Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.866 IF 3.866
  • IF 5-year value: 4.135 IF 5-year
  • CiteScore value: 7.0 CiteScore
  • SNIP value: 1.182 SNIP 1.182
  • IPP value: 3.86 IPP 3.86
  • SJR value: 1.883 SJR 1.883
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 33 Scimago H
    index 33
  • h5-index value: 30 h5-index 30
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  20 Jul 2020

20 Jul 2020

Review status
This preprint is currently under review for the journal ESD.

Agricultural management effects on mean and extreme temperature trends

Aine M. Gormley-Gallagher1, Sebastian Sterl1,2,3, Annette L. Hirsch4, Sonia I. Seneviratne5, Edouard L. Davin5, and Wim Thiery1,5 Aine M. Gormley-Gallagher et al.
  • 1Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, 1050, Belgium
  • 2Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
  • 3Center for Development Research, University of Bonn, Bonn, Germany
  • 4ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia
  • 5Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Abstract. Regression-based trend analysis is applied to observations and present-day ensemble simulations with the Community Earth System Model to assess if climate models overestimate warming trends because theoretical constant levels of irrigation and conservation agriculture (CA) are excluded. At the regional scale, an irrigation- and CA-induced acceleration of the annual mean near-surface air temperature (T2m) warming trends and the annual maximum daytime temperature (TXx) warming trends were evident. Estimation of the impact of irrigation and CA on the spatial average of the warming trends indicated that irrigation and CA have a pulse cooling effect on T2m and TXx, after which the warming trends increase at a greater rate than the control simulations. This differed at the local (subgrid) scale under irrigation where surface temperature cooling and the dampening of warming trends were both evident. As the local surface warming trends, in contrast to regional trends, do not account for atmospheric (water vapour) feedbacks, their dampening confirms the importance of atmospheric feedbacks (water vapour forcing) in explaining the enhanced regional trends. At the land surface, the positive radiative forcing signal is too weak to offset the local cooling from the irrigation-induced increase in the evaporative fraction. Our results underline that agricultural management has complex and nonnegligible impacts on the local climate and highlights the need to account for land management in climate projections.

Aine M. Gormley-Gallagher et al.

Interactive discussion

Status: open (extended)
Status: open (extended)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
  • RC1: 'Review', Anonymous Referee #1, 16 Aug 2020 Printer-friendly Version

Aine M. Gormley-Gallagher et al.

Aine M. Gormley-Gallagher et al.


Total article views: 200 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
142 48 10 200 12 14
  • HTML: 142
  • PDF: 48
  • XML: 10
  • Total: 200
  • BibTeX: 12
  • EndNote: 14
Views and downloads (calculated since 20 Jul 2020)
Cumulative views and downloads (calculated since 20 Jul 2020)

Viewed (geographical distribution)

Total article views: 271 (including HTML, PDF, and XML) Thereof 271 with geography defined and 0 with unknown origin.
Country # Views %
  • 1



No saved metrics found.


No discussed metrics found.
Latest update: 20 Oct 2020
Publications Copernicus