here is based on simulations that have
been published previously. However, we believe that this new study moves beyond
the state of the art in three ways. First, the main novelty of the current study lies in
the explicit focus on trends, whereas previous studies focused on the influence of land
management on the climatology (of means and extreme indicators). Second, the ex-
plicit focus on the subgrid versus grid-scale response offers important new insights on
the local land surface land surface response to land management. Third, this study for
the first time explicitly considers the radiative forcing resulting from realistic land man-
agement. We find that the positive radiative forcing signal arising from enhanced atmo-
spheric water vapour is too weak to offset the local cooling from the irrigation-induced
increase in the latent heat flux. This is been emphasised more clearly by including
new evidence on the latent and sensible heat fluxes (warming/cooling trends as well as
spatial averages) and the results and abstract adjusted to reflect these results as well
as the reviewer’s Point 2 and Point 6. The new abstract reads as:

Abstract. Understanding and quantifying land management impacts on local climate is
important for distinguishing between the effects of land management and large-scale
radiative forcings at the top of the atmosphere. This study for the first time explicitly
considers the radiative forcing resulting from realistic land management and offers new
insights on the local land surface response to land management. Regression-based
trend analysis is applied to observations and present-day ensemble simulations with
the Community Earth System Model (CESM) version 1.2.2 to assess the impact of ir-
rigation and conservation agriculture (CA) on warming trends using an approach that
is less sensitive to temperature extremes. At the regional scale, an irrigation- and CA-
induced acceleration of the annual mean near-surface air temperature (T2m) warming
trends and the annual maximum daytime temperature (TXx) warming trends were evi-
dent. Estimation of the impact of irrigation and CA on the spatial average of the warm-
ing trends indicated that irrigation and CA have a pulse cooling effect on T2m and TXx,
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after which the warming trends increase at a greater rate than the control simulations.
This differed at the local (subgrid) scale under irrigation where surface temperature
cooling and the dampening of warming trends were both evident. As the local surface
warming trends, in contrast to regional trends, do not account for atmospheric (water
vapour) feedbacks, their dampening confirms the importance of atmospheric feedbacks
(water vapour forcing) in explaining the enhanced regional trends. At the land surface,
the positive radiative forcing signal arising from enhanced atmospheric water vapour
is too weak to offset the local cooling from the irrigation-induced increase in the evap-
orative fraction. Our results underline that agricultural management has complex and
nonnegligible impacts on the local climate and highlight the need to account to carefully
represent and evaluate land management in climate models.

The new evidence, which has been added to the paper’s Figure 6, show the Subgrid-
scale differences between the irrigated and rainfed crop tile in the IRR ensemble and
between CA and conventionally managed (CM) crops, for the latent heat flux (LHF) (k-l
below) and the sensible heat flux (SHF) (o-p below). Grid-scale differences between
the CTL and IRR ensemble and between CA and CM crops for LHF (m-n) and SHF
(q-r) are also included over irrigated/CA pixels for comparative purposes, as detailed
below. In addition, to the paper’s Figure 7, data on the spatial average of the SHF (e)
and LHF (f) warming rates for the irrigated and rainfed crop tiles over irrigated pixels,
is now included, as shown in our Response Figure 2.

2. The results (as shown in Table 1 especially) are difficult to reconcile with the state-
ments made in the abstract and conclusions. Looking at Table 1, if the smallest RMSE
(or the anomalies closest to zero) are considered, the Control simulation is better âĹij
2/3 of the time. The abstract says, “our results underline. . . the need to account for
land management in climate projections”. Surely the opposite is true, as the Control
scenario does better by the measure most used to assess model skill. Even within the
results, there appear to be contradictions. Line 218: “the impact of irrigation and CA
on the modeled spatially averaged temperatures. . . is an overall cooling effect”. Line
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223: “for the IRR and CA models. . . the spatially averaged T2m and TXx warming
rates are higher than those of the CTL model”.

Reply. The CTL simulation performs when considering the extreme (TXx) temperature
results but not when considering mean temperatures (T2m). Particularly in the case
of T2m for irrigation, the results in Table 1 show all cases are better all of the time. In
one case for CA (all land), the RMSEs are equivalent, but otherwise the CTL RMSE
is higher. So we disagree that the opposite is true in general, but we do agree that
the statement in the abstract can be refined. It is also an opportunity for raising a cri-
tique/reflection point on whether more processes enhance model skill for the mean but
not for extreme temperature, which adds to the addressing of the reviewer’s introduc-
tion paragraph as well as the final point raised regarding the discussion. Therefore the
abstract has been adjusted (see the new relevant statement below as well as the full
abstract under our response to the reviewer’s Point 1) as well as new results provided
(also under reviewer’s Point 1) so to better reconcile the results with the conclusion and
abstract. The adjusted abstract statement reads as follows:

"Our results underline that agricultural management has complex and nonnegligible
impacts on the local climate and highlight the need to carefully represent and evaluate
land management in climate models."

Regarding the apparent contradiction between lines 218 and 223, the ‘cooling effect’
noted in line 218 (Figure 4) refers to a decrease in absolute temperature, that is, the
intercept of the regression. Line 223, on the other hand, does refer to the trend over
time, that is, the slope of the regression. This distinction has now been made clear in
the text, which now reads:

"However, the impact of irrigation and CA on the modelled spatially averaged tem-
peratures improves the closeness to that of the observations, i.e. there is an overall
decrease in absolute temperature (Figure 4a-d), which is consistent with current theory
(Kueppers et al., 2007; Saeed et al., 2009; Kueppers and Snyder, 2012; Thiery et al.,
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2017, 2020; Hirsch et al., 2018)."

3. Some of the results are presented in such a way as to be somewhat misleading. For
instance, the values in Figure 2 (% change in RMSE) with the colored categorization
(which, being visual, is much stronger evidence to the reader than a table) can be
compared with the equivalent anomaly in Table 1 (RMSE). For irrigation (IRR-CTL) the
RMSE T2m (CRU) difference is -0.002, and the figure categorization is - 5-10%. For
irrigation (IRR-CTL) the RMSE TXx GHCNDEX difference is +0.004, and the figure
categorization is 0-5%. i.e. a difference in RMSE that is twice as big, is categorised
as half the size in terms of color. This means that it looks as though the CA and IRR
simulations are doing much better than if the simple RMSE is considered.

Reply. We agree with this point and are thus presenting the absolute change in the
RMSE data (in K) in Figure 2 of the paper, as detailed in our Response Figure 3.

4. Some of the results are inconsistent with each other. For instance, on line 182, the
range of temperature anomaly compared to observations is given as 0.007 - 0.03 in the
text, but in Table 1 it is 0.007 – 0.024 (usually a number is rounded down when the last
value is below 5). Or line 179 where the text says 0.004 for the Control, but Table 1 says
0.006. Figure 4b shows TXx HadEX2 on top of IRR and CNT much higher, but Table 1
shows CTL and IRR with differences from HadEX2 of 0.008 and 0.012 respectively.

Reply. The 0.007 - 0.03 in the text refers to the range of temperature anomaly for all
three (CTL, IRR and CA) experiments, not just the CTL, which is consistent with the
data in Table 1 (the 0.03 K yr-1 TXx bias is noted for the GHCNDEX observations and
the IRR ensemble). This has now been clarified in the text, as follows:

"On average, the CTL, IRR and CA ensembles overestimate TXx warming trends by
âĹij0.007–0.03 K yr-1 over all land pixels. Over irrigated pixels, the CTL and IRR
ensemble overestimate TXx by âĹij0.008–0.013 K yr-1. Over CA pixels, the CTL and
CA ensemble overestimate TXx by âĹij0.006–0.013 K yr-1."
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For the reviewer’s point regarding line 179, indeed the text referring to CTL T2m bias
should read according to the data in Table 1 – i.e. 0.006. In order to also address the
reviewer’s point 7 below, we have addressed this by not including the statement in the
text that specifies the CTL result, but displayed this data in Table 1 only.

Regarding the reviewer’s final point on Figure 4b, the Table 1 differences stated are
consistent with Figure 4b. The slope of HadEX2 in Figure 4b is 0.026 K/yr, the slope of
CTL is 0.034 K/yr and the slope of IRR is 0.038 K/yr, which renders a bias of 0.008 K/yr
for CTL and 0.012 K/yr for IRR, as detailed in Table 1. To ensure it is clear that Table 1
presents the bias and RMSE of the slopes (and not any other temperature parameter),
the caption has been edited to state:

"Bias and Spatial RMSE of the Ensemble Mean Warming Trends (Slopes) of the
CTL, IRR and CA Experiments Versus the Observational Products for the years 1981-
2010a."

5. The introduction does not do a good job of introducing the main point of the paper.
The first paragraph sets up the issue that observations show less warming in TXx than
T2m, but models get it the other way around (TXx warms more than T2m). But we
basically don’t hear about this issue again. Subsequent paragraphs in the introduction
are brief summaries of key papers (by the authors) and do not provide the cohesive
overview of each topic a reader needs in an introduction, instead being based around
a particular reference.

Reply. Thank you for highlighting this area for improvement. The introduction has now
been substantially reworked to read:

"According to observational and global climate model (GCM) data, temperatures asso-
ciated with hot extremes have increased consistent with global anthropogenic climate
change (Sillmann and Croci-Maspoli, 2009; Donat et al., 2013a, 2013b; Hartmann
et al., 2013; Pendergrass and Hartmann, 2014; Fischer and Knutti, 2015). However,
hot spots of accelerated warming in annual maximum daytime temperature (TXx) rel-
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ative to local mean temperature (T2m) simulated by climate models from phase 5 of
the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison
Project (CMIP5) are spatially inconsistent with observations (Donat et al., 2017). This is
particularly the case over southeast China, South America, north America and parts of
Australia and Europe. In these regions, the modelled TXx warming from the midtwen-
tieth century (1951–1980) to the late 20th/early 21st century (1981–2010) was greater
than the modelled T2m warming. In contrast to the models, the observations showed
that TXx warmed at a slower rate than T2m. Further analysis of the CMIP5 ensemble
over central Europe by Vogel et al. (2018) highlighted that several GCMs overestimate
the observed negative correlation between summer precipitation and TXx, resulting in
too strong future drying and associated TXx increases under RCP8.5. This underlines
the importance of a correct representation of land-atmosphere coupling for simulating
changes in temperature extremes at regional scales. These discrepancies between
multiple GCMs and observations raise the questions as to whether: (1) these model
results can be used to reliably project changes in local temperature extremes; (2) the
discrepancies remain if the rates at which warming occurs over a time period is ex-
amined, which less sensitive to outliers common in extreme temperature data than
the absolute temperature difference between two time periods, as used in the Donat
et al. study; and (3) the inclusion of more processes that represent land-atmosphere
coupling would enhance model skill.

Agricultural land management techniques, including irrigation and conservation agri-
culture, can have a cooling effect on hot temperature extremes (Davin et al., 2014;
Hirsch et al., 2017; Thiery et al., 2017, 2020; Hauser et al., 2019; Jia et al., 2019). Irri-
gation diverts surface and groundwater resources to agricultural land to increase crop
production (Fereres and Soriano, 2007). The addition of this water to the land sur-
face is balanced by the loss of water via runoff, deep percolation, soil storage and/or
evapotranspiration (ET) (Fereres and Connor, 2004). Under drier conditions, less evap-
orative cooling leads to amplified warming because the energy budget becomes dom-
inated by sensible heating instead of latent heating (Donat et al., 2017). If irrigation
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water is added to the surface, this increases soil moisture as well as latent heat flux
over the summer months, leading to more evaporative cooling at the land surface.
This irrigation-induced surface cooling, in turn, challenges the radiative forcing con-
cept, which assumes that as radiative forcing increases (from enhanced atmospheric
water vapour) so too does surface temperature (IPCC, 2001; Boucher et al., 2004).

Conservation agriculture (CA), which involves crop residue management, crop rotation
(Carrer et al., 2018; Lombardozzi et al., 2018) and minimal or no tillage (Kassam et
al., 2015), can create climate feedbacks due to the presence of a crop residue over
CA land change both the radiative and hydrological properties at the surface (Davin et
al., 2014). Hirsch et al. (2018) explored whether applying the no-till component of CA
within the Community Earth System Model (CESM) improves the simulation of present-
day climate. They found that the surface temperature response was influenced by three
competing effects: (1) a surface albedo increase – which reduces the availability of en-
ergy for partitioning between the sensible and latent heat fluxes; (2) increased surface
resistance (e.g. from mulch) – which reduces soil evaporation; and (3) increased soil
moisture retention leading to enhanced transpiration. The local cooling response to
CA was somewhat counteracted by grid-scale changes in climate over North America,
Europe, and Asia because of negative atmospheric feedbacks. That is, the decrease
in evapotranspiration (ET) – both due to higher albedo and higher soil resistance –
appeared to activate a decrease in cloud cover in the model that increases incoming
shortwave radiation and therefore temperature via enhanced sensible heating. Grid-
scale changes in climate counteracting local responses to land use change has also
been demonstrated by Malyshev et al. (2015) who showed that the subgrid signal of
land use change in near surface temperature was diminished by the averaging with
undisturbed portions of the grid cells. The importance of local-scale responses to land
cover change has also been indicated in observation-based studies (e.g., Mahmood et
al., 2013; Li et al., 2016), yet few global-scale modelling studies examine the local land
surface response to land management (Paulot et al., 2018; Meier et al., 2018).
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Using GCMs, such as CESM, to simulate landâĂŘatmosphere interactions for investi-
gating the effects of irrigation and agricultural conversion has been criticized as insuf-
ficient (Niyogi et al., 2002). This is partly because their coarse resolution (e.g. of order
100 km) hampers their performances in describing the present-day climate at the re-
gional scale (Jiang et al., 2016). Furthermore, economic, societal and water resource
factors are ignored – a void that initiated the so-called ‘bottom-up’ approach to evalu-
ating the effects of land-use change (Douglas et al., 2006). Regarding the applicability
of the knowledge produced by GCMs, they do not provide the skill required at the spa-
tial scale to offer practical responses at the infrastructure scale (Hossain et al., 2015).
Despite these constraints, GCMs remain a prime tool for projecting changes in the cli-
mate system (Fajardo et al., 2020; Gupta et al., 2020; Hofer et al., 2020). Examples
include the GCMs that are part of the latest Coupled Model Intercomparison Project
(CMIP6) and used by the IPCC in consecutive assessment reports (Yazdandoost et al.,
2020). However, these GCMs largely exclude agricultural management. In particular,
no CMIP5 model incorporates irrigation or CA and only three CMIP6 models include
irrigation, while none have CA. Pielke et al. (2011) suggested that landscape change
is omitted from the CMIP5 models because the direct radiative impact of global land-
scape is a lower order than the radiative forcing from greenhouse gas emissions. This
constitutes a reason to investigate their inclusion. That is, to distinguish between the
effects of land management and other large-scale forcings such as a doubling of CO2
(Schultz et al., 2016), it is important to evaluate these processes in the GCMs and
ultimately gain insight into the contrasts of impacts between regions under different
climate regimes.

Considering the potential effects of irrigation and CA on climate (Thiery et al., 2017), it
is possible that the discrepancies between climate models and observations regarding
temperature changes (Donat et al., 2017) are because the models exclude the effect of
agricultural management techniques on temperature. The goal of this study is thus to
test the hypothesis that CESM version 1.2.2 overestimates warming trends in some re-
gions because irrigation and CA are excluded. That is, warming rates are hypothesized
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to increase at a slower rate – showing signs of cooling, in irrigation- and CA-affected
regions when climate models do account for a theoretical constant level of these land
management practices. To realise this goal, the following objectives were formulated:
(1) Determine spatial warming rates using simulations that account for irrigation and
CA and inspect whether CESM overestimates warming trends; (2) Compare the ob-
served rates of warming to the modelled rates of warming for irrigated and CA pixels,
as well as non-irrigated and non-CA pixels; and (3) Estimate the impact of irrigation on
the spatial average of the warming rates over time for all land, selected regions, and
irrigated and CA pixels.”

6. The abstract doesn’t do a good job of summarizing the paper. It goes straight to
“we did things” without explaining why the reader should be interested, or what the
relevance is, then goes to “it’s important” without presenting the evidence of why it
is important. It provides no context for what was done, then the emphasis on the
“pulse cooling” in the abstract is not followed through in the results. The subgrid scale
aspect seems to be the most novel part of the paper, but since the rationale for it isn’t
explained clearly in the methods or results, it’s a minority of the results section, there’s
no comparison for the scale of the water vapor feedbacks, and no clear explanation
of why the water vapor feedbacks are responsible for the differences between the grid
scale and subgrid scale, it’s not convincing.

Reply. Thank you for this suggestion, we now reworked the abstract. Due to the ad-
dition of new data on the latent and sensible heat fluxes (see response to reviewer’s
point 9 below), we now clarify in the abstract that an increase in the LHF is responsi-
ble for the differences between the grid scale and subgrid scale. That is, at the land
surface, the positive radiative forcing signal is too weak to offset the local cooling from
the irrigation-induced increase in the latent heat flux. The updated abstract is detailed
under our response to the reviewer’s Point 1. Also regarding this comment, in our ab-
stract, introduction and results section, a rationale for the subgrid scale aspect is now
provided. Specifically, because we are looking at irrigation or CA-induced impacts at
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the land surface, it is important to understand and quantify the effects of land man-
agement as such on local climate in order to distinguish between the effects of land
management and other large-scale forcings such as a doubling of CO2.

7. The results section has paragraphs where the numbers in Tables are repeated,
(with some unexplained deviations, as discussed above) with little attempt to give a
view of what the results mean for the model’s performance. There is no point in having
a table if the text repeats what it says, and vice versa. There is absolutely a place for
straightforward analysis and simple statements, but it needs to enhance clarity, not just
be a list.

Reply. The section where we feel this point was most relevant has been substantially
condensed (i.e. manuscript Section 3.2), to read:

"Neither irrigation nor CA has a cooling effect on T2m and TXx warming rates in ir-
rigated/CA or non-irrigated/CA regions (Figure 3 and Table 2). The results suggest
a slight irrigation- and CA-induced acceleration of the annual T2m and TXx warming
trends, rather than the hypothesised cooling. For instance, irrigation induced an in-
creased T2m warming rate of 0.0023 K yr-1 on average over land and 0.004 K yr-1
across all irrigated pixels. To put these increases into context, the mean T2m CRU
observed warming trend over irrigated pixels was 0.029 K yr-1."

In addition, the text providing the ranges in Section 3.1 has been written more concisely,
as described above under the reviewer’s Point 4.

8. The Tables and Figures all need more detail in the captions, to help explain what
they are and why they differ (and why those differences were deemed necessary). For
instance: Table 1 – which years go towards the values? Table 2 – what are the “impact
of irrigation and CA on various climatological values”, because 0.026 K yr-1 for T2m
doesn’t make any sense as a number for the Control if it’s supposed to be IRR – CTL as
described in the caption. Figure 4 – presumably when it says “average” it’s the mean,
but then line 378 says “median”, which is a notably different average.
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Reply. Thank you for this suggestion. The caption for Table 1 has been updated to
resolve this point as well as the reviewer’s point 4, to read:

"Bias and Spatial RMSE of the Ensemble Mean Warming Trends (Slopes) of the
CTL, IRR and CA Experiments Versus the Observational Products for the years 1981-
2010a."

The caption for Table 2 has been updated to read:

"Impact of Irrigation and CA on Various Climatological Values (Absolute Slope Differ-
ences Calculated as IRR Minus CTL and CA Minus CTL for Grid-Scale, IRRSUB Minus
RAIN and CASUB Minus CM for Subgrid-Scale) for the years 1981-2010a."

Regarding the spatial average (Figure 4 and 7), these figures show the mean temper-
ature for all the pixels within each mask specified (i.e. all land, irrigated pixels or CA
pixels) – plotted on the y-axis, for each year. The slope detailed in the figures was
estimated using Sen’s slope – so that all slope data used in this study is attained in the
same way. As Sen’s estimator takes the median slope (it was chosen as the nonpara-
metric alternative to linear regression so that the slope is less sensitive to temperature
outliers), the study conclusion thus notes (line 378):

"Insight into how modelled temperature is affected in its median by irrigation and CA
over time was provided."

The captions for Figures 4 and 7 have been updated to clarify this. Figure 4 caption
is: Spatial average of the warming rates for T2m (a, c and e) and TXx (b, d and f) for
the CESM ensembles and observations. Data points specify the mean T2m and TXx
temperatures for irrigated pixels (a-b), CA pixels (c-d), and (e-f) all land pixels. The
slope was estimated using Sen’s slope for the CTL (red), IRR (blue), CA (cyan), CRU
(purple), HadEX2 (yellow), and GHCNDEX (black) temperatures.

The new caption for Figure 7 reads:

"Average of the TS warming rates over (a) irrigated pixels for the irrigated and rainfed
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crop tiles; (b) CA pixels for the CA and CM crop tiles; (c) all pixels for the irrigated and
rainfed crop tiles; and (d) all pixels for the CA and CM crop tiles. Spatial average of the
SHF (e) and LHF (f) warming rates for the irrigated and rainfed crop tiles over irrigated
pixels. Data points specify the mean TS, LHF and SHF values within the crop tiles and
pixels specified. The slope was estimated using Sen’s slope for the rainfed/CM (red),
irrigated/CA (blue) experiments. For (a), (b), (e) and (f) the regions where less than
50% of the land pixels did not contain a value were excluded. For all land pixels (c and
d), the minimum number of land pixels that needed to contain a value in order to be
retained in the analysis was 15%."

In addition, the caption for Figure 1 has been updated to include reasons why the boxes
differ and help explain better the distinctions, to read:

"Figure 1. (a) Percentage of each grid cell equipped for irrigation (%) (Siebert et al.,
2005). (b) Potential estimate of CA extent mapped to the CLM crop PFT (Prestele et al.,
2018). The red boxes in (a) denote the regional domains where irrigation is extensive
and were thus examined in greater detail including Western North America (WNA),
Central North America (CNA), south Europe and Mediterranean (MED), West Asia
(WAS), South Asia (SAS), Southeast Asia (SEA), and East Asia (EAS). The red boxes
in (b) denote the regional domains where CA is extensive and were thus examined in
greater detail including WNA, CNA, MED, South-eastern South America (SSA), Central
Europe (CEU) and Southern Australia (SAU)."

Figure 2 has been edited to read:

"Figure 2. Added value of including irrigation and CA in the simulated warming trends
over 1981-2010. Absolute change in spatial root-mean-square error (RMSE) for the
(a) IRR and (b) CA ensemble relative to the CTL ensemble over different regions (x
axis) and with respect to 3 observational products (y axis). Considered regions are the
SREX regions where irrigation is extensive (as highlighted in Figure 1a) and where CA
is extensive (Figure 1b), in addition to global land, global irrigated land and global CA
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land. Observational products are for near-surface air temperature T2m (CRU), annual
maximum daytime temperature TXx (GHCNDEX and HadEX2). The spatial RMSEs
are computed for the ensemble mean warming trend in every pixel, and subsequently
averaged over the selected region. Regions with an observational coverage below 50%
are marked in white."

And Figure 6 now reads:

"Figure 6. Subgrid-scale differences between the irrigated and rainfed crop tile in the
IRR ensemble (irrigated minus rainfed) (a, g, k and o) and between CA and conven-
tionally managed (CM) crops (CA minus CM) (e, h, l and p). For Ts (a-b), ET (g-h),
LHF (k-l) and SHF (o-p). Grid-scale differences between the CTL and IRR ensem-
ble (IRR minus CTL) (c, e, I, m and q) and between CA and conventionally managed
(CM) crops (CA minus CM) (b, f, h, n and r). For Ts (c-d), ET (i-j), TMQ (e-f), LHF
(m-n) and SHF (q-r), displayed over irrigated/CA pixels for comparative purposes. Dif-
ferences are based on the ensemble mean warming trends of each experiment for
1981–2010. Hatching denotes less than 10% change induced by the model on mean
warming trends of lumped ensemble members."

9. The results section has times where it would benefit from showing more evidence.
For instance, the two paragraphs starting line 228 speculate that latent and sensible
heat partitioning and changes in ET are responsible for the differences between CA
and IRR, and the Control. But instead of exploring these and showing how the latent
heat changes, there is just references to previous papers. I.e. it is not a result, it is
a summary of previously published research. Similarly, the paragraphs line 289 – 315
contain a lot of speculation and references and not enough evidence.

Reply. New sets of results have been added that provide evidence on the changes in
the latent heat flux (LHF) and sensible heat flux (SHF). Trend data on the grid- and
subgrid-scale LHF and SHF has been provided in Table 2. Figure 6 now shows a
comparison between the subgrid and grid scale LHF and SHF changes for irrigated
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and CA land, while the new Figure 7 details the spatial average of LHF and SHF on
irrigated pixels (for the figure additions, please see above under the Reviewer’s Point 1).
This has also helped to address the reviewer’s Point 10 below regarding the discussion
section below and the inclusion of a reflection on uncertainties in the partitioning of
latent and sensible heat when albedo changes.

10. The discussion section is missing, at the very least: cloud uncertainties (different
models do them differently, and they are notoriously difficult to resolve, so that these
results rely on them is problematic); uncertainties in the partitioning of latent and sen-
sible heat when albedo changes (i.e. Bowen ratio; the fact that the CA increase in
albedo is a huge assumption, as soil albedo is very heterogeneous and dependent
partly on soil moisture (thus the CA modeled might be doing the wrong thing in many
areas); the representation of transpiration in the model, and the fact that presumably
the crop/vegetation cover is the same when in reality these changes would affect the
LAI of the crop; the canopy interception and soil interception representation in the
model, which affects the evaporation and thus how much the irrigation and CA affect
the evaporation.

Reply. The discussion sections has been rewritten to address these points as follows:

"This study examined the hypothesis of whether excluding a theoretical constant level
of irrigation and CA contributes to the overestimation of warming by an Earth System
Model. A Sen’s slope model was built and applied to ensemble simulations from the
Community Earth System Model that include irrigation parameterization to determine
if there are spatiotemporal patterns and why they exist. This unexpectedly showed
that warming trends are not dampened due to irrigation and CA, except for the sub-
gridâĂŘscale effect of irrigation on the warming trends of TS.

The key findings of this investigation are a net cooling effect of irrigation and CA on
the modelled spatially averaged T2m and TXx, but, rather than continuous cooling, the
warming trends showed a pulse cooling phase, after which the sensitivity to climatic
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change remains. Under irrigation, the opposing effects are the result of: (1) evaporative
cooling; and (2) atmospheric water vapour strengthening the greenhouse effect. Under
CA, the contrasting effects are due to: (1) cooling from a tillage-induced increase in
surface albedo; and (2) reduced soil evaporation due to the presence of crop residue,
limiting energy partitioning to the latent heat flux. At the subgrid-scale, there was both
a cooling effect on TS and in the dampening of warming trends. This implies that
enhanced evaporative cooling is the dominant driver of the subgrid-scale temperature
trends.

Although this study was constructed with great care and built on a state-of-the-art mod-
elling suite, several future developments could improve understanding of the impact of
irrigation and CA on climate. Firstly, the quality of the model(s) could be improved by
using transient irrigation and CA extents and new land cover datasets from the 6th
phase of the Coupled Model Intercomparison Project (CMIP6) (Lawrence et al., 2016).
In this study, a static irrigation map for the year 2000 was used for the whole simula-
tion period. This likely contributes to our results being conservative. If, for instance,
irrigation expands over time, the cooling effect may become stronger and thus affect
the warming trends. Furthermore, the extent to which the increase in surface albedo
(i.e. the first competing effect of CA) affects the sensible and latent heat fluxes partly
depends on soil moisture, which too is not static. Also, CMIP6 experiments are based
on annual emissions, whereas CMIP5 was based on decadal emissions and CMIP6
models were updated with irrigation-related features and land cover maps that incor-
porate irrigation and CA expansion over time (Goddard et al., 2013; Miao et al., 2014;
Boer et al., 2016; Meinshausen et al., 2017; Stouffer et al., 2017). CMIP6 models may
therefore improve the dynamics between irrigation, CA and climate change, provided
that they represent these land management techniques in their surface schemes.

The second consideration is that all simulations used in this study (5 control, 5 irriga-
tion and 5 CA) were from a single model. Ensembles completed as such with the same
model but different simulations (i.e. based on different initial conditions) characterise
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the uncertainty associated with internal climate variability only, while multi-model en-
sembles also account for the impact of model differences (Tebaldi and Knutti, 2007;
Knutti et al., 2010). This limitation can impact cloud uncertainties. Hirsch et al. (2017)
found that the CESM tends to produce large cloud feedbacks over Central Europe,
Central North America, North Asia, and South Asia when more energy is reflected at
the surface. Irrigation-induced increases in latent heat fluxes led to more water vapor
in the lower atmosphere, which generated low-level clouds (see also Sherwood et al.,
2017). This limited shortwave radiation and hence the amount of energy available at
the surface because the increased cloud cover reflected more downward shortwave
radiation above the cloud layer, resulting in surface cooling. This was enhanced by a
corresponding decrease in sensible heat fluxes, reflecting the decrease in the amount
of energy available at the surface and/or the increase in latent heating. The impact
of cloud cover combined with land management change remains challenging to re-
solve. Therefore, this study should ideally be repeated with other models. Donat et al.
(2017), for instance, conducted their study on 20 CMIP5 models, but these models did
not incorporate irrigation and CA.

Thirdly, irrigation and CA are the only agricultural management practices considered in
this study (and done so individually), whereas other agricultural management practices
have been shown as impactful (Luyssaert et al., 2014; Erb et al., 2016, 2018). Trend
analysis of integrated land management practices could affect the outcome if there is
a lumped effect. Building an additional stochastic model could account for variations in
the distribution of the impact of land management practices on warming trends. This
would enable sensitivity analyses to ascertain the relative importance of irrigation and
CA to the total warming trends (based on all land management practices), as well as
the relative contributions of the uncertainty sources (model input, parameter, structure)
to the total uncertainty in the model output.

The final consideration is whether regression-based models are suitable for analysing
changes in highly variable climate data, particularly annual extreme temperature data

C17

(von Storch, 2006). Essentially, the regression slope blends forced temperature change
and variability, to provide an estimation of the temperature variation over time – within
which variance can be lost due to noisy data. Whether the TXx and T2m temperatures
were first spatially averaged and then the slope retrieved or if each slope was esti-
mated for each gridcell and then the overall trends examined, the outcome remains.
This is unsurprising considering that in the spatial averaging the noise contributions
are averaged out, while the individual regression data suffers from the variance loss
related to regression. However, when applied to over 60 years of observational data,
the regression model used in this study showed similar trends to using the difference
between the past and the present average temperatures (not shown). This implies that
the irrigation and CA-inclusive climate system may require a longer timeframe (than
the 30 years plus a 5-year spin-up period used) for trends to overtake the natural vari-
ability. Additionally, rather than aggregating all months, trends during individual months
or seasons could be examined. This can affect, for instance, the influence of irrigation
on Ts, which has a clear seasonal pattern, with more cooling during the driest and/or
hottest months (Thiery et al., 2017). A smaller magnitude in TXx response to CA at
the subgrid-scale has also been noted during the summer season due to a larger leaf
area index (LAI) reducing soil surface exposure and thus the contrast between CA and
conventionally managed crops (Hirsch et al., 2018). Furthermore, the implementation
of CA within CESM does not capture crop planting and harvesting cycling (Davin et al.,
2014), which would affect the LAI of the crop and potentially the effect of CA on surface
climate."

Thank you for your time and effort in helping to improve our paper. It is great
appreciated.

Please also note the supplement to this comment:
https://esd.copernicus.org/preprints/esd-2020-35/esd-2020-35-AC1-supplement.pdf

Interactive comment on Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-35,
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Response Figure 1 (adding to Figure 6 in the paper). Subgrid-scale differences between the irrigated and rainfed crop tile in the IRR 
ensemble (irrigated minus rainfed) (a, g, k and o) and between CA and conventionally managed (CM) crops (CA minus CM) (e, h, l 
and p). For Ts (a-b), ET (g-h), LHF (k-l) and SHF (o-p). Grid-scale differences between the CTL and IRR ensemble (IRR minus CTL) 
(c, e, I, m and q) and between CA and conventionally managed (CM) crops (CA minus CM) (b, f, h, n and r). For Ts (c-d), ET (i-j), 
TMQ (e-f), LHF (m-n) and SHF (q-r), displayed over irrigated/CA pixels for comparative purposes. Differences are based on the 
ensemble mean warming trends of each experiment for 1981–2010. Hatching denotes less than 10% change induced by the model on 
mean warming trends of lumped ensemble members.  

	

Fig. 1. Response Figure 1 (adding to Figure 6 in the paper).
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Response Figure 2 (added to Figure 7 in the paper). Spatial average of the SHF (left) and LHF (right) warming rates for the 
irrigated and rainfed crop tiles over irrigated pixels. Data points specify the mean LHF and SHF values within the crop tiles 
and pixels specified. The slope was estimated using Sen’s slope for the rainfed/CM (red), irrigated/CA (blue) experiments 
for the years 1981-2010.  
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Fig. 2. Response Figure 2 (added to Figure 7 in the paper).

C21

 
 

Response Figure 3 (replacing the paper’s Figure 2). Added value of including irrigation and CA in the simulated warming trends over 
1981-2010. Absolute change in spatial root-mean-square error (RMSE) for the (a) IRR and (b) CA ensemble relative to the CTL 
ensemble over different regions (x axis) and with respect to 3 observational products (y axis). Considered regions are the SREX 
regions where irrigation is extensive (as highlighted in Figure 1a) and where CA is extensive (Figure 1b), in addition to global land, 
global irrigated land and global CA land. Observational products are for near-surface air temperature T2m (CRU), annual maximum 
daytime temperature TXx (GHCNDEX and HadEX2). The spatial RMSEs are computed for the ensemble mean warming trend in every 
pixel, and subsequently averaged over the selected region. Regions with an observational coverage below 50% are marked in white.  
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Fig. 3. Response Figure 3 (replacing the paper’s Figure 2).
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