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Disclaimer:

Even though I read the whole paper and appreciated both the methodological and
applied aspects of this research, my review mostly revolves around the statistical con-
tributions of this paper, which I’m more confident to comment on.

We highly appreciate the constructive comments.

Summary:

In this paper, the authors propose a new statistical metric to compare the bivariate joint
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tails of two different datasets. This metric, which relies on the Kullback-Leibler (KL)
divergence based on the count of points in certain number of "extreme sets", provides
a single number that can be used to assess whether or not the joint tails are different,
and if so, by how much they differ. It is proposed as being complementary to more
classical measures, such as the χ-measure introduced in the paper that is widely used
in extreme-value theory. The proposed KL metric depends on the number of sets, W,
which has to be defined by the analyst, and is "non-parametric" in the sense that it
does not rely on stringent model assumptions. In the paper, the proposed metric is
used to estimate the likelihood of compound precipitation and wind speed extremes
derived from different climate model outputs.

General assessment and general comments:

In my opinion, the paper is well written and concise with interesting practical results.
Methodologically, the proposed metric is well-grounded but is not particularly novel
as the Kullback-Leibler divergence (here based on the multinomial distribution) has
been used extensively in other areas of statistics. The novelty probably relies on its
specific use to study bivariate extremes and to compare bivariate joint tails of extreme
precipitation and wind speed, although it is based on a previously published paper by
one of the authors (Naveau et al., 2014, JRSS B). Overall, I like the paper and find the
results quite interesting, yet several questions remain unanswered. My general and
specific comments below mostly focus on the statistical contributions of the paper.

Thank you. Note that Naveau et al. 2014 only treated univariate times series, not
bivariate (compound) events.

1. The χ measure is computed based on "local block maxima". I think it is easier to
understand what the χ and χ̄ measures represent when used with the original daily
data, rather than with block maxima. With original data, if χ = 0 this implies asymptotic
independence of daily data, but how should we interpret it with block maxima? It would
be good to add a few lines or a short paragraph to better explain the statistical mean-
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ing and the practical interpretation of the proposed metrics (χ, and KL-based) when
they are used with block maxima. And why did you choose to compute χ based on
block maxima and not block means or block minima? What is the rationale behind this
choice? Is it somehow more informative to compare joint tails?

Taking block maxima is motivated by the underlying scientific question. We are in-
terested in (correlated) extremes in precipitation and wind, which might not occur at
the same time or the same location but are driven by the same atmospheric process.
These events can still cause disproportionate impacts. Furthermore, thresholding max-
ima implies that χ, χ̄ and KL really measure very extremal upper tail behaviour. The
drawback is the smaller sample size. However, this effect will also happen with thresh-
olding, see e.g. Ferreira, A. and de Haan, L. (2015). On the block maxima method in
extreme value theory: PWM estimators. The Annals of Statistics, 43(1):276–298.

Block maxima (instead of means or minima) are chosen because the interest is in the
dependence between positive extremes of precipitation and wind speed.

2. A major question that remains unclear to me is what do we gain with the proposed KL
measure? As pointed out by the authors on page 5, we could compute a measure χ(1)

based on the first dataset, and another measure χ(2) based on the second dataset and
compare their values. The authors argue that they want just a single number to assess
whether the tails are different and by how much. I get that. But why not simply doing a
formal statistical test of whether χ(1) is statistically different from χ(2)?? The test statis-
tic (or the corresponding p-value) would indeed be a single value that could be used to
assess whether the tails are different, and by how much. Moreover, the proposed KL
metric is χ2-squared distributed ASYMPTOTICALLY, while testing for χ(1) =χ(2) could–
I think–be done EXACTLY for finite n (or be based on the corresponding asymptotic
normal distribution). A partial answer to my question above ("what do we gain with the
KL measure?") may be that the KL measure is probably more informative for testing
whether the joint tails are different because it relies on full distribution of counts within
extreme sets, rather than only on information about "the diagonal F1(X1) = F2(X2)"...
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but without a proper simulation study, this is difficult to claim (especially that the KL
measure depends on the choice of W ). It would be good if the authors could elaborate
on that, and complement the paper with a short simulation study to assess the gains
of the KL measure compared to a simple test χ(1) =χ(2).

We appreciate the comment and suggestions. However, such a simulation study would
go much beyond the interest of the readership of ESD. What one could say without a
simulation study is that if we consider two models with the same χ coefficient but dif-
ferent dependence structure, then it is impossible to distinguish the two cases with the
easier test the reviewer proposes. Thus the referee is right when they stated that χ
focuses on the “diagonal”. Furthermore, in this work we focus on the bivariate case,
but the KL estimate defined by equation (1) could be easily implemented with higher
dimensions d = 3, 4, . . ., because it is just based on counting points in different subsets.
With χ coefficients, the number of pairs will increase rapidly with d. In addition, χ co-
efficients will only capture pairwise dependencies. The KL does not have this problem
and can easily be used for trivariate compounds events. We will add these explana-
tions in the revision to better motivate the usage of the KL divergence as a difference
measure.

3. This point is related to the point 2 above, but I split it into two parts so the authors
can more easily address the several questions that I have. Another major question
related to the proposed KL measure is how to set the number of extreme sets, W,
to use. In the paper the authors choose W = 3, but there is no optimality with this
choice. In fact, while the proposed KL measure is not well-defined when at least one
of the sets is empty, the more classical χ-measure is always well defined (so testing
χ(1) =χ(2) is always possible). This is a major drawback of the KL measure, I think,
since under asymptotic independence we should EXPECT that the probability mass will
concentrate on the axes (on the Pareto scale) with no point in the interior (so extreme
sets should be empty in the limit!). Of course, in practice, there will always be points in
the interior and ways to ensure that the extreme sets are non-empty, but it still raises the
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question of how to choose the number of sets W and the sets themselves. A related
question is what is the efficiency of the statistical procedure for different numbers of
sets, W ? In my opinion, it would be good to complement the paper with a simulation
study, in order to investigate this issue in more details and come up with some concrete
advice for practitioners on the selection of sets. Is there an "automatic" way to do this
"well"?

At some level, χ is also based on an arbitrary choice because it is based on counting
the number of points in the very specific “upper corner” (X1 > u,X2 > u), givenX1 > u.
Our proposed KL divergence introduces more flexibility in terms of the choosing the
norm, the number of set and the shape of sets. If the conditioning norm was equal
to r(x) = min(x1, 0) and the partition just one set, W = {X1 > u,X2 > u}, then
the KL measure will contain the same information than χ. Hence, instead of being a
competitor, the KL measure broadens the scope of χ coefficients and allows for more
detailed analysis. Of course, this added flexibility leads to more choices.

The case of asymptotic independence can be covered by our KL using r(x) =
min(x1, x2) and by choosing sets Wi such that the probabilities of being no-empty in
each set is positive. By assuming a second order type condition (classical multivari-
ate EVT), Engelke, Naveau and Zhou (in prep) show that the convergence of our KL
estimate towards a Chi-square distribution is still valid. For this theoretical statement,
the marginals were supposed to be unknown with possibly different shape parameters.
Hence, rank-based transforms were used, this answers the point 4 raised by the ref-
eree. Under asymptotic dependence the empirical marginal normalization does have
an effect on the asymptotic distribution. However, this effect is rather minor with little
influence on the power of the test and the Type I error, as illustrated by the two figures
and the corresponding simulation study below.

We simulated n = 2000 samples X(1) and X(2) of the outer power Clayton copula,
which is in the domain of attraction of the logistic extreme value distribution. We chose
the parameters such that the limiting χ coefficients are 0.4 and 0.55, that is, one model
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with weaker and one with stronger dependence, respectively. Using the KL divergence
for a probability threshold of u = 0.9, we compare samples X(1)/X(2) for the settings
weak/weak, strong/strong and weak/strong and plot in each case the probability of
rejecting the null hypothesis of equal tail dependence structures. Note that the former
two cases are in line of the null hypothesis, whereas the latter case does not satisfy
the null hypothesis. We do the experiment both for known margins and for empirically
normalized margins, and for different numbers of sets W in the KL divergence statistic.

The two figures below (Figure 1 and 2) show the Type I error of rejecting the null
hypothesis in the case the where we have the same tail dependence based on 500
repetitions of the simulation. For both normalizations the significance level of 5% is
in general well attained throughout all numbers of sets. The figures also contain the
power of the test when the tail dependence structures are different. After W = 5
the power stabilises and it seems to decrease slightly when the number of sets is
chosen to large. Note that this is only one particular simulation setup and the results
on the optimal number of sets can change depending on sample size and strength
of tail dependence. We will add these simulation results as appendix to the revised
manuscript. Based on these simulation results, we use W = 5 in the revised version of
the manuscript, which leads to a slightly higher number of significant KL divergences
in Figure 7 and Table 1 but otherwise does not affect our main conclusions.

4. Another major point that is unclear to me is the treatment of marginal distributions.
I assume that margins are estimated non-parametrically (with ranks) to compute the
χ-measure, and that the extreme sets are defined based on data transformed to a
common scale (e.g., Pareto), but there is no mention of marginal modeling in the pa-
per. Does it matter here, since the KL-measure is non-parametric? I think this should
be clarified. Marginal modeling usually has a major effect on the final results and their
interpretation, so care is needed. In particular, how was the uncertainty related to
marginal modeling taken into account (if it was)? The authors mention a bootstrap pro-
cedure for the χ-measure, but does it take marginal estimation uncertainty into account
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or does it only account for the estimation of the dependence structure?

The marginals have been transformed to Pareto scale through ranking. As stated in the
response to 3., convergence of the KL estimates does not depend on this choice in the
case of asymptotic independence. Under asymptotic dependence, empirical marginal
normalization does change the asymptotic distribution but with only a very small effect
on the robustness of the test, see the simulation study in response to comment 3.
We will add the information how margins were transformed into Pareto scale in the
revision.

5. Figures 5-6: Even if I understand why the authors chose different block sizes (i.e.,
spatial lags and temporal windows), I find it difficult to interpret the results in Figure
5 given that the color in each pixel represents the tail dependence of potentially com-
pletely different events based on different block sizes. This may also explain why the
figure looks a bit "noisy". Wouldn’t it make more sense to produce such a map for each
block size separately, and then present only the "most relevant" one (or potentially 2
block sizes of interest)? In my opinion, this would be much easier to interpret.

We agree that spatial points cannot be directly compared here as they might be based
on different block sizes (as indicated in Figure 6). We believe however, that the “nois-
iness” is an actual signal, related to the extremely high resolution of the original data-
generating process (2km) and the complex topography in the alps. This is supported
by subpanel b), which is the only one based on much more coarse resolution data (ap-
prox. 25km), and consequently shows much smoother spatial gradients (both in Figure
5 and 6). The choice of the block sizes is well motivated by the underlying scientific
question (see response to main comment 1 above).

6. Although the authors cite relevant papers related to extreme-value theory, some
general review papers (or classical textbooks) could be added in my opinion to help
non-experts navigate through this extensive literature.

Thank you. We will add the following key references on univariate and bivariate ex-
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tremes to the manuscript:

Embrechts et al., 1997, Modelling Extremal Events: for Insurance and Finance
(Springer)

Katz et al., 2002, Statistics of extremes in hydrology (AWR 25, 1287-1304)

Davison and Huser, 2015, Statistics of Extremes (Annu. Rev. Statistics Appl. 2, 203-
235)

Engelke and Ivanovs, 2021, Sparse Structures for Multivariate Extremes (Annu. Rev.
Statistics Appl., in press)

Specific comments:

1. Page 2, Line 29: "studies studies"

Thanks.

2. Page 5, Line 119: If I’m not mistaken, the χ̄ measure has been introduced in a paper
by Coles, Heffernan and Tawn (1999) published in Extremes, not by Ledford and Tawn
(1996). Please add this reference.

Thanks, will be done.

3. Page 5: Line 126 says "inspect their behavior as q → 1" but Line 128 says "We
generally estimate χ at q = 0.95". I agree and I get what the authors want to say, but
these two sentences sound a bit contradictory. Please reformulate.

We will reformulate the second sentence as “To estimate χ empirically we use a high
quantile for which still a reasonable large number of data are available. For these
reasons we generally estimate χ at q = 0.95.”

4. Page 5, Lines 149-150: you mention the sum and the minimum as the risk function
r(x). Why not considering the maximum, as well, which is perhaps more commonly
used than the minimum?
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The sum or the maximum give similar results as they are both used for asymptotically
dependent data. The minimum covers also asymptotic independence, and we have
included it for this reason.

5. Page 6, Line 155: write "Aw(j)" instead of "Aw"?

Yes, thanks.

6. Page 6, Line 164, "The statistic d12 follows a χ2(W -1) distribution is the limit": Do
you mean "in the limit as n→∞"? Also, is this valid under the null hypothesis that the
tails are the same? Please clarify.

Yes, this is true under suitable assumptions, e.g., under asymptotic independence (with
additional second order conditions) or if the data is multivariate regularly varying with
the same marginal shape parameters (with additional second order conditions). Fur-
thermore, n→∞ and u(n) → 1 need to converge at the right speed.

7. Page 6, Lines 181-182, "q = 0.95 and u = 0.9": why did you choose different
numbers? Does it matter?

These are somewhat arbitrary choices. We have carried out a sensitivity test for differ-
ent values of u, which is shown in Table 1. Qualitatively the pictures doesn’t change
much (including its scientific interpretation) though of course the numbers are slightly
different. In particular, with higher u, the number of significant KL divergences de-
creases, as is expected due to the smaller sample size.

8. Page 7, Line 199: write "In particular, in the south of the Alps" (add "in the")

Thanks.

9. Page 7, Line 213-215: Table 1 shows the results are different as u increases. What
do you conclude? And what if q increases?

The individual numbers change somewhat but the ranking within one column stays the
same (except the flip of the first 2 rows at u = 0.95, but both have a very similar value).
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The differences shown in row 1 and 3 are generally larger than the difference in row 4.
This is the main scientific finding of the study, as also reported in the abstract: “Overall,
boundary conditions in WRF appear to be the key factor in explaining differences in the
dependence behaviour between strong wind and heavy rainfall between simulations. In
comparison, external forcings (RCP8.5) are of second order.” We expect a very similar
behavior for different values of q. We will add a sentence to make this finding more ex-
plicit: “In particular, the differences between ERAI-WRF and CESM-WRF and between
ERAI-WRF and CESM-WRF-fut are generally larger than the differences CESM-WRF
and CESM-WRF-fut, indicating that the main finding, namely that boundary conditions
in WRF appear to be the key factor in explaining differences in the dependence be-
haviour between wind and rainfall extremes, is robust for different parameter values of
the difference measure.”

10. Page 8, Line 224: write "Because the model setting determines the dependence
structure" (add "the")

Thanks.

11. Page 8, Lines 228-229: the sentence "This is to ensure ... (e.g., Foehn)" sounds
odd to me. Please consider rewriting.

We will rewrite this sentence as “This is to ensure that extremes in wind and precip-
itation are considered together if they emerge from the same atmospheric processes
(e.g. Foehn).”

12. Figure 3: The difference in tail behavior for the two datasets from q = 0.8 is already
quite clear based on the χ-measure. This comes back to my general comments above:
do we really need the new KL metric to detect this?

See our responses to the main comments above. Consider also the example where
most of the data is above the diagonal in one case and below the diagonal in the other.
Both distributions could have similar χ but the KL divergence would be large.
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Interactive comment on Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-31,
2020.
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Fig. 1. Simulation study using the true margins.
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Fig. 2. Simulation study using empirical margins.
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