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Abstract. Two long-lasting high pressure systems in summer 2018 lead to long lasting heat waves over Scandinavia and 10 

other parts of Europe and an extended summer period with devastating impacts on agriculture, infrastructure and human life. 

We use five climate model ensembles and the unique 263 year long Stockholm temperature time series along with a 

composite 150 year long time series for whole Sweden to set the latest heat-wave in summer 2018 in historical perspective. 

With 263 years we are able to grasp the pre-industrial time well and see a clear upward trend in temperature itself as well as 

heat wave indicators. With five climate model ensembles providing 20580 simulated summers representing the latest 70 15 

years, we analyse the likelihood of such a heat event and how unusual the 2018 Swedish summer actually was. 

We find that conditions as those observed in summer 2018 show up in all climate model ensembles. An exception is the 

monthly mean temperature for May for which 2018 was warmer than any member in one of the five climate model 

ensembles. However, even if the ensembles generally hold individual years like 2018, the comparison shows that such 

conditions are rare. For the indices assessed here, anomalies such as observed in 2018 occur maximally in 5 % of the 20 

ensemble members, sometimes even in less than 1 %. 

For all indices evaluated we find that probabilities of a summer like in 2018 have increased from relatively low values for 

the one ensemble extending back to 1861–90 and for all five ensembles including 1951–80 to the most recent decades 

(1989–2018). An implication is that anthropogenic climate change has strongly increased the probability of a warm summer 

such as the one observed 2018 to occur in Sweden. Despite this, we still find such summers also in the pre-industrial climate, 25 

however, with a lower probability. 

1 Introduction 

Long-lasting high-pressure dominated weather resulted in remarkably warm and dry conditions in large parts of northern 

Europe during summer 2018 (Sinclair et al. 2019). As a consequence, Sweden experienced a very long warm period with an 

unusually high number of warm days. Similar pressure patterns to those observed in summer 2018 have previously been 30 
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shown to be associated with warm temperature anomalies over different parts of Europe (Sousa et al. 2018; Zschenderlein et 

al. 2019). Sinclair et al. (2019) conclude that the 2018 heat wave was not intensified by surface feedbacks and dry soils, 

instead mainly forced by increased solar radiation due to anomalously clear skies (Räisänen, 2018). The high-pressure 

situation was established already in May and continued over summer until mid-August interrupted only for short periods 

mainly in June. According to the SMHI (Swedish Meteorological and Hydrological Institute) weather observations the 35 

average over Sweden for the four-month period May–August was on average 3.3 K warmer than the 1961–1990 

climatological mean. The sustained period with warm conditions, in connection with little precipitation, led to a prolonged 

drought. The hot and dry conditions in summer 2018 in Sweden were associated with severe consequences for people and 

the environment including: health problems and excessive mortality rate among people (Åström et al. 2019); water shortages 

with adverse implications for arable land and pastures (Buras et al. 2019) including lack of forage; unusual large areas 40 

affected by forest fires (Krikken et al. 2019). Also, other environmental impacts such as excessive fluxes of carbon dioxide 

and methane due to extremely warm conditions in shallow parts of the Baltic Sea were observed (Humborg et al. 2019). Also 

prior to 2018 heat waves have been reported to impact Sweden in terms of increased mortality rate among people (e.g. Oudin 

Åström et al., 2013), ecological consequences (Rasmont and Iserbyt, 2012), and in connection to air pollution episodes 

(Struzewska and Kaminski, 2008).  45 

 

As a consequence of global warming, heat waves have become more frequent and intense (e.g. SREX 2012; IPCC 2018; 

Sippel et al 2020). Numerous examples of intense high-impact heat waves exist in the literature. For European conditions 

this includes the heat wave in large parts of south and central Europe in 2003 and the heat wave impacting large parts of 

Russia in 2010 (e.g. Russo et al. 2014). In their analysis of intense heat waves, Russo et al. (2014) show a very large 50 

variability over time. For Scandinavia, in particular, the vicinity to the relatively cold North Atlantic implies that any shift to 

a more westerly or north-westerly circulation brings cooler air into the area and efficiently puts an end to any warm period. 

The large variability of the mid-latitude circulation in this region implies that this is frequently the case and that long 

extended warm periods in the summer seasons are relatively rare. However, also in this region, heat waves do occur and are 

part of climatological conditions. Zschenderlein et al. (2019) report that the maximum number of heat wave days for their 55 

Scandinavian area were 25 for the 1979–2016 period with an annual maximum duration of 12 days for the heat wave in 

July–August 1982. Further, they note that the two most intense heat waves in this area were observed in 1991 and in 2014.   

 

The large year to year variability implies that it is difficult to assess whether any potential trends or even single extreme 

events can be attributed to the on-going global warming or if they are a result of the large natural variability. To address such 60 

questions large ensembles of climate model simulations have been shown to be a valuable tool (e.g. Deser et al. 2012, 

Aalbers et al. 2018, Maher et al. 2019). In two recent studies, Leach et al. (2019) and Yiou et al. (2019) use large ensembles 

of climate models to address different aspects of heat wave conditions in summer of 2018 in northern Europe. A conclusion 

from the work of Yiou et al. was that the probability of an event such as the one observed in the second half of July 2018 has 
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increased as a result of human-induced climate change. As pointed out by Kirchmeier–Young et al (2019), and documented 65 

also for Northern Europe by Leach et al., the temporal and spatial scales are important for making such an attribution 

statement.   

 

The aim of the study is to further evaluate temperature conditions in Sweden during summer 2018 in relation to the historical 

climate. We first describe the conditions in 2018 in relation to a number of historical observations from Sweden for the last 70 

150 years. For one of the stations, Stockholm, the time series extends back until 1756, adding another century to the analysis. 

Different aspects of heat wave characteristics; including three-day events, total number of warm days, total number of 

consecutive days and heat-wave intensity, are assessed. In a next step we investigate the likelihood of such a summer to 

occur in five large global climate model ensembles, some of which are covering a period since 1860 and others starting in 

the second half of the 20th century. In this way, we assess to what extent an extreme event like the summer of 2018 may 75 

have changed as a result of simulated global warming. 

 

2 Methods and Data 

The historical context will be given by comparing observed conditions in 2018 to observed and simulated climate conditions 

for: i) a pre-industrial period 1861–1890, ii) a mid 20th century period 1951–1980 and iii) our reference period 1981–2010. 80 

For some analysis we will also look at the most recent past 30-year period ending 2018 (1989–2018). For the longest 

possible time perspective, we also consider the period 1756–2018 using the Stockholm temperature series. Our analysis 

focuses on summer months, where the classical summer season, June–August (JJA), is extended with May as Sweden 

experienced an earlier onset of summer already at the start of May in 2018. This extended summer has also been discussed 

by Hoy et al. 2020, who called for a summer period from April to September for Europe in 2018. As Sweden spans a wide 85 

range of latitudes (55° N to 69° N), and therefore different climates, we analyse conditions north and south of 63° N 

separately (Figure S1). 

      

2.1 Observational data 

We use three sources of observational data: i) the gridded climatology E-OBS version 19.0e (Haylock et al. 2008) covering 90 

Europe at 12.5 km horizontal resolution for the period 1951–2018, ii) monthly averages for Sweden derived from SMHIs 

observational stations starting 1860 and iii) a long-term record of homogenized daily temperatures derived from the 

thermometer readings at the Stockholm Observatory starting 1756. Here, we describe the Swedish data sets. 
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A spatially averaged temperature time series for Sweden has been derived from 35 stations covering the country (Figure S2) 95 

with long records, most of which start in 1860 (Alexandersson and Karlström, 2001). For stations with missing data, mostly 

in the first decades, and for stations where inhomogeneities have been identified (following Alexandersson and Moberg 

(1997) and Moberg and Alexandersson (1997)), data from surrounding stations have been used to complement of correct the 

temperature series. For each station monthly mean anomalies have then been calculated for each month w.r.t. the 1961–1990 

average for that month. Next the anomalies are averaged over the 35 stations and added to the 1961–1990 mean for any 100 

particular month. In this way we minimize the influence of averaging over different absolute numbers as in the first years of 

the time series a few of the observational records are not complete. By the use of anomalies we also minimize the influence 

of changes in location and instrumentation at some of the sites. In the following we denote this as the average temperature 

for Sweden but we note that it would deviate from any average based on gridded data as the geographical coverage is 

skewed towards the southern part of the country.  105 

 

The data from the Stockholm temperature series (Moberg et al. 2002; Moberg 2019) have been adjusted for i) all years after 

1870 to exclude the urban warming trend in the city and for other inhomogeneities detected in homogeneity tests against 

surrounding reference station data and ii) before 1859 to adjust for a supposed warm bias of the observed temperatures 

during summer. The adjustment for the urban warming trend and other inhomogeneities, is applied such that the most recent 110 

homogenized temperatures are made somewhat colder than the non-homogenized temperatures in order to make the entire 

series representative of the rural conditions that prevailed before the mid-19th century. The size of the adjustment changes 

with time and varies over the year. It causes homogenized temperature data after 1967 being on average 0.8 K colder than 

non-homogenized temperatures for annual-mean data and on average 1.0 K colder for May–August. The second adjustment 

term is the same for every year before 1859, where it increases from 0 K at the start of May to -0.7 K in June and July and 115 

then decreases back to 0 K again at the end of August. This warm bias is likely due to poor protection of thermometers 

against radiation during May–August in the period before 1859 (Moberg et al. 2003). We use data with the same adjustment 

as in Moberg et al. (2005). 

 

2.2 Climate model data 120 

We use five GCM ensembles: i) a multi-model CMIP5 (fifth phase of the Coupled Model Intercomparison Project) ensemble 

(Taylor et al., 2012), ii) the 100-member MPI–ESM grand ensemble (Maher et al. 2019), iii) the 50-member CanSISE grand 

ensemble (Kushner et al. 2018; Scinocca et al. 2016), iv) the 16-member EC-EARTH (CMIP5 version) ensemble from 

KNMI (Aalbers et al., 2018), and v) the 50-member EC-EARTH (S-LENS (Doescher et al. in prep); CMIP6 version (Eyring 

et al. 2016)) ensemble from SMHI. The climate models have been run with forcing conditions representing those observed in 125 

1860–2005 following CMIP5 and CMIP6 protocols respectively. For the time period from 2006 and forward the climate 

models (i–iv) have been forced by the RCP (representative concentration pathways) scenarios representing future conditions 
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(RCP, Moss et al. 2010). For the S-LENS ensemble, EC-Earth has been forced by the SSP5-8.5 scenario from 2016 and by 

observed forcing until 2015 (Riahi et al 2017). Most models have been forced by the RCP8.5 (or SSP5-8.5) scenario while 

the MPI-GE has been forced by RCP4.5. For all models, but EC-EARTH S-LENS, the scenario forcing starts with year 130 

2006. As differences in radiative forcing between these scenarios are small in the first decades of the 21st century, we 

neglect any differences between the scenarios. Details related to time periods, temporal resolution of temperature data, 

forcing conditions and size of the respective model ensembles are given in Table 1. In total, we analyse 294 simulations 

adding up to 8820 summers over a 30 year period. The larger sample increases the possibility of assessing statistically robust 

probabilities of heat events. 135 

 

2.3 Variables and indices 

All analysis is based on daily and monthly temperature data. We look at both daily average and daily maximum 

temperatures, as well as monthly means. To assess the average temperature for the summer season we use monthly mean 

temperatures for four individual summer months (May, June, July, and August), separately and pooled (JJA, MJJA). 140 

Temperature anomalies are calculated against the reference period 1981–2010.  

 

Furthermore, three warm day indices were used to assess the temperature variability during summer. For simplicity reasons 

we define a warm day as a day 𝑖 with 𝑇𝑚𝑎𝑥,𝑖  greater than a threshold, where the threshold is the 95th percentile of MJJA 

𝑇𝑚𝑎𝑥  during the reference period (see Eq. (1)). 145 

𝑇𝑚𝑎𝑥,𝑖 > 𝑝95(𝑇𝑚𝑎𝑥,(𝑀𝐽𝐽𝐴 1981−2010))            (1) 

This simple definition based on a relative measure is chosen to make it possible to compare conditions in different parts of 

Sweden to each other. For example, a perceived heat wave in the colder North of Sweden, may not even appear in an 

analysis involving an absolute threshold representative of conditions in southern parts of the country like, e.g., summer days 

defined as days with 𝑇𝑚𝑎𝑥  > 25° C. Other examples of benefits with a relative measure involve comparison of coastal and 150 

inland stations or between low and high altitude stations for similar reasons. 

The indices based on equation 1 are i) the “total number of warm days per year” (totWarmD), ii) the “maximum number of 

consecutive warm days per year” (max_conWarmD), iii) the “number of heat events” (tot_event), where an event is defined 

as minimum 3 consecutive days of  𝑇𝑚𝑎𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

 155 

Additionally we calculated the Heat Wave Magnitude Index (HWMI, Russo et al. 2014) and the Warm Spell Duration Index 

(WSDI, Orlowsky and Seneviratne, 2011). For both HWMI and WSDI, a heat wave event is detected as a period with at 

least three consecutive days above a percentile-based threshold. Specifically, for a given day of year (doy), we define the 

threshold as the 90th percentile of the daily maximum temperature data within all days of the 30 year reference period 
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(1981–2010), including the doy and a surrounding 31-day window. For a given year (or season), the WSDI is the longest 160 

duration of any such heat wave event. Whereas the WSDI takes into account only the duration, the HWMI also considers the 

magnitude. To calculate the HWMI, each heat wave event is decomposed into a number of three-day “sub-heat-wave 

events”. The unscaled magnitude (the sum of the three daily maximum temperatures) of each sub-heat-wave event is mapped 

into a probability value on a scale from 0 to 1, defined as the sub-heat-wave event magnitude. The mapping is according to 

the empirical cumulative density function (ECDF), which is built on the annual maximum of the unscaled magnitudes within 165 

the reference period. The heat wave magnitude is then derived by summing the scaled magnitudes of all the sub-heat-wave 

events. The HWMI is the maximum of all heat wave magnitudes for a given year. 

 

3 Results and discussion 

The analysis is performed in four steps. First the observed temperature climate of summer 2018 in Sweden is set into a long-170 

term 250-year perspective by comparing to the Stockholm series and in a wider Swedish context by comparing to 

observation data from SMHI and to E-OBS. Next, we investigate to which extent the five GCMs represent warm summer 

conditions over the reference period by comparing the GCM ensembles with the observed climate. We also investigate to 

what extent conditions in Sweden in the summer of 2018 fall within the simulated ensembles and thereby infer to what 

extend it could be considered extreme. Finally we look at the GCM ensembles to address the question as whether a warm 175 

summer, such as that observed in 2018, would have been probable in a historical context by comparing to pre-industrial 

(1861–1890) and mid 20th-century (1951–1980) conditions. The analysis is first presented for monthly and seasonal mean 

data in 3.1 and then repeated in 3.2 for the indices based on daily data. 

 

3.1 How extreme was the summer of 2018 in Sweden on a monthly and seasonal basis? 180 

For Stockholm, the mean MJJA temperature of 2018 was 17.8° C, which is 3.0 K above the mean for 1998–2017 or 4.0 K 

above the 1756–1900 mean. The temperature anomalies in Stockholm for each day in 2018 w.r.t. to the long-term 250-year 

climatological average of 1756–2005 are displayed in Fig. 1. The figure clearly shows that the extended summer, ranging 

from May to mid August, yielded a large number of days with temperatures by far exceeding the long-term mean. As shown 

by Sinclair et al. (2019) the large-scale circulation was dominated by persistent blocking high-pressure systems over 185 

Scandinavia in May and large parts of July and early August. In June, the situation was different with more low-pressure 

dominated weather in northern Scandinavia while the southernmost parts were under the influence of a high-pressure ridge 

over Western Europe. This resulted in lower temperatures, mainly in northern Sweden, but also episodically in southern 

Sweden associated with intrusions of cooler air from the West and Northwest. The episodes of relatively colder conditions in 

June can be seen in the Stockholm record as illustrated in Fig. 1 by blue downward facing spikes. 190 
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For the full four-month period MJJA we note that more than 35 % of the days were above the long-term climatological 95th 

percentile calculated for each day (upper grey line in the figure). This was indeed a unique feature for 2018. Only one 

additional year exceeds the 95th percentile with 20 % of the days in a full May–August season. Additionally, only 10 other 

years exceed the 95th percentile with 15 % of their days for MJJA, indicating that a summer, such as 2018, with a very large 195 

number of warm days, is rare in a long-term historical perspective. This result is confirmed by the study of Hoy et al. (2020) 

analysing 67 long time series all over Europe, where 33 stations show the summer half year of 2018 to be the warmest on 

record. Hoy et al. (2020; Fig. 5) also show that Stockholm time series peaks at 2018 for 9 out of 10 of their analysed heat 

wave indicators (Fig. 5 and 10). An example is hot days (HD) with maximum temperature above 30° C which was observed 

with 8 days over the previous record (18 days) as well as the heat wave duration with 22 days compared to 11 days previous 200 

record and heat wave intensity of 65 K compared to 35 K (Hoy et al. 2020 Fig. 7). Another peculiar observation in Figure 1 

is that most individual daily mean temperatures in summer 2018 were not exceptionally warm when viewed one-by-one. In 

the May–August season, it is rather the large total number of days with temperatures above the long-term climatological 95th 

percentile that was unique, of which most occurred in May and the second half of July. 

 205 

Zooming out to the larger Swedish scale, exploring the observed monthly data over Sweden, we note that the long-term 

MJJA 2018 average was 2.8 K above the 1981–2010 mean. This is more than 0.7 K above the second warmest MJJA, 

recorded in 2002. Compared to the historical data from 1860, there is a clear indication of higher average seasonal mean 

temperatures in the last decades. The mid 20th century period 1951–1980 is 0.6 K warmer on average than the preindustrial 

1861–1890 mean. The difference compared to 1861–1890 increases to 1.2 K for 1981–2010 and to 1.5 K for 1989–2018. 210 

Furthermore, 12 out of the 16 (corresponding to the 10th percentile) warmest MJJA periods in the last 160 years (1860–

2019) occur after 1988. 

 

Probability distributions (pdfs) of the four single summer months (May, June, July, and August) in Fig. 2 (a–d) further 

illustrate the rarity of the weather situation in 2018 in Southern Sweden. This can be seen as May (Fig. 2a) and July (Fig. 2c) 215 

2018, indicated by the dotted line, sets the 100 % mark on the extreme warm tail of the observation distribution for the last 

decades (grey histogram). June (Fig. 2b) and August (Fig. 2d) were also warmer than normal in Southern Sweden, but not 

within the extreme tail, with June just above the 95th percentile and August well below the 90th percentile. For Northern 

Sweden the picture is similar for May, July, and August, but here June 2018 was in fact colder than on average, by about 1 K 

(see Fig. S3), due to low-pressure intrusions. We note that the monthly mean temperatures of May 2018 are the highest 220 

observed so far for May in all 25 Swedish provinces according to SMHI’s observations (not shown). 

      

Pooling the single months together to JJA and MJJA distributions (Fig. 2 e–f), 2018 is the most extreme summer in Southern 

Sweden in the past 30 years according to the E-OBS data set. Also in Northern Sweden, summer 2018 was more than 1 K 

https://doi.org/10.5194/esd-2020-25
Preprint. Discussion started: 27 May 2020
c© Author(s) 2020. CC BY 4.0 License.



8 

 

warmer than on average but far from being among the warmest years (Fig. S3 e–f). The extended summer period (MJJA) 225 

2018 is just above the 95th percentile in Northern Sweden, as the second warmest event in the period 1989–2018.       

 

The climate simulations shown in Fig. 2 reveal a smoother picture compared to the observations as we have pooled together 

all members of one ensemble in one probability distribution (solid coloured lines).  

 230 

For the recent past period five GCM ensembles (see Table 1) were available and despite their varying ensemble size and 

different models, the probability distributions peak at similar monthly and seasonal mean temperature anomalies. We note, 

however, that even if the average anomalies are similar there are differences in the spread of the individual ensemble 

members, as reflected by different width and height of the probability distributions.  

The 1989–2018 ensemble medians show temperature increases exceeding those of the reference period (1981–2010) by 235 

between 0.19 K in E-OBS to 0.44 K in EC-Earth-LENS for MJJA conditions.  

 

Compared with the spread in observed temperatures as derived from E-OBS, all five GCM ensembles include summers as 

warm (or as cold) as any individual observed summer during the 1989–2018 period, both for individual months and for the 

three and four month long summer seasons. May 2018 is, however, an exception to this as it is warmer than all of the 100 240 

simulated May months in the MPI-GE for Southern Sweden. The fact that the GCM ensembles generally show a larger 

spread than that of the observations is not surprising as they represent a large number of realisations, and thereby many 30-

year periods representing the recent past climate while the E-OBS data only represents one such period. The assessment 

presented here is not a full evaluation of the ability of the models to represent summertime temperatures in Sweden. 

However, the coverage of the E-OBS probability distribution within the GCM ensembles lends confidence in the climate 245 

models.  

 

For Northern Sweden, the models show a similar agreement as in Southern Sweden regarding the position of the peak for 

each month/season (Fig. S3). Even though the observed May and July temperatures are the highest in the last 30 years, the 

model ensembles indicate that temperatures as high as those observed in 2018 are more likely than in the South. Probabilities 250 

are, however, still low, being below 5 % for most of the model ensembles. Compared to Southern Sweden, June and August 

2018 were relatively mild in Northern Sweden. For June, 2018 was even on the cooler side of the monthly temperature 

distributions.  

 

Even if only May 2018 is completely outside of one of the GCM ensembles in southern Sweden, it is clear that both May and 255 

July, as well as the JJA and MJJA summer seasons in 2018 stand out as being warm or very warm also in the context of the 

large model ensembles.  
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Three ensembles include pre-industrial data, giving us the opportunity to compare the recent past climate and the year 2018 

with the pre-industrial period 1861–1890. We also compare with the mid 20th-century period 1951–1980 to be consistent 260 

with the analysis of daily data in section 3.2 below. Here, the observed May 2018 temperatures in Southern Sweden are 

outside of all climate model ensembles for 1861–1890 apart from the CMIP5 multi-model ensemble (dashed lines and bars 

in Fig. 2). However, the probability of such a warm month is below 1% also in that ensemble (Fig. 2a). The other two 

GCMs, MPI-GE,  and EC-EARTH, do not include such a warm May in any of their ensemble members, not even for the mid 

20th-century period, 1951–1980 (not shown). Again, pooling together MJJA actually none of the ensembles simulate 265 

temperature anomalies as high as in 2018 for Southern Sweden neither in the pre-industrial period (Fig. 2f dashed lines) nor 

in the mid 20th-century. This also indicates that CMIP5 temperatures like in May 2018 fall only into the distribution because 

of the chosen fit. Even if conditions in Northern Sweden were not as extreme, with the relatively cooler June and August, it 

is clear that the probability of a summer (MJJA) as warm as that observed in 2018 is less than 1 % in all ensembles (Fig. S3).  

 270 

3.2 How extreme was the warm summer of 2018 in Sweden on an event-basis? 

As a heat wave is not only perceived by monthly averages, we calculated five different indices to account for different 

characteristics of extreme and long lasting events (cf. section 2.3): the total number of warm days (totWarmD), the 

maximum number of consecutive warm days representing the longest heat event (max_conWarmD), the number of heat 

events lasting at least three days (tot_event), the Heat Wave Magnitude Index (HWMI) and the Warm Spell Duration Index 275 

(WSDI). These indices are calculated for the extended summer period, MJJA. As they are all based on maximum daily 

temperature data, which is only available from 1951 from most of the simulations (see Table 1), we here compare the mid 

20th-century (1951–1980) to the present day period (1989–2018). 

      

Figure 3a reveals that a total of 28 warm days (totWarmD) are found for Southern Sweden in MJJA 2018 according to E-280 

OBS. It stands clear that this puts MJJA 2018 on the extreme end and well above any other years. Comparing the 

observations for 1989–2018 with 1951–1980 shows that the distribution of totWarmD has widened at the same time as the 

mean and median (red mark) has been shifted towards more warm days. Also the model ensembles agree on that message, 

with CanSISE showing the strongest change signal between the two periods. Looking at the most extreme summers it is clear 

that all models indicate an increase as seen both by a shift of the 95th percentile (upper whisker), and by larger absolute 285 

maxima. For three out of four model ensembles more summers with more than 28 warm days can be found in the present day 

period compared to the mid 20th-century period. We also note that both observations and models indicate that there is a 

tendency for summers without any warm days to become less frequent with time. From Fig. 3b we see that 28 warm days 

would only have been reached once in the simulated pre-industrial climate, in the 1860s, though only represented by one 

ensemble. 290 

      

https://doi.org/10.5194/esd-2020-25
Preprint. Discussion started: 27 May 2020
c© Author(s) 2020. CC BY 4.0 License.



10 

 

The maximum number of consecutive warm days (max_conWarmD) reflects another aspect of warm days. This is important 

as extended periods with warm conditions have a stronger impact on human health, and also on other parts of nature, than a 

single heat day (e.g. Oudin Åström et al. 2013; Rasmont and Iserbyt, 2012). Figure 3d shows the time series for 

max_conWarmD where the thin coloured lines represent the single ensemble members, the bold lines the ensemble means, 295 

and the horizontal dotted black line indicates the number for 2018 as calculated from E-OBS. The figure also shows that 

observed variability from E-OBS (black solid line) lies within the variability of all simulations and that 2018 does not stand 

out as being among the most extreme summers in the period. The sharp peaks for the single ensemble members indicate high 

year to year variability of max_conWarmD for each member, as for the other indices too (right panels in Fig. 3). 

 300 

In particular when referring to the long time series of EC-EARTH, the warming signal starting at the last decades of the 20th 

century is clearly visible, as it is for all four ensembles. The time series also show that summer 2018 max_conWarmD value 

is passed much more often in recent years than in earlier times, shifting the summer 2018 event towards the centre of the 

distributions. Figure 3c shows the change of all ensembles towards longer events with more consecutive warm days going 

from 1951–1980 to 1989–2018. However, it is clear that summer 2018 is still outside the whiskers in the figure indicating 305 

that it is above the 95 % range for all ensembles. Again, as for the totWarmD (Fig. 3a), the lower whisker changes towards 

the present day climate by starting to lift from the zero limit. 

  

The median max_conWarmD is very similar for all ensembles at about 2 days and 3 days, respectively for the 1951–1980 

and 1989–2018 period (cf. black median lines in the boxes in Fig. 3c). The maximum value ranges from 12 days to 20 days 310 

for all ensembles and both periods. These results are very similar to Zschenderlein et al. 2019 who found a maximum heat 

wave duration of 12 days. We find this close similarity despite differences in data set, periods, exact definition of index and 

regions not being identical.  

 

Also the total number of heat events (tot_event) reveals that summer 2018 was an unusual event with more heat events than 315 

covered by ensemble simulations for the historical time period (Fig. 3e and f). It is also leading the extreme tail even for the 

present day climate. The ensemble means show a clear upward trend at the end of the 20th century and the pooled 

distribution indicates a similar detachment from zero as discussed above for max_conWarmD. Also the observations show a 

detachment from the zero lower limit in the most recent 20 years (Figure 3f). As for the tot_WarmD (Fig. 3b) only one year 

in pre-industrial climate has been simulated above the summer 2018 value by the EC-Earth model (Fig. 3f). 320 

      

The picture of more extensive and intense heat waves as indicated above is manifested in all indices. Also, the more complex 

heat indices WSDI and HWMI support this finding. Figure 4a shows the WSDI for each ensemble pooled in box-whiskers 

and the WSDI for 2018 based on EOBS as a dotted horizontal line. Also for WSDI the summer 2018 is on the extreme tail 

for all ensembles and periods. It again shows a clear upward shift of all distributions towards the summer 2018 value. The 325 
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time series analysis of EOBS indicates that 2018 stands out relative to any other year observed since 1951. At the same time, 

however, WSDI numbers as high as that observed in 2018 do show up in the model ensembles for 1989–2018, reaching 

almost the 5 % level in the CanSISE model. 

 

Also HWMI (Fig. 4c and d) follows the main picture described above. The summer 2018 value of 2.5 indicates a moderate 330 

heat wave magnitude (Russo et al. 2014) that does occur in all ensembles but only with relatively low probabilities. Figure 

4d shows that observed HWMI is varying between 0 and 2.5 for Southern Sweden with a mean increasing from about 0.7 in 

the mid 20th century to 0.9 in the beginning of the current century. 

 

3.3 Discussion 335 

In this study we assess to what degree summer 2018 in Sweden can be considered as being an extreme event. Without doubt 

the summer was remarkably warm and in some aspects way beyond what has been observed, for Sweden as a whole for the 

last 160 years and for Stockholm in a 250 year perspective. However, the results also clearly show that the degree of rarity of 

the summer is very different depending on which measure is investigated. The monthly mean temperature for May and the 

number of warm days above the 95th percentile in MJJA are examples for which 2018 is the most extreme summer observed 340 

so far. For other indices, like the WSDI, results indicate less extreme conditions compared to other years. Such differences 

may simply be the result of looking at different aspects of warm summers but may also be a result of different methods, like 

in this case differences between a fixed threshold relative to one based on a day-to-day evolving one. As an example of how 

results may be different depending on definition, we note that in case of not counting May as a summer month, focusing on 

the more commonly used generic three-month JJA summer, summer 2018 was not as remarkable. In particular, in light of the 345 

large ensembles such a particular warm JJA summer is found in single members of all assessed climate model ensembles 

even in pre-industrial climate. Such a definition would make the study more comparable to other summer studies, but 

missing the impact of long lasting heat events, when not including an early onset of summer temperatures. 

 

An implication of our findings is that attribution statements based on specific features of a part of a season can not be taken 350 

as being representative in a more general perspective of the full season and vice versa. Yiou et al. 2019 could demonstrate 

the thermodynamic contribution of human-induced climate change for the Scandinavian heat wave 2018. They found a 

+5.4K temperature anomaly for the second and warmer part of the heat wave (19 days end of July 2018) over Scandinavia 

(including Norway, Sweden, Denmark, and Finland) relative to the reference period of 1981–2010. In particular, they found 

each single day of this period was at least 3 K above the climatological mean. Yiou et al. 2019 also made a probability 355 

analysis based on two GCM ensembles and two RCM ensembles and found a heat event like those 19 days 5 to 2000 times 

more likely in present day climate than in the pre-industrial period. This agrees well with our analysis of the five large GCM 

ensembles.  
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Leach et al. 2019 state that the 2018 heat wave over Europe would not have happened without human-induced climate 

change. For Europe they found an event like 2018 summer to be 10 to 100 times more likely in present day than in pre-360 

industrial climate. 

 

For all aspects of summer temperatures assessed in this study the five model ensembles present a relatively coherent picture 

with central values (medians) and ensemble spread (e.g. standard deviation or interquartile ranges) being similar. However, 

for the more extreme values like the 95th or 99th percentile, differences between ensembles tend to be larger with some 365 

more systematic differences between them. For instance, the CanSISE and the EC-Earth-LENS ensemble tend to give 

significantly stronger warm extremes than the other ensembles from the previous version of the EC-Earth model and the 

MPIGE. We note that for all model ensembles assessed here there are, with few exceptions, always individual summers as 

extreme as 2018 in the 1989–2018 period. It is difficult to judge, based on the relatively simple evaluation presented here, 

whether the GCMs are performing well implying that such summers are, even if rare events, still an existing type of summer 370 

in today's climate, or, if the models are overestimating the chance of such a summer. This fundamental uncertainty restricts 

us from making a formal attribution analysis as we simply don’t know which climate to evaluate the models against. A more 

extensive model evaluation exercise including a rigorous test of the model’s ability to simulate extended periods with high-

pressure situations such as that observed in 2018 including the temperature conditions in such episodes is planned for a 

forthcoming study.   375 

4 Summary and Conclusions 

We analyse temperature conditions in Sweden during summer 2018 in comparison with the observed climate. The results 

clearly show that summer 2018 stands out as an unusually warm event in relation to the observed climate. We have also 

shown that the degree of rarity depends on which measure is evaluated. For instance, we note that the average temperature of 

the month of May was the most exceptional compared to observations. Also average July temperatures as well as the four-380 

month average May–August temperatures are far above previous maxima for southern Sweden while June and August 

temperatures were more modest. Some other indices, like the warm spell duration index (WSDI) and heat wave magnitude 

index (HWMI) show less extreme conditions.  

 

We also compare the summer 2018 with a large number of climate model simulations. Five different global climate model 385 

ensembles, with in total 294 climate model simulations have been assessed. This gives us the opportunity to set the observed 

summer in 2018 in perspective of 8820 summers over the 1989–2018 period. We find that conditions like those observed in 

summer 2018 do show up in all climate model ensembles. An exception is the monthly mean temperature for May for which 

2018 was warmer than any member in one of the climate model ensembles. However, even if the ensembles hold individual 

years like 2018, the comparison shows that such conditions are rare. For the indices assessed here, anomalies as those 390 
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observed in 2018 occur less than once in 20 in all ensembles except for the total number of warm events in one of the 

ensembles. For some indices, the anomalies are even more rare and do not occur more frequently than once in 100. We note 

that there are very large differences between the different models in what degree of probability a summer like 2018 would 

have. As a consequence, we do not assign specific probabilities but instead discuss the results more qualitatively. 

 395 

As the simulations also cover historical periods further back in time we can assess to what extent conditions have changed 

over time as a consequence of increased greenhouse warming. For all indices evaluated we find that probabilities of a 

summer like that 2018 have increased from relatively low values 1861–90 and 1951–80 to the most recent decades (1989–

2018). An implication is that anthropogenic climate change has strongly increased the probability of a warm summer such as 

the one observed 2018 to occur in Sweden. Despite this, we still find such summers also in the pre-industrial climate 400 

although with a lower probability.   

Data availability 

MPI Grand Ensemble was provided first by Daniela Matei, and is now available openly: 
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CanSISE data from CanESM2 model is available online via: 405 
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EC-EARTH-LENS is produced by SMHI and openly available on request. The ensemble will be uploaded to ESGF during 

2020. 410 

CMIP5 data is openly available via ESGF data nodes. 
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Figure 1: Diurnal mean temperatures in Stockholm 2018. For each day the anomaly with respect to the 250-year climatological 

mean for 1756-2005 is displayed in red (warm) or blue (cold). The diagram also shows the warmest and coldest diurnal mean 

temperature  for each calendar day recorded within the 1756-2005 period as well as the corresponding 5th and 95th percentiles.   560 
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Figure 2. Probability distributions for monthly average temperature anomalies, calculated for 1861-1890 (dashed) and 1989-2018 

(solid) against 1981-2010 for Southern half of Sweden, for the months of May, June, July, and August, and pooled for JJA and 

MJJA. The upper part of each panel shows the .9, .95, .99, and 1 percentile for each distribution. Ensemble distributions are a 565 

kernel density fit, whereas the histogram for EOBS is based on actual data. The observed year 2018 for respective months/season 

is indicated by the dotted black line. 
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 570 

Figure 3. a) Total number of warm days (totWarmD), c) maximum number of consecutive warm days (max_conWarmD), and e) 

number of heat events (tot_events) for the period 1951-1980 (dashed) and 1989-2018 (dotted) for 4 models (x axis), calculated from 

MJJA months and averaged over Southern Sweden. All model members are pooled into one box. Time series for each ensemble 

member (thin lines) and ensemble means (bold lines) for b) totWarmD, d) max_ncd, and f) tot_event. The number of days for 2018 

as derived from E-OBS is indicated by the horizontal dashed line. 575 
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Figure 4 As Figure 3 but for a, b) WSDI and c, d) HWMI. 
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Table 1. Climate model ensembles analysed in the study. 

Ensemble name CMIP Period rcp/ssp Ensemble size Monthly or 

daily data 

GCM resolution 

MPIGE 5 1861—2018 4.5 100 monthly ~1.8° 

EC-EARTH 5 1861—2018 8.5 16 daily T159L62 

EC-EARTH-LENS 6 1970—2018 SSP585 8.5 50 daily T255L91 

CanSISE 5 1950—2018 8.5 50 daily T63 

CMIP5 r1 ensemble 5 1861 / 1951—2018 8.5 78/15 monthly/daily  
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