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Abstract. Anthropogenic climate change raises growing concerns about its potential catastrophic impacts on both ecosystems

and human societies. Yet, several studies on damages induced on the economy by unmitigated global warming have proposed a

much less worrying picture of the future, with only a few points decrease in the world GDP per capita by the end of the century,

even for a global warming above 4◦C. We consider here two different empirically estimated functions linking GDP growth or

GDP level to temperature at the country level and apply them to a global cooling of 4◦C in 2100, corresponding to a return to5

glacial conditions. We show that the alleged impact on global average GDP per capita runs from -1.8%, if temperature impacts

GDP level, to +36%, if the impact is rather on GDP growth. These results are then compared to the hypothetical environmental

conditions faced by humanity, taking the last glacial maximum as a reference. The modeled impacts on the world GDP appear

strongly underestimated, given the magnitude of climate and ecological changes recorded for that period. After discussing the

weaknesses of the aggregated statistical approach to estimate economic damages, we conclude that, if these functions cannot10

reasonably be trusted for such a large cooling, they should neither be considered as providing relevant information on potential

damages in the case of a warming of similar magnitude, as projected in the case of unabated greenhouse gas emissions.

Copyright statement.

1 Introduction

Since the first IPCC (1990) report, anthropogenic climate change has been the object of large research efforts. Increased15

knowledge has raised growing concerns about its potential catastrophic impacts on both ecosystems and human societies if

greenhouse gas (GHG) emissions continue unmitigated. In addition to the worsening of mean climate conditions in many

places, numerous studies emphasize the risks associated with increased frequency and/or magnitude of extreme events (e.g.

droughts, heat waves, storms, floods), rising sea level and glaciers melting (Stocker et al., 2013). These risks have drawn

attention to potential catastrophic consequences for the world economy (Weitzman, 2012; Dietz and Stern, 2015; Bovari et al.,20
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2018). Yet, several other studies on damages induced on the world economy by unmitigated global warming have proposed

a much less worrying picture of the future, with economic damages limited to only a few points of the world GDP1 (see Tol

(2018) for a review). Some authors could even conclude that “a century of climate change is likely to be no worse than losing a

decade of economic growth” and hence that “there are bigger problems facing humankind than climate change” (Tol, 2018, p.

6). Such results seem surprising when compared to the conclusions of the last IPCC report (Stocker et al., 2013) and to various25

rather alarming publications since then (Hansen et al., 2016; Mora et al., 2017; Steffen et al., 2018; Nolan et al., 2018). Damage

functions,2 at the heart of many macroeconomic analyses of climate change impacts, have however been heavily criticized for

their lack of empirical or theoretical foundations or for their inadequacy to evaluate the impact of climate change outside the

calibration range (Pindyck, 2013; Pottier, 2016; Pindyck, 2017; Pezzey, 2019).

Here, we want to further highlight the disconnect between climate sciences and economic damages projected at the global30

scale, focusing on econometric approaches. To do so, two different strategies could be considered:

– Carefully list all the climate and environmental changes, as described by climate models for the end of the century

(including extreme events, sea level rise, etc.) that are not accounted for by such damage functions and show that the

damages would be much larger than the projections obtained with these functions, as done by DeFries et al. (2019) for

assessments of climate change damages in general. This option would strongly rely on projections from current Earth35

system models and there are still many uncertainties, especially on potential tipping points in the climate system.

– Apply some econometric methods to a different, but rather well-known, past climate change for which not only results

from climate models are available but also various climate and environmental proxy data, and discuss the plausibility or

implausibility of the results.

We investigate this latest option, choosing the Last Glacial Maximum (LGM, about 20,000 years ago) as a test past period.40

On the one hand, the global temperature increase projected by 2100 for unabated GHG emissions (scenario RCP8.5, Riahi

et al., 2011) is indeed roughly of the same amplitude, though of opposite sign, as the estimated temperature difference between

the pre-industrial period and the LGM, that is about 4◦C (Stocker et al., 2013). The magnitude of climatic and environmental

changes during the last glacial-to-interglacial transition can thus provide an index of the magnitude of the changes that may

occur for a warming of similar amplitude in 2100, as already postulated by Nolan et al. (2018). On the other hand, by design,45

statistical relationships linking climatic variables to economic damages could be applied either to a warming or to a cooling.

Therefore, we test two of them for a hypothetical return to the LGM, except for the presence of northern ice sheets (see

section 5), corresponding to a global cooling of 4◦C in 2100.

We chose two statistical functions linking GDP and temperature at the country level: the first one has been introduced by

Burke et al. (2015) and formalizes the impact of temperature on country GDP growth; the second one by Newell et al. (2018)50

1World GDP is probably a misnomer as we should rather mention Global World Product instead. We will nonetheless retain the common usage of “world

GDP”.
2The term damage function refers to the formal relation between climatic conditions and economic impacts, at the global level.
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relates temperature to country GDP level.3 The strength of this exercise lies in our ability to counter-check the results on

potential damages under scrutiny with reconstructions from paleo-climatology.

The paper is structured as follows: section 2 briefly surveys the existing literature on climate change and economic damages,

section 3 presents the methodology and data used here. The next section then describes the results obtained for our cooling

scenario and section 5 compares these results with what is known of the Earth under such a climate situation. Section 6 then55

discusses our results in the light of the known strengths and weaknesses of such empirical functions while section 7 concludes.

2 Connecting climate change and economic damages

The literature on the broad topic of damage functions (see Tol (2018) for a review) can be organized into two main approaches

linking climate change to economic damages: an enumerative approach which estimates physical impacts at a sectorial level,

from natural sciences, gives them a price and then adds them up (e.g. Fankhauser, 1994; Nordhaus, 1994b; Tol, 2002), versus60

a statistical (or econometric) approach, based on observed variations of income across space or time to isolate the effect of

climate on economies. (e.g. Nordhaus, 2006; Burke et al., 2015).

Each method has its pros and cons, some of which have already been acknowledged in the literature:

– The main advantage of the enumerative approach is to be based on natural sciences experiments, models and data (Tol,

2009). It distinguishes between the different economic sectors and explicitly accounts for climate impacts on each of65

them. Yet, results established for a small number of locations and for the recent past are usually extrapolated to the world

and to a distant future in order to obtain global estimates of climate change impacts. The validity of such extrapolation

remains dubious and it can lead to large errors. Moreover, accounting for potential future adaptations is a real challenge

and therefore a major source of uncertainty in the projections. This method also implies to be able to correctly identify

all the different channels through which climate affects the economy, which is by no means an easy task. And finally, it70

does not take into account interactions between sectors, nor price changes induced by changes in demand or supply (Tol,

2018).

– The statistical approach has the major advantage of relying on aggregates such as GDP per capita. There is no need to

identify the different types of impacts for each economic sector and to estimate their specific costs. They rely on a limited

number of climatic variables, such as temperature and precipitation, which are used as a proxy for the different climatic75

impacts. Adaptation is also implicitly taken into account, at least to the extent that it already occurred in the past. But as

acknowledged by Tol (2018), one of the main weakness of some statistical approaches is that they use variations across

space to infer climate impacts over time. This method also shares with the enumerative one the disadvantage of using

only data from the recent past, and hence from a period with a small climate change. The issue of future climatic impacts

outside the calibration range of the function still holds.80

3Both Burke et al. (2015) and Newell et al. (2018) then create a world GDP value via a population-weighted average of the country GDP.
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Despite different underlying methodological choices, several studies investigating future climatic damages conclude that

global warming would cost only a few points of the world’s income (Tol, 2018). A 3◦C increase of the global average tem-

perature in 2100 would allegedly lead to a decrease of the world GDP by only 1-4%. Even a global temperature increase

above 5◦C is claimed by certain authors to cost less than 7% of the world future GDP (Nordhaus, 1994a; Roson and Van der

Mensbrugghe, 2012).85

Some statistical studies looking at GDP growth (e.g. Dell et al., 2012; Burke et al., 2015) emphasize the long-run conse-

quences and lead to higher damage projections than those aforementioned. In particular, Burke et al. (2015) (hereafter BHM)

evaluates the impact of global warming on growth at the country scale, using temperature, precipitation and GDP data for 165

countries over 1960-2010. According to their benchmark model, the temperature increase induced by strong GHG emissions

(scenario RCP8.5) would reduce average global income by roughly 23% in 2100. This relatively high figure, however, is a de-90

crease in potential GDP, itself identified with the projected growth trajectory according to the Shared Socio-economic Pathway

5 (SSP5, high growth rate, Kriegler et al., 2017). As a result, under a global temperature increase of about 4◦C, only 5% of

countries would be poorer in 2100 with respect to today, and world GDP would still be higher than today. It must be noticed

that these results strongly depend on the underlying baseline scenario: if a lower reference growth rate is assumed (SSP3), the

percentage of countries absolutely poorer in 2100 rises to 43%.95

Capturing the impact of warming on growth rather than on GDP level may appear more realistic. Indeed, it allows global

warming to have permanent effects and also accounts for resource consumption to counter the impacts of warming, reducing

investments in R&D and capital and hence economic growth (Pindyck, 2013). There is however no consensus on the matter.

In a recent work, Newell et al. (2018) (hereafter NPS) evaluate the out-of-sample predictive accuracy of different econometric

GDP-temperature relationships at the country level through cross-validation and conclude that their results favor models with100

non-linear effects on GDP level rather than growth, implying, for their statistically best fitted model, world GDP losses due to

unmitigated warming of only 1-2% in 2100.

Studies on future climate change damages to the global economy usually do not pretend to account for all possible future

impacts. This is obvious for the enumerative methods applied at the global scale: being exhaustive is not realistically feasible.

But this is also true for statistical approaches. Nordhaus (2006) for instance gives three major caveats to his statistically-based105

projections of climate change damages: 1) the model is incomplete; 2) estimates do not incorporate any non-market impacts

or abrupt climate change, especially on ecosystems; 3) the climate-economy equilibrium hypothesis used is highly simplified.

Burke et al. (2015) also acknowledge that their econometric model only captures effects for which historical temperature has

been a proxy. Yet, despite these major caveats, results from both approaches are widely cited as “climate change” damages

estimates (Carleton and Hsiang, 2016; Hsiang et al., 2017), as if they were really accounting for the whole range of future110

impacts, and some are used to estimate the so-called social cost of carbon (Tol, 2018). The authors themselves do not always

clearly distinguish “climate change” impacts, which in the strict sense of the term should be applied to exhaustive estimates,

from the non-exhaustive impacts accounted for by the specific chosen proxy variable.

In our view, in addition to these common semantic confusions, at least two of the aforementioned caveats are highly prob-

lematic: 1) extrapolating relationships outside their calibration range (which concerns both the enumerative and the statistical115
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methods), and, 2) known and unknown missing impacts for which the chosen predicting climatic variables are not good ex-

planatory variables. The fact that the channels of damages are not explicit in the statistical approach is convenient but also

rather concerning: we simply cannot know which impacts are missed, except for a few of them (e.g. sea level rise).

A global warming of 4◦C at the end of the century would drive the global climatic system to a state that has never been

experienced in the whole human history, with growing concerns on the potential non-linearities in the way the Earth system120

as a whole may evolve: ecosystems have tipping points (e.g. Hughes et al. (2017); Cox et al. (2004)); the ice loss from the

Greenland and Antarctic ice sheets has already clearly accelerated since the middle of the 2000s (Bamber et al., 2018; Shepherd

et al., 2018); the projected wet-bulb temperature rise in the tropics could reach levels that do not occur presently on Earth and

which would simply be above the threshold for human survival (Im et al., 2017; Kang and Eltahir, 2018). Thus, the question

is: to what extent are we missing the point when using aggregated statistical approaches to estimate future damages?125

One could argue that we are not so sure about what a 4◦C warmer planet would look like, since we lack any analogue from

the recent past. Yet, we actually have an example of a climate change of similar magnitude, albeit of a different sign, the last

glacial period. In this paper, we focus on two representative examples of the statistical approach, the BHM and NPS functions,

and use the LGM climate to test their relevance to assess the damages expected from a large and rapid climate change.

The choice of these two functions was based on the following considerations:130

– While there might be controversies regarding the paper of Burke et al. (2015) related to the model specifications, inter-

pretation and statistical significance of the results or even the validity of the approach, the approach is well published in

leading peer-reviewed journals. Their work has been widely cited in the literature and has been used to compute the social

cost of carbon (e.g. Ricke et al., 2018). The authors also published several other papers based on similar methodologies

(e.g. Hsiang, 2016; Burke et al., 2018; Diffenbaugh and Burke, 2019).135

– The function of Newell et al. (2018) has not been published in a peer-reviewed journal,4 but we considered it anyway

because: 1) it belongs to the family of damage functions assuming an impact of climate on GDP level rather than

growth, leading to very small damages; 2) it is based on the same data and methodology than Burke et al. (2015), hence

simplifying the exercise.

We decided to perform an ad absurdum demonstration of the strong limitations of such approaches, because we believe140

that it is a useful complementary contribution to a more mathematical/statistical critique, which is not our purpose here. As

documented by DeCanio (2003) for older functional forms, the literature on damage functions has had tremendous political

implication, and even found its way in IPCC reports. Therefore, we believe it is important to add new elements to the existing

critics.

We chose to focus on the statistical approach because it inherently includes the effect of both cooling and warming. This is145

not the case for enumerative approaches, which are primarily designed for a warming and could not be applied to a cooling.

They may nonetheless lead to implausible results as well, especially at the global scale (see the aforementioned caveats), but

illustrating the disconnect between their damage projections and climate sciences would have required a different approach
4The paper can be downloaded here: https://media.rff.org/archive/files/document/file/RFF%20WP-18-17-rev.pdf
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than the one we use here (e.g. questioning their assumptions, sector by sector, or providing damage estimates for impacts not

taken into account).150

3 Material and Methods

In order to assess the economic damages of a hypothetical return to an ice age, we compute the evolution of average GDP per

capita by country, with or without the corresponding global cooling, following the methodology described in BHM, using the

replication data provided with their publication. Details are available therein. We differ from BHM in two ways:

– For the simplicity of the demonstration, we chose to consider only one functional form linking temperature to GDP from155

BHM and NPS: we use either the BHM formula with their main specification (temperature impacts GDP growth, pooled

response, short-run effect), whose results are the most commented in their manuscript, or the preferred specification of

NPS (temperature impacts GDP level, best model by K-fold validation, full details in Newell et al., 2018).

– Our climate change scenario corresponds to a global cooling of 4◦C, based on LGM temperature reconstructions and

assuming a linear temperature decrease, instead of the climate projections for the RCP8.5 scenario. Following BHM,160

who consider only temperature projections for the assessment of future damages, we do not use LGM precipitation

reconstructions.

Criticism of potential mathematical development, variable choices or data issues in BHM or NPS work is beyond the scope of

this paper. Our aim is limited to using their respective base equations as they are to test their realism for a large climate change

scenario. Following BHM, we also use the socio-economic scenario SSP5 as a benchmark of future GDP per capita growth per165

country. SSP5 is supposed to be consistent with the GHG emission scenario RCP8.5 but it does not include any climate change

impact, even for high levels of warming. Therefore, we can still use it in our glacial scenario without inconsistency.

The base case of BHM links the population-weighted mean annual temperature to GDP growth at the country level. Their

model uses the following functional form:

∆ln(GDPcapi,t) = f(Ti,t) + g(Pi,t) +µi + νt +hi(t) + εi,t, (1)170

where ∆ln(GDPcapi,t) denotes the first difference of the natural log of annual real GDP per capita, i.e. the per-period growth

rate in income for year t in country i, f(Ti,t) is a function of the mean annual temperature, g(Pi,t) a function of the mean annual

precipitation, µi a country-specific constant parameter, νt a year fixed effect capturing abrupt global events, and hi(t) a country-

specific function of time accounting for gradual changes driven by slowly changing factors. BHM control for precipitation in

equation 1, because changes in temperature and precipitation tend to be correlated. Rather surprisingly, their study does not175

show a statistically significant impact of annual mean precipitation on per capita GDP.

In their base case model, f(Ti,t) is defined as:

f(Ti,t) = α1 ×Ti,t +α2 ×T 2
i,t (2)
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Based on historical data, they determined the coefficient values to be α1 = 0.0127 and α2 = −0.0005.

Future evolution of GDP per capita in country i and year t between 2010 and 2100 is then given by:180

GDPcapi,t = GDPcapi,t−1 × (1 + ηi,t + δi,t), (3)

with ηi,t the business as usual country growth rate without climate change, according to SSP5 (taking into account population

changes), and δi,t the additional effect of temperature on growth when the mean annual temperature differs from the reference

average over 1980-2010, Ti,ref :

δi,t = α1 × (Ti,t −Ti,ref ) +α2 × (T 2
i,t −T 2

i,ref ), (4)185

It should be noticed that BHM do not take into account precipitation changes in their projection of future GDP.

The income growth-temperature relationship is a concave function of Ti,t, with an optimum temperature around 13◦C

(Fig.1). Therefore, for a country with a reference mean annual temperature below this GDP per capita-maximizing value

(e.g. Iceland), the annual growth rate increases (resp. decreases) when the mean temperature increases (resp. decreases). This

relationship is reversed for countries with a reference temperature above the optimum value (e.g. Nigeria). Note that for190

countries already close to the optimum temperature (like France), a small temperature change will have a very limited impact

on per capita GDP growth, but any major temperature change of several degrees, whatever the sign, will move them away from

this optimum and have a negative impact on per capita GDP growth.

The preferred model of NPS links the mean annual temperature to the per capita GDP level, based on the same historical

sample as BHM, and excludes any precipitation component. It links GDP in country i at year t to a polynomial function of195

mean annual temperature:

ln(GDPcapi,t) = β1 ×Ti,t +β2 ×T 2
i,t + ... (5)

Based on historical data, the authors determined the coefficient values to be β1 = 0.008141 and β2 = −0.000314.

Using this formula, the future GDP per capita with climate change for the 21st century, GDPcapi,t, is expressed as:

GDPcapi,t = GDPcap∗i,t × exp
[
β1 × (Ti,t −Ti,ref ) +β2(T 2

i,t −T 2
i,ref )

]
, (6)200

with GDPcap∗i,t being the GDP per capita of the country without climate change, according to SSP5:

GDPcap∗i,t = GDPcap∗i,t−1 × (1 + ηi,t) (7)

The NPS GDP-temperature relationships is also a concave functions of Ti,t, with an optimum temperature around 13◦C

(Fig.1). The shape is therefore similar to BHM, but the function is conceptually different since the impact of temperature is on

the GDP level instead of its growth rate. The SSP5 growth rate ηi,t remains unaffected by climatic conditions and any negative205

temperature impact on year t has no impact on the GDP per capita level at year t+ 1, which depends only on the underlying

SSP5 scenario and on the temperature at year t+ 1.
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To build our “glacial” scenario, we assume a linear decrease in temperature between 2010 (the end of the reference period)

and the glacial state projected for 2100. For any year t >2010, the country-specific mean temperature is therefore computed

as:210

Ti,t = ∆Ti ×
t− 2010

2100− 2010
+Ti,ref (8)

with ∆Ti the population-weighted temperature anomaly of country i at the LGM computed from Annan and Hargreaves (2013)

(Fig.2) .

Similarly to Burke et al. (2015) who cap Ti,t at 30◦C, the upper bound of the annual average temperature observed in

their sample period, to avoid out of sample extrapolation, we cap the minimum possible value of Ti,t at the lower bound of215

observations (−5◦C).

4 GDP projections

All results are expressed as distance from the baseline potential GDP, based on the baseline SSP5 scenario which assumes no

climate change. The impact on world average GDP per capita is a population-weighted average of country-level impacts.

Using the NPS specification, in 2100 34% of the countries have a lower income per capita than it would be without glacial220

climate change, but no country is poorer than today. The strongest impacts on GDP are projected in northern countries: Canada

and Norway for instance exhibit a potential GDP loss of about 8%. But at the global scale, the GDP loss projected in the

northern hemisphere is more than compensated by 1-2% GDP gain in most of the southern countries (Fig.4(a)). All in all, the

impact of the temperature decrease on the world potential GDP is very limited, only about -1.8% in 2100 (Fig.3).

With BHM specification, projected impacts are much more severe in northern countries: in the United States, Canada, Russia,225

and most of Europe GDP decreases range from 80% to nearly 100% in 2100, i.e. the impact of temperature on potential GDP

growth is so large that it leads to a complete economic collapse (Fig.4(b) and Fig.5). Similarly, stronger positive effects are

projected in southern countries, with a large increase in GDP for most of them in 2100 (Fig.4(b)): e.g. +254% in Gabon,

+314% in Ghana, +267% in India, +300% in Laos, +366% in Mali or +400% in Thailand. China is the sole country where

potential GDP remains roughly unchanged with impacts smaller than 1%. Globally 31% countries exhibit lower income per230

capita than projected without climate change and 17% are poorer than today. Losses in northern countries drive a decrease in

the world GDP during the first half of the century, with maximal global damages around 2050, at about -4%. In the second

half, however, positive impacts in southern countries more than over-compensate damages in the North and as a consequence

average potential GDP per capita gains 36% in 2100 at the world level with respect to the baseline scenario (Fig.3).

5 Comparison with LGM conditions235

To assess the credibility of these results we now survey the environmental conditions that human beings would have to face on

our planet in 2100 under our theoretical scenario, taking what is currently known of the LGM as a reference and considering

both climate and ecosystem changes. Ecosystem changes were then driven by both climate change and the impacts of low
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atmospheric CO2 concentrations on photosynthetic rates and plant water-use efficiency (Jolly and Haxeltine, 1997; Cowling

and Sykes, 1999; Harrison and Prentice, 2003; Woillez et al., 2011) but, in order to simplify our argument, we do not distinguish240

between these two effects in our description of a world cooled by 4◦C.

Many reconstructions of the climatic and environmental conditions during the LGM are available (Kucera et al., 2005;

Bartlein et al., 2011; Prentice et al., 2011; Nolan et al., 2018; Clark et al., 2009), as well as numerous modeling exercises

(Braconnot et al., 2007; Kageyama et al., 2013; Annan and Hargreaves, 2013; Kageyama et al., 2018). Despite remaining

uncertainties and discrepancies, data-based reconstruction and modeling results provide a fairly good picture of the Earth at245

that time.

The most striking feature of the last glacial world is the existence of large and thick ice sheets in the northern hemisphere

(Peltier, 2004; Clark et al., 2009). Of course, reaching the full extent of the LGM ice sheets, which depends on both static snow

accumulation and ice viscous spreading, would require tens of thousands of years, not a century. Therefore, as a simplifica-

tion for the sake of the demonstration, we assume the LGM climate equilibrium is reached in 2100, except for the ice-sheet250

thickness and extent and associated sea-level drop, since the timing is obviously too short. Such a simplification implies some

inconsistency, since the LGM climate also depended on the albedo and elevation feedbacks from the ice sheets. We also ac-

knowledge that 1) the response of the Earth system to a forcing that would lead to a 4◦C cooling in 2100 would be different

from the LGM, depending on the type of forcing, and therefore the LGM is not a perfect reverse analog of a future at +4◦C;

2) it took much more than a century to move from the LGM to the Holocene, our current interglacial period. However the255

projected rate of global warming for the RCP8.5 scenario is actually faster than any glacial-inter glacial changes that occurred

naturally during the last 800,000 years: about 65 times as high as the average warming during the last deglaciation (Nolan

et al., 2018). Besides, the level of warming in 2100 for the RCP8.5 scenario might exceed 4◦C, especially if strong positive

feedback loops lead to the crossing of planetary thresholds hence driving the Earth in a “hothouse” state (Steffen et al., 2018;

Schneider et al., 2019). Accordingly, using the LGM-to-present environmental changes as an index of future changes might260

even be considered as conservative.

With these caveats in mind, let us now take a closer look at the most obvious consequences of our scenario for human

societies.

Results from climate models show that the surface mass balance of the northern LGM ice sheets was positive over most

parts, outside the ablation zones on the edges, with annual accumulation rates of water equivalent of a few tens of cm per year265

(e.g. Calov et al., 2005). Therefore, in our thought experiment, snow accumulation on regions corresponding to the LGM ice-

sheet extent would reach a few meters at the end of the century. Moreover, in the most central regions, the decrease of the mean

annual temperature would be greater than 20◦C (Fig.2) and the cold would be hard to cope with. We presume that regions

experiencing either such low temperatures and/or being buried under a thick permanent and growing layer of snow would

become rather unsuitable for most modern economic activities. The impacted regions would be: Canada, Alaska, the Great270

Lakes region of the United States, the states north of 40◦N on the East coast of the United States, the Scandinavian countries,

the northern part of Ireland and of the British islands, half of Denmark, the northern parts of Poland and the north-east territories

of Germany, all of the Baltic countries as well as the north-eastern part of Russia. We assume that alpine regions that were
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widely covered by glaciers during the LGM, i.e. Switzerland and half of Austria, would in our scenario also experience several

meters of snow accumulation. All these regions would become unsuitable for most of the millions of people who currently live275

there, and access to their present natural resources would be very difficult, if not impossible. By comparison, nowadays regions

with a mean annual temperature below about 5◦C have a very low population density (Xu et al., 2020). Shipping routes in the

North Atlantic would also be disrupted by the southern expansion of sea-ice up to 50◦N in winter (Gersonde and De Vernal,

2013).

In Europe, the mean annual temperature would decrease by 4− 8◦C in the Mediterranean region, by 8− 12◦C over the280

western, central and eastern regions and by more than 12◦C over northern countries (Fig.2). For France for instance, whose

current mean annual temperature is about 11◦C, the temperature decrease would thus correspond to a shift to the current

mean temperature of northern Finland. Over western Europe, the mean temperature of the coldest month would decrease by

10−20◦C (Ramstein et al., 2007) and the mean annual precipitation would decrease by about 300 mm/year (Wu et al., 2007).

Forests would be highly fragmented, replaced by steppe or tundra vegetation (Prentice et al., 2011). The southern limit of285

the permafrost would approximately reach 45◦N, i.e. the latitude of Bordeaux (Vandenberghe et al., 2014). In such a context,

maintaining European agriculture, at its present state, among other human activities, would be a costly and technically highly

demanding challenge. Energy needs for heating would tremendously increase, current infrastructures would be damaged by

severe frost and there is no doubt that Europe would no longer sustain its current population on lands preserved from permanent

snow accumulation.290

In Asia, similar problems would occur, with a decrease in mean annual temperature between 4 to 8◦C over most Chinese

regions for instance (Fig.2). The boreal forest would have vanished, replaced by steppe and tundra (Prentice et al., 2011).

Permafrost would extend in the North-East and North China, up to Beijing, as well as in the west of the Sichuan (Zhao et al.,

2014). As a result, rice cultivation in the northern province of Heilongjiang for instance, currently above 20.106 tons/year, i.e.

about 10% of the national production (Clauss et al., 2016), would no longer be possible, among other crops. Permafrost would295

not stretch out to the whole densely populated North China plains, but the cold and dry climate there would nonetheless prevent

rice cultivation. The discharge of the Yangtze River at Nanjing would be less than half its present-day value (Cao et al., 2010),

questioning current hydroelectricity production. In short, current livelihoods in these regions would no longer be sustainable

and population would probably be much lower than today.

Temperature changes in the tropics would be rather moderate, with a cooling of 2.5− 3◦C (Wu et al., 2007; Annan and300

Hargreaves, 2013) (Fig.2). This temperature decrease might be considered as good news, and is indeed the driver of the GDP

increase simulated in tropical countries with both specifications we considered (Fig.4). However, tropical temperature decrease

would come with strong changes in the hydrological cycle, casting some doubts on such an optimistic view. The inter-annual

rainfall variability in East Africa would be reduced (Wolff et al., 2011), but so would be the mean rate; the Southwest Indian

monsoon system would be significantly weaker over both Africa and India (Overpeck et al., 1996); the Sahara desert and305

Namib desert would both expand (Ray and Adams, 2001); annual rainfall over the Amazon basin would strongly decrease

(Cook and Vizy, 2006). Compared to their modern extension, the African humid forest area might be reduced by as much as

74%, and the Amazon forest by 54% (Anhuf et al., 2006).
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Globally, the planet would appear considerably more arid (Kageyama et al., 2013; Ray and Adams, 2001; Bartlein et al.,

2011). However, the widespread increase in aridity at the LGM is debated since the reduction of the atmospheric demand for310

evaporation because of lower temperatures could compensate the precipitation decrease and drier places in terms of precipita-

tion were not always drier in terms of hydrology (Scheff et al., 2017; McGee, 2020). As already mentioned previously, glacial

vegetation changes were also driven by the decrease in atmospheric CO2, which can bias aridity increase inferred from pollen

proxy data. Yet, many places were indeed hydrologically drier at the LGM, including some currently densely populated areas.

The southward spread of the extra-arid zone of the Sahara desert for instance is estimated to 300-450 km (Lioubimtseva et al.,315

1998). For India, LGM data are rather sparse. Simulations results suggest that there was indeed a large decrease in runoff across

monsoonal Asia (Li and Morrill, 2013), in agreement with marine proxy data from the Bay of Bengal suggesting a reduction

in fluvial discharge (Duplessy, 1982). For our scenario, this could mean less flooding during the monsoon season, but also a

decrease of water resources during the dry season, in areas where droughts are already an issue nowadays. In regions already

dry today, like Pakistan or north-western India, it seems that the climatic conditions would indeed be even more arid (Ansari320

and Vink, 2007). In Indonesia, LGM climate simulations show a decrease in the precipitation minus evaporation (Scheff et al.,

2017) but vegetation changes depend on the location (Dubois et al., 2014). Therefore, for that region, we cannot really inferred

potential impacts of our glacial scenario for human populations.

The planet would also appear much dustier than today, with probably more frequent and/or intense dust storms which would

impact soil erosion rates, health, transportation and electricity generation and distribution (Middleton, 2017). Potential increase325

of dust source areas would include north-east Brazil, central and southern South America, southern Africa, central Asia and

the Middle East, Australia, China and south-eastern Asia (Harrison et al., 2001).

6 Discussion

In summary, our hypothetical ice-age scenario corresponds to strong and widespread changes in climatic conditions, not only

in temperature, driving major environmental changes (Nolan et al., 2018). In such conditions, neither the results obtained with330

the BHM and NPS functions nor the baseline GDP scenario (SSP5) appear as plausible projections.

6.1 Temperature-GDP level relationship

We argue that the disruptions in the living conditions on our planet, as briefly described above, cannot plausibly result in a small

decrease of less than 2% in the world potential GDP per capita in 2100, as inferred from the NPS specification. According

to these results, Canada would experience only a 8% decrease in its potential GDP per capita, despite its infrastructure being335

buried under snow, its natural resources being inaccessible or disappeared and tremendous frost. Such estimations of climate

damages remain utterly unrealistic even if we were ready to consider optimistic adaptation skills of human societies that would

prevent them from social calamities such as revolutions, famines or wars. Our results illustrate how the idea that climate

influences only the level of economic output and has no impact on economic growth trajectory is not appropriate for a large

climate change. The complete failure of this approach to provide plausible results for a cooling discredits its reliability to340
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account for the impact of a global warming of similar magnitude, which would without doubts drive environmental changes as

huge as the one we listed above for the LGM.

6.2 Temperature-GDP growth relationship

The BHM specification gives somewhat more plausible results for northern countries, with the projection of a complete col-

lapse of their economies, in agreement with the prospect of permanent snow accumulation, very low temperatures and large345

ecosystem shifts. However, we have serious doubts on the (very) large GDP per capita increase predicted in tropical countries,

given the strong decrease in precipitations in many places and global desert expansion, threatening in particular water resources

and agriculture. How can we reconcile, for instance, the projection of a GDP increase of more than 300% in sahelian countries

with a southward expansion of the Sahara desert of about 400 km? The BHM set-up focuses on damages driven by temperature

change only (or changes for which temperature is a proxy) and does not take into account precipitation changes for climate350

change projections. Their study did not find that mean annual precipitations had a significant effect on the economy in the last

decades, a result rather surprising, considering the strong impacts that droughts or extreme precipitations may have. This could

be due to the fact that the mean precipitation at the country scale is not an appropriate variable, since it does not necessarily

capture correctly seasonality changes or extreme events for instance. In any case, should precipitation effects be negligible for

the recent past, they cannot be ignored in the case of major hydrological changes that would also drive radical ecological shifts.355

Similarly, the absence of damages in China can hardly be conceptually reconciled with both deserts and permafrost expan-

sion, which should very probably have strong negative impacts on agriculture in the north and north-east of the country, or the

strong decrease in fluvial discharge.

Moreover, the complete collapse of (at least) the northern nations, including expected massive migrations of millions of peo-

ple outside these regions, would be expected to have serious economic and geopolitical consequences at the global scale, that360

we can hardly imagine being very positive. The statistical method of BHM capture the present-day political and economic re-

lationships between countries, but it cannot account for future changes in these relationships, a major deficiency in a globalized

world.

It is difficult to imagine how the world could be globally much wealthier than it would have been without such disruptions in

climatic and ecological conditions, especially if most places are no longer suitable for agriculture, as it may have been the case365

during the Pleistocene (Richerson et al., 2001). Agriculture may account for only a few percentages of GDP in present-day

developed countries, but food production is obviously the first need of any society. We therefore conclude that, despite its

endeavor toward realism, the BHM function does not provide results more convincing than the NPS one.

6.3 Cooling vs warming: symmetry or asymmetry of impacts ?

From a physical point of view, there is no a priori reason to postulate that a global warming and cooling of similar magnitude370

would have similar huge impacts. However, the symmetry is implicitly assumed by the GDP-temperature relationship itself:

it was built on both negative and positive temperature anomalies and therefore, by design, it cannot be assumed that such a

function could provide relevant damage estimates for a warming, but not for a cooling (or the other way around). Moreover,
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when considering some of the most dramatic climate projections for the RCP8.5 scenario at the end of the century, it seems

rather plausible that such a warming would have similar strong impacts as a cooling of similar magnitude:375

– On the one hand, as discussed in section 5, for our glacial scenario large parts of North America and Europe would

become rather unsuitable for a large human population and most modern economic activities. Currently 37 millions of

people live in Canada and about 30 millions in northern Europe, where we can reasonably assume that only a small

population could remain. Maintaining a total population of more than 700 millions of people in Europe despite the

extremely cold temperatures in winter is doubtful, even if the number of people that could still live there (probably380

mostly in southern Europe) remains speculative. Similarly, the north-western part of the Indian subcontinent would

experience extreme desert conditions (Ansari and Vink, 2007), which would have strong negative impacts for the current

70 millions of inhabitants in the state of Rajasthan.

– On the other hand, for global warming, the number of people currently living in areas which may be exposed to permanent

inundation for a sea level rise of 1.46 m in 2100 has been estimated to 340 millions (Kulp and Strauss, 2019), a number385

that would be further increased for higher sea level rise values (Bamber et al., 2019). But the most alarming projections

are maybe the ones concerning future heat stress: according to Mora et al. (2017), temperature and humidity conditions

above potentially deadly threshold for humans could occur nearly year-round in humid tropical areas, including some of

the most densely populated areas. How people could adapt to such unprecedented climatic conditions remains an open

question.390

6.4 General issues

Whether temperature changes impact GDP growth or level is actually a debate of little relevance. In both cases, the use of the

mean temperature at the country scale as a proxy for climate effects turns out to provide a highly insufficient picture in the case

of a large climate change and leads to a large underestimation of the risks to lives and livelihoods.

This failure can be attributed to different issues of such statistical approaches:395

– To our knowledge, there is currently no publications on potential issues in the statistical model itself. To this respect,

comments made by one anonymous referee regarding stationarity and the use of control variables (see the public dis-

cussion of this paper as well as section B.2 of the supplementary information of Burke et al. (2015)) seem interesting

and worth investigating. As these considerations fall outside the scope of this paper, we leave them for further research.

Beyond any purely mathematical consideration, it is interesting to note that both BHM and NPS considered only the400

mean annual temperature and precipitations to build their respective model. Yet, we speculate that these are not good

proxies for climatic variables that would have strong economic impacts, such as seasonality, extreme precipitation events,

droughts or heatwaves.

– As mentioned in section 2, one of the serious limitation of these statistical approaches is that they rely on climatic varia-

tions over space to extrapolate over time. Indeed, BHM argue that, for most countries in their sample, a global warming405
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of 4◦C takes them out of their own historical range of temperature, but that they still remain within the worldwide dis-

tribution of historical temperatures. For that reason, they consider that there is no extrapolation out of sample for these

countries. If a country gets warmer, the economic impacts can be deduced, they assumed, from past observations in

another country whose past temperature was similar. Only a few hottest countries would reach temperature outside the

worldwide historical range, and for this category they chose not to extrapolate but to cap future temperature at the upper410

bound observed in the sample period. As already pointed out by Pezzey (2019), such assumption is actually untestable.

One could argue that human adaptation capacities would succeed in maintaining climate-economy equilibrium even in a

changing climate. This hypothesis seems doubtful in the case of long-living infrastructures facing rapid climate change

and certainly does not hold for ecosystems, one of the channels through which climate change impacts the economy.

Ecosystems simply cannot adapt quickly enough to a global climate change as fast as +4◦C in a century. The speed of415

forest migration for instance is a few hundreds of meters per year (e.g. Brewer et al., 2002) while temperature change in

2100 according to the RCP8.5 scenario would correspond to a displacement of more than 1000 km of current temper-

ature zones. The ecosystem-climate equilibrium is not valid on the timescale of a century and therefore, we argue that

this issue is in itself sufficient for the extrapolation from space to time to be unwarranted.

– BHM and NPS functions are based on economic data from societies adapted to their current environment. The alleged420

statistical relationship between GDP per capita and temperature is established for stable ecological conditions and is

therefore hardly relevant to assess damages on societies who will experience decades of drastic changing climate and

ecosystems and having to re-adapt endlessly to ephemeral new living conditions. It should also be stressed that, as

illustrated in Burke et al. (2015), the results obtained with their methodology strongly depends on the assumed reference

GDP growth rate without climate change. There are evidences that economic growth rates are path-dependent (Bellaïche,425

2010), therefore in this case it makes no sense to apply a correction to a baseline growth rate which remains unaffected

by the damages that occurred the previous years.

– What econometrics maybe show is that, for the few last decades, with a still relatively stable climate, interannual weather

variability does not have a strong impact on the economy. We cannot extrapolate from this limited sample what would

be the consequences of new climatic conditions completely out of sample and never experienced by humans so far, such430

as those which could occur in the tropical regions for unabated GHG emissions (Mora et al., 2017; Im et al., 2017; Kang

and Eltahir, 2018).

– Beyond the issue of the relevance of the use of mean temperature and precipitation changes as proxies for other climatic

variables, there are obviously impacts not accounted for (DeFries et al., 2019) such as glacier melting and resulting

water challenges once they would have vanished, potential tipping points (Lenton et al., 2008; Steffen et al., 2018) such435

as a rapid melting of the Greenland or Antarctic ice sheet that would trigger fast sea level rise (Sweet et al., 2017),

thawing permafrost, stronger tropical cyclones, ocean acidification and ecosystem shifts. It is therefore very misleading

to consider that they allow to quantify “climate change” economic damages. At best, they might give an insight of
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damages for which temperature has been historically a proxy, and this is highly insufficient, conveying a false picture of

the potential risks.440

7 Conclusions

Should GHG emissions continue unabated, the climate change expected for the end of the century will be of similar magnitude

than the last deglaciation, which did not occurred in a century but in about 10,000 years. Such a rapid change has no equivalent

in the recent past of our planet, even less so in human history. Trying to establish a robust assessment of future economic

damages based on aggregate statistics of a few decades of GDP and climate data, as attempted by econometric approaches, is445

probably doomed to failure, even more so when considering only mean annual temperature as a proxy for climate change. Such

methodologies seem irrelevant for what lies ahead, since they fail to account for the largest potential impacts of climate change,

as was already pointed out by DeFries et al. (2019). In order to strengthen this point, we have used an ad absurdum example of

a hypothetical return to the climatic and environmental conditions of the LGM by the end of the century, except for the presence

of the northern ice sheets and associated sea-level drop, corresponding to a global cooling at speed and magnitude equivalent450

to what the business-as-usual scenario of the IPCC announces. The comparison between the results obtained with two different

statistical temperature-GDP relationships for our scenario and what we know of the Earth during the LGM suggests that both

approaches are severely underestimating the impact of climate change. We can therefore conclude that temperature only is

a very bad proxy to estimate damages of a major climate change at a country scale or at the global scale and should not

be used for that purpose. More generally, several issues inherent to statistical approaches cast strong doubts on potential455

significant improvement. In this context, empirically estimating the aggregated relationship between economic activity and

weather variables to project future damages is at best useless, at least from a policy point of view. Economists should hence

refrain from using existing statistical damage functions to infer the global impacts of climate change or to compute optimal

policy.

To summarize, our work has proven by absurdum the strong limitations of statistically-based methods to assess quantitatively460

future economic damages. In our view, a more modest and realistic ambition could be endorsed by integrated assessment

scenarios, namely that of making an educated guess on the lower-bound of such damages at regional, rather than global, scales

where the uncertainty surrounding prospective estimations may be more easily dealt with. This alternate kind of approach

would be closer to the enumerative one mentioned in section 2. This ideal approach should however not merely use sectorial

statistical relationships established for the recent past, as is often currently done. They would otherwise underestimate damages465

just as aggregated statistical method do. Instead, they should account for tipping points or potential cascading effects and should

definitely be consistent with the future described by climate and ecological sciences (Stocker et al., 2013). But as already

pointed out by Pezzey (2019) it is highly probable that high levels of uncertainties will remain and some risks “are currently

impossible to assess numerically, which economists need to acknowledge with greater openness and clarity” (DeFries et al.,

2019).470
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Figure 1. GDP per capita-temperature relationships, growth (BHM) and level (NPS) effects (percentage points). The curves are shown on

the same plot but are not directly comparable, since their respective impact on GDP is fundamentally different. Vertical lines indicate average

temperature for 4 selected countries. Each curve has been normalized relative to its own peak.

Figure 2. Reconstruction of the Last Glacial Maximum surface air temperature anomalies (◦C) based on multi-model regression. Data

source: Annan and Hargreaves (2013).
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Figure 3. Percentage change in average world GDP per capita for a global cooling of 4◦C in 2100 as projected from non-linear effects of

temperature on GDP level (dashed line, Newell et al. (2018) specification) or growth (plain line, Burke et al. (2015) specification). Reference

GDP path according to the SSP5 scenario.
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Figure 4. Projected impacts of a 4◦C global cooling on country GDP per capita in 2100. Changes are relative to projections without climate

change according to SSP5. a) Changes according to NPS specification (GDP level effects); b) changes according to BHM specification (GDP

growth effects). NB: color scales have different maximum and minimum values for easier visualization.
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Figure 5. Country-level average income projections with and without temperature effects of a “glacial” climate change. Projections to 2100

according to SSP5 scenario, assuming high baseline growth and fast income convergence. Centre is 2010, each line is a projection of national

income. Right (grey) are incomes under baseline SSP5 assumptions, left (red) are incomes accounting for a non-linear effects of projected

cooling on GDP growth.
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