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We again sincerely thank both reviewers for taking the time to review and improve the 
paper. We hope that we satisfactorily address the various comments and questions below 
(responses in blue). 
 
Reviewer 1: 
 
"GENERAL COMMENTS 
 
The authors have addressed most of my previous comments. In the discussion of the 
differences between model results and data-driven estimates there could be a clarification 
in the comparison of numbers (see below). Also I do not agree with the way the authors 
dismiss differences in k to explain the divergence of results. Changes in k will lead to 
changes in emissions if the water is substantially over-saturated in CO2 (the change of k will 
have a small effect of the flux, in the water is very close to saturation, which is not the case 
of the Congo). I suggest that the authors provide a sensitivity analysis and increase the k by 
50% and see how much the flux changes in the Congo, rather than refer to a study in the 
Amazon. 
 
MAJOR COMMENTS 
 
L78 : Battin et al (2009) report on aquatic heterotrophy (respiration) not C transfer to LOAC 
 
Ok thanks, we realised that the transfer to LOAC quoted in Battin et al. (2009) is directly 
taken from Tranvik et al. (2009) so we have replaced former with the latter. 
 
 
L 391 : The comparison of pCO2 in the main-stem Congo at Kisangani and Kinshasa does 
allow to conclude that the model reproduces the “broad spatial pattern of pCO2 measured 
in Borges et al. (2019)” as stated. There are other important features of “spatial pattern” of 
pCO2 observations such as much higher pCO2 values in the small and major tributaries in 
some cases with pCO2 values up to 18,000 ppm. I suggest to rephrase to “broad spatial 
pattern of pCO2 measured in the main-stem Congo reported by Borges et al. (2019)” 
 
This is a fair point, we have rephrased as you suggested. 
 
L409 : Borges et al. (2019) (Figure 20) also reports a 2 yr time series (2017-2018) of pCO2 at 
Kisangani. Wang et al. (2013) report a 1 yr time series of pCO2 at Kinshasa. It would make a 
convincing case if the time-series comparison was extended to these 2 other sites were 
complete annual cycles are available rather than only to Bangui on the basis that is the 
“most complete” as stated (whatever “complete” means in this context). 
 
Thanks for these suggestions. We have tried to access the time series from both Borges et 
al. (2019) and Wang et al. (2013) but have been unable to access these publicly. Borges et al. 
(2019) uploaded two spreadsheets publicly detailing both their continuous and discrete 
measurements of pCO2 (https://zenodo.org/record/3413449#.XYm2eUYzaUk) but neither 
spreadsheet contains the time series at Kisangani. Nor does the supplementary data from 
Borges et al. (2015) contain a full time series.  

https://zenodo.org/record/3413449#.XYm2eUYzaUk
https://www.nature.com/articles/ngeo2486#Sec15
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If necessary, we would be happy to contact the authors of these studies directly but would 
require a longer extension and even then, we cannot be sure whether we would get access 
to these datasets.  
We have at least been able to compare values for December and June at Kisangani (see 
Table 3). 
 
L 584 : The value of k of 3.5 m/d is ok for high order streams (for instance minstem) and k 
used by Borges et al (2019) strongly increases in low order streams up to 39 m/d in order 1 
streams. The largest fraction of CO2 emission reported by Borges et al. (2019) from the river 
network is related to low order streams. 
 
L 587 : The statement that CO2 flux in orchileak is not sensitive to the k value is really 
strange and might require a few words of explanation. For a water pCO2 of 2800 ppm 
(seems to be sort of simulated pCO2 by the model in the Congo river) and a k of 3.5 m/d, 
the emission is more or less 287 mmol/m2/d. If the k is increased by 50% (=5.3 m/d) the 
resulting flux is more or less 430 mmol/m2/d, so also 50% higher. 
 
So whether the fluxes are derived from ORCHILEAK or “data-driven models”, a substantial 
increase of k leads to a substantial increase of k. I suggest that the authors provide a 
sensitivity analysis and increase the k by 50% in Orchileak and see how much the flux 
changes in the Congo, rather than refer to a study in the Amazon. 
 
Based on the reported values of flux, k and surface area, I compute that the spatially 
integrated average of river pCO2 from ORCHILEAK is approximately 2800 ppm. The spatially 
integrated average of river pCO2 from Borges et al (2019) is approximately 5560 ppm based 
on numbers in Table 1. The average k Borges et al (2019) is 8 m/d, also based on data from 
Table 1,which is higher than the k value in ORCHILEAK of 3.5 m/d. So the difference 
between both estimates is related to both lower pCO2 and lower k in Orchileak. The authors 
should clarify how K is computed in Orchileak and discuss in light of the k computation 
scheme of Borges et al. (2019) that is transparently explained in the methods and 
supplements. This might shed some light on why the k values are so different in both 
studies. The higher pCO2 values in Borges et al. (2019) might result from not representing 
macrophytes and/or because the model under-estimates pCO2 in low order streams. This is 
not possible to check since the model results are presented as overall means and not 
information is given as function of stream size. I suggest that the authors present in more 
detail the pCO2 values simulated to tributaries and in particular low or der streams. 
 
While possible, we would maintain that a bespoke sensitivity analysis of k for the Congo is 
unnecessary. As shown in the sensitivity analysis of Lauerwald et al. (2017), FCO2 in 
ORCHILEAK (as a process based/ physical approach) is not sensitive to k due to the 
following: 
- FCO2 at a particular 6-min timestep is indeed calculated based on the water-atmosphere 
pCO2 gradient, the water surface area and k (see equations 76 and 77 of Lauerwald et al., 
2017). As outlined in the methods section, in ORCHILEAK fixed k values of 3.5 m d-1 and 0.65 
m d-1 respectively are used for rivers (including open floodplains) and forested floodplains, 
the former similar to the 2.9 m d-1 for rivers used by Borges et al. (2015a). 
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-In turn, at each time-step pCO2 in the water column is calculated from the concentration of 
dissolved CO2 and the temperature-dependent solubility of carbon (see equation 70). The 
concentration of dissolved CO2 in turn depends on the input and decomposition of DOC (in 
situ production of CO2) and the input of dissolved CO2 from soils, litter and root respiration 
(see various equations from 58-69) on the input side, and the velocity k that controls how 
quickly these CO2 inputs can diffuse to the atmosphere. 
-In ORCHILEAK, k does have an important impact on pCO2; i.e. a lower k value will increase 
pCO2, but this will also lead to a steeper water-air CO2 gradient and so ultimately to 
approximately the same FCO2 over time. In other words, over the scales covered in this 
research (the large catchment area and water residence times of the Congo), FCO2 is 
ultimately mainly controlled by the allochthonous inputs of carbon to the river network, 
because by far the largest fraction of these C inputs is leaving the system via CO2 emission to 
the atmosphere (as opposed to being laterally transferred downstream). The Cuvette 
Centrale is a hotspot region for FCO2 (see Figure 8) due to the high allochthonous inputs of C 
to the river network, not due to particularly high or low k values.  
 
As a process-based model, ORCHILEAK represents directly the sources of C to the river 
network, and these are the main drivers of CO2 emissions. In empirical studies, on the 
contrary, you don't know the C sources to the river with which to constrain CO2 emissions; 
what is measured is the pCO2, and you have to estimate the k that has led to this pCO2 
under an unknown CO2 input/production. 
 
We absolutely take your point that further explanation is required and in line with the 
above, have changed the text in the manuscript as follows (Lines 590-610): 
 
“One potential cause for the differences could be the river gas exchange velocity k.  We 
applied a mean riverine gas exchange velocity k600 of 3.5 m d-1 which is similar to the 2.9 m 
d-1 used by Borges et al. (2015a) but substantially smaller than the mean of approximately 8 
m d-1 estimated across Strahler orders 1-10 in Borges et al. (2019) (taking the contributing 
water surface area of each Strahler order into account). A sensitivity analysis was performed 
in Lauerwald et al. (2017) which showed that in the physical approach of ORCHILEAK, CO2 
evasion is not very sensitive to the k value, unlike data-driven models. Namely, Lauerwald et 
al (2017) showed that an increase or decrease of k600 for rivers and swamps (flooded 
forests) of 50% only led to 1% and -4% change in total CO2 evasion, respectively. In 
ORCHILEAK, k does have an important impact on pCO2; i.e. a lower k value will increase 
pCO2, but this will also lead to a steeper water-air CO2 gradient and so ultimately to 
approximately the same FCO2 over time. In other words, over the scales covered in this 
research (the large catchment area and water residence times of the Congo), FCO2 is mainly 
controlled by the allochthonous inputs of carbon to the river network, because by far the 
largest fraction of these C inputs is leaving the system via CO2 emission to the atmosphere 
(as opposed to being laterally transferred downstream). Therefore, we do not consider k to 
be a major source of the discrepancy. Additionally, our k600 value of 0.65 m d-1 for forested 
floodplains (based on Richey et al., 2002) compares well to recent a study which directly 
measured k600 on two different flooded forest sites in the Amazon basin, observing a range 
of 0.24 to 1.2 m d-1 (MacIntyre et al., 2019).” 
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L 578 comparison with Lauerwald et al. (2015) also suggests that you « substantially 
underestimate total riverine CO2 evasion”. 
 
This is true, though I think this is already acknowledged in the preceding sentence “but 
smaller than the 59.7 Tg C yr-1 calculated by Lauerwald et al. (2015) and far smaller than that 
of Borges et al. (2015a), 133-177 Tg C yr-1 or Borges et al. (2019), 251±46 Tg C yr-1.” 
 
Regarding historical changes in LOAC fluxes, the authors might consider including in the 
discussion the recent paper of Moukandi N’kaya et al. (2020) that attribute decadal changes 
in DOC export from the Congo to changes in hydrology and inundation patterns. 
 
Thank you for pointing out this paper. We have added a new paragraph to the discussion as 
follows (721-736): 
 
“With these limitations in our understanding of tropical forest ecosystems in mind, over the 
entire simulation period (1861-2099) we estimate that aquatic CO2 evasion will increase by 
79% and the export of C to the coast by 67%. While, there are no long-term observations of 
aquatic CO2 evasion in the Congo, a recent paper examined trends in observed DOC fluxes in 
the Congo at Brazzaville/Kinshasa over the last 30 years (Moukandi N’kaya et al. 2020). They 
found a 45% increase in the annual flux of DOC from 11.1 Tg C yr-1 (mean from 1987-1993) 
to 16.1 Tg C yr-1 (mean from 2006-2017). Comparing the same two periods, we find a 
smaller increase of 15% from 12.3 Tg C yr-1 to 14.2 Tg C yr-1. While our increase is 
substantially smaller, these observations are still over relatively short time scales and thus 
interannual variations could have considerable influence over the means of the two periods. 
Irrespectively it is encouraging that observations concur with the overall simulated 
increasing trend. Perhaps most interesting is that Moukandi N’kaya et al. (2020) attribute 
this increase to hydrological changes and specifically an increase in flood events in the 
central basin (including the Cuvette Centrale). Over this period, we too attribute the 
increase in carbon fluxes to the coast in part to climate change (Fig. 11 d) and over the full 
simulation period, the largest increase in DOC and CO2 leaching into the aquatic system 
occurs within the Cuvette Centrale (Fig. A1).” 
 
 
 
REFS 
 
Moukandi N’kaya et al. (2020) Temporal Variability of Sediments, Dissolved Solids and 
Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa, Geosciences 
2020, 10, 341; doi:10.3390/geosciences10090341 
 
Wang, Z. A., D. J. Bienvenu, P. J. Mann, K. A. Hoering, J. R. Poulsen, R. G. M. Spencer, and R. 
M. Holmes (2013), Inorganic carbon speciation and fluxes in the Congo River, Geophys. Res. 
Lett., 40, doi:10.1002/grl.50160" 
 
Reviewer 2: 
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"Hastie and co-authors have responded well to comments on their initial submission. 
Though their projections of changes through this century are more uncertain and 
speculative than as suggested in the abstract, the main text does acknowledge the 
considerable problems with the projections. The following specific comments are minor or 
can be readily clarified. 
Introduction 
L49: Change ‘sparcity’ to ‘paucity’. 
 
Thanks, changed as suggested. 
 
Methods 
L140-142: ‘Fixed gas exchange velocities of 3.5 m d-1 and 0.65 m d-1 respectively. are used 
for rivers (including open floodplains) and forested floodplains.’ 
A couple of references for these gas exchange velocities could be added. In particular, 
MacIntyre et al (2019) provides results for forested floodplains. 
MacIntyre et al. 2019. Turbulence and gas transfer velocities in sheltered flooded forests of 
the Amazon basin. Geophysical Research Letters. doi.org/10.1029/2019GL083948 
 
Thanks for pointing out this additional reference. MacIntyre et al. (2019) measured gas 
transfer velocities on two flooded forest sites in the Amazon ranging from 0.24 to 1.2 m d-1 
so our value of 0.65 m d-1 lies in the middle of this range. 
 
We have modified the text (lines 590-610) as follows (also to address the comments of 
Reviewer 1): 
“One potential cause for the differences could be the river gas exchange velocity k.  We 
applied a mean riverine gas exchange velocity k600 of 3.5 m d-1 which is similar to the 2.9 m 
d-1 used by Borges et al. (2015a) but substantially smaller than the mean of approximately 8 
m d-1 estimated across Strahler orders 1-10 in Borges et al. (2019) (taking the contributing 
water surface area of each Strahler order into account). A sensitivity analysis was performed 
in Lauerwald et al. (2017) which showed that in the physical approach of ORCHILEAK, CO2 
evasion is not very sensitive to the k value, unlike data-driven models. Namely, Lauerwald et 
al (2017) showed that an increase or decrease of k600 for rivers and swamps (flooded 
forests) of 50% only led to 1% and -4% change in total CO2 evasion, respectively. In 
ORCHILEAK, k does have an important impact on pCO2; i.e. a lower k value will increase 
pCO2, but this will also lead to a steeper water-air CO2 gradient and so ultimately to 
approximately the same FCO2 over time. In other words, over the scales covered in this 
research (the large catchment area and water residence times of the Congo), FCO2 is mainly 
controlled by the allochthonous inputs of carbon to the river network, because by far the 
largest fraction of these C inputs is leaving the system via CO2 emission to the atmosphere 
(as opposed to being laterally transferred downstream). Therefore, we do not consider k to 
be a major source of the discrepancy. Additionally, our k600 value of 0.65 m d-1 for forested 
floodplains (based on Richey et al., 2002) compares well to recent a study which directly 
measured k600 on two different flooded forest sites in the Amazon basin, observing a range 
of 0.24 to 1.2 m d-1 (MacIntyre et al., 2019).” 
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Figure 3a: Are fluxes from L. Tanganyika and other lakes included? If so, what is the source 
of the gas concentrations and fluxes. 
 
No, as lakes are not directly represented in ORCHILEAK.  
 
L241-242: ‘The best performing climate forcing dataset was ISIMIP2b followed by Princeton 
GPCC with root mean square errors (RMSE) of 29% and 40% and Nash Sutcliffe efficiencies 
(NSE) of 0.20 and -0.25, respectively.’ 
Are RMSE and NSE values considered fair or good? 
 
As the other reviewer previously pointed out, I suppose this is for the reader to decide. Also, 
these values are before calibration (the metrics for ISIMIP improve after calibration). 
 
248-250: ‘water residence times - 0.5 (days) for floodplain reservoirs’ 
What is the basis for residence times of 0.5 days on the floodplains, as it seems too fast? 
 
The 0.5 days actually refers to tau_flood (τflood), a parameter which helps to control the 
residence time. However, this parameter is multiplied by a topographical index and the 
flooded fraction of the grid cell to calculate residence time, and residence time is thus 
changing at each time step but is not explicitly calculated as diagnostic output variable 
. The τflood value of 0.5 was arrived at by calibrating against two very different rivers (the 
Congo and the Oubangui) and flooded seasonality (GIEMS), as well as trying to represent a 
large and diverse basin.  
 
We apologise for the mistake in the manuscript and the confusion caused. We have changed 
the text as follows (247-256): 
 
“For ISIMIP2b we further calibrated key hydrological model parameters, namely the 
constants (tau, τ) which help to control the water residence time of the groundwater (=slow 
reservoir), headwaters (= fast reservoir) and floodplain reservoirs in order to improve the 
simulation of observed discharge at Brazzaville and Oubangui (Table 2). To do so, we tested 
different combinations of τ values for the three reservoirs, eventually settling on 1, 0.5 and 
0.5 (days) for the slow, fast and floodplain reservoirs respectively, all three being reduced 
compared to those values used in the original ORCHILEAK calibration for the Amazon 
(Lauerwald at al., 2017). The actual residence time of each reservoir is calculated at each 
time step. The residence time of the flooded reservoir for example, is a product of τflood, a 
topographical index and the flooded fraction of the grid cell.” 
 
 
L255-257:’ As in previous studies on the Amazon basin (Lauerwald et al. 2017, Hastie et al., 
2019) we defined bank-full discharge, i.e. the threshold discharge at which floodplain 
inundation starts (i.e. overtopping of banks), as the median discharge (50th percentile) of 
the present-day climate forcing period (1990 to 2005).’ 
 
The response to the comment on the initial submission (‘The concept of bank-full discharge 
as a threshold for initiation of inundation of floodplains is questionable as applied to tropical 
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floodplain such as those in the Amazon or Congo. Studies inundation dynamics in the 
Amazon with detailed measurements or modeling indicate that inundation occurs more or 
less continuously as the rivers rise and that the water comes from both the rivers and 
uplands.’) was mis-interpreted. The issue being raised was with regard to the proportion of 
water from different sources. The issue concerns the observation that natural floodplains, 
such as those in the Amazon and Congo, have channels that connect the rivers to the 
floodplains such that waters rise on the floodplains in concert with the river rise, not just 
after bank-full discharge is reached. 
 
Ok, we understand now. In regards to this, ORCHILEAK simulates both precipitation onto the 
floodplain and evaporation from the floodplain. This precipitation in turn feeds directly into 
the floodplain reservoir and thus in ORCHILEAK inundation on the floodplain is not only a 
result of overtopping but also local precipitation directly onto the floodplain. 
 
 
Table 1: Is there snowfall in basin? 
 
No, I don’t think there is, good point. We have deleted reference to this in the Table 
 
How does the river area used compare to the recent estimate by Allen and Pavelsky (2018. 
Global extend of rivers and streams. Science 361: 585–588) ? 
 
According to their summary shapefile per basin (downloaded here- 
https://drive.google.com/file/d/11hzVVg6OEs1c7zIKjuy0u4WeE0UG6BsH/view) Allen and 
Pavelsky estimate a total river and stream surface area of 17,903 km2 for the Congo basin, 
which falls at the lower end when compared to existing estimates such as 23,670 km2 from 
Borges et al. (2019) and 26,517 km2 from Borges et al. (2015, based on Raymond et al., 
2013). While this may indicate that both our estimate and that of Borges et al. (2019) are 
too high, that is not the reason for the discrepancy between our FCO2 and Borges’ given 
that our estimates are relatively similar. 
 
We have added a sentence on this (611-616): 
 
“Another potential reason for our smaller riverine CO2 evasion could be river surface area. 
We simulate a mean present day (1980-2010) total river surface area of 25,900 km2, 
compared to the value of 23,670 km2 used in Borges et al (2019, supplementary 
information) and so similarly we think that this can be discounted as a major source of 
discrepancy. However, it should be noted that both estimates are high compared to the 
recent estimate of 17,903 km2 based on analysis of Landsat images (Allen & Pavelsky, 
2018).” 
 
Results 
Table 2: State ‘observed flooded area’ is from GIEMS. As noted correctly in the text (L364-
379), the GIEMS data under-estimate the flooded area. 
 
Changed as suggested: “Observed flooded area is from GIEMS (Papa et al., 2010, Becker et 
al., 2018).” 

https://drive.google.com/file/d/11hzVVg6OEs1c7zIKjuy0u4WeE0UG6BsH/view
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L448-449: ‘We simulate a mean annual flux of DOC throughfall from the canopy of 27 ±1 Tg 
C yr-1. How does this compare to measured fluxes (e.g. Filoso et al. 1999. Composition and 
deposition of throughfall in a flooded forest archipeligo (Anavilhanas, Negro River, Brazil). 
Biogeochemistry 45:169-195)." 
 

This paper (Filoso et al., 1999) was indeed used in the ORCHILEAK model development 

paper (Lauerwald et al., 2017) for validation of throughfall and it compared well. Please see 

Figure 11 and Table 2 of Lauerwald et al., 2017. 
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Abstract 22 

As the second largest area of contiguous tropical rainforest and second largest river basin in 23 

the world, the Congo basin has a significant role to play in the global carbon (C) cycle. For the 24 

present day, it has been shown that a significant proportion of global terrestrial net primary 25 

productivity (NPP) is transferred laterally to the land-ocean aquatic continuum (LOAC) as 26 

dissolved CO2, dissolved organic carbon (DOC) and particulate organic carbon (POC). Whilst 27 

the importance of LOAC fluxes in the Congo basin has been demonstrated for the present day, 28 

it is not known to what extent these fluxes have been perturbed historically, how they are likely 29 

to change under future climate change and land use scenarios, and in turn what impact these 30 

changes might have on the overall C cycle of the basin. Here we apply the ORCHILEAK model 31 

to the Congo basin and estimate that 4% of terrestrial NPP (NPP = 5,800 ±166 Tg C yr-1) is 32 
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currently exported from soils and vegetation to inland waters. Further, our results suggest that 33 

aquatic C fluxes may have undergone considerable perturbation since 1861 to the present day, 34 

with aquatic CO2 evasion and C export to the coast increasing by 26% (186 ±41 Tg C yr-1 to 35 

235 ±54 Tg C yr-1) and 25% (12 ±3 Tg C yr-1 to 15 ±4 Tg C yr-1) respectively, largely because 36 

of rising atmospheric CO2 concentrations. Moreover, under climate scenario RCP 6.0 we 37 

predict that this perturbation could continue; over the full simulation period (1861-2099), we 38 

estimate that aquatic CO2 evasion and C export to the coast could increase by 79% and 67% 39 

respectively. Finally, we show that the proportion of terrestrial NPP lost to the LOAC could 40 

increase from approximately 3% to 5% from 1861-2099 as a result of increasing atmospheric 41 

CO2 concentrations and climate change. However, our future projections of the Congo basin C 42 

fluxes in particular need to be interpreted with some caution due to model limitations. We 43 

discuss these limitations, including the wider challenges associated with applying the current 44 

generation of land surface models which ignore nutrient dynamics to make future projections 45 

of the tropical C cycle, along with potential next steps.  46 

1. Introduction 47 

As the world’s second largest area of contiguous tropical rainforest and second largest river, 48 

the Congo basin has a significant role to play in the global carbon (C) cycle. Current estimates 49 

of its C stocks and fluxes are limited by a sparsity paucity of field data and therefore have 50 

substantial uncertainties, both quantified and unquantified (Williams et al., 2007; Lewis et al., 51 

2009; Dargie et al., 2017). Nevertheless, it has been estimated that there is approximately 50 52 

Pg C stored in its above ground biomass (Verhegghen et al., 2012), and up to 100 Pg C 53 

contained within its soils (Williams et al., 2007). Moreover, a recent study estimated that 54 

around 30 (6.3–46.8) Pg C is stored in the peats of the Congo alone (Dargie at al., 2017). Field 55 

data suggest that storage in tree biomass increased by 0.34 (0.15- 0.43) Pg C yr-1 in intact 56 

African tropical forests between 1968-2007 (Lewis et al., 2009) due in large part to a 57 



11 
 

combination of increasing atmospheric CO2 concentrations and climate change (Ciais et al., 58 

2009; Pan et al., 2015), while satellite data indicates that terrestrial net primary productivity 59 

(NPP) has increased by an average of 10 g C m-2 yr-1 per year between 2001 and 2013 in tropical 60 

Africa (Yin et al., 2017).  61 

At the same time, forest degradation, clearing for rotational agriculture and logging are causing 62 

C losses to the atmosphere (Zhuravleva et al., 2013; Tyukavina et al., 2018) while droughts 63 

have reduced vegetation greenness and water storage over the last decade (Zhou et al., 2014). 64 

A recent estimate of above ground C stocks of tropical African forests, mainly in the Congo, 65 

indicates a minor net C loss from 2010 to 2017 (Fan et al., 2019). Moreover, recent field data 66 

suggests that the above ground C sink in tropical Africa was relatively stable from 1985 to 67 

2015 (Hubau et al., 2020). 68 

There are large uncertainties associated with projecting future trends in the Congo basin 69 

terrestrial C cycle, firstly related to predicting which trajectories of future CO2 levels and land 70 

use changes will occur, and secondly to our ability to fully understand and simulate these 71 

changes and in turn their impacts. Future model projections for the 21st century agree that 72 

temperature will significantly increase under both low and high emission scenarios (Haensler 73 

et al., 2013), while precipitation is only projected to substantially increase under high emission 74 

scenarios, the basin mean remaining more or less unchanged under low emission scenarios 75 

(Haensler et al., 2013). Uncertainties in future land-use change projections for Africa are 76 

among the highest for any continent (Hurtt et al., 2011). 77 

For the present day at the global scale, it has been estimated that between 1 and 5 Pg C yr-1 is 78 

transferred laterally to the land-ocean aquatic continuum (LOAC) as dissolved CO2, dissolved 79 

organic carbon (DOC) and particulate organic carbon (POC) (Cole at al., 2007; TranvikBattin 80 

et al., 2009; Regnier et al., 2013; Drake et al., 2018; Ciais et al. 2020). This C can subsequently 81 
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be evaded back to the atmosphere as CO2, undergo sedimentation in wetlands and inland 82 

waters, or be transported to estuaries or the coast. The tropical region is a hotspot area for 83 

inland water C cycling (Richey et al., 2002; Melack et al., 2004; Abril et al., 2014; Borges et 84 

al., 2015a; Lauerwald et al., 2015) due to high terrestrial NPP and precipitation, and a recent 85 

study used an upscaling approach based on observations to estimate present day CO2 evasion 86 

from the rivers of the Congo basin at 251±46 Tg C yr-1 and the lateral C (TOC +DIC) export 87 

to the coast at 15.5 (13-18) Tg C yr-1 (Borges at al., 2015a; Borges et al., 2019). To put this into 88 

context, their estimate of aquatic CO2 evasion represents 39% of the global value estimated by 89 

Lauerwald et al. (2015, 650 Tg C yr-1) or 14% of the global estimate of Raymond et al. (2013, 90 

1,800 Tg C yr-1). Note that while Lauerwald et al. (2015) and Raymond et al. (2013) relied 91 

largely on the same database of partial pressure of CO2 (pCO2) measurements (GloRiCh, 92 

Hartmann et al., 2014) as the basis for their estimates, they took different, albeit both 93 

empirically led approaches. Moreover, both approaches were limited by a relative paucity of 94 

data from the tropics, which also explains the high degree of uncertainty associated with our 95 

understanding of global riverine CO2 evasion. 96 

Whilst the importance of LOAC fluxes in the Congo basin has been demonstrated for the 97 

present day, it is not known to what extent these fluxes have been perturbed historically, how 98 

they are likely to change under future climate change and land use scenarios, and in turn what 99 

impact these changes might have on the overall C balance of the Congo. In light of these 100 

knowledge gaps, we address the following research questions: 101 

• What is the relative contribution of LOAC fluxes (CO2 evasion and C export to the 102 

coast) to the present-day C balance of the basin? 103 

• To what extent have LOAC fluxes changed from 1860 to the present day and what are 104 

the primary drivers of this change? 105 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014GB004941#gbc20268-bib-0030
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• How will these fluxes change under future climate and land use change scenarios (RCP 106 

6.0 which represents the “no mitigation scenario”) and what are the limitations 107 

associated with these future projectionsimplications of this change? 108 

 109 

Understanding and quantifying these long-term changes requires a complex and integrated 110 

mass-conservation modelling approach. The ORCHILEAK model (Lauerwald et al., 2017), a 111 

new version of the land surface model ORCHIDEE (Krinner et al., 2005), is capable of 112 

simulating observed terrestrial and aquatic C fluxes in a consistent manner for the present day 113 

in the Amazon (Lauerwald et al., 2017) and Lena (Bowring et al., 2019a; Bowring et al., 2019b) 114 

basins, albeit with limitations including a lack of explicit representation of POC fluxes and in-115 

stream autotrophic production (see Lauerwald et al., 2017; Bowring et al., 2019a; Bowring et 116 

al., 2019b and Hastie et al., 2019 for further discussion). Moreover, it was recently demonstrated 117 

that this model could recreate observed seasonal and interannual variation in Amazon aquatic 118 

and terrestrial C fluxes (Hastie et al., 2019). 119 

In order to accurately simulate aquatic C fluxes, it is crucial to provide a realistic representation 120 

of the hydrological dynamics of the Congo River, including its wetlands. Here, we develop 121 

new wetland forcing files for the ORCHILEAK model from the high-resolution dataset of 122 

Gumbricht et al. (2017) and apply the model to the Congo basin.  After validating the model 123 

against observations of discharge, flooded area, DOC concentrations and pCO2 for the present 124 

day, we then use the model to understand and quantify the long- term (1861-2099) temporal 125 

trends in both the terrestrial and aquatic C fluxes of the Congo Basin.  126 

2. Methods 127 

ORCHILEAK (Lauerwald et al., 2017) is a branch of the ORCHIDEE land surface model 128 

(LSM), building on past model developments such as ORCHIDEE-SOM (Camino Serrano, 129 

2018), and represents one of the first LSM-based approaches which fully integrates the aquatic 130 
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C cycle within the terrestrial domain.  ORCHILEAK simulates DOC production in the canopy 131 

and soils, the leaching of dissolved CO2 and DOC to the river from the soil, the mineralization 132 

of DOC, and in turn the evasion of CO2 to the atmosphere from the water surface. Moreover, 133 

it represents the transfer of C between litter, soils and water within floodplains and swamps 134 

(see section 2.2). Once within the river routing scheme, ORCHILEAK assumes that the lateral 135 

transfer of CO2 and DOC are proportional to the volume of water. DOC is divided into a 136 

refractory and labile pool within the river, with half-lives of 80 and 2 days respectively. The 137 

refractory pool corresponds to the combined slow and passive DOC pools of the soil C scheme, 138 

and the labile pool corresponds to the active soil pool (see section 2.4.1). The concentration of 139 

dissolved CO2 and the temperature-dependent solubility of CO2 are used to calculate pCO2 in 140 

the water column. In turn, CO2 evasion is calculated based on pCO2, along with a diurnally 141 

variable water surface area and a gas exchange velocity. Fixed gas exchange velocities of 3.5 142 

m d-1 and 0.65 m d-1 respectively are used for rivers (including open floodplains) and forested 143 

floodplains.  144 

In this study, as in previous studies (Lauerwald et al., 2017, Hastie et al. 2019, Bowring et al., 145 

2019a,b), we run the model at a spatial resolution of 1° and use the default time step of 30 min 146 

for all vertical transfers of water, energy and C between vegetation, soil and the atmosphere, 147 

and the daily time-step for the lateral routing of water. Until now, in the Tropics, ORCHILEAK 148 

has been parameterized and calibrated only for the Amazon River basin (Lauerwald et al., 2017, 149 

Hastie et al. 2019). To adapt and apply ORCHILEAK to the specific characteristics of the 150 

Congo River basin (2.1), we had to establish new forcing files representing the maximal 151 

fraction of floodplains (MFF) and the maximal fraction of swamps (MFS) (2.2) and to 152 

recalibrate the river routing module of ORCHILEAK (2.3). All of the processes represented in 153 

ORCHILEAK remain identical to those previously represented for the Amazon ORCHILEAK 154 

(Lauerwald et al., 2017; Hastie et al., 2019). In the following methodology sections, we 155 
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describe; 2.1- Congo basin description, 2.2- Development of floodplains and swamps forcing 156 

files, 2.3- Calibration of hydrology, 2.4- Simulation set-up, 2.5- Evaluation and analysis of 157 

simulated fluvial C fluxes, and 2.6- Calculating the net carbon balance of the Congo Basin. For 158 

a full description of the ORCHILEAK model please see Lauerwald et al. (2017). 159 

2.1 Congo basin description 160 

The Congo Basin is the world’s second largest area of contiguous tropical rainforest and second 161 

largest river basin in the world (Fig. 1), covering an area of 3.7 x106 km2, with a mean discharge 162 

of around 42,000 m-3 s-1 (O'Loughlin et al., 2013) and a variation between 24,700–75,500 m-3 163 

s-1 across months (Coynel et al., 2005).   164 

 165 

 166 
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 167 

Figure 1:Extent of the Congo Basin, central quadrant of the “Cuvette Centrale” and sampling 168 
stations (for DOC and discharge) along the Congo and Oubangui  Rivers (in italic). 169 

 170 

The major climate (ISMSIP2b, Frieler et al., 2017; Lang et al., 2017) and land-cover (LUH-171 

CMIP5) characteristics of the Congo Basin for the present day (1981-2010) are shown in Figure 172 

2. The mean annual temperature is 25.2 °C but with considerable spatial variation from a low 173 

of 18.4°C to a high of 27.2°C (Fig. 2 a), while mean annual rainfall is 1520mm, varying from 174 

733 mm to 4087 mm (Fig. 2 b). ORCHILEAK prescribes 13 different plant functional types 175 

(PFTs). Land-use is mixed with tropical broad-leaved evergreen (PFT2, Fig. 1 c), tropical 176 

broad-leaved rain green (PFT3, Fig. 1 d), C3 grass (PFT10, Fig. 2 e) and C4 grass (PFT11, Fig. 177 

2 f) covering a maximum of 26%, 35%, 8% and 25% of the basin area respectively (Table A3). 178 

Most published estimates for land-cover follow national boundaries and so we can make broad 179 

Brazzaville 

Station a 

Station b 

Station c 

Station d 

Bangui 
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comparisons with published estimates for the Democratic Republic of Congo (DRC). For 180 

example, our value for total forest cover for the DRC (65%), is close to the 67% and 68% 181 

values estimated by the Congo Basin Forest Partnership (CBFP, 2009), and Potapov et al. 182 

(2012), respectively. Agriculture covers only a small proportion of the basin according to the 183 

LUH dataset that is based on FAO cropland area statistics, with C3 (PFT12, Fig. 2 g) and C4 184 

(PFT13, Fig. 2 h) agriculture making up a maximum basin area of 0.5 and 2% respectively. In 185 

reality, a larger fraction of the basin is composed of small scale and rotational agriculture 186 

(Tyukavina et al., 2018). The ORCHILEAK model also has a “poor soils” forcing file (Fig. 2 187 

j) which prescribes reduced decomposition rates in soils with low nutrient and pH soils such as 188 

Podzols and Arenosols (Lauerwald et al., 2017). This file is developed from the Harmonized 189 

World Soil Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009). 190 

https://www.sciencedirect.com/science/article/pii/S0034425712000430#bb0220
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 191 

Figure 2: Present day (1981-2010) spatial distribution of the principal climate and land-use 192 
drivers used in ORCHILEAK, across the Congo Basin; a) mean annual temperature in °C, b) 193 
mean annual rainfall in mm yr-1, c)-h) mean annual maximum vegetated fraction for PFTs 2,3, 194 
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10,11,12 and 13, i) river area, and j) Poor soils. All at a resolution of 1° except for river area 195 
(0.5°). 196 

2.2 Development of floodplains and swamps forcing files 197 

In ORCHILEAK, water in the river network can be diverted to two types of wetlands, 198 

floodplains and swamps. In each grid where a floodplain exists, a temporary waterbody can be 199 

formed adjacent to the river and is fed by the river once bank-full discharge (see section 2.3) 200 

is exceeded. In grids where swamps exist, a constant proportion of river discharge is fed into 201 

the base of the soil column; ORCHILEAK does not explicitly represent a groundwater reservoir 202 

and so this imitates the hydrological coupling of swamps and rivers through the groundwater 203 

table. The maximal proportions of each grid which can be covered by floodplains and swamps 204 

are prescribed by the maximal fraction of floodplains (MFF) and the maximal fraction of 205 

swamps (MFS) forcing files respectively (Guimberteau et al., 2012). See also Lauerwald et al. 206 

(2017) and Hastie et al. (2019) for further details. We created an MFF forcing file for the Congo 207 

basin, derived from the Global Wetlandsv3 database; the 232 m resolution tropical wetland map 208 

of Gumbricht et al. (2017) (Fig. 3 a and b). We firstly amalgamated all the categories of wetland 209 

(which include floodplains and swamps) before aggregating them to a resolution of 0.5° (the 210 

resolution at which the floodplain/swamp forcing files are read by ORCHILEAK), assuming 211 

that this represents the maximum extent of inundation in the basin. This results in a mean MFF 212 

of 10%, i.e. a maximum of 10% of the surface area of the Congo basin can be inundated with 213 

water. This is identical to the mean MFF value of 10% produced with the Global Lakes and 214 

Wetlands Database, GLWD (Lehner, & Döll, P.,2004; Borges et al., 2015b). We also created 215 

an MFS forcing file from the same dataset (Fig. 3 c and d), merging the ‘swamps’ and ‘fens’ 216 

wetland categories (although note that there are virtually no fens in the Congo basin) from 217 

Global Wetlandsv3 database (Gumbricht et al., 2017) and again aggregating them to a 0.5° 218 

resolution. Please see Table 1 of Gumbricht et al. (2017) for further details. 219 
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 220 

2.3 Calibration of hydrology  221 

As the main driver of the export of C from the terrestrial to aquatic system, it is crucial that the 222 

model can represent present-day hydrological dynamics, at the very least on the main stem of 223 

the Congo. As this study is primarily concerned with decadal- centennial timescales our priority 224 

was to ensure that the model can accurately recreate observed mean annual discharge at the 225 

most downstream gauging station Brazzaville. We also tested the model’s ability to simulate 226 

Figure 3: a) Wetland extent (from Gumbricht et al., 2017). b) The new maximal fraction of 

floodplain (MFF) forcing file developed from a). c) Swamps (including fens) category within 

Congo basin from Gumbricht et al (2017).  d) the new maximal fraction of swamps (MFS) forcing 

file developed from c). Panels a) and b) are at the same resolution as the Gumbricht dataset 

(232m) while b) and d) are at a resolution of 0.5°. Note that 0.5° is the resolution of the sub unit 

basins in ORCHILEAK (Lauerwald et al., 2015), with each 1° grid containing four sub basins. 
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observed discharge seasonality, as well as flood dynamics. Moreover, no data is available with 227 

which to directly evaluate the simulation of DOC and CO2 leaching from the soil to the river 228 

network, and thus we tested the model’s ability to recreate the spatial variation of observed 229 

riverine DOC concentrations and pCO2 at specific stations where measurements are available 230 

(Borges at al., 2015b; Bouillon et al., 2012 & 2014, locations shown in Fig. 1), river DOC and 231 

CO2 concentration being regarded as an integrator of the C transport at the terrestrial-aquatic 232 

interface.  233 

We first ran the model for the present-day period, defined as from 1990 to 2005/2010 234 

depending on which climate forcing data was applied, using four climate forcing datasets; 235 

namely ISIMIP2b (Frieler et al., 2017), Princeton GPCC (Sheffield et al., 2006), GSWP3 (Kim, 236 

2017) and CRUNCEP (Viovy, 2018). We used ISIMIP2b for the historical and future 237 

simulations as it is the only climate forcing dataset to cover the full period (1861-2099). 238 

However, we compared it to other climate forcing datasets for the present day in order to gauge 239 

its ability to simulate observed discharge on the Congo River at Brazzaville (Table A1). 240 

Without calibration, the majority of the different climate forcing model runs performed poorly, 241 

unable to accurately represent the seasonality and mean monthly discharge at Brazzaville 242 

(Table A1). The best performing climate forcing dataset was ISIMIP2b followed by Princeton 243 

GPCC with root mean square errors (RMSE) of 29% and 40% and Nash Sutcliffe efficiencies 244 

(NSE) of 0.20 and -0.25, respectively. NSE is a statistical coefficient specifically used to test 245 

the predictive skill of hydrological models (Nash & Sutcliffe, 1970).  246 

For ISIMIP2b we further calibrated key hydrological model parameters, namely the constants 247 

(tau, τ) which dictate help to control the water residence time of the groundwater (=slow 248 

reservoir), headwaters (= fast reservoir) and floodplain reservoirs in order to improve the 249 

simulation of observed discharge at Brazzaville and Oubangui (Table 2). To do so, we tested 250 

different combinations of τ values water residence times for the three reservoirs, eventually 251 
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settling on 1, 0.5 and 0.5 (days) for the slow, fast and floodplain reservoirs respectively, all 252 

three being reduced compared to those values used in the original ORCHILEAK calibration 253 

for the Amazon (Lauerwald at al., 2017). The actual residence time of each reservoir is 254 

calculated at each time step. The residence time of the flooded reservoir for example, is a 255 

product of τflood, a topographical index and the flooded fraction of the grid cell. 256 

In order to calibrate the simulated discharge against observations, we first modified the flood 257 

dynamics of ORCHILEAK in the Congo Basin for the present day by adjusting bank-full 258 

discharge (streamr50th, Lauerwald et al., 2017) and 95th percentile of water level heights 259 

(floodh95th). As in previous studies on the Amazon basin (Lauerwald et al. 2017, Hastie et al., 260 

2019) we defined bank-full discharge, i.e. the threshold discharge at which floodplain 261 

inundation starts (i.e. overtopping of banks), as the median discharge (50th percentile i.e. 262 

streamr50th) of the present-day climate forcing period (1990 to 2005). After re-running each 263 

model parametrization (different τ valueswater residence times) to obtain those bank-full 264 

discharge values, we calculated floodh95th over the simulation period for each grid cell (Table 265 

1). This value is assumed to represent the water level over the river banks at which the 266 

maximum horizontal extent of floodplain inundation is reached. We then ran the model for a 267 

final time and validated the outputs against discharge data at Brazzaville (Cochonneau et al., 268 

2006, Fig. 1). This procedure was repeated iteratively with the ISIMIP2b climate forcing, 269 

modifying the τ valuewater residence times of each reservoir in order to find the best 270 

performing parametrization. 271 

We firstly compared simulated versus observed discharge at Brazzaville (NSE, RMSE, Table 272 

2), before using the data of Bouillon et al. (2014) to further validate discharge at Bangui (Fig. 273 

1) on the main tributary Oubangui. In addition, we compared the simulated seasonality of 274 

flooded area against the satellite derived dataset GIEMS (Prigent et al., 2007; Becker et al., 275 

2018), within the Cuvette Centrale wetlands (Fig. 1).   276 
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2.4  Simulation set-up 277 

A list of the main forcing files used, along with data sources, is presented in Table 1. The 278 

derivation of the floodplains and swamp (MFF & MFS) is described in section 2.2 while the 279 

calculation of “bankfull discharge” (streamr50th) and “95th percentile of water table height over 280 

flood plain” (floodh95th) (Table 1) is described in section 2.3.  281 

2.4.1 Soil carbon spin up 282 

ORCHILEAK includes a soil module, primarily derived from ORCHIDEE-SOM (Camino 283 

Serrano, 2018). The soil module has 3 different pools of soil DOC; the passive, slow and active 284 

pool and these are defined by their source material and residence times (𝜏carbon). ORCHILEAK 285 

also differentiates between flooded and non-flooded soils; decomposition rates of DOC, SOC 286 

and litter being reduced (3 times lower) in flooded soils. In order for the soil C pools to reach 287 

steady state, we spun-up the model for around 9,000 years, with fixed land-use representative 288 

of 1861, and looping over the first 30 years of the ISMSIP2b climate forcing data (1861-1890). 289 

During the first 2,000 years of spin-up, we ran the model with an atmospheric CO2 290 

concentration of 350 µatm and default soil C residence times (𝜏carbon) halved, which allowed it 291 

to approach steady-state more rapidly. Following this, we ran the model for a further 7,000 292 

years reverting to the default 𝜏carbon values. At the end of this process, the soil C pools had 293 

reached approximately steady state; <0.02% change in each pool over the final century of the 294 

spin-up.  295 

2.4.2 Transient simulations 296 

After the spin-up, we ran a historical simulation from 1861 until the present day, 2005 in the 297 

case of the ISIMIP2b climate forcing data. We then ran a future simulation until 2099, using 298 

the final year of the historical simulation as a restart file. In both of these simulations, climate, 299 

atmospheric CO2 and land-cover change were prescribed as fully transient forcings according 300 

to the RCP6.0 scenario. For climate variables, we used the IPSL-CM5A-LR model outputs for 301 
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RCP 6.0, bias corrected by the ISIMIP2b procedure (Frieler et al., 2017; Lange et al., 2017), 302 

while land-use change was taken from the 5th Coupled Model Intercomparison Project 303 

(CMIP5). As our aim is to investigate long-term trends, we calculated 30-years running means 304 

of simulated C flux outputs in order to smooth interannual variations. RCP 6.0 is an emissions 305 

pathway that leads to a “stabilization of radiative forcing at 6.0 Watts per square meter (Wm−2) 306 

in the year 2100 without exceeding that value in prior years” (Masui et al., 2011). It is 307 

characterised by intermediate energy intensity, substantial population growth, mid-high C 308 

emissions, increasing cropland area to 2100 and decreasing natural grassland area (van Vuuren 309 

et al., 2011). In the paper which describes the development of the future land use change 310 

scenarios under RCP 6.0 (Hurtt et al., 2011), it is shown that land use change is highly sensitive 311 

to land use model assumptions, such as whether or not shifting cultivation is included. The 312 

LUH1 reconstruction for instance indicates shifting cultivation affecting all of the tropics with 313 

a residence time of agriculture of 15 years, whereas the review from Heinimann et al. (2017) 314 

revised downwards the area of this type of agriculture, with generally low values in Congo, 315 

except in the North East and South East, but suggested a shorter turnover of agriculture of two 316 

years only. In view of such uncertainties, we did not include shifting agriculture in the model. 317 

Moreover, there is considerable uncertainty associated with the effect of future land-use change 318 

in Africa (Hurtt et al., 2011). We chose RCP 6.0 as it represents a no mitigation (mid-high 319 

emissions) scenario. Moreover, the ISIMIP2b data only provided two RCPs at the time we 320 

performed the simulations; RCP 2.6 (low emission) and RCP 6.0. 321 

With the purpose of evaluating separately the effects of land-use change, climate change, and 322 

rising atmospheric CO2, we ran a series of factorial simulations. In each simulation, one of 323 

these factors was fixed at its 1861 level (the first year of the simulation), or in the case of fixed 324 

climate change, we looped over the years 1861-1890.  The outputs of these simulations (also 325 

30-year running means) were then subtracted from the outputs of the main simulation (original 326 
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run with all factors varied) so that we could determine the contribution of each driver (Fig. 10, 327 

Table 1). 328 

Table 1:Main forcing files used for simulations 

Variable  Spatial 

resolution 

Temporal 

resolution 

Data source 

Rainfall, snowfall, incoming 

shortwave and longwave radiation, air 

temperature, relative humidity and air 

pressure (close to surface), wind speed 

(10 m above surface) 

1° 1 day ISIMIP2b, IPSL-CM5A-LR 

model outputs for RCP6.0 

(Frieler et al., 2017)  

Land cover (and change) 0.5° annual LUH-CMIP5 

Poor soils 0.5° annual Derived from HWSD v 1.1 

(FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2009) 

Stream flow directions 0.5° annual STN-30p (Vörösmarty et al., 

2000) 

Floodplains and swamps fraction in 

each grid (MFF & MFS) 

0.5° annual derived from the wetland high 

resolution data of Gumbricht et 

al. (2017)  

River surface areas 0.5° annual Lauerwald et al. (2015) 

Bankfull discharge (streamr50th) 1° annual derived from calibration with 

ORCHILEAK (see section 2,3) 

95th percentile of water table height 

over flood plain (floodh95th) 

1° annual derived from calibration with 

ORCHILEAK (see section 2.3) 

2.5  Evaluation and analysis of simulated fluvial C fluxes 329 

We first evaluated DOC concentrations and pCO2 at several locations along the Congo 330 

mainstem (Fig. 1), and on the Oubangui river against the data of Borges at al. (2015b) and 331 

Bouillon et al. (2012, 2014) We also compared the various simulated components of the net C 332 

balance (e.g. NPP) of the Congo against values described in the literature (Williams et al., 333 

2007; Lewis et al., 2009; Verhegghen et al., 2012; Valentini et al., 2014; Yin et al., 2017). In 334 

addition, we assessed the relationship between the interannual variation in present day (1981-335 

2010) C fluxes of the Congo basin and variation in temperature and rainfall. This was done 336 

through linear regression using STATISTICATM. We found trends in several of the fluxes over 337 

the 30-year period (1981-2010) and thus detrended the time series with the “Detrend” function, 338 

part of the “SpecsVerification” package in R (R Core Team 2013), before undertaking the 339 

statistical analysis focused on the climate drivers of inter-annual variability. 340 
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2.6 Calculating the net carbon balance of the Congo basin 341 

We calculated Net Ecosystem Production (NEP) by summing the terrestrial and aquatic C 342 

fluxes of the Congo basin (Eq. 1), while we incorporated disturbance fluxes (Land-use change 343 

flux and harvest flux) to calculate Net Biome Production (NBP) (Eq. 2). Positive values of 344 

NBP and NEP equate to a net terrestrial C sink. 345 

NEP is defined as follows: 346 

                           𝑁𝐸𝑃 = 𝑁𝑃𝑃 + 𝑇𝐹 − 𝑆𝐻𝑅 − 𝐹𝐶𝑂2 − 𝐿𝐸Aquatic                                              (1)      347 

Where NPP is terrestrial net primary production, TF is the throughfall flux of DOC from the 348 

canopy to the ground, SHR is soil heterotrophic respiration (only that evading from the terra-349 

firme soil surface); FCO2 is CO2 evasion from the water surface and 𝐿𝐸Aquatic is the lateral 350 

export flux of C (DOC + dissolved CO2) to the coast. NBP is equal to NEP except with the 351 

inclusion of the C lost (or possibly gained) via land use change (LUC) and crop harvest (HAR). 352 

Wood harvest is not included for logging and forestry practices, but during deforestation LUC, 353 

a fraction of the forest biomass is harvested and channelled to wood product pools with 354 

different decay constants. LUC includes land conversion fluxes and the lateral export of wood 355 

products biomass, that is, assuming that wood products from deforestation are not consumed 356 

and released as CO2 over the Congo, but in other regions: 357 

                              𝑁𝐵𝑃 = 𝑁𝐸𝑃 − (𝐿𝑈𝐶 + 𝐻𝐴𝑅)                                                                (2)              358 

 359 

3. Results  360 

3.1 Simulation of hydrology and aquatic carbon fluxes 361 

The final model configuration is able to closely reproduce the mean monthly discharge at 362 

Brazzaville (Fig. 4 a), Table 2) and captures the seasonality moderately well (Fig. 4 a, Table 2, 363 
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RMSE =23%, R2 =0.84 versus RMSE= 29% and R2 =0.23 without calibration, Table A1). At 364 

Bangui on the Oubangui River (Fig. 1), the model is able to closely recreate observed 365 

seasonality (Fig. 4 b), RMSE =59%, R2 =0.88) but substantially underestimates the mean 366 

monthly discharge, our value being only 50% of the observed. We produce reasonable NSE 367 

values of 0.66 and 0.31 for Brazzaville and Bangui respectively, indicating that the model is 368 

moderately accurate in its simulation of seasonality. 369 

We also evaluated the simulated seasonal change in flooded area in the central (approx. 370 

200,000 km2, Fig. 1) part of the Cuvette Centrale wetlands against the GIEMS inundation 371 

dataset (1993-2007, maximum inundation minus minimum or permanent water bodies, Prigent 372 

et al., 2007; Becker et al., 2018). While our model is able to represent the seasonality in flooded 373 

area relatively well (R2 =0.75 Fig. 4 c), it considerably overestimates the magnitude of flooded 374 

area relative to GIEMS (Fig. 4 c, Table 2). However, the dataset that we used to define the 375 

MFF and MFS forcing files (Gumbricht et al., 2017) is produced at a higher resolution than 376 

GIEMS and will capture smaller wetlands than the GIEMS dataset, and thus the greater flooded 377 

area is to be expected. GIEMS is also known to underestimate inundation under vegetated areas 378 

(Prigent et al., 2007; Papa et al., 2010) and has difficulties to capture small inundated areas 379 

(Prigent et al., 2007; Lauerwald et al., 2017). Indeed, with the GIEMS data we produce an 380 

overall flooded area for the Congo Basin of just 3%, less than one-third of that produced with 381 

the Gumbricht dataset (Gumbricht et al., 2017) or the GLWD (Lehner, & Döll, P.,2004). As 382 

such, it is to be expected that there is a large RMSE (272%, Table 2) between simulated flooded 383 

area and GIEMS; more importantly, the seasonality of the two is highly correlated (R2 = 0.67, 384 

Table 2).  385 
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 386 

 387 

 388 

 389 

 390 

 391 

Figure 4: Seasonality of simulated versus observed discharge at a) Brazzaville on the 

Congo (Cochonneau et al., 2006), b) Bangui on the Oubangui (Bouillon et al., 2014) 1990-

2005 monthly mean and c) flooded area in the central (approx. 200,000 km2) area of the 

Cuvette Centrale wetlands versus GIEMS (1993-2007, Becker et al., 2018). The observed 

flooded area data represents the maximum minus minimum (permanent water bodies 

such as rivers) GIEMS inundation. See Figure 1 for locations. 
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Table 2: Performance statistics for modelled versus observed seasonality of 

discharge and flooded area in Cuvette Centrale. Observed flooded area is 

from GIEMS (Papa et al., 2010, Becker et al., 2018).  

Station RSME NSE R2 Simulated mean 

monthly discharge  

(m3 s-1) 

Observed  mean 

monthly discharge  

(m3 s-1) 

Brazzaville 23% 0.66 0.84 38,944 

 

40,080 

Bangui 59% 0.31 0.88 1,448 

 

2,923 

 

    Simulated mean 

monthly flooded area 

(103 km2) 

Observed mean 

monthly flooded area 

(103 km2) 

Flooded 

area 

(Cuvette 

Centrale) 

272% -1.44 0.67 44 14 

 392 

In Figure 5, we compare simulated DOC concentrations at six locations (Fig. 1) along the 393 

Congo River and Oubangui tributary, against the observations of Borges at al. (2015b). We 394 

show that we can recreate the spatial variation in DOC concentration within the Congo basin 395 

relatively closely with an R2 of 0.74 and an RMSE of 24% (Fig. 5). We are also able to 396 

simulate the broad spatial pattern of pCO2 measured in the main-stem Congo reported byin 397 

Borges et al. (2019). During high flow season (mean of 6 consecutive months of highest flow, 398 

2009-2019-to account for interannual variation) we simulate a mean pCO2 of 3,373 ppm and 399 

5,095 ppm at Kisangani and Kinshasa (Brazzaville) respectively, compared to the observed 400 

values of 2,424 ppm and 5,343 ppm during high water (measured in December 2013, Borges 401 

et al., 2019) (Table 3). Similarly, during low flow season (mean of 6 consecutive months of 402 

lowest flow, 2009-2019) we simulate a mean pCO2 of 1,563 ppm and 2,782 ppm at Kisangani 403 

and Kinshasa respectively, compared to the observed values of 1,670 ppm and 2,896 ppm 404 

during falling water (June 2014, Borges et al., 2019) (Table 3). 405 
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 406 

While we are able to recreate observed spatial differences in DOC and pCO2, as well as broad 407 

seasonal variations, we are not able to correctly predict the exact timing of the simulated 408 

highs and lows, a reflection of not fully capturing the hydrological seasonality. For example, 409 

our mean June pCO2 at Kinshasa (Brazzaville) is 4,470 ppm, while Borges et al measured a 410 

mean of 2,896 ppm (Table 3). However, our value for July of 2,621 ppm is much closer, and 411 

moreover our mean value for December of 5,154 ppm is relatively close to the observed 412 

value of 5,343 ppm. Similarly, we fail to predict the timing of the June falling water at 413 

Kisangani (Table 3). 414 

In Figure 6, we compare simulated pCO2 against the observed monthly time series at Bangui 415 

on the Oubangui River (Bouillon et al., 2012 & 2014), as far as we are aware the longestmost 416 

complete time series of pCO2 published (and accessible) from the Congo basin, spanning 417 

March 2010 to March 2012 (with only the single month of June 2010 missing). Again, while 418 

the model fails to correctly predict the precise timing of the peak as with the Kinshasa and 419 

Kisangani datasets the broad seasonal variation in pCO2 is captured, with the observed and 420 

modelled times series ranging from 227- 4040 ppm and 415- 2928 ppm, respectively (Fig. 6). 421 

 422 

 423 

 424 

 425 

 426 
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 428 

Table 3: Observed (Borges et al., 2019) and modelled pCO2 (in ppm) at Kinshasa (Brazzaville) and 

Kisangani on the Congo river at various water levels.  

Location Observed 

pCO2 

highwater 

(December 

2013) 

Modelled 

pCO2 

highwater 

(December 

Mean 2009-

2019) 

Modelled pCO2 

high flow season 

(mean of 6 

consecutive 

months of highest 

flow 2009-2019) 

Observed 

pCO2 falling 

water (June 

2014) 

Modelled 

pCO2 

falling 

water (June 

mean 

2009-2019) 

Modelled pCO2 

low flow season 

(mean of 6 

consecutive 

months of 

lowest flow 

2009-2019) 

Kinshasa 

(Brazzaville) 

5,343 5,154 5,095 2,896 4,470 2,782 

Kisangani 2,424 2,166 3,373 1,670 3,126 1,563 

 429 

R² = 0.74 

RMSE =24%  

Figure 5: Observed (Borges et al., 2015a) versus simulated DOC concentrations at several sites 

along the Congo and Oubangui rivers. See Fig. 1 for locations. The simulated and observed 

DOC concentrations represent the median values across the particular sampling period at each 

location detailed in Borges et al. (2015a). 
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 432 

 433 

3.2 Carbon fluxes along the Congo basin for the present day 434 

For the present day (1981-2010) we estimate a mean annual terrestrial net primary production 435 

(NPP) of 5,800 ±166 (standard deviation, SD) Tg C yr-1 (Fig. 7), corresponding to a mean areal 436 

C fixation rate of approximately 1,500 g C m-2 yr-1 (Fig. 8 a). We find a significant positive 437 

correlation between the interannual variation of NPP and rainfall (detrended R2= 0.41, p<0.001, 438 

Table A2) and a negative correlation between annual NPP and temperature (detrended R2= 439 

0.32, p<0.01, Table A2).  We also see considerable spatial variation in NPP across the Congo 440 

Basin (Fig.8 a). 441 

We simulate a mean soil heterotrophic respiration (SHR) of 5,300 ±99 Tg C yr-1 across the 442 

Congo basin (Fig. 7). Contrary to NPP, interannual variation in annual SHR is positively 443 

Figure 6: Time series of observed versus simulated pCO2 at Bangui on the 

River Oubangui. Observed data is from Bouillon et al., 2012 and Bouillon 

et al., 2014. 
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correlated with temperature (detrended R2= 0.57, p<0.0001, Table A2) and inversely correlated 444 

with rainfall (detrended R2= 0.10), though the latter relationship is not significant (p>0.05).  445 

We estimate a mean annual aquatic CO2 evasion rate of 1,363 ±83 g C m-2 yr-1, amounting to 446 

a total of 235±54 Tg C yr-1 across the total water surfaces of the Congo basin (Fig. 7) and 447 

attribute 85% of this flux to flooded areas, meaning that only 32 Tg C yr-1 is evaded directly 448 

from the river surface. Interannual variation in aquatic CO2 evasion (1981-2010) shows a 449 

strong positive correlation with rainfall (detrended R2= 0.75, p<0.0001, Table A2) and a weak 450 

negative correlation with temperature (detrended R2=0.09, not significant, p>0.05). Aquatic 451 

CO2 evasion also exhibits substantial spatial variation (Fig.8, d), displaying a similar pattern to 452 

both terrestrial DOC leaching (DOCinp) (R
2= 0.81, p<0.0001, Fig.8, b) as well as terrestrial 453 

CO2 leaching (CO2inp) (R
2= 0.96, p<0.0001, Fig.8, c) into the aquatic system, but not terrestrial 454 

NPP (R2= 0.01, p<0.05, Fig.8, a). We simulate a mean annual flux of DOC throughfall from 455 

the canopy of 27 ±1 Tg C yr-1 and C (DOC + dissolved CO2) export flux to the coast of 15 ±4 456 

Tg C yr-1 (Fig. 7).  457 

For the present day (1981-2010) we estimate a mean annual net ecosystem production (NEP) 458 

of 277 ±137 Tg C yr-1 and a net biome production (NBP) of 107 ±133 Tg C yr-1 (Fig. 7). 459 

Interannually, both NEP and NBP exhibit a strong inverse correlation with temperature 460 

(detrended NEP R2=0.55, p<0.0001, detrended NBP R2=0.54, p<0.0001) and weak positive 461 

relationship with rainfall (detrended NEP R2=0.16, p<0.05, detrended NBP R2=0.14, p<0.05). 462 

Furthermore, we simulate a present day (1981-2010) living biomass of 41 ±1 Pg C and a total 463 

soil C stock of 109 ±1 Pg C. 464 

 465 
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Figure 7: Annual C budget (NBP) for the Congo basin for the present day 

(1981-2010) simulated with ORCHILEAK, where NPP is terrestrial net 

primary productivity, TF is throughfall, SHR is soil heterotrophic 

respiration, FCO2 is aquatic CO2 evasion, LOAC is C leakage to the land-

ocean aquatic continuum (FCO2 + 𝑳𝑬Aquatic), LUC is flux from Land-use 

change, and 𝑳𝑬Aquatic is the export C flux to the coast.  Range represents 

the standard deviation (SD) from 1981-2010. 
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 468 

3.3 Long-term temporal trends in carbon fluxes  469 

We find an increasing trend in aquatic CO2 evasion (Fig. 9 a) throughout the simulation period, 470 

rising slowly at first until the 1960s when the rate of increase accelerates. In total CO2 evasion 471 

rose by 79% from 186 Tg C yr-1 at the start of the simulation (1861-1890 mean) (Fig. 10) to 472 

333 Tg C yr-1 at the end of this century (2070-2099 mean, Fig. 10), while the increase until the 473 

present day (1981-2010 mean) is of +26 % (to 235 Tg C yr-1), though these trends are not 474 

uniform across the basin (Fig A1). The lateral export flux of C to the coast (LEAquatic) follows 475 

a similar relative change (Fig. 9b), rising by 67% in total, from 12 Tg C yr-1 (Fig. 10) to 15 Tg 476 

C yr-1 for the present day, and finally to 20 Tg C yr-1 (2070-2099 mean, Fig. 10). This is greater 477 

 
Figure 8:Present8: Present day (1981-2010) spatial distribution of a) terrestrial net primary 

productivity (NPP), b) dissolved organic carbon export from soils and floodplain vegetation into 

the aquatic system (DOCinp), c) CO2 leaching from soils and floodplain vegetation into the 

aquatic system (CO2inp)  and d) aquatic CO2 evasion (FCO2). Main rivers in blue. All at a 

resolution of 1° 
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than the equivalent increase in DOC concentration (24%, Fig. 9b) due to the concurrent rise in 478 

rainfall (by 14%, Fig 9h) and in turn discharge (by 29%, Fig. 9h). 479 

Terrestrial NPP and SHR also exhibit substantial increases of 35% and 26% respectively across 480 

the simulation period and similarly rise rapidly after 1960 (Fig. 9c). NEP, NBP (Fig. 9d) and 481 

living biomass (Fig. 9 e) follow roughly the same trend as NPP, but NEP and NBP begin to 482 

slow down or even level-off around 2030 and in the case of NBP, we actually simulate a 483 

decreasing trend over approximately the final 50 years. Interestingly, the proportion of NPP 484 

lost to the LOAC also increases from approximately 3% to 5% (Fig. 9c). We also find that 485 

living biomass stock increases by a total of 53% from 1861 to 2099. Total soil C also increases 486 

over the simulation but only by 3% from 107 to 110 Pg C yr-1 (Fig. 9e). Emissions from land-487 

use change (LUC) show considerable decadal fluctuation increasing rapidly in the second half 488 

of the 20th century and decreasing in the mid-21st century before rising again towards the end 489 

of the simulation (Fig. 9f). The harvest flux (Fig. 9f) rises throughout the simulation with the 490 

exception of a period in the mid-21st century during which it stalls for several decades. This is 491 

reflected in the change in land-use areas from 1861- 2099 (Fig. A2, Table A3) during which 492 

the natural forest and grassland PFTs marginally decrease while both C3 and C4 agricultural 493 

grassland PFTs increase.  494 

 495 

  496 
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 500 

 501 

 502 

3.4  Drivers of simulated trends in carbon fluxes 503 

The dramatic increase in the concentration of atmospheric CO2 (Fig. 9 g) and subsequent 504 

fertilization effect on terrestrial NPP has the greatest overall impact on all of the fluxes across 505 

Figure 9: Simulation results for various C fluxes and stocks from 1861-2099, using IPSL-

CM5A-LR model outputs for RCP 6.0 (Frieler et al., 2017).  All panels except for atmospheric 

CO2, biomass and soil C correspond to 30-year running means of simulation outputs. This 

was done in order to suppress interannual variation, as we are interested in longer-term 

trends. 
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the simulation period (Fig. 11). It is responsible for the vast majority of the growth in NPP, 506 

SHR, aquatic CO2 evasion and flux of C to the coast (Fig. 11 a, b, c & d). The effect of LUC 507 

on these four fluxes is more or less neutral, while the impact of climate change is more varied. 508 

The aquatic fluxes (Fig. 11 c, d) respond positively to an acceleration in the increase of both 509 

rainfall (and in turn discharge, Fig. 9 h) and temperature (Fig. 9 g) starting around 1970. From 510 

around 2020, the impact of climate change on the lateral flux of C to the coast (Fig 11 d) reverts 511 

to being effectively neutral, likely a response to a slowdown in the rise of rainfall and indeed a 512 

decrease in discharge (Fig 9 h), as well as perhaps the effect of temperature crossing a 513 

threshold. The response of the overall loss of terrestrial C to the LOAC (i.e. the ratio of 514 

LOAC/NPP, Fig. 11 e) is relatively similar to the response of the individual aquatic fluxes but 515 

crucially, climate change exerts a much greater impact, contributing substantially to an increase 516 

in the loss of terrestrial NPP to the LOAC in the 1960s, and again in the second half of the 21st 517 

century. These changes closely coincide with the pattern of rainfall and in particular with 518 

changes in discharge (Fig. 9 h). 519 

Overall temperature and rainfall increase by 18% and 14% from 24°C to 28°C and 1457mm to 520 

1654mm respectively, but in Fig. A2 one can see that this increase is non-uniform across the 521 

basin. Generally speaking, the greatest increase in temperature occurs in the south of the basin 522 

while it is the east that sees the largest rise in rainfall (Fig. A2). Land-use changes are similarly 523 

non-uniform (Fig. A2).  524 

The response of NBP and in NEP (Fig.11 f, g) to anthropogenic drivers is more complex. The 525 

simulated decrease in NBP towards the end of the run is influenced by a variety of factors; 526 

LUC and climate begin to have a negative effect on NBP (contributing to a decrease in NBP) 527 

at a similar time while the positive impact (contributing to an increase in NBP) of atmospheric 528 

CO2 begins to slow down and eventually level-off (Fig.11 g). LUC continues to have a positive 529 

effect on NEP (Fig.11 f) due to the fact that the expanding C4 crops have a higher NPP than 530 
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forests, while it has an overall negative effect on NBP at the end of the simulation due to the 531 

inclusion of emissions from crop harvest. 532 

 533 

Figure 10: Annual C budget (NBP) for the Congo basin for; left, the Year 1861 and right, the 534 
Year 2099, simulated with ORCHILEAK. NPP is terrestrial net primary productivity, TF is 535 
throughfall, SHR is soil heterotrophic respiration, FCO2 is aquatic CO2 evasion, LOAC is C 536 
leakage to the land-ocean aquatic continuum (FCO2 + 𝐋𝐄Aquatic), LUC is flux from Land-use 537 
change, and 𝐋𝐄Aquatic is the export C flux to the coast. Range represents the standard deviation 538 
(SD). 539 

 540 

 541 

 542 

 543 
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 544 

 545 

 546 

 

Figure 11: Contribution of anthropogenic drivers; atmospheric CO2 concentration (CO2 atm), 

climate change (CC) and land use change (LUC) to changes in the various carbon fluxes along 

the Congo Basin, under IPSL-CM5A-LR model outputs for RCP 6.0 (Frieler et al., 2017). 
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4. Discussion 547 

4.1 Congo basin carbon balance 548 

We simulate a mean present-day terrestrial NPP of approximately 1,500 g C m-2 yr-1 (Fig. 6), 549 

substantially larger than the MODIS derived value of around 1,000 g C m-2 yr-1 from Yin et al. 550 

(2017) across central Africa, though it is important to note that satellite derived estimates of 551 

NPP can underestimate the impact of CO2 fertilization, namely its positive effect on 552 

photosynthesis (De Kauwe et al., 2016; Smith et al., 2019).  Our stock of the present-day living 553 

biomass of 41.1 Pg C is relatively close to the total Congo vegetation biomass of 49.3 Pg C 554 

estimated by Verhegghen et al. (2012) based on the analysis of MERIS satellite data. Moreover, 555 

our simulated Congo Basin soil C stock of 109 ±1.1 Pg C is consistent with the approximately 556 

120-130 Pg C across Africa between the latitudes 10°S to 10°N in the review of Williams et 557 

al. (2007), between which the Congo represents roughly 70% of the land area. Therefore, their 558 

estimate of soil C stocks across the Congo only, would likely be marginally smaller than ours. 559 

It is also important to note that neither estimate of soil C stocks explicitly take into account the 560 

newly discovered peat store of 30 Pg C (Dargie et al., 2017) and therefore both are likely to 561 

represent conservative values. In addition, Williams et al. (2007) estimate the combined fluxes 562 

from conversion to agriculture and cultivation to be around 100 Tg C yr-1 in tropical Africa 563 

(largely synonymous with the Congo Basin), which is relatively close to our present 564 

daypresent-day estimate of harvesting + land-use change flux of 170 Tg C yr-1. 565 

Our results suggest that CO2 evasion from the water surfaces of the Congo is sustained by the 566 

transfer of dissolved CO2 and DOC with 226 Tg C and 73 Tg C, respectively, from wetland 567 

soils and vegetation to the aquatic system each year (1980-2010, Fig. 8). Moreover, we find 568 

that a disproportionate amount of this transfer occurs within the Cuvette Centrale wetland (Fig. 569 

1, Fig. 8) in the centre of the basin, in agreement with a recent study by Borges et al. (2019). 570 

In our study, this is due to the large areal proportion of inundated land, facilitating the exchange 571 
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between soils and aquatic systems.  Borges et al. (2019) conducted measurements of DOC and 572 

pCO2, amongst other chemical variables, along the Congo mainstem and its tributaries from 573 

Kinshasa in the West of the basin (beside Brazzaville, Fig. 1) through the Cuvette Centrale to 574 

Kisangani in the East (close to station d in Fig. 1). They found that both DOC and pCO2 575 

approximately doubled from Kisangani downstream to Kinshasa (Table 3), and demonstrated 576 

that this variation is overwhelmingly driven by fluvial-wetland connectivity, highlighting the 577 

importance of the vast Cuvette Centrale wetland in the aquatic C budget of the Congo basin. 578 

Our estimate of the integrated present-day aquatic CO2 evasion from the river surface of the 579 

Congo basin (32 Tg C yr-1) is the same as that estimated by Raymond et al. (2013) (also 32 Tg 580 

C yr-1), downscaled over the same basin area, but smaller than the 59.7 Tg C yr-1 calculated by 581 

Lauerwald et al. (2015) and far smaller than that of Borges et al. (2015a), 133-177 Tg C yr-1 or 582 

Borges et al. (2019), 251±46 Tg C yr-1. The recent study of Borges et al. (2019) is based on by 583 

far and away the most extensive dataset of Congo basin pCO2 measurements to date and thus 584 

suggests that we substantially underestimate total riverine CO2 evasion. As previously 585 

discussed, we simulate the broad spatial and temporal variation in observed DOC and pCO2 586 

(2015a, b, Fig. 5, Table 3) relatively well. It is therefore somewhat surprising that our basin-587 

wide estimate of riverine CO2 evasion is so different. Below we discuss some possible 588 

explanations for this discrepancy related to methodological differences and limitations. 589 

One potential cause for the differences could be the river gas exchange velocity k. However, 590 

Wwe applied a mean riverine gas exchange velocity k600 of 3.5 m d-1 which is similar to the 2.9 591 

m d-1 used by Borges et al. (2015a) but substantially smaller than the mean of approximately 8 592 

m d-1 estimated across Strahler orders 1-10 in Borges et al. (2019) (taking the contributing 593 

water surface area of each Strahler order into account). AMoreover, a sensitivity analysis was 594 

performed in Lauerwald et al. (2017) which showed that in the physical approach of 595 

ORCHILEAK, CO2 evasion is not very sensitive to the k value, unlike data-driven models. 596 
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Namely, Lauerwald et al (2017) showed that an increase or decrease of k600 for rivers and 597 

swamps (flooded forests) of 50% only led to 1% and -4% change in total CO2 evasion, 598 

respectively. Therefore, we can discount k as a major source of the discrepancy. In 599 

ORCHILEAK, k does have an important impact on pCO2; i.e. a lower k value will increase 600 

pCO2, but this will also lead to a steeper water-air CO2 gradient and so ultimately to 601 

approximately the same FCO2 over time. In other words, over the scales covered in this 602 

research (the large catchment area and water residence times of the Congo), FCO2 is mainly 603 

controlled by the allochthonous inputs of carbon to the river network, because by far the largest 604 

fraction of these C inputs is leaving the system via CO2 emission to the atmosphere (as opposed 605 

to being laterally transferred downstream). Therefore, we do not consider k to be a major source 606 

of the discrepancy. Additionally, our k600 value of 0.65 m d-1 for forested floodplains (based on 607 

Richey et al., 2002) compares well to recent a study which directly measured k600 on two 608 

different flooded forest sites in the Amazon basin, observing a range of 0.24 to 1.2 m d-1 609 

(MacIntyre et al., 2019). 610 

Another potential reason for our smaller riverine CO2 evasion could be river surface area. We 611 

simulate a mean present day (1980-2010) total river surface area of 25,900 km2, compared to 612 

the value of 23,670 km2 used in Borges et al (2019, supplementary information) and so 613 

similarly we think that this can be discounted as a major source of discrepancy. However, it 614 

should be noted that both estimates are high compared to the recent estimate of 17,903 km2 615 

based on analysis of Landsat images (Allen & Pavelsky, 2018). 616 

The difference in our simulated riverine CO2 evasion compared to the empirically derived 617 

estimate of Borges et al. (2019), could be caused by the lack of representation of aquatic plants 618 

in the ORCHILEAK model. Borges et al. (2019) used the stable isotope composition of δ13 C-619 

DIC to determine the origin of dissolved CO2 in the Congo River system and found that the 620 

values were consistent with a DIC input from the degradation of organic matter, in particular 621 
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from C4 plants. Crucially, they further found that the δ13 C-DIC values were unrelated to the 622 

contribution of terra-firme C4 plants, rather that they were more consistent with the degradation 623 

of aquatic C4 plants, namely macrophytes. ORCHILEAK does not represent aquatic plants, and 624 

the wider LSM ORCHIDEE does not have an aquatic macrophyte PFT either (though root 625 

respiration of floodplain plants for the PFTs represented, is accounted for as a C source). This 626 

could at the very least partly explain our conservative estimate of river CO2 evasion, given that 627 

tropical macrophytes have relatively elevated high NPPs. Rates as high as 3,500 g C m-2 yr-1 628 

have been measured on floodplains in the Amazon (Silva et al., 2009). While this value is 629 

higher than the values simulated in the Cuvette Centrale by ORCHILEAK (Figure 8), they are 630 

of the same order of magnitude and so this alone cannot fully explain the discrepancy compared 631 

to the results of Borges et al. (2019). In the Amazon basin it has been shown that wetlands 632 

export approximately half of their gross primary production (GPP) to the river network 633 

compared to upland (terra-firme) ecosystems which only export a few percent (Abril et al. 634 

2013). More importantly, Abril et al. (2013) found that tropical aquatic macrophytes export 635 

80% of their GPP compared to just 36% for flooded forest. Therefore, the lack of a bespoke 636 

macrophyte PFT is indeed likely to be one reason for the discrepancy between our results and 637 

those of Borges, but largely due to their particularly high export efficiency to the river-638 

floodplain network as opposed to differences in NPP. While being a significant limitation, 639 

creating and incorporating a macrophyte PFT would be a substantial undertaking given that the 640 

authors are unaware of any published dataset which has systematically mapped their 641 

distribution and abundance. It is important to note that while ORCHILEAK does not include 642 

the export of C from aquatic macrophytes it also neglects their NPP. Moreover, most aquatic 643 

macrophytes described in the literature have short (<1 year) life-cycles (Mitchel & Rogers, 644 

1985). As such, while this model limitation is likely one of the causes for our relatively low 645 
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estimate of riverine CO2 evasion, it will only have a limited net effect on our estimate of the 646 

overall annual C balance (NBP, NEP) of the Congo basin.  647 

Finally, another cause for the difference in riverine CO2 evasion could be that the resolution of 648 

ORCHILEAK (0.5 degree  river network and 1° for C fluxes) is not sufficient to fully capture 649 

the dynamics of the smallest streams of the Congo Basin which have been shown to have the 650 

highest DOC and CO2 concentrations (Borges et al., 2019). Indeed, ORCHILEAK typically 651 

does not simulate the highest observed pCO2 measurements of the smallest tributaries (i.e. > 652 

16,000 ppm). This is partly because for the fast reservoir (headwaters) in ORCHILEAK we 653 

assume full pCO2 equilibrium with the atmosphere over one full day, which prevents very high 654 

pCO2 values from building in the water column. 655 

Despite these limitations, it is important to note that in our simulations, the evasion flux from 656 

rivers only contributes 15% of total aquatic CO2 evasion, and including the flux from 657 

wetlands/floodplains, we produce a total of 235 Tg C yr-1.  Moreover, the majority of this 658 

evasion occurs in the Cuvette Centrale (Fig. 8) which suggests that while ORHILEAK fails to 659 

attribute a large portion of this flux to small rivers (owing to the coarse resolution of the river 660 

network) we nonetheless do capture the source of carbon. In other words, in ORCHILEAK the 661 

majority of this carbon evades directly from the floodplain and wetlands of the Cuvette 662 

Centrale as opposed to the small rivers. 663 

Our simulated export of C to the coast of 15 (15.3) Tg C yr-1 is virtually identical to the 664 

TOC+DIC export estimated by Borges et al. (2015a) of 15.5 Tg C yr-1, which is consistent with 665 

the fact that we simulate a similar spatial variation of DOC concentrations (Fig. 8 and Fig. 1 666 

for locations). It is also relatively similar to the 19 Tg C yr-1 (DOC + DIC) estimated by 667 

Valentini et al. (2014) in their synthesis of the African carbon budget. Valentini et al. (2014) 668 

used the largely empirical based Global Nutrient Export from WaterSheds (NEWS) model 669 
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framework and they point out that Africa was underrepresented in the training data used to 670 

develop the regression relationships which underpin the model, and thus this could explain the 671 

small disagreement.  672 

Of the total 15 Tg C yr-1 exported to the coast, we simulate a 2.4 Tg C yr-1 component of 673 

dissolved CO2, which is relatively similar to the empirically derived estimate of the total DIC 674 

export of 3.3 Tg C yr-1 calculated in Wang et al. (2013). According to Wang et al., dissolved 675 

CO2 accounts for the majority (1.9 Tg C yr-1) with the rest being the weathering derived flux 676 

of HCO3
-. Thus, the discrepancy between the two estimates is likely to be largely caused by 677 

our lack of accounting for the weathering derived flux (HCO3
-) which they estimate at 1.4 Tg 678 

C yr-1. In summary, despite this model limitation the results of Wang et al. (2013) suggest that 679 

we still capture the majority of the DIC flux. 680 

 681 

4.2 Trends in terrestrial and aquatic carbon fluxes 682 

There is relatively sparse observed data available on the long-term trends of terrestrial C fluxes 683 

in the Congo.  Yin et al. (2017) used MODIS data to estimate NPP between 2001 and 2013 684 

across central Africa. They found that NPP increased on average by 10 g C m-2 per year, while 685 

we simulate an average annual increase of 4 g C m-2 yr-1 over the same period across the Congo 686 

Basin. The two values are not directly comparable as they do not cover precisely the same 687 

geographic area but it is encouraging that our simulations exhibit a similar trend to remote 688 

sensing data. As previously noted, MODIS derived estimates of NPP do not fully include the 689 

effect of CO2 fertilization (de Kauwe et al., 2016) whereas ORCHILEAK does. Thus, the 690 

MODIS NPP product may underestimate the increasing trend in NPP, which would bring our 691 

modeled trend further away from this dataset. On the other hand, forest degradation effects and 692 
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recent droughts have been associated with a decrease of greenness (Zhou et al., 2014) and 693 

above ground biomass loss (Qie et al., 2019) in tropical forests. 694 

Up to a point, our results also concur with estimates based on the upscaling of biomass 695 

observations (Lewis et al., 2009; Hubau et al., 2019). Lewis et al. (2009) up-scaled forest plot 696 

measurements to calculate that intact tropical African forests represented a net uptake of 697 

approximately 300 Tg C yr-1 between 1968 and 2007 and this is consistent with our NEP 698 

estimate of 275 Tg C yr-1 over the same period. However, more recently an analysis based on 699 

an extension of the same dataset found that the above ground C sink in tropical Africa was 700 

relatively stable from 1985 to 2015 (Hubau et al., 2020). 701 

A major source of the uncertainty associated with future projections of NPP and NEP comes 702 

from our limited understanding and representation of the CO2 fertilization effect. Recent 703 

analysis of data from some of the longest-running Free-Air CO2 Enrichment (FACE) sites, 704 

consisting of early-successional temperate ecosystems, found a 29.1 ± 11.7% stimulation of 705 

biomass over a decade (Walker et al., 2019). A meta-analysis (Liu et al., 2019) of seven 706 

temperate FACE experiments combined with process-based modelling also found substantial 707 

sensitivity (0.64 ± 0.28 PgC yr−1 per hundred ppm) of biomass accumulation to atmospheric 708 

CO2 increase, and the same study showed that ORCHIDEE model simulations were largely 709 

consistent with the experiments. However, other FACE experiments on mature temperate 710 

forests (Körner et al., 2005), as well as eucalyptus forests bring into question whether the 711 

fertilization effects observed in temperate FACE experiments can be extrapolated to other 712 

ecosystems. For example, the Swiss FACE study, a deciduous mature forest, found no 713 

significant biomass increase with enhanced CO2 (Körner et al., 2005), while a FACE 714 

experiment on a mature eucalyptus forest in Australia found that while CO2 stimulated an 715 

increase in C uptake through GPP, this did not carry to the ecosystem level, largely as a result 716 

of a concurrent increase in soil respiration (Jiang et al., 2020). Unfortunately, no results are yet 717 
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available from any tropical FACE experiments, though the Amazon FACE experiment is 718 

underway and the eventual results will be crucial in developing our understanding of the CO2 719 

fertilization effect beyond the temperate zone. 720 

With these limitations in our understanding of tropical forest ecosystems in mind, over the 721 

entire simulation period (1861-2099) we estimate that aquatic CO2 evasion will increase by 722 

79% and the export of C to the coast by 67%. While, there are no long-term observations of 723 

aquatic CO2 evasion in the Congo, a recent paper examined trends in observed DOC fluxes in 724 

the Congo at Brazzaville/Kinshasa over the last 30 years (Moukandi N’kaya et al. 2020). They 725 

found a 45% increase in the annual flux of DOC from 11.1 Tg C yr-1 (mean from 1987-1993) 726 

to 16.1 Tg C yr-1 (mean from 2006-2017). Comparing the same two periods, we find a smaller 727 

increase of 15% from 12.3 Tg C yr-1 to 14.2 Tg C yr-1. While our increase is substantially 728 

smaller, these observations are still over relatively short time scales and thus interannual 729 

variations could have considerable influence over the means of the two periods. Irrespectively 730 

it is encouraging that observations concur with the overall simulated increasing trend. Perhaps 731 

most interesting is that Moukandi N’kaya et al. (2020) attribute this increase to hydrological 732 

changes and specifically an increase in flood events in the central basin (including the Cuvette 733 

Centrale). Over this period, we too attribute the increase in carbon fluxes to the coast in part to 734 

climate change (Fig. 11 d) and over the full simulation period, the largest increase in DOC and 735 

CO2 leaching into the aquatic system occurs within the Cuvette Centrale (Fig. A1). 736 

Comparing our results to models of other basins, our simulated increases in outgassing (79%)  737 

and the export of C to the coast (67%).This increase areis considerably higher greater than the 738 

23% and 27% rises in outgassing and export predicted for the Amazon basin (Lauerwald et al., 739 

2020), over the same period and under the same scenario. This is largely due to the fact climate 740 

change is predicted to have a substantial negative impact on the aquatic C fluxes in the Amazon, 741 

something that we do not find for the Congo where rainfall is projected to substantially increase 742 



49 
 

over the 21st century (RCP 6.0). In the Amazon, Lauerwald et al. (2020) show that while there 743 

are decadal fluctuations in precipitation and discharge, total values across the basin remain 744 

unchanged in 2099 compared to 1861. However, changes in the spatial distribution of 745 

precipitation mean that the total water surface area actually decreases in the Amazon. Indeed, 746 

while we find an increase in the ratio of C exports to the LOAC/NPP from 3 to 5%, Lauerwald 747 

et al. (2020) find a comparative decrease.  748 

Our simulated increase in DOC export to the coast up to the present day is smaller than findings 749 

recently published for the Mississippi River using the Dynamic Land Ecosystem Model 750 

(DLEM, Ren at al., 2016). In addition, the Mississippi study identified LUC including land 751 

management practices (e.g. irrigation and fertilization), followed by change in atmospheric 752 

CO2, as the biggest factors in the 40% increase in DOC export to the Gulf of Mexico (Ren et 753 

al., 2016). Another recent study (Tian et al., 2015), found an increase in DIC export from 754 

eastern North America to the Atlantic Ocean from 1901-2008 but no significant trend in DOC. 755 

They demonstrated that climate change and increasing atmospheric CO2 had a significant 756 

positive effect on long-term C export while land-use change had a substantial negative impact.  757 

4.3 Limitations and further model developments 758 

It is important to note that we can have greater confidence in the historic trend (until present-759 

day), as the future changes are more reliant on the skill of Earth System model predictions and 760 

of course on the accuracy of the RCP 6.0 scenario. As discussed above, our understanding and 761 

representation of CO2 fertilization, especially in the tropics, is a major limitation. Moreover, 762 

the majority of land surface models, ORCHILEAK included in its current iteration, do not 763 

represent the effect of nutrient limitation on plant growth meaning that estimates of land C 764 

uptake may be too large (Goll et al., 2017). There are also considerable uncertainties associated 765 

with future climate projections in the Congo basin (Haensler et al., 2013). Nutrient limitation 766 
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on growth and a better representation of effect of enhanced CO2, particularly with regards to 767 

soil respiration (Jiang et al., 2020) and tree mortality (Hubau et al., 2020), are two crucial 768 

aspects which need to be further developed.   769 

Additionally, we do not account for methane fluxes from Congo wetlands, estimated at 1.6 to 770 

3.2 Tg (CH4) per year (Tathy et al., 1992), and instead assume that all C is evaded in the form 771 

of CO2. Another limitation is the lack of accounting for bespoke peatland dynamics in the 772 

ORCHILEAK model. ORCHILEAK is able to represent the general reduction in C 773 

decomposition in water-logged soils and indeed Hastie et al. (2019) demonstrated that 774 

increasing the maximum floodplain extent in the Amazon Basin led to an increase in NEP 775 

despite fueling aquatic CO2 evasion because of the effect of reducing soil heterotrophic 776 

respiration.  Furthermore, ORCHILEAK uses a “poor soils” mask forcing file (Fig. 2 j) based 777 

on the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009), which 778 

prescribes reduced decomposition rates in low nutrient and pH soils (e.g. Podzols and 779 

Arenosols). The effect of the “poor soils” forcing can clearly be seen in the spatial distribution 780 

of the soil C stock in Fig. A3, where the highest C storage coincides with the highest proportion 781 

of poor soils. Interestingly, this does not include the Cuvette Centrale wetlands (Fig. 1), an area 782 

which was recently identified as containing the world’s largest intact tropical peatland and a 783 

stock of around 30 Pg C (Dargie at al., 2017). One potential improvement that could be made 784 

to ORCHILEAK would be the development of a new tailored “poor soils” forcing file for the 785 

Congo Basin which explicitly includes Histosols, perhaps informed by the Soil Grids database 786 

(Hengl et al., 2014), to better represent the Cuvette Centrale. This could in turn, be validated 787 

and/or calibrated against the observations of Dargie et al. (2017). A more long-term aim could 788 

be the integration/ coupling of the ORCHIDEE-PEAT module with ORCHILEAK. 789 

ORCHIDEE-PEAT (Qiu et al., 2019) represents peat as an independent sub-grid hydrological 790 

soil unit in which peatland soils are characterized by peat-specific hydrological properties and 791 
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multi-layered transport of C and water. Thus far, it has only been applied to northern peatlands, 792 

and calibrating it to tropical peatlands, along with integrating it within ORCHILEAK would 793 

require considerable further model development, but would certainly be a valuable longer-term 794 

aspiration. This could also be applied across the tropical region and would allow us to 795 

comprehensively explore the implications of climate change and land-use change for tropical 796 

peatlands. In addition, ORCHILEAK does not simulate the erosion and subsequent burial of 797 

POC within river and floodplain sediments. Although it does not represent the lateral transfer 798 

of POC, it does incorporate the decomposition of inundated litter as an important source of 799 

DOC and dissolved CO2 to the aquatic system; i.e. it is assumed that POC from submerged 800 

litter decomposes locally in ORCHILEAK. Moreover, previous studies have found that DOC 801 

as opposed to POC (Spencer et al., 2016; Bouillon et al., 2012) overwhelmingly dominates the 802 

total load of C in the Congo.  803 

The representation of the rapid C loop of aquatic macrophytes should also be made a priority 804 

in terms of improving models such as ORCHILEAK, particularly in the tropics. As previously 805 

discussed, ORCHILEAK also fails to account for the weathering derived flux (HCO3
-). Finally, 806 

the issue of shifting cultivation demands further attention; at least for the present day a shifting 807 

cultivation forcing file could be developed based on remote sensing data (Tyukavina et al., 808 

2018). For additional discussion of the limitations of ORCHILEAK, please also see Lauerwald 809 

et al. (2017) and Hastie et al. (2019). 810 

5. Conclusions 811 

For the present day, we show that aquatic C fluxes, and in particular CO2 evasion, are important 812 

components of the Congo Basin C balance, larger than for example the combined fluxes from 813 

LUC and harvesting, with around 4% of terrestrial NPP being exported to the aquatic system 814 

each year. Our simulations show that these fluxes may have undergone considerable 815 
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perturbation since 1861 to the present day, and that under RCP 6.0 this perturbation could 816 

continue; over the entire simulation period (1861-2099), we estimate that aquatic CO2 evasion 817 

will increase by 79% and the export of C to the coast by 67%. We further find that the ratio of 818 

C exports to the LOAC/NPP could increase from 3 to 5%, driven by both rising atmospheric 819 

CO2 concentrations and climate change.  This calls for long-term monitoring of C levels and 820 

fluxes in the rivers of the Congo basin, and further investigation of the potential impacts of 821 

such change. Our results also highlight the limitations of the current generation of land surface 822 

models and call for investment into further model development. 823 
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(2017)- https://doi.org/10.5194/gmd-10-3821-2017-supplement  830 

For details on how to install ORCHIDEE and its various branches, please see the user guide: 831 

http://forge.ipsl.jussieu.fr/orchidee/ wiki/Documentation/UserGuide 832 

Author contribution. AH, RL, PR and PC all contributed to the conceptualization of the study. 833 

RL developed the model code, AH developed the novel forcing files for Congo, and AH 834 

performed the simulations. FP provided the GIEMS dataset for model validation. AH prepared 835 

the manuscript with contributions from all co-authors. RL and PR provided supervision and 836 

guidance to AH throughout the research. PR acquired the primary financial support that 837 

supported this research.   838 

Competing interests. The authors declare that they have no conflict of interest. 839 

http://forge.ipsl.jussieu.fr/orchidee/browser#tags/ORCHIDEE_1_9_6/ORCHIDEE


53 
 

Financial support. Financial support was received from the European Union's Horizon 2020 840 

research and innovation programme under the Marie Sklodowska‐ Curie grant agreement No. 841 

643052 (C‐CASCADES project). AH acknowledges funding from the UK Natural 842 

Environment Research Council (NE/R000751/1). PR acknowledges funding from the European 843 

Union's Horizon 2020 research and innovation programme under Grant Agreement 776810 844 

(project VERIFY). RL acknowledges funding from the ANR ISIPEDIA ERA4CS project and 845 

from the French state aid managed by the ANR under the 846 

‘Investissements d’avenir’ programme with the reference ANR-16-CONV-0003.  847 

 848 

References 849 

Abril, G., Martinez, J.-M., Artigas, L. F., Moreira-Turcq, P., Benedetti, M. F., Vidal, L., … 850 

Roland, F. (2013). Amazon River carbon dioxide outgassing fuelled by wetlands. Nature, 851 

505, 395. Retrieved from http://dx.doi.org/10.1038/nature12797 852 

Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., & Tranvik, L. J. 853 

(2009). The boundless carbon cycle. Nature Geoscience, 2, 598. Retrieved from 854 

https://doi.org/10.1038/ngeo618 855 

Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. Science, 856 

361(6402), 585–588. https://doi.org/10.1126/science.aat0636 857 

Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; Da Silva, J.S.; Prigent, C.; 858 

Seyler, F. Satellite-based estimates of surface water dynamics in the Congo River Basin. Int. 859 

J. Appl. Earth Obs. Geoinf. 2018, 196–209 860 

Borges, A. V, Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., 861 

… Bouillon, S. (2015)a. Globally significant greenhouse-gas emissions from African inland 862 

waters. Nature Geoscience, 8, 637. Retrieved from https://doi.org/10.1038/ngeo2486 863 

Borges, A. V, Abril, G., Darchambeau, F., Teodoru, C. R., Deborde, J., Vidal, L. O., … 864 

Bouillon, S. (2015)b. Divergent biophysical controls of aquatic CO2 and CH4 in the World’s 865 

two largest rivers. Scientific Reports, 5, 15614. https://doi.org/10.1038/srep15614 866 

Borges, A. V., Darchambeau, F., Lambert, T., Morana, C., Allen, G. H., Tambwe, E., 867 

Toengaho Sembaito, A., Mambo, T., Nlandu Wabakhangazi, J., Descy, J.-P., Teodoru, C. R., 868 

and Bouillon, S (2019).: Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the 869 

Congo River network overwhelmingly driven by fluvial-wetland connectivity, 870 

Biogeosciences, 16, 3801–3834, https://doi.org/10.5194/bg-16-3801-2019. 871 

https://doi.org/10.1038/srep15614
https://doi.org/10.5194/bg-16-3801-2019


54 
 

Bouillon, S., Yambélé, A., Spencer, R. G. M., Gillikin, D. P., Hernes, P. J., Six, J., Merckx, 872 

R., and Borges, A. V.: Organic matter sources, fluxes and greenhouse gas exchange in the 873 

Oubangui River (Congo River basin), Biogeosciences, 9, 2045–2062, 874 

https://doi.org/10.5194/bg-9-2045-2012, 2012. 875 

Bouillon, S., Yambélé, A., Gillikin, D. P., Teodoru, C., Darchambeau, F., Lambert, T., & 876 

Borges, A. V. (2014). Contrasting biogeochemical characteristics of the Oubangui River and 877 

tributaries (Congo River basin). Scientific Reports, 4, 5402. Retrieved from 878 

https://doi.org/10.1038/srep05402 879 

Bowring, S. P. K., Lauerwald, R., Guenet, B., Zhu, D., Guimberteau, M., Tootchi, A., 880 

Ducharne, A., and Ciais, P (2019)a.: ORCHIDEE MICT-LEAK (r5459), a global model for 881 

the production, transport, and transformation of dissolved organic carbon from Arctic 882 

permafrost regions – Part 1: Rationale, model description, and simulation protocol, Geosci. 883 

Model Dev., 12, 3503–3521, https://doi.org/10.5194/gmd-12-3503-2019, 2019. 884 

Bowring, S. P. K., Lauerwald, R., Guenet, B., Zhu, D., Guimberteau, M., Regnier, P., 885 

Tootchi, A., Ducharne, A., and Ciais, P (2019)b.: ORCHIDEE MICT-LEAK (r5459), a global 886 

model for the production, transport and transformation of dissolved organic carbon from 887 

Arctic permafrost regions, Part 2: Model evaluation over the Lena River basin, Geosci. 888 

Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-322, in review, 2019. 889 

Camino-Serrano, M., Guenet, B., Luyssaert, S., Ciais, P., Bastrikov, V., De Vos, B., Gielen, 890 

B., Gleixner, G., Jornet-Puig, A., Kaiser, K., Kothawala, D., Lauerwald, R., Peñuelas, J., 891 

Schrumpf, M., Vicca, S., Vuichard, N., Walmsley, D., and Janssens, I. A.: ORCHIDEE-892 

SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics 893 

along vertical soil profiles in Europe, Geosci. Model Dev., 11, 937–957, 894 

https://doi.org/10.5194/gmd-11-937-2018, 2018 895 

CBFP (Congo Basin Forest Partnership) (2009). The forests of the Congo Basin — State of 896 

the Forest 2008, Publications Office of the European 897 

Union, Luxembourg (2009), 10.2788/32259 898 

Ciais, P., Piao, S.-L., Cadule, P., Friedlingstein, P., & Chédin, A. (2009). Variability and 899 

recent trends in the African terrestrial carbon balance. Biogeosciences, 6(9), 1935–1948. 900 

https://doi.org/10.5194/bg-6-1935-2009 901 

Ciais, P., Yao, Y., Gasser, T., Baccini, A., Wang, Y., Lauerwald, R., … Zhu, D. (2020). 902 

Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic 903 

respiration. National Science Review. https://doi.org/10.1093/nsr/nwaa145 904 

Cochonneau, G., Sondag, F., Guyot, J.-L., Geraldo, B., Filizola, N., Fraizy, P., Laraque, A., 905 

Magat, P., Martinez, J.-M., Nor iega, L., Oliveira, E., Ordonez, J., Pombosa, R., Seyler, F., 906 

Sidgwick, J., and Vauchel, P.: The environmental observation and research project, ORE 907 

HYBAM, and the rivers of the Amazon basin, in: Climate Variability and Change – 908 

Hydrological Impacts, IAHS Publ. 308, edited by: Demuth, S., Gustard, A., Planos, E., 909 

Scatena, F., and Servat, E., IAHS Press, UK, 44–50, 2006 910 

Coynel, A., P. Seyler, H. Etcheber, M. Meybeck, and D. Orange (2005), Spatial and seasonal 911 

dynamics of total suspended sediment and organic carbon species in the Congo River, Global 912 

Biogeochem. Cycles, 19, GB4019, doi:10.1029/2004GB002335. 913 

https://doi.org/10.1038/srep05402
https://www.sciencedirect.com/science/article/pii/S0034425712000430#bbb0220
https://doi.org/10.2788/32259
https://doi.org/10.5194/bg-6-1935-2009
https://doi.org/10.1029/2004GB002335


55 
 

Creese, A., Washington, R., & Jones, R. (2019). Climate change in the Congo Basin: 914 

processes related to wetting in the December–February dry season. Climate Dynamics, 53(5), 915 

3583–3602. https://doi.org/10.1007/s00382-019-04728-x 916 

Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., & 917 

Ifo, S. A. (2017). Age, extent and carbon storage of the central Congo Basin peatland 918 

complex. Nature, 542, 86. Retrieved from https://doi.org/10.1038/nature21048 919 

De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C. and Terrer. C. (2016) Satellite 920 

based estimates underestimate the effect of CO2 fertilisation on net primary 921 

productivity. Nature Climate Change, 6, 892-893 922 

d'Orgeval, T., Polcher, J., & de Rosnay, P. (2008). Sensitivity of the West African 923 

hydrological cycle in ORCHIDEE to infiltration processes. Hydrology and Earth System 924 

Sciences, 12, 1387– 1401. https://doi.org/10.5194/hess-12-1387-2008 925 

Drake, T. W., Raymond, P. A., & Spencer, R. G. M. (2018). Terrestrial carbon inputs to 926 

inland waters: A current synthesis of estimates and uncertainty. Limnology and 927 

Oceanography Letters, 3(3), 132–142. http://doi.org/10.1002/lol2.10055 928 

Fan, L., Wigneron, J.-P., Ciais, P., Chave, J., Brandt, M., Fensholt, R., … Peñuelas, J. (2019). 929 

Satellite-observed pantropical carbon dynamics. Nature Plants, 5(9), 944–951. 930 

https://doi.org/10.1038/s41477-019-0478-9 931 

FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database (version 1.1), FAO, 932 

Rome, 2009. 933 

Fisher JB, Sikka M, Sitch S, Ciais P, Poulter B, Galbraith D, Lee J-E, Huntingford C, Viovy 934 

N, Zeng N, Ahlstro¨m A, Lomas MR, Levy PE, Frankenberg C, Saatchi S, Malhi Y. 2013 935 

African tropical rainforest net carbon dioxide fluxes in the twentieth century. Phil Trans R 936 

Soc B 368: 20120376.http://dx.doi.org/10.1098/rstb.2012.0376 937 

Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., … Yamagata, 938 

Y. (2017). Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-939 

Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev., 10(12), 940 

4321–4345. https://doi.org/10.5194/gmd-10-4321-2017 941 

Goll, D. S., Vuichard, N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., Peng, S., 942 

Sun, Y., Kvakic, M., Guimberteau, M., Guenet, B., Zaehle, S., Penuelas, J., Janssens, I., and 943 

Ciais, P.: A representation of the phosphorus cycle for ORCHIDEE (revision 4520), Geosci. 944 

Model Dev., 10, 3745-3770, https://doi.org/10.5194/gmd-10-3745-2017, 2017.  945 

Guimberteau, M., Drapeau, G., Ronchail, J., Sultan, B., Polcher, J., Martinez, J.-M., Prigent, 946 

C., Guyot, J.-L., Cochonneau, G., Espinoza, J. C., Filizola, N., Fraizy, P., Lavado, W., De 947 

Oliveira, E., Pombosa, R., Noriega, L., and Vauchel, P.: Discharge simulation in the sub-948 

basins of the Amazon using ORCHIDEE forced by new datasets, Hydrol. Earth Syst. Sci., 16, 949 

911–935, https://doi.org/10.5194/hess-16-911-2012, 2012. 950 

Gumbricht, T., Roman-Cuesta, R. M., Verchot, L., Herold, M., Wittmann, F., Householder, 951 

E., Murdiyarso, D. (2017). An expert system model for mapping tropical wetlands and 952 

peatlands reveals South America as the largest contributor. Global Change Biology, 23(9), 953 

3581–3599. https://doi.org/10.1111/gcb.13689 954 

https://doi.org/10.1038/nature21048
https://doi.org/10.5194/hess-12-1387-2008
http://doi.org/10.1002/lol2.10055
https://doi.org/10.5194/gmd-10-4321-2017
https://doi.org/10.1111/gcb.13689


56 
 

Haensler, A., Saeed, F. and Jacob, D. (2013): Assessment of projected climate change signals 955 

over central Africa based on a multitude of global and regional climate projections. In: 956 

Climate Change Scenarios for the Congo Basin. [Haensler A., Jacob D., Kabat P., Ludwig F. 957 

(eds.)]. Climate Service Centre Report No. 11, Hamburg, Germany, ISSN: 2192-4058 958 

Hastie, A., Lauerwald, R., Ciais, P., Regnier, P (2019). Aquatic carbon fluxes dampen the 959 

overall variation of net ecosystem productivity in the Amazon basin: An analysis of the 960 

interannual variability in the boundless carbon cycle. Global Change 961 

Biology,; 25: 2094– 2111. https://doi.org/10.1111/gcb.14620 962 

Hartmann, J., R. Lauerwald, and N. Moosdorf (2014), A brief overview of the GLObal RIver 963 

CHemistry Database, GLORICH, Procedia Earth Planet. Sci., 10, 23–27. 964 

Heinimann A, Mertz O, Frolking S, Egelund Christensen A, Hurni K, Sedano F, et al. (2017) 965 

A global view of shifting cultivation: Recent, current, and future extent. PLoS ONE 12(9): 966 

e0184479. https://doi.org/10.1371/journal.pone.0184479 967 

Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., 968 

… Ruiperez Gonzalez, M. (2014). SoilGrids1km-global soil information based on automated 969 

mapping. PLoS One, 9, e105992. https://doi.org/10.1371/journal.pone.0105992 970 

Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuní-Sanchez, A.; 971 

Daniels, A.K.; Ewango, C.E.N.; Fauset, S.; Mukinzi, J.M.; et al. Asynchronous carbon sink 972 

saturation in African and Amazonian tropical forests. Nature 2020, 579, 80–87. 973 

Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., … Wang, Y. P. 974 

(2011). Harmonization of land-use scenarios for the period 1500--2100: 600 years of global 975 

gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic 976 

Change, 109(1), 117. https://doi.org/10.1007/s10584-011-0153-2 977 

Jiang, M., Medlyn, B.E., Drake, J.E. et al. The fate of carbon in a mature forest under carbon 978 

dioxide enrichment. Nature 580, 227–231 (2020). https://doi.org/10.1038/s41586-020-2128-9 979 

Kim, H. (2017). Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions 980 

(Experiment 1) [Data set]. Data Integration and Analysis System (DIAS). 981 

https://doi.org/10.20783/DIAS.501 982 

Korner C, Asshoff R, Bignucolo O (2005) Carbon flux and growth in mature deciduous forest 983 

trees exposed to elevated CO2. Science, 309, 1360–1362. 984 

Lange., S (2017). "ISIMIP2b Bias-Correction Code," Zenodo, doi: 10.5281/zenodo.1069050 985 

Laudon, H., and I. Buffam (2008), Impact of changing DOC concentrations on the potential 986 

distribution of acid sensitive biota in a boreal stream network, Hydrol. Earth Syst. 987 

Sci., 12(2), 425–435. 988 

Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., & Regnier, P. A. G. (2015). Spatial 989 

patterns in CO2 evasion from the global river network. Global Biogeochemical Cycles, 29(5), 990 

534–554. https://doi.org/10.1002/2014GB004941 991 

Lauerwald, R., Regnier, P., Camino-Serrano, M., Guenet, B., Guimberteau, M., Ducharne, 992 

A., … Ciais, P. (2017). ORCHILEAK (revision 3875): a new model branch to simulate 993 

https://doi.org/10.1111/gcb.14620
https://doi.org/10.1371/journal.pone.0105992
https://doi.org/10.1007/s10584-011-0153-2
https://doi.org/10.20783/DIAS.501
https://doi.org/10.5281/zenodo.1069050


57 
 

carbon transfers along the terrestrial--aquatic continuum of the Amazon basin. Geoscientific 994 

Model Development, 10(10), 3821–3859. https://doi.org/10.5194/gmd-10-3In821-2017 995 

Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P; Ciais, P (2020): How simulations of 996 

the land carbon sink are biased by ignoring fluvial carbon transfers – A case study for the 997 

Amazon basin. One Earth, 10.1016/j.oneear.2020.07.009. 998 

Lee, H., Beighley, R. E., Alsdorf, D., Jung, H. C., Shum, C. K., Duan, J., … Andreadis, K. 999 

(2011). Characterization of terrestrial water dynamics in the Congo Basin using GRACE and 1000 

satellite radar altimetry. Remote Sensing of Environment, 115(12), 3530–3538. 1001 

https://doi.org/https://doi.org/10.1016/j.rse.2011.08.015 1002 

Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, 1003 

reservoirs and wetlands. Journal of Hydrology, 296(1–4), 1–22. 1004 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.03.028 1005 

Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., … 1006 

Wöll, H. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457, 1007 

1003. Retrieved from https://doi.org/10.1038/nature07771 1008 

Liu, Y., Piao, S., Gasser, T., Ciais, P., Yang, H., Wang, H., … Wang, T. (2019). Field-1009 

experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. 1010 

Nature Geoscience, 12(10), 809–814. https://doi.org/10.1038/s41561-019-0436-1 1011 

MacIntyre, S., Amaral, J. H. F., Barbosa, P. M., Cortés, A., Forsberg, B. R., & Melack, J. 1012 

M. (2019). Turbulence and gas transfer velocities in sheltered flooded forests of the Amazon 1013 

Basin. Geophysical Research 1014 

Letters, 46, 9628– 9636. https://doi.org/10.1029/2019GL083948 1015 

Masui, T., Matsumoto, K., Hijioka, Y., Kinoshita, T., Nozawa, T., Ishiwatari, S., Kato, E., 1016 

Shukla, P.R., Yamagata, Y., Kainuma, M., 2011. A emission pathway to stabilize at 6 W/m2 1017 

of radiative forcing, Climatic Change, doi:10.1007/s10584-011-0150-5. Morgan, M.G., 1018 

Adams, P., Keith, D.W., 2006. Elicitation of expert judgments of aerosol forcing. Climatic 1019 

Change 75, 195–214 1020 

Melack, J.M., Hess, L.L., Gastil, M., Forsberg, B.R., Hamilton, S.K., Lima, I.B. and Novo, 1021 

E.M. (2004), Regionalization of methane emissions in the Amazon Basin with microwave 1022 

remote sensing. Global Change Biology, 10: 530-544. doi:10.1111/j.1365-2486.2004.00763.x 1023 

Mitchell D.S., Rogers K.H. (1985) Seasonality/aseasonality of aquatic macrophytes in 1024 

Southern Hemisphere inland water. In: Davies B.R., Walmsley R.D. (eds) Perspectives in 1025 

Southern Hemisphere Limnology. Developments in Hydrobiology, vol 28. Springer, 1026 

Dordrecht 1027 

Moukandi N’kaya et al. (2020) Temporal Variability of Sediments, Dissolved Solids and 1028 

Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa, Geosciences 1029 

2020, 10, 341; doi:10.3390/geosciences10090341 1030 

Nash, J. E., and J. V. Sutcliffe. 1970. River flow forecasting through conceptual models: Part 1031 

1. A discussion of principles. J. Hydrology 10(3): 282-290 1032 

https://doi.org/10.5194/gmd-10-3In821-2017
https://doi.org/10.1038/nature07771
https://doi.org/10.1038/s41561-019-0436-1
https://doi.org/10.1029/2019GL083948
https://doi.org/10.1111/j.1365-2486.2004.00763.x


58 
 

O'Loughlin, F., M. A. Trigg, G. J.‐P. Schumann, and P. D. Bates (2013), Hydraulic 1033 

characterization of the middle reach of the Congo River, Water Resour. Res., 49, 5059–5070, 1034 

doi:10.1002/wrcr.20398. 1035 

Pan, S., Dangal, S. R. S., Tao, B., Yang, J., & Tian, H. (2015). Recent patterns of terrestrial 1036 

net primary production in Africa influenced by multiple environmental changes. Ecosystem 1037 

Health and Sustainability, 1(5), 1–15. https://doi.org/10.1890/EHS14-0027.1 1038 

Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B., and Matthews, 1039 

E. ( 2010), Interannual variability of surface water extent at the global scale, 1993–2004, J. 1040 

Geophys. Res., 115, D12111, doi:10.1029/2009JD012674. 1041 

Potapov, P. V, Turubanova, S. A., Hansen, M. C., Adusei, B., Broich, M., Altstatt, A., … 1042 

Justice, C. O. (2012). Quantifying forest cover loss in Democratic Republic of the Congo, 1043 

2000–2010, with Landsat ETM+ data. Remote Sensing of Environment, 122, 106–116. 1044 

https://doi.org/https://doi.org/10.1016/j.rse.2011.08.027 1045 

Potter, C., Klooster, S., & Genovese, V. (2012). Net primary production of terrestrial 1046 

ecosystems from 2000 to 2009. Climatic Change, 115(2), 365–378. 1047 

https://doi.org/10.1007/s10584-012-0460-2 1048 

Prigent, C., Papa, F., Aires, F., Rossow, W. B., and Matthews, E.: Global inundation 1049 

dynamics inferred from multiple satellite observations, 1993–2000, J. Geophys. Res., 112, 1050 

D12107, https://doi.org/10.1029/2006jd007847, 2007. 1051 

Qie, L., Telford, E. M., Massam, M. R., Tangki, H., Nilus, R., Hector, A., & Ewers, R. M. 1052 

(2019). Drought cuts back regeneration in logged tropical forests. Environmental Research 1053 

Letters, 14(4), 45012. https://doi.org/10.1088/1748-9326/ab0783 1054 

Qiu, C., Zhu, D., Ciais, P., Guenet, B., Peng, S., Krinner, G., Tootchi, A., Ducharne, A., and 1055 

Hastie, A.: Modelling northern peatland area and carbon dynamics since the Holocene with 1056 

the ORCHIDEE-PEAT land surface model (SVN r5488), Geosci. Model Dev., 12, 2961–1057 

2982, https://doi.org/10.5194/gmd-12-2961-2019, 2019.  1058 

R Core Team. (2013). R: A language and environment for statistical computing. [Available at 1059 

http://www.r-project.org.] 1060 

Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., . . . 1061 

Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503(7476), 1062 

355–359. Retrieved from https://doi.org/10.1038/nature12760 1063 

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., … 1064 

Thullner, M. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. 1065 

Nature Geosci, 6(8), 597–607. Retrieved from http://dx.doi.org/10.1038/ngeo1830 1066 

Ren, W., H. Tian, W.-J. Cai, S. E. Lohrenz, C. S. Hopkinson, W.-J. Huang, J. Yang, B. Tao, 1067 

S. Pan, and R. He (2016), Century long increasing trend and variability of dissolved organic 1068 

carbon export from the Mississippi River basin driven by natural and anthropogenic forcing, 1069 

Global Biogeochem. Cycles, 30, 1288–1299, doi:10.1002/ 2016GB005395. 1070 

https://doi.org/10.1002/wrcr.20398
https://doi.org/10.1890/EHS14-0027.1
https://doi.org/10.1029/2009JD012674
https://doi.org/10.1007/s10584-012-0460-2
https://doi.org/10.1038/nature12760
http://dx.doi.org/10.1038/ngeo1830


59 
 

Reynolds, C., Jackson, T. & Rawls, W. Estimating available water content by linking 424 the 1071 

FAO soil map of the world with global soil profile databases and pedo-transfer 425 functions. 1072 

Am. Geophys. Union Fall Meet. EOS Trans. Spring Meet. Suppl. 80, S132 426 (1999). 1073 

Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., & Hess, L. L. (2002). 1074 

Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric 1075 

CO2. Nature, 416(6881), 617– 620. https://doi.org/10.1038/416617a 1076 

Schimel D, Stephens BB, Fisher JB. 2015.Effect of increasing CO2 on the terrestrial carbon 1077 

cycle. Proceedings of the National Academy of Sciences, USA 112: 436–441 1078 

Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-Year High-Resolution 1079 

Global Dataset of Meteorological Forcings for Land Surface Modeling. Journal of Climate, 1080 

19(13), 3088–3111. https://doi.org/10.1175/JCLI3790.1 1081 

Silva, T.S.F., Costa, M.P.F. & Melack, J.M. Annual net primary production of macrophytes 1082 

in the eastern Amazon floodplain. Wetlands (2009) 29: 747. https://doi.org/10.1672/08-107.1 1083 

Smith, W.K., Fox, A.M., MacBean, N., Moore, D.J.P. and Parazoo, N.C. (2020), 1084 

Constraining estimates of terrestrial carbon uptake: new opportunities using long‐term 1085 

satellite observations and data assimilation. New Phytol, 225: 105-112. 1086 

doi:10.1111/nph.16055 1087 

Spencer, R. G. M., P. J. Hernes, B. Dinga, J. N. Wabakanghanzi, T. W. Drake, and J. Six 1088 

(2016), Origins, seasonality, and fluxes of organic matter in the Congo River, Global 1089 

Biogeochem. Cycles, 30, 1105–1121, doi: 10.1002/2016GB005427. 1090 

Sullivan, M. J. P., Talbot, J., Lewis, S. L., Phillips, O. L., Qie, L., Begne, S. K., … Zemagho, 1091 

L. (2017). Diversity and carbon storage across the tropical forest biome. Scientific Reports, 7, 1092 

39102. Retrieved from https://doi.org/10.1038/srep39102 1093 

Tathy, J. P., B. Cros, R. A. Delmas, A. Marenco, J. Servant, and M. Labat (1992), Methane 1094 

emission from flooded forest in central Africa, J. Geophys. Res., 97(D6), 6159–6168, 1095 

doi:10.1029/90JD02555. 1096 

Tian, H., Q. Yang, R. G. Najjar, W. Ren, M. A. M. Friedrichs, C. S. Hopkinson, and S. Pan 1097 

(2015), Anthropogenic and climatic influences on carbon fluxes from eastern North America 1098 

to the Atlantic Ocean: A process-based modeling study, J. Geophys. Res. Biogeosci., 120, 1099 

752–772, doi:10.1002/2014JG002760. 1100 

Tranvik, Lars J., Downing, John A., Cotner, James B., Loiselle, Steven A., Striegl, Robert 1101 

G., Ballatore, Thomas J., Dillon, Peter, Finlay, Kerri, Fortino, Kenneth, Knoll, Lesley 1102 

B., Kortelainen, Pirkko L., Kutser, Tiit, Larsen, Soren., Laurion, Isabelle, Leech, Dina 1103 

M., McCallister, S. Leigh, McKnight, Diane M., Melack, John M., Overholt, Erin, Porter, 1104 

Jason A., Prairie, Yves, Renwick, William H., Roland, Fabio, Sherman, Bradford 1105 

S., Schindler, David W., Sobek, Sebastian, Tremblay, Alain, Vanni, Michael J., Verschoor, 1106 

Antonie M., von Wachenfeldt, Eddie, Weyhenmeyer, Gesa A., (2009), Lakes and reservoirs 1107 

as regulators of carbon cycling and climate, Limnology and Oceanography, 54, doi: 1108 

10.4319/lo.2009.54.6_part_2.2298. 1109 

https://doi.org/10.1038/416617a
https://doi.org/10.1175/JCLI3790.1
https://doi.org/10.1672/08-107.1
https://doi.org/10.1111/nph.16055
https://doi.org/10.1038/srep39102
https://doi.org/10.1029/90JD02555


60 
 

Tyukavina, A., Hansen, M. C., Potapov, P., Parker, D., Okpa, C., Stehman, S. V, … 1110 

Turubanova, S. (2018). Congo Basin forest loss dominated by increasing smallholder 1111 

clearing. Science Advances, 4(11). https://doi.org/10.1126/sciadv.aat2993 1112 

Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., Ciais, 1113 

P., Grieco, E., Hartmann, J., Henry, M., Houghton, R. A., Jung, M., Kutsch, W. L., Malhi, Y., 1114 

Mayorga, E., Merbold, L., Murray-Tortarolo, G., Papale, D., Peylin, P., Poulter, B., 1115 

Raymond, P. A., Santini, M., Sitch, S., Vaglio Laurin, G., van der Werf, G. R., Williams, C. 1116 

A., and Scholes, R. J.: A full greenhouse gases budget of Africa: synthesis, uncertainties, and 1117 

vulnerabilities, Biogeosciences, 11, 381–407, doi:10.5194/bg11-381-2014, 2014 1118 

Verhegghen, A., Mayaux, P., de Wasseige, C., & Defourny, P. (2012). Mapping Congo Basin 1119 

vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest 1120 

areas estimation. Biogeosciences, 9(12), 5061–5079. https://doi.org/10.5194/bg-9-5061-2012 1121 

Viovy, N.. (2018). CRUNCEP Version 7 - Atmospheric Forcing Data for the Community 1122 

Land Model. Research Data Archive at the National Center for Atmospheric Research, 1123 

Computational and Information Systems Laboratory. http://rda.ucar.edu/datasets/ds314.3/ 1124 

Walker AP, De Kauwe MG, Medlyn BE, Zaehle S, Iversen CM, Asao S, Guenet B, Harper 1125 

A, Hickler T, Hungate BA et al. 2019. Decadal biomass increment in early secondary 1126 

succession woody ecosystems is increased by CO2 enrichment. Nature Communications 10: 1127 

454 1128 

Wang, Z. A., D. J. Bienvenu, P. J. Mann, K. A. Hoering, J. R. Poulsen, R. G. M. Spencer, and 1129 

R. M. Holmes (2013), Inorganic carbon speciation and fluxes in the Congo River, Geophys. 1130 

Res. Lett., 40, doi:10.1002/grl.50160 1131 

Weiss, L. C., Pötter, L., Steiger, A., Kruppert, S., Frost, U., & Tollrian, R. (2018). Rising 1132 

pCO2 in Freshwater Ecosystems Has the Potential to Negatively Affect Predator-Induced 1133 

Defenses in Daphnia. Current Biology, 28(2), 327–332.e3. 1134 

https://doi.org/https://doi.org/10.1016/j.cub.2017.12.022 1135 

Williams, C. A., Hanan, N. P., Neff, J. C., Scholes, R. J., Berry, J. A., Denning, A. S., and 1136 

Baker, D. A.: Africa and the global carbon cycle, Carbon Balance and Management, 2(3), 1137 

doi:10.1186/1750-0680-2-3, 2007. 1138 

Yin, S., Li, X., & Wu, W. (2017). Comparative analysis of NPP changes in global tropical 1139 

forests from 2001 to 2013. IOP Conference Series: Earth and Environmental Science, 57(1), 1140 

12009. Retrieved from http://stacks.iop.org/1755-1315/57/i=1/a=012009 1141 

Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Saatchi, S., Liu, Y. Y., … Hwang, T. (2014). 1142 

Widespread decline of Congo rainforest greenness in the past decade. Nature, 509(7498), 86–1143 

90. https://doi.org/10.1038/nature13265 1144 

Zhuravleva, I., Turubanova, S., Potapov, P., Hansen, M., Tyukavina, A., Minnemeyer, S., … 1145 

Thies, C. (2013). Satellite-based primary forest degradation assessment in the Democratic 1146 

Republic of the Congo, 2000-2010. Environmental Research Letters, 8(2), 24034. 1147 

https://doi.org/10.1088/1748-9326/8/2/024034 1148 

 1149 

http://rda.ucar.edu/datasets/ds314.3/
http://stacks.iop.org/1755-1315/57/i=1/a=012009


61 
 

 1150 

 1151 

  1152 



62 
 

Appendix A 1153 

 1154 

 1155 

Table A 2: Pearson correlation coefficient (r) between detrended carbon fluxes and 

detrended climate variables  

  SHR Aquatic 

CO2 

evasion 

Lateral C NEP Rain Temp. MEI 

NPP -0.48 0.68 0.72 0.90 0.64 -0.57 -0.09 

SHR 
 

-0.41 -0.48 -0.71 -0.32 0.76 0.04 

Aquatic CO2 

evasion 

  
0.92 0.41 0.87 -0.30 -0.21 

Lateral C 
   

0.52 0.81 -0.38 -0.15 

NEP 
    

0.40 -0.74 -0.01 

Rain 
     

-0.31 -0.26 

Temp.       0.03 

 

Table A 1: Performance statistics for modelled versus observed seasonality of discharge 

on the Congo at Brazzaville 

Climate forcing RSME NSE R2 Mean monthly discharge (m3 

s-1) 

ISIMIP 29% 0.20 0.23 38,944 

Princeton GPCC 40% -0.25 0.20 49,784 

 

GSWP3 46% -4.13 0.04 24,880 

 

CRUNCEP 65% -15.94 0.01 16,394 

 

Observed 

(HYBAM) 

   40,080 
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Figure A 1:Change (Δ, 2099 minus 1861) in the spatial distribution of a) terrestrial NPP, b) 

DOC leaching into the aquatic system, c) CO2 leaching into the aquatic system and d) aquatic 

CO2 evasion. All at a resolution of 1° 
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 1166 

 

Figure A 2: Change (Δ, 2099 minus 1861) in the spatial distribution of the principal climate and 

land-use drivers across the Congo Basin; a) mean annual temperature in °C, b) mean annual 

rainfall in mm yr-1, c)-h) mean annual maximum vegetated fraction for PFTs 2,3, 10,11,12 and 

13. All at a resolution of 1°. 
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Table A 3: Past (1861-1890), present-day (1981-2010) and future (2070-2099) mean 

values for important climate and land-use drivers across the Congo basin 

Period Temp. Rain. PFT2 PFT3 PFT10 PFT11 PFT12 PFT13 

1861-

1890 

24.0 1451 0.263 0.375 0.154 0.254 0.015 0.014 

1981-

2010 

25.2 1526 0.255 0.359 0.154 0.255 0.038 0.030 

2070-

2099 

28.2 1654 0.258 0.362 0.147 0.245 0.039 0.037 
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Figure A 3: Spatial distribution of simulated total carbon stored in soils for the present day (1981-

2020). 


